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Abstract. The gauging of free surface flows in waterways provides the foundation for monitoring and managing the water 10 

resources of built and natural environments. A significant body of literature exists around the techniques and benefits of optical 

surface velocimetry methods to estimate flows in waterways without intrusive instruments or structures. However, to date the 

operational application of these surface velocimetry methods has been limited by site configuration and inherent challenging 

optical variability across different natural and constructed waterway environments. This work demonstrates a significant 

advancement in the operationalisation of non-contact stream discharge gauging applied in the computer vision stream gauging 15 

(CVSG) system through the use of methods for remotely estimating water levels and adaptively learning discharge ratings 

over time. A cost-effective stereo camera-based stream gauging device (CVSG device) has been developed for streamlined 

site deployments and automated data collection. Evaluations between reference state-of-the-art discharge measurement 

technologies using DischargeLab (using surface structure image velocimetry), Hydro-STIV (using space-time image 

velocimetry), ADCPs (acoustic doppler current profilers), and gauging station discharge ratings demonstrated that the optical 20 

surface velocimetry methods were capable of estimating discharge within a 5-15% range between these best available 

measurement approaches. Furthermore, results indicated model machine learning approaches leveraging data to improve 

performance over a period of months at the study sites produced a marked 5-10% improvement in discharge estimates, despite 

underlying noise in stereophotogrammetry water level or optical flow measurements. The operationalisation of optical surface 

velocimetry technology, such as CVSG, offers substantial advantages towards not only improving the overall density and 25 

availability of data used in stream gauging, but also providing a safe and non-contact approach for effectively measuring high 

flow rates while providing an adaptive solution for gauging streams with non-stationary characteristics. 

1 Introduction 

Globally, hydrological flow occurs through natural and man-made open channels and floodplains, often transporting life-

sustaining water to ecosystems and civilisations (Herrera et al., 2017; Albert et al., 2017; Grinham, 2007; Prüss-Ustün et al., 30 
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2014; Albert et al., 2021). Likewise, rainfall variability with increasing risk due to climate change, can cause extreme flows 

(Lehmann et al., 2015; Palmer and Räisänen, 2002) resulting in significant economic, environmental, and life losses (Gaume 

et al., 2009; Grinham et al., 2012), as well as an increasing risk of extreme drought events into the future (Park et al., 2021; Li 

et al., 2016). Within this context the field of hydrography endeavours to monitor and understand the dynamics of flows in these 

waterways through space and time (Westerberg et al., 2016; Kuentz et al., 2017; Mcmillan et al., 2012). From designing 35 

infrastructure intersecting with waterways (Lindow and Curtis, 2010), to budgeting water security (Daly et al., 2019; Sene et 

al., 2018) and improving forecasting models for near and long-term policy planning (Hering et al., 2015; Hutley et al., 2020), 

gauging waterways continues to be an important utility for society with substantial time, human risk, investment and 

maintenance funding worldwide (Crochemore et al., 2020). 

There are many operational and emerging methods for waterway gauging, varying widely in cost, accuracy, reliability, and 40 

risk (Tauro et al., 2018; Gordon, 1989; Costa et al., 2000; Tauro et al., 2016; Yang et al., 2020).  Intrusive methods range from 

the resource intensive installation of hydraulic control structures to measure discharge rates analytically using simpler water 

level measurements within a designed range by obstructing and controlling the flow through a standardised geometry (Boiten, 

2002) (often to the detriment of aquatic species (Mueller et al., 2011), as well as sedimentation and erosion (Pagliara and 

Palermo, 2015; Ogden et al., 2011)), through to the risking of people and equipment entering the stream to measure velocities 45 

using passive mechanical current meters or active acoustic Doppler velocimetry profiles (Gordon, 1989).  

In order to estimate discharges through a waterway without the flow passing through the geometry of a known hydraulic 

control structure, other methods largely rely on the measurement of velocities across the channel and integrating these 

estimated velocities through the cross-section area using some binned resolution (Herschy, 1993). Measuring these velocities 

within the cross-section of waterways is fraught with various challenges, including limitations in measuring close to 50 

boundaries, debris, vegetation, aeration, unsteady flows, equipment damage, and safety risks (Petrie et al., 2013; Lee et al., 

2014; Klema et al., 2020; Harding et al., 2016). Furthermore, the ongoing measurement of velocities in a waterway are difficult 

and expensive to carry out and maintain, especially during flood events (Banasiak and Krzyżanowski, 2015). Therefore, the 

development of discharge ratings (relating water level to an estimated discharge) have become common-place through the 

construction of (often still expensive to build and maintain) gauging structures and stilling wells. This approach allows the 55 

more easily measured water level over time to be converted to discharge estimates through a fitting of manual discharge 

measurements recorded routinely and/or opportunistically over decades by professional hydrographers. 

In practice, the common approach to gauging streams using fitted discharge ratings presents challenges for obtaining unbiased 

measurements of non-stationary channel environments over time, particularly when significant flow events cause changes to 

natural waterways (Birgand et al., 2013; Tomkins, 2014; Guerrero et al., 2012; Jalbert et al., 2011; Di Baldassarre and 60 

Montanari, 2009). Therefore, non-contact and affordable solutions such as radar (Rahman Khan et al., 2021) or optical, offer 

the potential to overcome these challenges by measuring velocity and stage without in-situ sensors. Similar to one of the oldest 

manual methods to measure velocities in a waterway by measuring the displacements of surface floats over time, the passive 

optical measurement of surface velocities using relatively inexpensive camera systems has been an attractive approach to 
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stream gauging (Dobriyal et al., 2017). Despite the documented advantages of this approach (Dramais et al., 2011) coupled 65 

with its potential for affordable scalability to decrease monitoring sparsity, traditional gauging approaches have not yet been 

replaced or augmented by a widespread adoption of optical surface velocimetry after 20 years of active research (Tauro et al., 

2018). Optical surface velocimetry in the form of large-scale particle image velocimetry (LSPIV) and space-time image 

velocimetry (STIV) are well-established approaches for estimating streamflow (FUJITA and KOMURA, 1994; Watanabe et 

al., 2021). Whilst operationalised systems using LSPIV exist (Bechle et al., 2012) using cross-correlation of sequential image 70 

vector fields, surface structure image velocimetry (SSIV) is a derivative of LSPIV that filters the background enhancing the 

moving surface structures (Leitão et al., 2018). SSIV has been applied in the DischargeLab analysis software and 

DischargeKeeper operational monitoring system reaching technology readiness level (TRL) 9 in-use internationally with the 

ability to apply optical water level detection techniques with varying success without the use of a vertical gauging reference 

structure in the water (Photrack AG, Zürich, Switzerland) (Peña-Haro et al., 2021). Similarly, STIV quantifies the change in 75 

luminance variation through time across one-dimensional search lines defined parallel to the stream flow (Fujita et al., 2007). 

Whilst the majority of STIV trials have been part of research efforts, the approach has been packaged into user-friendly Hydro-

STIV software (Hydro Technology Institute Co., Ltd.) and is being deployed by numerous organisations globally, particularly 

using unmanned aerial vehicles (UAVs) (Koutalakis et al., 2019). The central challenges with the application of these 

approaches remains the reliance on an externally measured water level, accurate ground control reference points assigned to 80 

fixed pixels in the frame for accurate vector transformation, and a moderate degree of expertise required to manually tune site 

specific settings to reduce errors from changes in the site environment, and lighting conditions in initial setup (Detert, 2021). 

The existing barriers to widespread implementation of optical stream gauging include; initial surveying and calibration of new 

sites, development of system integration, and difficulties in measuring velocities reliably with surface tracers across different 

site flow conditions, water clarity, and lighting environments (Pizarro et al., 2020). This study aims to develop and evaluate a 85 

significant advance towards a rapidly deployable, accessible, automated operational, and scalable optical stream gauging 

system with improved reliability for gauging streams across varying flow and lighting conditions. With increasing successful 

developments in a range of methods in optical surface velocimetry, recent technological advancements in optical technologies 

for capturing videos, surveying environments, and computer vision analysis, along with technical advancements in embedded 

computing power efficiency, communications, and cloud computing/storage services, we anticipate optical approaches to 90 

stream gauging will further transition from the research domain towards the operational domain. 

2 Methods 

To address the study aim, the methodology firstly presents the operation of the computer vision stream gauging (CVSG) system 

and the process for site setup/configuration. Stereographic remote water level estimation approaches and adaptive cross section 

learning, with rectification to coordinates of the water surface are then outlined. The optical flow technique used by CVSG for 95 

estimating surface velocities is then described along with the approach for learning the surface velocity distributions over 
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multiple measurements under different optical conditions, and fitting these surface velocity measurements to a model of the 

surface velocity profile transformed into a function of a boundary distance factor. Thereafter, the principles for the development 

of adaptive learning discharge ratings are detailed, followed by a summary of the reference operational discharge estimation 

approaches applied in this study. Finally, the characteristics of the optical flow field study sites, and the stream gauging field 100 

sites demonstrated in this work are presented. 

2.1 Computer vision stream gauging system 

The CVSG system employed in this study was developed for use in capturing stereo videos of waterways with automated 

processing of these into estimates of the water level, surface velocities, and gauged discharges. Figure 1 outlines the operational 

process of the CVSG system. The CVSG hardware has been designed around the use of a ZED 2/2i stereo camera (Stereolabs 105 

Inc., San Francisco, CA, USA) with or without internal infrared filters, and a NVIDIA Jetson Xavier NX (NVIDIA Co., Santa 

Clara, CA, USA). The total power consumption of the CVSG hardware collecting data in this study was on the order of 36 W 

hr per day, averaging 1.5 W with a peak power draw of 30 W. A sliding lens mechanism is inbuilt to allow for switching 

between different light wavelength band filters to enhance night measurements and collect data for discerning variables of 

water quality, such as suspended sediments. The system also employs a cloud architecture for automated data handling and 110 

internet of things (IoT) fleet management in managing the configuration of CVSG devices and sites drawing from a range of 

internal and external data sources. The integration of modern cloud analytics and fleet management allows for artificially 

intelligent predictive and adaptive sampling. Under typically configured baseflow conditions, the device operates at a sampling 

frequency of 60 minutes, capturing a video duration ranging between 3 and 30 seconds. During rapid rises in streamflow, the 

system can rapidly adapt and increase sampling frequency to between 2 and 15 minutes (depending on bandwidth and power 115 

conditions) to increase data density in less certain regions of the discharge rating.  

Placing a CVSG device perpendicular or parallel with a waterway and configuring the upstream and downstream boundary 

distances relative to the camera that define the region to be analysed is sufficient for the system to begin estimating the level 

of any water within 40 m in-view of the camera. Then, using the inertial measurement unit (IMU), the accelerometer provides 

the orientation of the camera relative to gravity, and then projects the estimated planar water surface into the image space for 120 

rectified surface velocities in this plane to be estimated at 0.1 m resolution across the cross-section using an optical flow 

algorithm. The optical resolution of the flow in meters per pixel is calculated based on the water surface projection in order to 

filter any motions in the area of the field of view beyond the limits of acceptable optical flow resolution accuracy (normally 

limited to a maximum of 0.05 meters per pixel up to 0.2 meters per pixel). Beyond this, providing the bathymetry of the cross-

section and the camera’s two-dimensional location (horizontal and vertical coordinates) relative to the reference frame of the 125 

cross-section data, allows the system to begin learning a cross-section model of the ground at a site, as well as fitting the model 

of surface velocity profiles, estimating discharge, and adaptively learning a discharge rating through hundreds and thousands 

of recordings at a site over time. Site configurations are stored and referenced in timeseries, allowing for site configuration 

changes through time, typically from updated manual cross-section surveys or changes to the camera location. It is possible to 
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setup the system with a cross-section without knowledge of a surveyed location of the camera. Cross-section data can be 130 

referenced to the camera location visually through the projection of the cross-section data into the image overlay and tuning 

the predicted location of the camera to match the projection.  

 

Figure 1: Computer vision stream gauging (CVSG) system operation diagram. 

When videos are captured by the system, the analysis of these videos occurs in configured branches allowing the simultaneous 135 

automated analysis of the same video using different configurations or water level data sources (e.g. the original stereo-derived 

water level estimation, and an external water level sensor). Site coordinate systems are standardised with the x axis locally 

parallel to the waterway (positive in downstream direction), the y axis locally perpendicular to the waterway (positive away 

from or to the right of the camera), and the z axis aligned locally with the gravitational force measured by the camera. Cross-
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section data is one-dimensional and referenced to the y-axis across the waterway. The analysis region is not needed to be 140 

directly in front of the camera, but should be ideally a section of uniform and straight cross-section in view (can be as small as 

0.5 m along the stream, up to as large as visible and practicable for optical flow measurement). When selecting a site, care 

should be taken to identify sites with suitable surface flow visibility and oriented south-facing (southern hemisphere) or north-

facing (northern hemisphere) where possible to avoid sun glare, while keeping the horizon or sky outside of the camera field 

of view (maximising the water surface in the field of view and reducing automatic exposure determination from the sky). The 145 

CVSG system has been developed to balance ease-of-setup, ease-of-operation, affordability, accuracy of results, and reliability 

for stream gauging. 

2.2 Stereo cross-section and water level estimation 

The primary driver for the use of a stereo camera in the CVSG device is the potential to use stereophotogrammetry to reduce 

the surveying requirements typically associated with surface velocimetry techniques for the rectification of pixel displacements 150 

into realistic spatial scales over a wide range of water levels. However, a stereo computer vision system also makes it possible 

to initially survey and then continuously monitor the terrain of the cross-section above the water level for changes due to 

erosion, deposition, or vegetation, and offers the potential advantage for measuring surface velocities on variable or steep 

hydraulic gradients. The adaptive learning of stream bank profiles over time allows for an advancement forward with non-

stationary stream gauging in morphologically unstable sites. While the CVSG system maintains an adaptive cross-section 155 

database for each site which is compared and adapted with each measurement for visible terrain above the estimated water 

level (applying more weight to gradual changes in time and requiring many consistent measurements to gradually apply any 

observed dramatic changes in the cross-section profile), the results of this study applied fixed manual cross-section surveys 

from the time of deployment over the entirety of the time periods evaluated. 

Stereophotogrammetry is applied to estimate the distance from the camera to features which are matched between the stereo 160 

pairs of rectilinear corrected images where a convolutional neural network model (provided by the camera manufacturer, 

Stereolabs), that has been trained on pairs of stereo images, is applied to improve both the accuracy and solution density 

particularly with reflective and featureless surfaces. With a point cloud calculated for each video frame, the median coordinate 

is taken of each of the three coordinate dimensions of the point cloud for each recording analysed. Water level is estimated by 

scanning across the point cloud in 0.5 m wide lines within the configured stream cross-section analysis region from the near 165 

bank towards the far bank. The median elevation between these cross-section scanning lines is taken, and the resulting cross-

section profile is lastly filtered by a 0.5 m footprint median filter. After this, an iterative process constrains the near and far 

water boundaries to ideally within the first 2 m (and not more than 10 m due to the effects of various optical conditions on the 

accuracy of the point cloud over the water surface) from the near bank across the water surface by moving the far boundary 

closer using similar pixels assumed to be water from the RGB image frame while avoiding any obstructed view of the near 170 

bank. The first percentile of the elevation points of the stereophotogrammetry cross-section profile within this domain is then 
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estimated as the water level (effectively taking the near-minimum of the surface while reducing the impact of any sporadic 

point cloud artefacts). 

The CVSG system has also been developed with external water level data source aggregation and parallel analysis capability 

alongside stereo water level estimates. With an estimated water plane level relative to the camera position, and an IMU (median 175 

filtered and stability tested for each recording) providing the orientation of the camera relative to gravity, as well as the 

camera’s optical properties, the across stream coordinates of the water surface plane every 0.1 m are first projected and 

interpolated into the image pixel space. Following this, the streamwise coordinates along the stream are predicted for each 

pixel spanning from the image (from the left lens in the camera’s perspective) centreline. 

2.3 Optical flow surface velocimetry estimation 180 

The motions in the recorded videos are computed using the Farneback algorithm (Farnebäck, 2002, 2003) to solve the energy-

like minimisation problem for the optical flow equation across the pixel space between each pair of consecutively recorded 

frames. Whilst optical flow has previously been applied to the measurement of stream discharge (Perks, 2020; Khalid et al., 

2019), there are different existing algorithms developed for reaching an optimal solution of the optical flow equation (Baker 

et al., 2011). Shi et al. (2020) compared three established and widely applied optical flow techniques to breaking surges, noting 185 

the advantages of the Farneback algorithm for its relatively high accuracy and dense flow fields, as well as a lower sensitivity 

to noise with the converging iterative solution for the displacement vector, 𝑑, between a pair of images using quadratic 

polynomials following Eq. (1): 

𝑑 X ∑ w𝐴 𝐴∈ ∑ 𝑤𝐴 Δ𝑏∈  ,       (1) 

where 𝐼 is the greyscale image with local neighbourhood regions denoted by 𝐼  using the image coordinates 𝑥  and 𝑦  190 

to form 𝑋
𝑥
𝑦 , where the change in brightness between the corresponding pixels in the pairs of images are denoted 

𝛥𝑋 . Furthermore, 𝑤 is a weighting function over the local neighbourhood regions, while the polynomials are defined by 

𝑓 𝑥 ,𝑦 ≅ 𝑎 𝑎 𝑥 𝑎 𝑦 𝑎 𝑥 𝑎 𝑦 𝑎 𝑥 𝑦  with 𝐴
𝑎

𝑎
, 𝑏

𝑎
𝑎 , and 𝑐 𝑎 . 

The approach is a variational method combining the assumptions of local neighbourhood brightness intensity variation between 

frames with the minimisation of an energy function assuming a slowly varying displacement field for locally smooth velocity 195 

gradients (Shah and Xuezhi, 2021). A four-level pyramid of processing steps (Adelson et al., 1984) is applied to estimate larger 

overall motions first at a coarser resolution, interpolating these larger motions to higher resolutions over the four steps refining 

the optical flow field with each step increasing in resolution up to the original video resolution (typically 1920x1080 recorded 

from each camera simultaneously). 

With the optical flow algorithm applied to each pair of consecutively recorded frames, depending on the visual flow conditions 200 

there can be errors in the estimated motion between frames, camera vibrations, as well as natural or man-made motions 
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occurring between the camera and the waterway surface to be measured. By summing the estimated optical flow fields over 

the duration of each recording, and averaging the optical flow field stack produced to find the nett motions estimated over the 

duration of each recording, any oscillatory and non-continuous motions can be supressed. While taking the median of the flow 

fields would be reasonably more preferable in this context, the average accumulating flow field computation is applied to 205 

reduce the edge computing hardware requirements of the method, particularly with memory usage as the duration of the 

measurement scales the number of instantaneous flow field frames stored in memory for a median calculation. Taking the two-

dimensional image space gradients of the previously computed streamwise (x) and cross-stream (y) coordinates of the water 

surface plane, the optical flow pixel displacement rates are scaled onto the water surface plane, noting that the optical flow 

motions in the horizontal and vertical directions of the image space can each be indirectly measuring components of both the 210 

streamwise and cross-stream motions on the water surface plane. From this point, the motions out of the assumed plane of the 

water surface are filtered out of the analysis to further remove false motions unrelated to the waterway surface velocities (such 

as animals and swinging ropes which are not moving in the assumed plane of the water surface).  

Assuming the remaining velocities over the length of the analysis section are velocities related to the motion of the water 

surface, and assuming a continuity in the uniformity of the analysis section length without transitional flows, the strongest 215 

detected velocities are collapsed into a single-dimensional raw cross-section surface velocity profile. The assumed continuity 

over the analysis section length facilitates the measurement of velocities across spatially inconsistent optical flow 

measurement/lighting conditions along the length of the analysed section. 

Whilst the visual conditions for optical flow measurement can still be insufficient for reliable measurements across the length 

of the measurement section in all situations, the CVSG system then applies an adaptive learning velocity distribution across 220 

the cross-section at 0.1 m intervals and references these learning measurements over the observed water level range at 0.01 m 

intervals. This process of developing an adaptive database of surface velocity measurements across the stream at different 

water levels (adaptive learning surface velocity distributions), allows the system to use multiple measurements of the same 

water level over time in different conditions to combine these measurements into a complete surface velocity profile, while 

simultaneously being adaptive to observed changes in surface velocity profiles in non-stationary environments. Furthermore, 225 

there can still be biases present in these measurements over time which could take the form of incorrect velocity signals and 

sections of the cross-section which are persistently in poor optical flow measurement conditions or entirely out of the range of 

the camera’s pixel resolution in order to measure the displacements with any accuracy. In this case data gaps are filled by 

fitting the sufficiently measurable surface velocities to an exponential relationship model in a transformed spatial domain that 

scales with each measured surface velocity’s relative distance to the boundaries of the flow according to Eq. (2): 230 

𝑣 v 1 e  ,           (2) 

where 𝑣  is the surface velocity, 𝑣  constrains the asymptote approaching the free stream velocity, 𝑏  is a cross-section 

variable, and 𝑥 is the boundary distance factor (defined here as the depth multiplied by the distance to the nearest water surface 

edge). The relationship in Eq. (2) bounds the surface velocity to zero where either the depth reaches zero or at the intersection 
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of the water surface and the cross-section. By using the measured adaptive learning surface velocities distribution as data for 235 

automated fitting of the gap-filled surface velocity profile model across the entirety of the cross-section, an estimated surface 

velocity profile consistent with the measurements collected at each water level is produced. The Trust Region Reflective 

algorithm (Branch et al., 1999) is used to optimise the least squares fit of this data by predicting the free stream velocity and 

cross-section variables fitting the measurements learned in the adaptive surface velocity distribution. Whilst the automated 

fitting of the surface velocity profile model assumes that the relationship between the measured surface velocities and the flow 240 

boundary are consistent across the cross-section, this assumption is likely to weaken with significant variations in channel 

roughness across the cross-section, particularly if the surface velocities neighbouring these regions of different roughness are 

not represented by samples in the adaptive surface velocity distribution.  

2.4 Adaptive learning discharge rating 

In order to estimate discharges from surface velocity profiles, an assumption is made in scaling the surface velocities to 245 

approximate the mean velocity profile across the cross-section using a ratio, 𝛼, which is then integrated over the cross-section 

area at 0.1 m increments to estimate discharge. Hauet et al. (2018) examined the vertical profiles of 3611 gaugings from 176 

sites with different bed types (concrete, sandy, pebbly, boulders), finding the primary driver of the ratio, 𝛼, to be the depth of 

flow. Their study found a linear trend was found for hydraulic radiuses above 1 m (𝛼 0.8) up to 5 m (𝛼 0.9), and 

furthermore it was concluded to use 𝛼 0.8 for depths less than 2 m, and 𝛼 0.9 for depths greater than 2 m in natural 250 

channels. Following from this, the CVSG analysis applies a varying 𝛼 across the cross-section switching between a low 

(default 0.8) and high (default 0.9) value dependent on a threshold depth (default 2 m) at each 0.1 m interval. The result of this 

cross-section varying depth-dependent approach is an effective 𝛼 weighted on the distribution of depths within the cross-

section. 

Using the adaptive learning surface velocity distributions and the associated fitted model surface velocity profiles, an adaptive 255 

discharge estimation is produced for each observed water level at 0.01 m intervals. This process is replicated independently in 

parallel for the lower and upper surface velocity and discharge estimates to produce an adaptive learning discharge rating 

envelope. The result of this is a new discharge rating envelope fitted to the latest discharge estimates across all of the observed 

water levels at a site with each new measurement. The learning discharge rating can be configured to either be generated from 

the range of discharge estimates by directly applying a locally fitted Savitzky-Golay signal filter (Savitzky and Golay, 1964) 260 

(using a filter window size of 0.05 m vertically with nearest boundaries and linear fitting)  or fitting a power law weighted by 

the number of observations and the optical flow coverage measured at each 0.01 m water level increment. The latter power 

law weighted fitting method has not been applied here, as the Savitzky-Golay signal filter is chosen instead for the results 

presented in this work (considered by the authors to be the preferred default configuration for general application following 

the arguments of Fenton (2018)). Quality codes are automatically determined for each discharge estimate based on a function 265 

of the number of observations, the optical measurement coverage resulting from the lighting and seeding conditions, water 
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level estimation, and convergence between the current measurement, the learning velocity distribution, the fitted surface 

velocity profile model, and the learning discharge rating. 

2.5 Operational discharge estimation references 

Results from the CVSG derived discharge estimates in this study have been directly compared against the best available 270 

acoustic and optical methods for measuring discharge. As part of these reference technologies, two commercially available 

and well-developed technologies for estimating discharge using optical methods of measuring surface velocities have been 

applied. These analyses were undertaken by DischargeLab software (Photrack AG, Zürich, Switzerland) using surface 

structure image velocimetry (SSIV) (Leitão et al., 2018), and Hydro-STIV software (Hydro Technology Institute, Osaka, 

Japan) using space-time image velocimetry (STIV) (Fujita et al., 2007). Furthermore, the raw surface velocity results from 275 

these technologies has been processed using the surface velocity model fitting methodology used in the CVSG system that is 

presented here demonstrating the broader applicability of the methods presented in this study.  

Acoustic Doppler Current Profilers (ADCPs) were utilised in order to estimate the subsurface velocities and produce reference 

acoustic estimates of the discharge independent of the optical approaches. Where available, ADCP velocity estimates closest 

to the surface (between 0.13 to 0.19 m depth) were compared to surface velocity estimates from the optical surface velocimetry 280 

technologies. Additionally, historical ADCP derived estimates of discharge used to develop discharge ratings were utilised as 

a reference. Whilst the most up to date discharge rating fits published by government agencies based on the professional 

judgement of hydrographers using the applied technology and data available prior to the deployment of optical methods at 

each site were used to represent the best available estimates. These latest discharge rating fits at water level gauging station 

sites were then also used as a reference for timeseries comparisons through the conversion of the recorded water levels to the 285 

discharge predicted by the discharge rating fit. Although these different reference estimates have their own limitations and 

uncertainties, the comparison of the best available estimates at each case study site using the different technologies can provide 

some insights both in where they differ and to what degree they agree. At two existing government maintained gauging stations, 

historical manual gaugings have been compared along with CVSG, DischargeLab, and Hydro-STIV measurements relative to 

the latest published discharge rating using root-mean-square error (RMSE), the mean percentage difference, and the Nash-290 

Sutcliffe Efficiency (NSE) (Jackson et al., 2019) commonly applied for assessing predictive skill for discharges in hydrological 

settings due to its sensitivity to extreme values. 

2.6 Field case study sites 

This study includes four field case study sites (Figure 2), inclusive of a single surface velocimetry benchmark time captured 

on the Castor River, Ontario, Canada (Perks et al., 2020), and a single capture of an irrigation channel in NSW, Australia. 295 

Single points in time were focused on the optical method assessments relative to the available reference data for measuring 

surface velocities and estimating discharges. Two of the four sites presented here were continuously gauged with CVSG 

devices on the Tyenna River, Tasmania, Australia, and on the Paterson River, NSW, Australia. One point in time recorded 
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from Tyenna River, Tasmania, Australia in the middle of the observed water level range was also used for assessment of the 

optical methods relative to the available reference data. In total, 18 recorded points in time spanning the observed water level 300 

range were evaluated between the discharge estimates of the optical methods at Tyenna River, Tasmania, Australia. 

Furthermore, both the Tyenna River and Paterson River CVSG deployments were evaluated with long-term operational 

considerations for the implementation of CVSG methods into routine stream gauging. Table 1 provides a summary of the 

available reference data for the field case study sites presented in this work, as well as the measurement ranges observed. 

 305 

Figure 2: Images collected from study sites at (a) Castor River, Ontario, Canada [10 April 2019 15:55 LT], (b) an irrigation channel, 
NSW, Australia [19 September 2020 14:00 LT], (c) Tyenna River, Tasmania, Australia [5 March 2021 12:12 LT], and (d) Paterson 
River, NSW, Australia [1 March 2022 09:48 LT].  

 

Table 1: Field case study sites summary (water level ranges presented relative to local datums). 310 

Site Period 

Distance to 

stream (m) 

Water 

levels (m) Reference gaugings 

Ground control 

reference points 

Castor River, Ontario, Canada 30 s - 3.77 1 concurrent (2019) 12 

Irrigation channel, NSW, Australia 30 s - 135.80 1 concurrent (2020) 10 

Tyenna River, Tasmania, Australia 56 d 5.9–7.3 0.31–0.87 344 historical (’64 – ‘22) 9 

Paterson River, NSW, Australia 122 d 0-22.5 0.78–10.54 157 historical (’87 – ‘21) 0 
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2.6.1 Castor River, Ontario, Canada 

The surface velocity profiles and discharge estimates for the Castor River case study site at Russell in Ontario, Canada 

orientated facing across the stream from the left bank were analysed in this work utilising the published benchmark data (Perks 

et al., 2020) from 10 April 2019 where an approximately 20 Hz 30-second duration video recording was captured at 15:55 

local time (LT) (2688x1520 pixel resolution). The benchmark data included a reference Teledyne RDI StreamPro ADCP 315 

(Thousand Oaks, CA, USA) moving boat transect with 0.05 m vertical cell resolution and the topmost cell measuring at 0.17 

m depth. From the cross-section depth characteristics, the surface velocities extrapolated from the ADCP transect were scaled 

using the same 0.8 ratio assumed to approximate the depth-averaged velocity in the surface velocimetry approaches, and then 

integrated across the channel cross-section to estimate a comparable reference discharge. However, the most recently published 

gauging station rating was ultimately used as the reference discharge estimation, as this is currently the reported discharge that 320 

is estimated when the water level (3.77 m) is measured by the gauging station. This benchmark case study presents a favourably 

diffusely lit environment with visible surface rippling features across the full width of the cross-section, and a sky/vegetation 

reflective water surface. There are twelve ground control reference points provided with the recording for spatial rectification 

and scaling of pixel displacements over time. The cross-section recorded by the moving boat ADCP transect was used for the 

estimation of discharge and boundary distance factor surface velocity profile model fitting with an approximate maximum 325 

depth of 1.2 m over a 27 m wide cross-section (average depth 0.8 m). Surface velocity analysis regions for all technologies 

utilised were conducted in a similar region across the downstream side of the ground control reference points closest to the 

bridge to the left of frame. To consider the variation resulting from different recording durations, raw CVSG surface velocities 

were analysed over the cross-section for recording durations of 5 seconds, 10 seconds, and 20 seconds. 

2.6.2 Irrigation channel, NSW, Australia 330 

Canal channels are an important waterway type globally for the measurement of discharge, with countries such as the United 

Kingdom containing over 600 000 km of channels/ditches, while streams/rivers comprise some 270 000 km (Peacock et al., 

2021). A field case study was undertaken with a camera oriented facing downstream from a hydraulic sluice gate control 

structure in an irrigation channel in NSW, Australia on 10 September 2020 at 14:00 LT. A 30 Hz 30-second video recording 

(3840x2160 pixel resolution) formed the basis for the surface velocimetry estimations, with a reference measurement provided 335 

by a series of four SonTek RS5 moving boat ADCP (San Diego, CA, USA) transects taken between 15 to 20 m downstream 

of the hydraulic control structure within a timespan of eight minutes and a maximum discharge estimation difference of 8.5% 

to the most outlying transect measurement. A non-uniform flow distribution is evident across the width and length of the 

irrigation channel with evidence of standing-waves at the free surface including shimmering sun glare reflections. The area of 

the irrigation channel was surveyed with ten ground control reference points for rectification of the image spatial scales and 340 

surface velocities from the pixel displacements over time. The cross-section used for discharge estimation was taken from the 

ADCP reference transects with a maximum depth of 1.3 m and a transect width of 6.8 m. CVSG optical flow analysis along 
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the length of the channel showed a marked reduction in flow visibility towards the region of the reference ADCP transects 

downstream (Figure S1). Furthermore, the optical surface velocity measurement technologies were optimised to their suitable 

regions of interest. Hydro-STIV required a sub-optimal analysis region closer to the camera and hydraulic structure in order 345 

to estimate 1-dimensional space-time image stack angles for the determination of velocities, necessitating search line lengths 

which were unsuitably short for analysis under these conditions. Additionally for this case study, the CVSG analysis region 

was limited to 1 m channel section lengths as the assumptions for CVSG analysis were found to be violated for sufficiently 

large analysis regions along the length of the cross-section where the streamlines were not continuous. Beyond this, the CVSG 

raw surface velocities using recording durations of 5 seconds, 10 seconds, and 20 seconds have been analysed to assess the 350 

difference in measurements over differing sampling durations. 

2.6.3 Tyenna River, Tasmania, Australia 

The first long-term CVSG device field site was installed at the Tasmanian Government gauging station site at Newbury on 

Tyenna River, Tasmania, Australia with CVSG analysis beginning from 5 March 2021 at 16:47 LT. A 216 km2 catchment 

upstream provides continuous flow through the site with observed water levels between 0.26 and 0.87 m (maximum depths 355 

between 0.68 m and 1.29 m) during CVSG operation. Along with a cross-section of the site’s bathymetry, nine ground control 

reference points were surveyed in the field of view of the camera in order to carry out reference analyses with DischargeLab 

and Hydro-STIV, while none were used for the CVSG analysis. The bed of the stream becomes visible at low water levels (< 

0.4 m) with very little visibility of the water surface. Whilst the site experiences significant variations in lighting and flow 

conditions, the site’s streamflow conditions are considered well-suited for remote optical measurement of surface velocities 360 

due to naturally occurring coverage of surface features above baseflow. However, it should be noted that the onset of standing 

waves was evident at the upper end of the range recorded by the CVSG device.  

The CVSG device was mounted at an approximate water level of 6.32 m at a distance from the near bank water edge which 

ranged between 5.9 to 7.3 m over the recorded water level range. Video recordings were generally set to be taken with durations 

ranging between 5 to 20 seconds at 10-minute intervals generally with a resolution of 1920x1080. The system was offline for 365 

5 months between May and October 2021 during the first 12 months of operation included in this study. The CVSG analysis 

was configured to consider a constant 9 m long analysis region along the length of the stream with the positive flow direction 

provided to the right of the camera. A standard point cloud average temporal variation tolerance of 0.1 m was also set.  

Historical manual discharge gauging measurements were provided for the site since 1964 averaging between 2 to 9 gaugings 

per year each decade over a water level range from 0.23 to 1.54 m with the peak number of gaugings in the 1980s. There were 370 

18 reference comparison time points selected from the CVSG recordings in March and April 2021 covering the range of water 

levels with a variety of lighting conditions. One of these comparison time points (30 March 2021 12:12 LT at a water level of 

0.509 m) was used for the more detailed comparison of the estimated surface velocity profiles between the technologies. The 

most recent manual gauging measurement recorded within 0.05 m of the time point of the more detailed comparison time 

point’s water level was also used for reference. This manual gauging measurement was undertaken on 7 August 2019 at 11:32 375 
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LT using a SonTek M9 RiverSurveyor moving boat ADCP setup (San Diego, CA, USA) on the fixed cableway existing at the 

site. 

2.6.4 Paterson River, New South Wales, Australia 

A second long-term CVSG device field site was installed at the WaterNSW gauging station at Gostwyck on Paterson River, 

with analysis beginning from 3 November 2021 05:59 LT and finishing after being submerged on 4 March 2022. Significant 380 

flows with stream rises greater than 10 m that are ephemeral in nature at this site are more representative of regional Australian 

rivers. With a catchment area of 956 km2 which is largely cleared for agricultural land use, 2 km upstream from the site is a 

confluence with the Allyn River, and Lostock Dam is 80 km upstream. Over the 4 months of CVSG operation at this site, 

water levels between 0.78 and 10.54 m were recorded (maximum depths ranging between 1 and 11 m) with cascading erosion 

of the far bank captured by the CVSG device at water levels higher than baseflow. Strong winds along the streamflow direction 385 

were observed in the first month of deployment significantly biasing low flow surface velocities.  

The CVSG device was installed perpendicular to the streamflow at an approximate water level of 11.34 m at a distance from 

the near bank water edge which ranged between 0 and 22.4 m over the recorded water level range. A cross-section of the 

bathymetry was surveyed in a straight line along the same streamflow perpendicular axis as the camera orientation up to a 

water level of 8.38 m (2.2 m below the highest observed water level during CVSG operation), noting the location of the camera 390 

along this cross-section survey line. No ground control reference points were surveyed at this site, and there was therefore no 

comparison to other optical surface velocimetry technologies available. While alternative measurements for direct comparisons 

were not available, the latest published discharge rating estimates as well as the 157 historical manual gauging measurements 

taken across water levels ranging from 0.56 to 10.54 m since 1987 were used for reference. Dynamically varying downstream 

and upstream analysis boundaries were defined entirely to the right hand (upstream) side of the CVSG device. Below 2 m 395 

water level, the analysis region was set to an 18 m channel length, while water levels above 2 m were able to analyse an 

expanded 35 m long channel length. The video recordings taken at the site were 10-second duration at a resolution of 

1920x1080 every 10 minutes. 

3 Results 

3.1 Optical surface velocimetry 400 

The surface velocity and ADCP (0.17 m depth) profiles across the cross-section distance for the Castor River case study (Figure 

3a) measured velocities increasing from the bank up to 1.5 m/s occurring by approximately 2 m across the channel for all 

measurement technology approaches. Within the mid-section of the channel, velocities were measured between 1.5 and 2 m/s, 

with Hydro-STIV observing the lowest peak velocity, less than the peak measurement of the ADCP beneath the surface (which 

recorded some velocities on the order of 2 m/s). The lower resolution of Hydro-STIV search line measurements across the 405 

channel could be attributed to this result missing the peak velocities measured by the other technologies, however the other 
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reference technologies consistently estimated higher velocities across the entire channel mid-section. On the other hand, 

Hydro-STIV showed the highest rate of full velocity development from the edge of the channel, with the raw CVSG surface 

velocities estimating the lowest rate of full velocity development from the edge of the channel. Furthermore, the raw 

DischargeLab and CVSG velocity estimates tracked closely across the channel, although the optically estimated surface 410 

velocities were all in agreement with peak surface velocities occurring approximately 2 m closer to the left bank of the channel 

relative to the peak velocities measured by the ADCP. It can be seen that the optical surface velocity measurement technologies 

were able to measure velocities in the shallower regions closer to the channel edges than was possible with ADCP moving 

boat transects. 

  415 
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Figure 3: Detailed time point comparison raw and model fitted velocity measurements plotted with nearest surface ADCP 
measurement cells over the cross-sections at (a) Castor River, Ontario, Canada, (b) an irrigation channel in NSW, Australia, and (c) 
Tyenna River, Tasmania, Australia. (d) Correlation plot between the gauge rating and optically estimated discharges at comparison 
time points at Tyenna River, Tasmania, Australia, with the detailed comparison time point indicated. CVSG 5-second duration 420 
surface velocities shown for (a) Castor River, Ontario, and (b) the irrigation channel in NSW, Australia. CVSG 10-second duration 
surface velocities shown for (c, d) Tyenna River, Tasmania, Australia. Hydro-STIV velocity estimates outlined in black were 
automatically produced, whereas the estimates outlined in red were corrected to the Fourier result or manually corrected to reduce 
automatically overestimated velocities resulting from the higher frequency surface wave patterns or underestimated tracer-poor 
search lines. 425 

With the application of the CVSG surface velocity profile model fitting methodology to all three optical surface velocity 

estimation approaches (Figure S2a), it can be seen that whilst the raw surface velocity estimates largely fit within the bounds 

of the ADCP measurements at 0.17 m depth over the scale of the boundary distance factor, the resulting surface velocity profile 

model fits from each technology takes on a different shape. However, despite these differences in fitted surface velocity model 

profiles with the free stream surface velocities fitted ranging from 1.55 m/s in the case of Hydro-STIV, up to 1.9 m/s in the 430 
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case of CVSG, as well as differences in the cross-section variable ranging between 0.45 (for CVSG) and 1.7 (for Hydro-STIV), 

the resulting discharges between all reference comparisons (including varying recording duration for raw CVSG analysis 

between 5 and 20 seconds, and the ADCP discharge estimation using constant extrapolation to surface velocity) were within 

5% of the latest published gauging station rating discharge at the recorded water level (Table 2). For this case study, there was 

little sensitivity observed between the different measurement technologies, the duration of recording, or the resulting fitted 435 

surface velocity profile model parameters on the estimated discharges. Overall, the surface velocity profile model fitting 

methodology did not negatively impact the calculation of discharge for any of the surface velocity estimation technologies in 

this case study. 

 

Table 2: Summary of discharge estimates for gauging technologies at Castor River, Ontario, Canada (10 April 2019 15:55 LT). 440 

Measurement Type Duration Discharge (m3/s) 

Water Level Published rating @ 3.77 m - 27.8 

ADCP (surface) Constant extrapolation to surface N/A (+1%) 28.2 

CVSG Raw 5 s  (-2%) 27.3 

 Raw 10 s  (-4%) 26.8 

 Raw 20 s  (-4%) 26.6 

 Model fit [v∞ = 1.9, b = 0.45] 5 s  (+1%) 28.1 

DischargeLab Raw 25 s (+4%) 28.9 

 Model fit [v∞ = 1.8, b = 0.8] 25 s (+3%) 28.6 

Hydro-STIV Raw 25 s (+1%) 28.0 

 Model fit [v∞ = 1.55, b = 1.7] 25 s (+2%) 28.3 

 

In the irrigation channel case study, the raw surface velocity profiles estimated were broadly in agreement about the shape of 

the velocity profiles across the channel (Figure 3b), with the largest peak occurring within 2 m of the left bank, as well as 

reduced surface velocities measured in the middle of the channel and increased velocities towards the right bank. These velocity 

profiles are consistent evidence of the influence of the two hydraulic control gates upstream releasing water into the channel. 445 

Whilst the surface velocity magnitudes measured by the raw CVSG analyses from durations of 5, 10, and 20 seconds across 

the channel profile were more consistent with the ADCP measured velocities at 0.13 to 0.19 m depth, the surface velocities 

estimated by Hydro-STIV and DischargeLab were on the order of double within 2 m of the channel edges. While the objective 

truth of the surface velocity profile across the channel is not known, the Hydro-STIV analysis contain results with unclear 

space-time pattern angle identification under these conditions. It is important to note the irrigation channel site differs 450 

substantially from other trials sites with a downstream field of view and highly turbulent flow conditions discharged through 

an engineered channel. Furthermore, this case study not only demonstrates where site selection can lead to troubling optical 
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surface velocity measurements, but also highlights a case where the assumptions of the CVSG surface velocity profile model 

are not valid, and therefore should not be applied (as in Figure S2b). Although the discharge is only inferred from the signals 

measured by the reference technologies, only the raw CVSG measurements and ADCP discharge estimates agree within 5% 455 

across all recording durations analysed (Table 3).  

With 133 samples measured over the length of the ADCP cross-section, the resulting ADCP measurement resolution was on 

the order of 0.04 m per sample (with 1 second per sample). This meant that the ADCP sampling durations for each segment of 

the channel was on the order of 2.5 seconds per 0.1 m channel cross-section segment. The lowest duration CVSG optical 

surface velocity analysis occurred over 5 seconds sampling the entire cross-section simultaneously at 0.1 m resolution (not 460 

possible with a moving boat ADCP transect) which resulted in a 1% to 4% difference to the ADCP discharge estimate. 

However, the incorrect application of the surface velocity profile model resulted in estimates 55% higher than the reference 

ADCP discharge estimate. 

 

Table 3: Summary of discharge estimates for gauging technologies at an irrigation channel in NSW, Australia (10 September 2020 465 
14:00 LT).  

Measurement Type Duration Discharge (m3/s) 

ADCP (profile) Moving boat 124 s 1.65 

CVSG Raw 5 s (+2%) 1.68 

 Raw 10 s (-1%) 1.64 

 Raw 20 s (-4%) 1.58 

 Model fit [v∞ = 0.8, b = 0.4] 5 s (+55%) 2.56 

DischargeLab Raw 20 s (+215%) 5.19 

 Model fit [v∞ = 1.05, b = 2.5] 20 s (+224%) 5.34 

Hydro-STIV Raw 20 s (+111%) 3.48 

 Model fit [v∞ = 1, b = 1] 20 s (+189%) 4.77 

 

After 25 days into the operation of CVSG at the case study site on the Tyenna River capturing 2452 gaugings, the first flow 

event had been observed (reaching a maximum recorded water level of 0.735 m) with the water level receding to 0.509 m on 

30 March 2021 at 12:12 LT, the comparison surface velocity profile estimates were found to be grouped within  0.1 m/s in 470 

the mid-section of the channel (Figure 3c). The ADCP measured mean velocities across the channel were scaled up to estimate 

the surface velocity using the assumed ratio of 0.8 recorded at a water level 0.038 m higher on 7 August 2019 at 11:32 LT. 

Similarly, this resulted in ADCP estimated surface velocities within the same range of variability measured by the surface 

velocimetry reference methods, but with a 14% higher calculated discharge relative to the latest published discharge rating at 

0.509 m water level (Table 4). Although the true discharge is not known, all reference technologies estimated discharges within 475 
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10% of the latest published discharge rating at this water level, except for the ADCP profile recorded 601 days prior at a higher 

water level estimating within 15%.  

Surface velocity profile model fits for this case study measurement ranged between 0.78 (CVSG and Hydro-STIV) to 0.88 m/s 

(DischargeLab) for free stream velocities, and 1 (DischargeLab) to 1.4 (Hydro-STIV) for cross-section variables (Figure S2c). 

The model fitting of the raw surface velocities estimated across all optical measurement technologies was not found to have 480 

any negative measurable impacts on the calculation of discharge. However, in practice the model fit would not be computed 

using the raw velocities alone, as the CVSG system would instead compute the model fit of the learning velocity distribution 

after the 25 days of measurements that had resulted in 8 observations within 0.005 m and an accumulated 72% optical flow 

measurement coverage over the width of the cross-section at this water level (Figure S3a).  

Furthermore, up to this measurement time there had been a total of 2452 CVSG gaugings across a wider range of water levels, 485 

and the resulting learning discharge rating was also estimated (Table 4). Additionally, quantifying any further change in the 

learning estimations considering a point in time which is another 30 days advanced into the CVSG gaugings (Figure S3b) saw 

the difference between the learning estimated CVSG discharges and the latest published discharge rating at 0.509 m water 

level drop from within 6% to within 2%. However, it is important to note that the variability in CVSG discharge estimates is 

minimal compared to the variation in manual gauging estimates from similar water levels since 1989. This variation in 490 

discharge estimates over time is often a function of cross section changes and subsequent ratings shifts. Relative differences 

are expected to be within the realm of uncertainty of the true discharge, particularly as the discharge has only been measured 

at this water level once in 1966, with measurements within 0.005 m occurring five times (most recently in 1989), and 37 

measurements within 0.05 m (the two most recent occurring 2 years and 8 years prior to the time of this case study recording) 

(Figure 4). 495 
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Table 4: Summary of discharge estimates for gauging technologies at Tyenna River, Tasmania, Australia (30 March 2021 12:12 LT) 
using gauge water levels.  

Measurement Type Duration Discharge 

(m3/s) 

Water Level Published rating @ 0.509 m - 4.37 

ADCP (profile) Moving boat 7 August 2019 11:32 LT @ 0.547 m 1522 s (+14%) 4.97 

CVSG  Raw 10 s (-6%) 4.09 

 Model fit [v∞ = 0.78, b = 1.2] 10 s (-6%) 4.11 

25 days gauged Learning model fit [v∞ = 0.86, b = 1.39] - 8 observations @ 72% coverage 10 s (+6%) 4.63 

 Learning rating (2452 observations) - (+5%) 4.58 

55 days gauged Learning model fit [v∞ = 0.8, b = 1.47] - 19 observations @ 84% coverage 5 s (-1%) 4.33 

 Learning rating (3890 observations) - (+2%) 4.46 

DischargeLab Raw 10 s (+5%) 4.59 

 Model fit [v∞ = 0.88, b = 1] 10 s (+4%) 4.55 

Hydro-STIV Raw 10 s (-8%) 4.03 

 Model fit [v∞ = 0.78, b = 1.4] 10 s (-3%) 4.23 

 

 500 

Figure 4: Historical and CVSG gaugings at Tyenna River, Tasmania, Australia in the vicinity of 0.509 m water level. 

Further comparison of the reference optical surface velocimetry technologies at 16 time points along the timeseries recorded 

at Tyenna River show the importance of discharge gauging technology assessments over multiple conditions (Table 5). With 

the evaluation of more time points, an understanding of the most suitable conditions for gauging can be built from the statistics 
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of the RMSE, mean percentage bias difference, and the NSE relative to the reference latest gauging station rating. In the 505 

absence of gauged water levels, the raw CVSG discharge estimation had the greatest timeseries absolute error performance 

with an RMSE of 1.28 m3/s, however suffered a worse bias in the mean difference relative to the latest gauging station 

discharge rating, with the learning estimations demonstrating improving this bias to 1.9% in hindsight after 12 months of 

learning with an increased 2.28 m3/s RMSE. For the CVSG discharge estimations using the gauge water level, the RMSEs 

were reduced to less than half of the stereophotogrammetry estimated water level-based discharge estimations, implying that 510 

the stereophotogrammetry estimation of water level is the largest source of error in the discharge estimate. 

 

Table 5: Summary of comparison time points relative to the gauge rating at Tyenna River, Tasmania, Australia. 

Measurement Type RMSE (m3/s) NSE 

CVSG (stereophotogrammetry estimated water level) Raw 1.28 0.905 

Learning model fit 2.69 0.581 

Learning rating 2.26 0.705 

 Learning rating 12-month 2.28 0.719 

CVSG (gauge water level) Raw 0.48 0.986 

Learning model fit 1.18 0.919 

 Learning rating 1.03 0.939 

 Learning rating 12-month 0.60 0.979 

DischargeLab (gauge water level) Raw 0.97 0.945 

Hydro-STIV (gauge water level) Raw 0.68 0.973 

 

3.2 Stereophotogrammetry water level detection 515 

During the operation of the CVSG system on the Tyenna and Paterson Rivers, water levels were remotely estimated using 

stereophotogrammetry with every recording possible, requiring sufficient daylight, as night vision equipment was not installed 

at these sites during the period of this evaluation. The timeseries of remotely estimated water levels were classified into 

different error ranges relative to the water levels recorded by the reference gauging stations at Tyenna River (Figure S4a), and 

Paterson River (Figure S4b). Water level estimation errors within 0.005 m were considered to be exactly correct relative to the 520 

0.01 m water level database precision used in CVSG operation in this work. Errors found to be within 0.05 m were also 

expected to be useful as this is the water level Savitzky-Golay filter window size used in the CVSG learning distributions of 

these studies. Both sites in this study with CVSG deployed suffered from higher variability during lower flows, corresponding 

to low visual distinction of the texture of the water surface, particularly with the greater distance of the site to the edge of the 

Paterson River at low flows, and clear water displaying the bed of the Tyenna River. 525 
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Correlation plots between the gauge water level and the CVSG stereophotogrammetry estimated water level at Tyenna River 

(Figure 5a) and Paterson River (Figure 5b) show the remotely estimated water levels compared over the range of the gauge 

recorded water levels with some potential clustering of different error regions at particular water levels. From this, the 

cumulative error distributions (Figure 5c) shows 2% and 1% of measurements taken over the study period were considered to 

be precise at the Tyenna River and Paterson River sites respectively. Furthermore, just 16% and 7% of measurements at the 530 

sites were considered within the CVSG learning distribution noise tolerance, with the remaining majority of measurements 

falling outside of this error range with potentially significant contributions to discharge bias possible as a result. 

 

Figure 5: Correlation between gauge and stereophotogrammetry estimated CVSG water level classified according to error 
magnitude at (a) Tyenna River, Tasmania, Australia, and (b) Paterson River, NSW, Australia on a logarithmic scale. The cumulative 535 
stereophotogrammetry estimated CVSG water level error class distribution (c) for both Tyenna River, Tasmania, Australia, and 
Paterson River, NSW, Australia on a logarithmic scale. 

3.3 Timeseries discharge 

The real-time estimation of discharge over time relative to the latest gauging station rating at Tyenna River using CVSG raw, 

learning model fit, and learning rating, all demonstrated the ability to capture the patterns of hydrographic rises and falls despite 540 

the significant presence of errors in the remote stereophotogrammetry estimation of water level (Figure 6a/Figure S5a). Whilst 
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the raw CVSG discharge estimates follow the latest gauging station rating estimation more closely than the learning 

estimations, this can be attributed to the significantly higher vulnerability of the learning estimates for any individual time 

point to errors in the water level estimation. However, with the learning process continuing over 12 months at the site, a marked 

improvement in the discharge estimation from the learned discharge rating (despite the underlying water level estimation 545 

errors) was evident.  

Using the gauge water level in the CVSG analysis independently parallel to the stereophotogrammetry estimated measurements 

yielded learning discharge estimations rapidly improving on the variability observed in the raw CVSG measurements (which 

are each independently estimated through time) relying on the suitability of the naturally occurring conditions for optical flow 

at the time of measurement (Figure 6b/Figure S5b). Even though the true discharges at the measurement times are not known, 550 

the CVSG learning discharge estimations using the gauge water levels at the time overestimated the discharges of events 

occurring in April 2021 relative to the latest gauging station discharge rating by up to 20%. However, the application of the 

learning CVSG discharge rating after 12 months in hindsight demonstrated a stronger agreement to the gauging station rating 

in this series of events. While the original learning estimate may have been correct at the time of the measurement, with non-

stationary site conditions resulting in a shift in the true discharge rating after a further 10 months of site evolution, it is 555 

considered more likely that the lower agreement between the real-time CVSG learning discharge estimations and the latest 

gauge discharge rating was due to discontinuities from the sparser CVSG device sampling during this period beyond the range 

of previously recorded measurements. 
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Figure 6: Correlation plots for the latest gauging station rating discharge timeseries against the CVSG estimated discharge timeseries 560 
at Tyenna River, Tasmania, Australia using (a) stereophotogrammetry estimated water levels, and (b) gauge water levels, as well as 
at Paterson River, NSW, Australia using (c) stereophotogrammetry estimated water levels, and (d) gauge water levels. 

The Paterson River site demonstrated more challenging conditions for continuous optical measurements of surface velocities 

due to surface texture combined with CVSG device distance to the water surface at low flows, and the wider channel cross-

section approaching the eye-level of the camera at the higher observed flow events. The resulting CVSG discharge estimations 565 

at Paterson River (Figure 6c/Figure S7a and Figure 6d/Figure S7b) demonstrate the utility of the learning model fit and 

discharge rating for improving the operational gauging capability using optically measured surface velocities.  

Similarly to the findings at Tyenna River, the difference between the CVSG learning results relative to the latest gauging 

station discharge rating at Paterson River implied the majority of discharge gauging noise was the result of noise in the 
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stereophotogrammetry estimated water level (Figure S8a). This noise, as evidenced by the distribution of CVSG water level 570 

error (Figure 5c), was significantly worse at Paterson River during low flows approaching the upper range of the point cloud 

distance to reach the near bank intersection with the water surface. Despite this significant noise, the CVSG learning discharge 

estimations demonstrated a capability to reduce this influence of this error both in real-time learning, and improving further 

with more measurements. Interestingly, the magnitude of raw CVSG discharge estimation errors was remarkably similar 

between the remotely sensed and gauge water level cases due to the most significant errors in the raw measurements occurring 575 

during flow events with poor surface velocity visibility. In these cases, the learning surface velocity distribution fitted model 

demonstrated significant improvements to the raw optical measurements. Further to this, the reduced water level estimation 

noise when using the gauge water level (Figure S8b) displayed significantly reduced error in the CVSG learning discharge 

estimations converging much faster between the real-time and 4-month hindsight rating estimates. 

3.4 Adaptive learning discharge rating 580 

The latest CVSG learning discharge ratings after 12 months of deployment at Tyenna River using the stereophotogrammetry 

estimated water levels and gauge water levels were found to be within the range of historical manual gaugings (Figure 7). With 

the manual gaugings classified by decade, it is important to understand the foundation of the measurements behind the latest 

gauging station discharge ratings, as well as how degree of fit to the smooth gauging station rating curve. Whilst the majority 

of the CVSG learning rating using stereophotogrammetry estimated water levels were found to be within the range of the 344 585 

manual gaugings undertaken at the Tyenna River site since the 1960s, the discharge ratings for stereophotogrammetry 

estimated water levels below 0.4 m (where water clarity impacted measurements) demonstrated a bias to higher discharge. 

There was also a transition point from high discharge estimates to low discharge estimates using the stereophotogrammetry 

estimated water levels in the vicinity of 0.6 m. Furthermore, the CVSG learning discharge rating using gauge water levels 

demonstrated a tighter convergence to the most recent manual gaugings and the latest gauging station rating. 590 
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Figure 7: Discharge gaugings at Tyenna River, Tasmania, Australia with CVSG learning ratings after 12 months of deployment 
using stereophotogrammetry estimated water levels and gauge water levels. 

It is important to note the upper range of discharge measurements above 0.79 m gauged by the CVSG system to 0.87 m has 

not been manually gauged at Tyenna River for more than 10 years where the RMSE to the latest gauging station discharge 595 

rating is above 2 m3/s with mean differences greater than 20% (Table 6). All real-time CVSG discharge estimations over the 

timeseries demonstrated less RMSE than the most recent decade containing an increased manual gauging range that includes 

the range measured by the CVSG system. For the stereophotogrammetry estimated water level-based CVSG discharge ratings, 

the RMSE showed an increasing trend with the progression of the learning process primarily due to an increasing gauged water 

level range containing sparse observations with more absolute discharge error. However, the NSE of these learning CVSG 600 

discharge ratings showed increasing skill relative to the latest gauging station discharge rating. The CVSG discharge 

estimations using the gauge water level demonstrated a relatively stable fit to the reference discharge rating, while the learning 

method was able to provide a significant reduction in the mean difference to the reference discharge rating. 

 

 605 
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Table 6: Summary of site gauging results for Tyenna River, Tasmania, Australia relative to the latest gauging station discharge 610 
rating. 

Measurement Type N Range (m) RMSE (m3/s) NSE 

Manual gaugings 1960s 57 0.35-1.21 1.11 0.964 

 1970s 82 0.25-1.33 2.79 0.916 

 1980s 90 0.23-1.51 3.23 0.884 

 1990s 43 0.27-1.54 2.58 0.936 

 2000s 25 0.26-1.40 2.18 0.823 

 2010s 42 0.26-0.79 0.38 0.989 

 2020s 5 0.30-0.71 0.32 0.990 

CVSG  

(stereophotogrammetry 

estimated water level) 

Raw (timeseries) 2133 -0.33-1.05 1.05 0.904 

Learning model fit (timeseries) 2232 -0.33-1.05 1.54 0.793 

Learning rating (timeseries) 2232 -0.33-1.05 1.50 0.805 

 Learning rating 1-month 1795 -0.33-0.79 1.28 0.891 

 Learning rating 2-month 2133 -0.33-1.05 2.02 0.922 

 Learning rating 12-month 17178 -0.33-1.07 2.54 0.956 

CVSG  

(gauge water level) 

Raw (timeseries) 2141 0.31-0.87 0.63 0.961 

Learning model fit (timeseries) 9049 0.31-0.87 0.56 0.976 

 Learning rating (timeseries) 9293 0.31-0.87 0.53 0.979 

 Learning rating 1-month 3276 0.31-0.73 0.26 0.993 

 Learning rating 2-month 3905 0.31-0.87 0.90 0.955 

 Learning rating 12-month 19005 0.26-0.87 0.60 0.983 

 

After 4 months of CVSG operation at Paterson River, the system had gauged the maximum water level range that had been 

manually gauged since as far back as the 1980s, with the CVSG discharge estimations using the gauge water level producing 

an estimated discharge at the top of this range within 0.22% of the discharge measured in the 2000s at this water level. Whilst 615 

the manually gauged discharges at the upper recorded water levels appear to be sparsely measured, the CVSG discharge 

learnings using either gauge water levels or stereophotogrammetry estimated water levels were in agreement with the manual 

gaugings across the measurement range (Figure 8). Further to this, the shape of the CVSG discharge ratings agrees more 

closely with the shape of the rating curve implied by the manual gaugings, rather than the smoother fit of the gauging station 

rating curve. 620 
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Figure 8: Discharge gaugings at Paterson River, NSW, Australia with CVSG learning ratings after 4 months of deployment using 
stereophotogrammetry estimated water levels and gauge water levels. 

The summary statistics of the CVSG discharge estimations at Paterson River (Table 7) showed that the learning CVSG analysis 

using stereophotogrammetry estimated water levels were significantly impacted by the error in the water level estimation 625 

resulting in mean differences in excess of 100% relative to the reference latest gauging station discharge rating. However, the 

NSEs of the learning discharge estimations were significantly higher than the raw CVSG discharge estimations.  
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Table 7: Summary of site gauging results for Paterson River, NSW, Australia relative to the latest gauging station discharge rating. 

Measurement Type N Range (m) RMSE (m3/s) NSE 

Manual gaugings 1980s 17 0.81-1.69 4.45 0.455 

 1990s 45 0.66-2.04 4.51 0.540 

 2000s 50 0.56-10.54 29.42 0.917 

 2010s 38 0.61-8.07 6.20 0.908 

 2020s 7 0.71-1.28 0.24 0.993 

CVSG 

(stereophotogrammetry 

estimated water level) 

Raw (timeseries) 6228 -0.21-9.94 21.92 0.680 

Learning model fit (timeseries) 6246 -0.21-9.94 16.13 0.827 

Learning rating (timeseries) 6246 -0.21-9.94 15.86 0.832 

 Learning rating 1-month 1940 -0.14-8.13 17.74 0.953 

 Learning rating 2-month 3534 -0.19-8.13 20.83 0.939 

 Learning rating 4-month 6265 -0.21-9.94 25.18 0.950 

CVSG  

(gauge water level) 

Raw (timeseries) 6592 0.78-10.54 19.04 0.973 

Learning model fit (timeseries) 18352 0.78-10.54 5.47 0.951 

Learning rating (timeseries) 18624 0.78-10.54 4.89 0.961 

 Learning rating 1-month 1978 0.78-7.86 9.60 0.981 

 Learning rating 2-month 3627 0.78-7.86 8.95 0.982 

 Learning rating 4-month 6627 0.78-10.54 20.78 0.942 

 630 

3.5 Overview of results 

The results of this work found broadly comparable gauging results using the raw data of the different measurement technology 

approaches employed, predominantly falling within a relative error of 15% under suitable conditions when comparing between 

the results of both the detailed surface velocity distribution case studies and longer deployment timescales evaluated. However, 

it was demonstrated that the use of a surface velocity profile model fitted to raw measurements under suboptimal or only 635 

partially measurable conditions could be beneficial to improving the reliability of surface velocimetry methods. Furthermore, 

the learning of an adaptive surface velocity distribution extended to an adaptive learning discharge rating produced robust 

results for stream gauging over time. While the initial CVSG results for the non-contact measurement of water levels using 

stereophotogrammetry found less than 20% of measurements within 0.05 m, the learning capability of the CVSG approach 

presented was able to converge towards a robust discharge rating despite noisy raw observation data. 640 
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4 Discussion 

The study has outlined a new non-contact optical stream gauging approach (CVSG) and provided a detailed comparative 

analysis as against existing optical approaches (DischargeLab and Hydro-STIV) and the current standard technologies and 

historical measurements informing gauging stations. Results highlight the advancements in stereophotogrammetry and 645 

machine learning approaches can overcome some of the challenges of non-contact optical stream gauging and provide insights 

into the added value of these emerging operational technologies. Whilst a significant uncertainty on the order of 6% has been 

found to be possible from user variations in ADCP discharge estimations (Despax et al., 2019) as well as comparable deviations 

evident in a study of ADCP measurement validation (Oberg and Mueller, 2007), a similar order of magnitude in difference 

between direct technology comparisons was found in all-but-one exceptional case in an irrigation channel, NSW, Australia. A 650 

study in an irrigation canal using an experimental video camera system with LSPIV and optical water level detection on a staff 

gauge demonstrated results within 5% of the reference estimates, but highlighted that reflections and shadows produced 

negative effects on the detection of motion, requiring further consideration of spatial filters and light distribution (Lee et al., 

2010). 

There has been some LSPIV discharge uncertainty estimations undertaken from recordings of a stream in the French Alps 655 

(Dramais et al., 2011) showing less than 2% discharge deviation for recording durations more than 4 seconds, consistent with 

the CVSG results tested using different durations. With in situ profile measurements, this study in the French Alps found the 

uncertainty in the mean velocity coefficient to be close to 7%, with the largest source of uncertainty up to 15% possible without 

velocity depth profile measurements within the flow range of interest. Further to this, the sensitivity analysis of this French 

Alps study examined the effect of waves (negligible), cross-section transects (±4%), and water level errors at 4% from a 10 660 

cm error (noting CVSG stereophotogrammetry water level error was within this range only 27% and 14% of the time at the 

Tyenna River and Paterson River sites respectively). Alternative methods for estimating the uncertainty of stream discharge 

rating curves have been compared in Kiang et al. (2018), finding a wide variation in uncertainty estimates resulting from 

different methods which demonstrated the necessary careful selection and communication of the assumptions of the uncertainty 

estimates provided. 665 

By using UAV footage of artificially seeded low flow conditions (average surface velocities between 0.12 to 0.14 m/s) on a 

river in Serbia, a significant sensitivity to algorithm parameters was apparent for LSPIV, large-scale particle tracking 

velocimetry (LSPTV) and optical tracking velocimetry (OTV) relative to the less sensitive SSIV (an enhancement of LSPIV) 

and Kanade-Lucas Tomasi image velocimetry (KLT-IV) (using an optical flow algorithm, similarly to CVSG) (Pearce et al., 

2020). Whilst there has been some evidence that KLT optical flow performance degrades in low lighting (Wang and Miao, 670 

2010), the Farneback optical flow approach used by CVSG has been found to provide more robust results in comparison studies 

(Nemade and Gohokar, 2019; Shi et al., 2020). This identified sensitivity of algorithm parameters has been reinforced by 

simulations using LSPIV showing substantial care must be taken for ensuring reliable results with regards to seeding 

shapes/sizes/densities, frame rates, recording durations, and camera angles (Hauet et al., 2008; Pumo et al., 2021). The general 
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vulnerability of optical surface velocimetry methods to measurement setup (Detert, 2021) and environmental conditions, such 675 

as evidenced by a study of varying rainfall intensity particularly finding LSPIV-based autocorrelation methods to be 

susceptible to biased results under higher rainfall intensities (whilst results were demonstrably improved by sufficiently low 

rainfall intensities) (Naves et al., 2021), reinforces the need and utility of methodologies, such as those presented in this work, 

for increasing robustness to visual environmental noise pertaining to individual measurements.  

The CVSG learning surface velocity distribution and discharge rating results evaluated in this study provide evidence to the 680 

benefits of the presented methods for improving measurement accuracy and reliability over time. Given increasing frequency 

of extreme rainfall are yielding flow events that exceed manual gauging records (Steinbakk et al., 2016), the ability of the 

CVSG approach to learn and adapt over time is particularly valuable. Whilst the entire range of the discharge ratings developed 

and evaluated did not necessarily yet contain a sufficient combination of quantity and quality of observations, this is similarly 

evident in the best available estimates provided from the reference gauging station discharge rating fits (which may be overly 685 

smoothed due to limited temporal and vertical-spatial data density). With the persistent measurement of velocities, sudden or 

gradual changes in velocity distributions over time can be detected in order to identify when the resurveying of a site’s 

bathymetry is necessary (Peña-Haro et al., 2021). 

The results of this study between CVSG estimated timeseries discharges and discharge ratings using stereophotogrammetry 

estimated water levels and provided gauge water levels, showcased the improvement in non-contact measurements that could 690 

be possible with improvements to the remotely estimated water levels alone. A combination of optical approaches to water 

level estimation using water line detection spatio-temporal texture histograms (Eltner et al., 2018) or deep learning (Eltner et 

al., 2021), as well as grayscale brightness, or motion segmentation (Peña-Haro et al., 2021) combined with a stereo camera 

approach has potential for reducing remotely estimated water level noise and improve the range of suitable operational 

environments. This concept could simultaneously reduce the uncertainties and site deployment barriers associated with ground 695 

control reference points (Le Coz et al., 2021). Significant work has been undertaken towards developing and applying 

photogrammetry techniques operating using different camera perspectives from more than one camera for long-term automated 

water level and discharge measurements (Stumpf et al., 2016). Stereo cameras have demonstrated potential added value to 

stream gauging applications (Ran et al., 2016; Li et al., 2019), with the CVSG system providing a reduction in the barrier to 

the deployment of a stereo camera-based optical stream gauging site. With continuous automated site resurveying with every 700 

video recording, the quantification of cross-section changes and vegetation growth offers significant advantages to monitoring 

streams without stationarity assumptions (Westerberg et al., 2011). A comprehensive study evaluating the use of stereo camera 

systems such as CVSG for quantifying adaptive cross-sections is an important area of future research to be determined over 

studies spanning longer timescales with significant erosion and/or accretion events at suitable study sites. 

Whilst optical-based non-contact stream gauging has well-documented advantages for gauging high flow events compared to 705 

alternative methods (Le Coz et al., 2010), well-understood and relatively stable low-end discharge ratings could be provided 

to the CVSG system as a manually provided and updated basis for estimating low flows where low flow site conditions may 

be unsuitable. However, the depictions of discharge ratings evaluated in this study are simplified one-dimensional water level 
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dependent discharge estimates (as is commonly developed and applied for gauging station discharge ratings), but this is a 

simplification of the variation in discharge resulting from the changing hydraulic gradients across the rising and falling stages 710 

of hydrographs (Fenton, 2018). This nuance could be developed automatically through the significantly improved gauging 

data density offered by optical surface velocimetry approaches such as CVSG, providing an additional dimension for the 

generation of discharge ratings dependent on both water level and the hydraulic gradient.  

While the CVSG system evaluated utilised Savitzky-Golay filtering, it is noted that recent improvements on this method have 

been developed addressing the known pitfalls of the technique (Schmid et al., 2022). Beyond the approaches in this study for 715 

optically discerning water surface motion, further enhancement of optical measurement capabilities could be achieved through 

novel techniques using well-studied and bounded principles of fluid dynamics (Khalid et al., 2019). An ensemble of surface 

velocimetry techniques could be applied, given sufficient computational power, to provide an additional quantification of 

algorithm-based uncertainty similar to ensemble approaches employed in other fields for quantifying model structural 

sensitivity (Nearing and Gupta, 2018), and facilitate the identification of disagreements between methods under particular sites 720 

and conditions over time while expanding the broader applicability of the technology through the advantages offered by each 

technique. Furthermore, the optical nature of the methods developed supposes the possibility for the incorporation of additional 

computer vision analysis through rainfall (Jiang et al., 2019; Chen et al., 2019; Wang et al., 2022), wind (Cardona, 2021), and 

water turbidity (Leeuw and Boss, 2018) monitoring.  

5 Conclusions 725 

This study has demonstrated the development of an automated operational optical stream gauging system employing methods 

providing improved reliability for remotely gauging streams using state-of-the-art surface velocimetry technologies across 

varying flow and lighting conditions. Evaluation of the existing best practice in available stream measurement technologies 

and published discharge ratings across the array of site conditions evident in this work demonstrated that the methods in this 

study were similarly effective for gauging stream discharge to existing accuracy benchmarks. This work did not address errors 730 

associated with cross-sectional area changes and the capability of the CVSG system to extract stereophotogrammetry estimated 

elevations of the dry channel areas to inform changes to discharge ratings, which is recommended for future research using 

stereo imagery-based optical stream gauging approaches. In addition, the challenges associated with analysing surface velocity 

at night and quantifying water level through stereophotogrammetry under a range of lighting conditions and greater distances 

provide opportunities for future work. Despite these challenges, non-contact and automated solutions offer a significantly 735 

greater density of velocity-stage observations resulting in up-to-date adaptively learning discharge ratings through time. As 

climate-driven extreme weather events increase in frequency, it is increasingly important to develop and apply flexible 

monitoring tools, such as CVSG, that can reduce the human and environmental risks associated with traditional approaches 

and deliver real-time data to water resource managers.  
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