Overview

This is an interesting and well-presented paper which | enjoyed reading. | would like to thank the
authors for their work. They provide a statistically-rigorous approach to combine information
between various sediment cores when all these cores provide observations of the same (fairly
smooth) underlying function. This is known as stacking the records.

| presume that the model builds on earlier work (called HMM-Stack, Ahn et al., 2017) in its HMM
aspect for each sediment core. At its heart, the method assumes that each core j records the same

underlying function, providing paired observations (yij, d{) where:
v =f(6;d)) +e

Here 6; (d{) represents the age-depth relationship in each core (which can be based upon
radiocarbon dating or any another technique). The methods uses MCMC to iterate between
updating the age-depth models 6;(-) for each core; and the shared function f (). Within this MCMC,
f(-) is modelled as a Gaussian Process (GP), and the age-depth model in a more complex manner
(presumably based upon an approach laid out in HMM-Stack). The method does some initial particle
filtering but then seems to actually ditch that approach (using it only for initialisation) to use a
Metropolis-Hastings As such the particle filtering appears somewhat redundant and could therefore
be de-emphasized.

Overall, the paper is nicely written with sufficient technical detail to allow reproduction. The authors
also give useful practical examples for §180 reconstructions from several marine cores. The method
is potentially adaptable to a considerable range of scenarios and will provide a significant
contribution to the community (although my expectation/experience is that for records which are
not as smooth, or as shared, as §180 some bespoke modifications might be required to get the
model to fit — which the authors also state).

Statistical Comments (mainly regarding the SI):

1) My main statistical comment is that, as a new reader, | do not sufficiently understand where
the specific three state HMM age-depth model comes from. | am presuming this specific
age-depth model builds on previous work. In the model, there are considered to be three
states for a core. Given a particular state then the sedimentation rate follows a mixture of
three log-normals restricted to being within a certain range.

This particular sedimentation model seems extremely specific, yet its justification is not
really provided in either the main paper or S1. It is not clear, to a new reader, where this
model comes from: either in terms of three states (with seemingly arbitrary sedimentation
rate bounds) or the mixture of three log-normals within its permitted ranges (are these fixed
or also estimated). What is the benefit of such a three state model, why were the
boundaries chosen, and how are the parameters for each state selected? Is it somewhat
arbitrary or is there geoscientific insight as to why there are three distinct states with these
values?

| presume this model, and its explanation, comes from the earlier HMM-Stack work of Ahn
et. al (2017). If so that is fine — it does not need to be re-justified here in detail. However |
feel there does need to be an intuitive lay-person explanation in the Intro about how it
builds on this earlier work and what is specifically new here. Currently the HMM model



2)

3)

4)

appears somewhat out of nowhere. Also S1 needs much stronger referencing to that work
(to clarify a reader should look there for the justification.

| do not quite understand how the particle filtering is used to initialise the MCMC. How do
you choose which particular particles to use (after you have run the particle filtering step) as
the initialisation of your later MCMC? Do you run the MCMC many times with lots of initial
starting points? How have you checked actual MCMC convergence and ensured you have
explored the space fully from your initialisation?

Outlier model — | may have misunderstood but, formally, it seems you have chosen g() to
depend upon w. If so, | think you probably cannot entirely ignore those observations classed
as outliers in the MCMC updating. When you update the GP u|0,Y, A | would presume that
the outliers will still inform as they come from a distribution that depends upon the
parameter you wish to update. Consequently, I’'m not sure that formally you can ignore all
the values with O = 1 and just fit a GP to the others.

This is unlikely to make much difference in practice so | am not saying that you need to
change it (but you should perhaps mention this is an approximation). Perhaps you could get
around this by keep the same mean for the outliers as the stack but just altering/increasing
the variance for the outlier component g(). If you do this then one would presumably still
include the observations in updating the GP stack but the outliers would have less weight.

The section on length/complexity does not really tell me anything practically useful, e.g. the
DNEA stack has a run time of 1.8 hours. That’s partially interesting, but how many MH
iterations actually is that (bearing in mind you have ditched the particle filtering by that
point)? You could presumably make it arbitrarily faster/slower entirely dependent on how
many iterations you run everything (optimisation, particle filters, MCMC, ...). Please tell me
how many MCMC iterations you performed.

More General Applied/Presentation Comments:

1)

I think it would be worth mentioning how your work links with/alongside broader errors-in-
variables regression analysis. Fundamentally, that is rather analogous to what you are doing
here — if the primary interest is in the stack rather than the age-depth model of each core
which it seems to be. In errors-in-variables analysis, one has a series of observations y where
y; = f(8) + €; but you do not know 6; precisely (you only observe T; = 6; + n;). This is
effectively your situation - where your sediment cores provide a specific type/structure of
calendar age uncertainty n; and is some cases the T;’s are not observed at all.

In a geoscience setting, using Bayesian techniques similar to you, this is basically what we do
to make the IntCal curves (e.g. Heaton et al. 2020) but there is also quite a lot of general
statistical methodological literature (e.g. Bayesian approach of Cook and Stefanski, 1994) on
the topic. Additionally, there is quite a lot of literature on registration in functional data
analysis which could briefly be mentioned (e.g. book by J Ramsay and B Silverman).

| also did some work with a similar (but identical) goal — aiming to sharing age information
between records using tie-points and a GP — in Heaton et al. (2013). This was used to create
calendar ages for the Pakistan and Iberian Margin (Bard et al. 2013) , and Cariaco Basin



2)

3)

(Hughen & Heaton 2020) data which then went into IntCal13 and IntCal20. This work was
somewhat different in that we only tried to transfer dating information from one record to
another and only used the tie-point ages. However it does provide a previous context where
tie-points are used in a method that aims for statistical rigour rather than eye-balled tuning
(with uncertainties on the contemporaneity of the ties rather like your model). Your work is
however more in depth and generalisable than ours (we needed fairly simple age-depth
models with multivariate covariances so owe could input then into the main IntCal curve
creation)

Suggest that all this only needs a brief line or two in the Intro — just to add more
detail/context about how your work fits within the wider statistical research literature.

My colleagues (when | tried to suggest a similar approach to them to map all features across
records for other proxies) were very cautious. They felt that, for many records, the entirety
of the proxy could not be mapped between cores. They rather believed that, for many
proxies, it was often only the sharp/main transitions that were shared between records and
they did not want to match everything.

| feel this point, that users must consider if trying to match every feature is something that
will work for their proxy/data, should be made very explicitly. You do mention this in the
manuscript but it is somewhat hidden and only appears towards the end (in the middle of
the section on Strengths/Weaknesses on lines 520-525). | feel this caveat needs to be made
considerably more prominent in the Intro/Conclusion when discussing GPs so readers will
not misunderstand.

| am not a sufficient expert here, but it may be that benthic §'80 is more globally
homogeneous than many other proxies (and the method must be used with considerable
caution for some other proxies where responses can be antithetic).

Your Marine sites are very spread out and will not be expected to have the same regional
offset AR from one another. You have chosen a mean of AR = 0 for all the cores but then
quite a large uncertainty (¢ = 200) on AR to account for uncertainty. Again this is probably
fine, as you have chosen a fasirly large value (and | think everything will be somewhat led by
the fitting of the many §'80 measurements anyway). However, | would suggest that you
might advise users to initialise a different AR for each core using the Reimer and Reimer
(2017) database.

We do not advise people to choose AR = 0 if they have other information available. The
belief is that, at least during the Holocene, any regional AR will remain roughly constant
over time and so will be applicable along the core (as regional upwelling/ocean depth might
remain relatively constant). If you choose an independent AR from one observation to the
next then you do not model dependence in

Note: This is a fairly minor point that | doubt will affect your results due to the volume of
5180 observations. If it is a lot of work (or the marine core sites you use do not have AR
estimates) then | suggest you just add a caveat/explanation for the paper (rather than
redo everything).



4)

Is there a reason as to why the sedimentation rates of Lin et al. (2014) are applicable
elsewhere? This seems like a considerable assumption. Hence while it is potentially a
strength of your method to provide automated selections of sedimentation rates it is also a
considerable danger if other use it as a black box when it is not appropriate. At the very
least, you must ensure that any user inputs their data on the same measurement scale (i.e.
m or cm) as the analysis you did for Lin et al. (2014).

Smaller Specific Points:

Main Document:

1)

2)

3)

4)

Line 66 — it is not only 1*C production rate changes which cause variations in past
atmospheric *C/**C levels but also rearrangements of the carbon cycle (see e.g. Heaton et
al. 2021). Suggest minor rewording to acknowledge this.

Line 370 are your stack estimates smoother because you use a GP which is fundamentally a
significant smoother? Or due to other factors such as averaging over calendar ages? Also
does the smoothed version lose genuine features - are the features you say you smooth/lose
thought to be genuine phenomena?

Figure 3 and Figure 4 — in the panel As showing the final stack, can you overlay the posterior
mean estimate on top of the observations (rather than underneath where currently it can’t
be seen)

Line 473-474 - Users should be aware that the age uncertainties returned by BIGMACS for
age models generated by multiproxy alignment or stacking do not include the age
uncertainty of the alignment target. | do not understand this comment about an alignment
target — based upon your Sl you suggest you can use your method on records where there is
no a priori alignment target (i.e. when you just have a selection of cores each with their own
14C dates). Have | misunderstood?

Suppl. Information

1.

There are repeated uses of sigma to mean many things — unclear what the values that are
updated in S4 refer to. Equally what are the h’s — need to be made somewhat clearer?

More detail is needed on the parameter choices for the age-depth model — can refer to
other work if this is suitable.

Minor point — the likelihoods are not probabilities (the densities are continuous)
S5 —There is some referencing to other sections that has gone wrong: “The stack
construction algorithm first iterates steps in subsections S4.2, S4.3 and S4.4 until

convergence and then update the new one by the method in 54.1.”

There is no S4.4. Also, do you mean S5.1 at the end rather than S4.1?

General Questions (as I’'m interested — not requiring further work):




1) |Itried work on a similar topic a few years ago. | found that the lack of homogeneity in the
underlying functions we considered (and that it was only some features that were shared)
made the method hard to implement in practice. | didn’t get it to work very well (hence it
remains unpublished).

Do you think that there is something special about the §180 signals you use that mean the
features are highly shared between cores? Do you expect it to work as well for more
challenging/variable functions/proxies? Do you think there is a danger that you get into
highly multi-modal fits in some cases which the MCMC will not fully explore — or is your age-
depth prior sufficiently strong to avoid that?

2) How much of a difference do the *C measurements really make a difference when you have
to match 2000 6180 observations? Do these swamp the independent calendar age
information? Might there be use in having a dependency in the proxy measurements you
wish to construct (from one observation to the next)?

3) As a statistician, | think it is a bit of a shame that all of the material on the methods itself has
been moved to the SI. | appreciate | am biased and that many readers will be much more
interested in the results than technical details.
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