
Overview 

This is an interesting and well-presented paper which I enjoyed reading. I would like to thank the 

authors for their work. They provide a statistically-rigorous approach to combine information 

between various sediment cores when all these cores provide observations of the same (fairly 

smooth) underlying function. This is known as stacking the records.  

I presume that the model builds on earlier work (called HMM-Stack, Ahn et al., 2017) in its HMM 

aspect for each sediment core. At its heart, the method assumes that each core 𝑗 records the same 

underlying function, providing paired observations (𝑦𝑖
𝑗
, 𝑑𝑖

𝑗
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Here 𝜃𝑗(𝑑𝑖
𝑗
) represents the age-depth relationship in each core (which can be based upon 

radiocarbon dating or any another technique). The methods uses MCMC to iterate between 

updating the age-depth models 𝜃𝑗(⋅) for each core; and the shared function 𝑓(⋅). Within this MCMC, 

𝑓(⋅) is modelled as a Gaussian Process (GP), and the age-depth model in a more complex manner 

(presumably based upon an approach laid out in HMM-Stack). The method does some initial particle 

filtering but then seems to actually ditch that approach (using it only for initialisation) to use a 

Metropolis-Hastings As such the particle filtering appears somewhat redundant and could therefore 

be de-emphasized. 

Overall, the paper is nicely written with sufficient technical detail to allow reproduction. The authors 

also give useful practical examples for 𝛿18𝑂 reconstructions from several marine cores. The method 

is potentially adaptable to a considerable range of scenarios and will provide a significant 

contribution to the community (although my expectation/experience is that for records which are 

not as smooth, or as shared, as 𝛿18𝑂 some bespoke modifications might be required to get the 

model to fit – which the authors also state). 

Statistical Comments (mainly regarding the SI):  

1) My main statistical comment is that, as a new reader, I do not sufficiently understand where 

the specific three state HMM age-depth model comes from. I am presuming this specific 

age-depth model builds on previous work. In the model, there are considered to be three 

states for a core. Given a particular state then the sedimentation rate follows a mixture of 

three log-normals restricted to being within a certain range.  

 

This particular sedimentation model seems extremely specific, yet its justification is not 

really provided in either the main paper or S1. It is not clear, to a new reader, where this 

model comes from: either in terms of three states (with seemingly arbitrary sedimentation 

rate bounds) or the mixture of three log-normals within its permitted ranges (are these fixed 

or also estimated). What is the benefit of such a three state model, why were the 

boundaries chosen, and how are the parameters for each state selected? Is it somewhat 

arbitrary or is there geoscientific insight as to why there are three distinct states with these 

values? 

 

I presume this model, and its explanation, comes from the earlier HMM-Stack work of Ahn 

et. al (2017). If so that is fine – it does not need to be re-justified here in detail. However I 

feel there does need to be an intuitive lay-person explanation in the Intro about how it 

builds on this earlier work and what is specifically new here. Currently the HMM model 



appears somewhat out of nowhere. Also S1 needs much stronger referencing to that work 

(to clarify a reader should look there for the justification. 

 

2) I do not quite understand how the particle filtering is used to initialise the MCMC. How do 

you choose which particular particles to use (after you have run the particle filtering step) as 

the initialisation of your later MCMC? Do you run the MCMC many times with lots of initial 

starting points? How have you checked actual MCMC convergence and ensured you have 

explored the space fully from your initialisation? 

 

3) Outlier model – I may have misunderstood but, formally, it seems you have chosen 𝑔() to 

depend upon 𝜇. If so, I think you probably cannot entirely ignore those observations classed 

as outliers in the MCMC updating. When you update the GP 𝜇|𝑂, 𝑌, 𝐴 I would presume that 

the outliers will still inform as they come from a distribution that depends upon the 

parameter you wish to update. Consequently, I’m not sure that formally you can ignore all 

the values with 𝑂 = 1 and just fit a GP to the others.  

 

This is unlikely to make much difference in practice so I am not saying that you need to 

change it (but you should perhaps mention this is an approximation). Perhaps you could get 

around this by keep the same mean for the outliers as the stack but just altering/increasing 

the variance for the outlier component 𝑔(). If you do this then one would presumably still 

include the observations in updating the GP stack but the outliers would have less weight.  

 

4) The section on length/complexity does not really tell me anything practically useful, e.g. the 

DNEA stack has a run time of 1.8 hours. That’s partially interesting, but how many MH 

iterations actually is that (bearing in mind you have ditched the particle filtering by that 

point)? You could presumably make it arbitrarily faster/slower entirely dependent on how 

many iterations you run everything (optimisation, particle filters, MCMC, …). Please tell me 

how many MCMC iterations you performed. 

 

More General Applied/Presentation Comments:     

1) I think it would be worth mentioning how your work links with/alongside broader errors-in-

variables regression analysis. Fundamentally, that is rather analogous to what you are doing 

here – if the primary interest is in the stack rather than the age-depth model of each core 

which it seems to be. In errors-in-variables analysis, one has a series of observations y where 

𝑦𝑖 = 𝑓(𝜃) +  𝜖𝑖  but you do not know 𝜃𝑖 precisely (you only observe 𝑇𝑖 =  𝜃𝑖 +  𝜂𝑖). This is 

effectively your situation - where your sediment cores provide a specific type/structure of 

calendar age uncertainty 𝜂𝑖 and is some cases the 𝑇𝑖’s are not observed at all.  

 

In a geoscience setting, using Bayesian techniques similar to you, this is basically what we do 

to make the IntCal curves (e.g. Heaton et al. 2020) but there is also quite a lot of general 

statistical methodological literature (e.g. Bayesian approach of Cook and Stefanski, 1994) on 

the topic. Additionally, there is quite a lot of literature on registration in functional data 

analysis which could briefly be mentioned (e.g. book by J Ramsay and B Silverman).  

 

I also did some work with a similar (but identical) goal – aiming to sharing age information 

between records using tie-points and a GP – in Heaton et al. (2013). This was used to create 

calendar ages for the Pakistan and Iberian Margin (Bard et al. 2013) , and Cariaco Basin 



(Hughen & Heaton 2020) data which then went into IntCal13 and IntCal20. This work was 

somewhat different in that we only tried to transfer dating information from one record to 

another and only used the tie-point ages. However it does provide a previous context where 

tie-points are used in a method that aims for statistical rigour rather than eye-balled tuning 

(with uncertainties on the contemporaneity of the ties rather like your model). Your work is 

however more in depth and generalisable than ours (we needed fairly simple age-depth 

models with multivariate covariances so owe could input then into the main IntCal curve 

creation)   

 

Suggest that all this only needs a brief line or two in the Intro – just to add more 

detail/context about how your work fits within the wider statistical research literature. 

 

2) My colleagues (when I tried to suggest a similar approach to them to map all features across 

records for other proxies) were very cautious. They felt that, for many records, the entirety 

of the proxy could not be mapped between cores. They rather believed that, for many 

proxies, it was often only the sharp/main transitions that were shared between records and 

they did not want to match everything.  

 

I feel this point, that users must consider if trying to match every feature is something that 

will work for their proxy/data, should be made very explicitly. You do mention this in the 

manuscript but it is somewhat hidden and only appears towards the end (in the middle of 

the section on Strengths/Weaknesses on lines 520-525). I feel this caveat needs to be made 

considerably more prominent in the Intro/Conclusion when discussing GPs so readers will 

not misunderstand. 

 

I am not a sufficient expert here, but it may be that benthic 𝛿18𝑂 is more globally 

homogeneous than many other proxies (and the method must be used with considerable 

caution for some other proxies where responses can be antithetic). 

 

3) Your Marine sites are very spread out and will not be expected to have the same regional 

offset Δ𝑅 from one another. You have chosen a mean of Δ𝑅 = 0 for all the cores but then 

quite a large uncertainty (𝜎 = 200) on Δ𝑅 to account for uncertainty. Again this is probably 

fine, as you have chosen a fasirly large value (and I think everything will be somewhat led by 

the fitting of the many 𝛿18𝑂 measurements anyway). However, I would suggest that you 

might advise users to initialise a different Δ𝑅 for each core using the Reimer and Reimer 

(2017) database.   

 

We do not advise people to choose Δ𝑅 = 0 if they have other information available. The 

belief is that, at least during the Holocene, any regional Δ𝑅 will remain roughly constant 

over time and so will be applicable along the core (as regional upwelling/ocean depth might 

remain relatively constant). If you choose an independent Δ𝑅 from one observation to the 

next then you do not model dependence in  

 

Note: This is a fairly minor point that I doubt will affect your results due to the volume of 

𝛿18𝑂 observations. If it is a lot of work (or the marine core sites you use do not have Δ𝑅  

estimates) then I suggest you just add a caveat/explanation for the paper (rather than 

redo everything). 

 



4) Is there a reason as to why the sedimentation rates of Lin et al. (2014) are applicable 

elsewhere? This seems like a considerable assumption. Hence while it is potentially a 

strength of your method to provide automated selections of sedimentation rates it is also a 

considerable danger if other use it as a black box when it is not appropriate.  At the very 

least, you must ensure that any user inputs their data on the same measurement scale (i.e. 

m or cm) as the analysis you did for Lin et al. (2014). 

 

Smaller Specific Points: 

Main Document: 

1) Line 66 – it is not only 14C production rate changes which cause variations in past 

atmospheric 14C/12C levels but also rearrangements of the carbon cycle (see e.g. Heaton et 

al. 2021). Suggest minor rewording to acknowledge this.  

 

2) Line 370 are your stack estimates smoother because you use a GP which is fundamentally a 

significant smoother? Or due to other factors such as averaging over calendar ages? Also 

does the smoothed version lose genuine features - are the features you say you smooth/lose 

thought to be genuine phenomena? 

 

3) Figure 3 and Figure 4 – in the panel As showing the final stack, can you overlay the posterior 

mean estimate on top of the observations (rather than underneath where currently it can’t 

be seen) 

 

4) Line 473-474 - Users should be aware that the age uncertainties returned by BIGMACS for 

age models generated by multiproxy alignment or stacking do not include the age 

uncertainty of the alignment target. I do not understand this comment about an alignment 

target – based upon your SI you suggest you can use your method on records where there is 

no a priori alignment target (i.e. when you just have a selection of cores each with their own 

14C dates). Have I misunderstood?  

Suppl. Information 

1. There are repeated uses of sigma to mean many things – unclear what the values that are 

updated in S4 refer to. Equally what are the h’s – need to be made somewhat clearer? 

 

2. More detail is needed on the parameter choices for the age-depth model – can refer to 

other work if this is suitable.  

 

3. Minor point – the likelihoods are not probabilities (the densities are continuous) 

 

4. S5 – There is some referencing to other sections that has gone wrong: “The stack 

construction algorithm first iterates steps in subsections S4.2, S4.3 and S4.4 until 

convergence and then update the new one by the method in S4.1.”  

 

There is no S4.4. Also, do you mean S5.1 at the end rather than S4.1? 

General Questions (as I’m interested – not requiring further work): 



1) I tried work on a similar topic a few years ago. I found that the lack of homogeneity in the 

underlying functions we considered (and that it was only some features that were shared) 

made the method hard to implement in practice. I didn’t get it to work very well (hence it 

remains unpublished).  

 

Do you think that there is something special about the 𝛿18𝑂 signals you use that mean the 

features are highly shared between cores? Do you expect it to work as well for more 

challenging/variable functions/proxies? Do you think there is a danger that you get into 

highly multi-modal fits in some cases which the MCMC will not fully explore – or is your age-

depth prior sufficiently strong to avoid that?  

 

2) How much of a difference do the 14C measurements really make a difference when you have 

to match 2000 𝛿18𝑂 observations? Do these swamp the independent calendar age 

information? Might there be use in having a dependency in the proxy measurements you 

wish to construct (from one observation to the next)?  

 

3) As a statistician, I think it is a bit of a shame that all of the material on the methods itself has 

been moved to the SI. I appreciate I am biased and that many readers will be much more 

interested in the results than technical details.  
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