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Abstract. Previously developed software packages that generate probabilistic age models for ocean sediment cores are
designed to either interpolate between different age proxies at discrete depths (e.g., radiocarbon, tephra layers, or tie points)
or perform a probabilistic stratigraphic alignment to a dated target (e.g., of benthic 3*30) and cannot combine age inferences
from both techniques. Furthermore, many radiocarbon dating packages are not specifically designed for marine sediment cores
and default settings may not accurately reflect the probability of sedimentation rate variability in the deep ocean, requiring
subjective tuning of parameter settings. Here we present a new technique for generating Bayesian age models and stacks using
ocean sediment core radiocarbon and probabilistic alignment of benthic §'80 data, implemented in a software package named
BIGMACS (Bayesian Inference Gaussian Process regression and Multiproxy Alignment of Continuous Signals). BIGMACS
constructs multiproxy age models by combining age inferences from both radiocarbon ages and probabilistic benthic 50
stratigraphic alignment and constrains sedimentation rates using an empirically derived prior model based on 37 C-dated
ocean sediment cores (Lin et al., 2014). BIGMACS also constructs continuous benthic §'80 stacks via a Gaussian process
regression, which requires a smaller number of cores than previous stacking methods. This feature allows users to construct
stacks for a region that shares a homogeneous deep water 5'80 signal, while leveraging radiocarbon dates across multiple
cores. Thus, BIGMACS efficiently generates local or regional stacks with smaller uncertainties in both age and 620 than
previously available techniques. We present two example regional benthic 20 stacks and demonstrate that the multiproxy

age models produced by BIGMACS are more precise than their single proxy counterparts.

1 Introduction

The accuracy with which ocean sediment core data can reconstruct the timing of past climate events depends on the quality of
the core’s age model (i.e., estimates of age as a function of core depth). However, age models are often constrained by only a

single dating proxy type. A common technique is radiocarbon dating, which directly dates individual sediment layers.
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However, this method is restricted to the last 55 ka BP, suffers from variable surface reservoir ages (Waelbroeck et al., 2001;
Sikes et al., 2016; Stern & Lisiecki, 2013; Skinner et al., 2019), and radiocarbon data are often lower resolution than benthic
5180 data. Radiocarbon age models are sometimes supplemented with stratigraphic tie points to a dated target, however this
method requires the subjective identification of shared features that are often recorded in different archives. An alternative
technique is the stratigraphic alignment of benthic 5220 to a target stack (e.g., Imbrie et al., 1984; Lisiecki & Raymo, 2005),
which represents the mean benthic 3'80 signal across multiple cores. Benthic 3'80 is often measured at higher resolution than
radiocarbon data, but this dating technique provides only relative age information between cores by assuming that the input
and target have synchronous benthic §'80 signals. Temporal offsets between the aligned records can cause age errors in the
aligned age model (Skinner & Shackleton, 2005; Labeyrie et al., 2005; Waelbroeck et al., 2011; Stern & Lisiecki, 2014; Lund
etal., 2015).

Software packages exist to produce age models by interpolating between age proxies (such as radiocarbon ages, tephra
layers, or/and tie points; Blaauw & Christen 2011; Lougheed & Obrochta, 2019), or by performing a probabilistic benthic 20
alignment (in which residuals between input and target records are minimized; Lin et al., 2014; Ahn et al., 2017), but none of
these packages can probabilistically combine age inferences from both dating techniques. While one study presented a
Bayesian multiproxy age model for a single core from the Arctic Ocean, the methodology is specific to the high latitude region
in which radiocarbon data is unreliable and aligned porosity rather than benthic 0 (Muschitiello et al., 2020). Furthermore,
many age modelling software packages were not specifically designed for marine sediment cores (Ramsey, 1995; Haslett &
Parnell, 2008; Blaauw, 2010; Blaauw & Christen 2011) and default settings may not accurately reflect the probability of
sediment accumulation rate variability in marine settings. Users must often subjectively choose parameter settings which may
ultimately affect the interpretation of paleoclimate records.

Here we present a new technique for generating Bayesian age models and stacks of ocean sediment core data,
implemented in a software package named BIGMACS (Bayesian Inference Gaussian Process regression and Multiproxy
Alignment of Continuous Signals). BIGMACS constructs radiocarbon age models, benthic 6*%0 age models, and multiproxy
age models which combine age inferences from both radiocarbon ages and 620 stratigraphic alignment. Radiocarbon ages
directly date sediment layers while benthic §'80 provides relative age constraints between radiocarbon ages and beyond 55 ka
BP. We use the term “multiproxy” to indicate the combined inference from two types of “age proxies”: absolute age
information provided by radiocarbon and relative age information from the stratigraphic alignment of benthic 620. Note that
this method is distinct from an alignment of multiple climate proxies (e.g., benthic and planktonic §*20). BIGMACS can also
probabilistically incorporate other types of age information at specified depths, such as inferences from tephra layers, magnetic
reversals, or user-identified tie points. Sedimentation rates are realistically constrained with an empirically derived prior model
from Lin et al. (2014) rather than subjective parameter settings. Median age models and their uncertainties are defined by the
distribution of Markov Chain Monte Carlo (MCMC) samples. The distribution of MCMC samples at a given depth of a

radiocarbon age model reflects the absolute age uncertainty of the sediment. However, 380 age model uncertainty reflects
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only the relative age uncertainty and excludes the absolute age uncertainty of the alignment target. BIGMACS does not use
any orbital tuning unless users choose to align to a target stack that has been orbitally tuned.

Another functionality of BIGMACS is the automated construction of multiproxy benthic §*%0 stacks using an iterative
process that simultaneously considers the probabilistic fit to both absolute age information (e.g., from radiocarbon dates) and
relative age information from alignment of all cores’ benthic §'80 signals. Age models for each core are constructed by aligning
benthic 520 to the stack from the previous iteration, and then a new stack is calculated from the aligned 380 from every core.
Radiocarbon ages (if included) help constrain the age models for their respective cores during each iteration of stack
construction. Similar to “errors-in-variables” regression, which is used to construct the Intcal20 curve due to uncertainty in
both the radiocarbon measurements and their calendar ages (Reimer et al., 2020; Heaton et al., 2020), BIGMACS calculates a
time series of mean and variance for benthic %0 by performing Gaussian process regressions (Rasmussen and Williams,
2006) across MCMC age model samples. The resulting stack variance is a combination of both age model uncertainty from
individual cores and the spread of benthic 3'0 from every core. This method requires fewer cores than previous stacking
methods (e.g., Ahn et al., 2017; Lisiecki & Stern, 2016) and, thus, allows users to construct target stacks from a small number
of neighbouring cores that share homogeneous §*80 signals.

Section 2 provides a summary of some common techniques used for radiocarbon dating, 3'0 alignment and &0
stack construction. Section 3 describes the statistical methods used in BIGMACS, including an overview of the Bayesian
framework, the prior model that constrains sedimentation rates, and the likelihood models for different proxy types. We also
describe the methods used to draw MCMC age model samples and the regression technique employed to construct continuous
stacks from a small number of cores. In section 4, we present two example regional Atlantic stacks: a Deep Northeast Atlantic
(DNEA) stack, and an Intermediate Tropical West Atlantic (ITWA) stack. The two stacks are composed of 6 and 4 cores
respectively, that are chosen based on an evaluation of their water mass histories. In section 5, we compare a multiproxy age
model, a $'0-only age model, and a radiocarbon-only age model for one additional core. We demonstrate that age model
precision is increased when using both radiocarbon ages and §'80 alignment. Finally, we discuss potential future applications
of BIGMACS and the factors affecting its runtime.

2 Background
2.1 Radiocarbon Age Models

Radiocarbon ages must be calibrated from C years to calendar years with a calibration curve that accounts for the
changing magnetic fields of the Sun and Earth, solar storms, and variations in the terrestrial carbon cycle (Reimer et al., 2020;
Heaton et al., 2020; Heaton et al., 2021). The uncertainty of the calibrated age is a combination of the calibration curve
uncertainty, the radiocarbon measurement uncertainty, the time-dependent local reservoir age offset from the calibration curve
(AR) and the associated reservoir age uncertainty. Techniques to calibrate radiocarbon ages have evolved from interpolation

techniques such as Calib (Stuiver & Reimer, 1993) to Bayesian calibration methods (e.g., Oxcal by Ramsey, 1995; Bcal by
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Buck and Christen, 1999; Matcal by Lougheed & Obrochta, 2016) which typically generate asymmetric, nonparametric
calendar age distributions due to slope changes in the calibration curve.

Planktonic foraminiferal radiocarbon dates must be corrected for the reservoir age of the surface ocean relative to the
atmosphere or calibrated with a curve that accounts for the reservoir age of the surface ocean (e.g., the Marine20 curve; Heaton
et al., 2020). Previous studies have used different methods to estimate past reservoir ages, including using modern
measurements from the Global Ocean Data Analysis Project (GLODAP, Key et al., 2004, Waelbroeck et al., 2019) and the
Calib database (Reimer & Reimer, 2001), comparing stratigraphically aligned age models with radiocarbon age models (Stern
& Lisiecki, 2013; Skinner et al., 2021), and modelled reservoir ages from a Large Scale Geostrophic Ocean General Circulation
Model (LSG-OGCM, Butzin et al., 2020; Butzin et al., 2017, Langner & Mulitza 2019; Heaton et al., 2020).

Constructing a sediment core age model, which estimates sediment ages for all core depths, from a sequence of
radiocarbon ages requires assumptions or models of the core’s evolving sedimentation rate between dated intervals. The
median age model and age model uncertainty depend on the radiocarbon calibration method, the applied sedimentation rate
constraints, and the outlier identification procedure (Christen, 1994; Ramsey, 2009b, Christen & Peréz, 2009). Multiple
software packages have been published to construct probabilistic radiocarbon age models that apply a variety of statistical
techniques (e.g., Ramsey, 1995, 2001, 2008, 2013; Blaauw & Christen, 2005; Haslett & Parnell 2008; Blaauw, 2010; Blaauw
& Christen, 2011; Lougheed & Obrochta, 2019).

Oxcal (Ramsey, 1995) provides modelling routines for multiple depositional environments; the routine known as the
P_Sequence is commonly used for modelling marine and lacustrine cores. P_Sequence uses a Poisson process in which the
number of depositional events per unit depth is determined by a tuneable, user-specified parameter which affects the
uncertainty of the age model. Oxcal also includes multiple options to identify outliers, including an agreement index which
measures the overlap between the posterior distribution of the age model and the radiocarbon likelihood at depths where
radiocarbon ages exist.

Bchron (Haslett & Parnell, 2008) constructs age-depth models using a monotone Markov process and piecewise linear
interpolation paths with random durations. Bchron requires few user-specified parameter settings and posits less prior
knowledge on sedimentation rate constraints; thus, age models constructed with Bchron often have larger age uncertainties
than other software packages, particularly for radiocarbon records of low resolution (Blaauw & Christen, 2011). Bchron
identifies two types of outliers based on the shift required to satisfy the monotonicity constraint. Standard outliers have a prior
probability of 5% and require a shift defined a priori by a normal distribution with variance equal to double the radiocarbon
analytical measurement error. Larger outliers have a prior probability of 0.1% and are excluded from the age model
construction process.

Bacon (Blaauw & Christen, 2011) separates cores into fixed segments and uses an auto-regressive gamma process to
simulate sedimentation rates. The user specifies tuneable priors for a beta distribution that controls age model autocorrelation
and a gamma distribution that governs sedimentation rate variability. Radiocarbon ages are modelled with a generalized

student’s t-distribution (Christen & Peréz, 2009) that scales the error associated with radiocarbon measurements. The amount
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of scaling depends on two parameters which are set by default to assign a 70% chance that the reported error was
underestimated by a factor between 1 and 2. Christen & Peréz (2009) explain that the choice of these parameter values is a
“practical guideline” which they estimated to reflect the state of radiocarbon data at the time.

Undatable (Lougheed & Obrochta, 2019) uses a Monte Carlo sampling algorithm designed to emulate statistical
models of sedimentation rate variability with the goal of producing quick runtimes. Users set two parameters: a scaling
parameter that scales age uncertainties at the midpoints between radiocarbon ages and a bootstrapping percent that provides a
framework to address outlier radiocarbon ages. These parameters have large effects on the resulting age model, requiring the
user to select appropriate values, e.g., according to recommendations in Lougheed & Obrochta, (2019), rather than relying on

a prior model of sedimentation rate variability.

2.2 Benthic 680 Age Models

In the calcite shells of foraminifera, the ratio of 80 to %0 measured relative to a standard, denoted 20, is a proxy
for global ice volume, local water temperature and the local §'80 of seawater, which often correlates with salinity. Due to the
relatively homogeneous temperature and salinity changes of the deep ocean, previous studies have assumed benthic 880
changes synchronously (Shackleton, 1967) and have used the proxy as a global stratigraphic signal to construct ocean sediment
core age models (e.g., Pisias et al., 1984; Lisiecki and Raymo, 2005). The most conservative technique for aligning records to
atarget is to assume that large, easily identifiable features in the signals, such as glacial terminations, occurred simultaneously,
create tie points between these features, and linearly interpolate between the tie points (e.g., Huybers & Wunsch, 2004).
However, this linear interpolation method may misalign smaller scale features due to changes in sedimentation rates between
tie points.

Software packages have been published that automate the alignment process and optimize the fit of the entire signal.
Lisiecki & Lisiecki (2002) developed the deterministic software package Match, which utilizes dynamic programming to
minimize a cost function based on sedimentation rate changes and the sum-of-square error misfit between signals. Match was
used to align 57 benthic 880 records and construct the global “LR04” Plio-Pleistocene stack (Lisiecki & Raymo, 2005) and a
1.5-Myr multiproxy geomagnetic paleointensity and &80 stack (Channell et al., 2009).

The Bayesian package HMM-Match (Lin et al., 2014) performs a point-based alignment using a hidden Markov
model and returns estimates of alignment uncertainty based on the distribution of MCMC age model samples. HMM-Match
considers the probability of every possible alignment given the fit to the alignment target and the modelled sedimentation
accumulation rate changes. The probability of a given benthic 50 residual to the target is modelled with a fixed Gaussian
distribution based on the record’s 80 residuals and a mean shift from the target. Sedimentation rates are realistically
constrained using a log-normal mixture distribution fit to normalized sedimentation rate estimates derived by linearly
interpolating between calibrated radiocarbon ages in 37 cores.

Heaton et al., (2013) presents an age model construction method which uses a Gaussian process regression to

interpolate between benthic 320 tie points. The method incorporates uncertainty from the target age model, tie point

5



165

170

175

180

185

190

identification, and interpolation between tie points and was used to construct chronologies for records incorporated into the
IntCal13 and Intcal20 curve (Reimer et al., 2013; Reimer et al., 2020). Heaton et al., (2013) argue against using a deterministic
automated alignment process (e.g., Lisiecki and Lisiecki, 2002) due to a lack of uncertainty estimates and concerns about
aligning across different proxy types which may differ in sensitivity to climate responses. We assert that using BIGMACS to
align across a set of sediment cores with homogeneous signals of the same proxy (such as benthic §'80 in neighbouring cores),
addresses these concerns. BIGMACS formally incorporates multiple sources of age uncertainty to create probabilistic
alignments that are both more informative and less subjective than tie point identification.

Diachronous benthic §*80 signals are an additional source of uncertainty in benthic §'80 aligned age models. Previous
studies have identified temporal offsets up to 4 kyr between 680 records during terminations (Skinner & Shackleton, 2005;
Lisiecki & Raymo, 2009; Stern & Lisiecki, 2014). Because stratigraphic alignment relies on the assumption that benthic §!80
between the input and the target core varies synchronously, these offsets can cause age errors in §%0-aligned age models.
Thus, without a direct dating proxy (e.g., radiocarbon, tephra, etc.), '80 stratigraphic alignment is an inadequate tool to study
the sequence of climate responses at different locations during glacial terminations (e.g., Khider et al., 2017) or millennial-
scale events. Causes of offsets in the timing of benthic 50 change include asynchronous surface signals, changes in deep
ocean water mass geometry, or/and different deep water transit times (Gebbie, 2012). To mitigate the impacts of diachronous
5180 change, benthic %0 alignment should ideally be restricted to cores which have experienced a similar history of deep

water mass change. We present one method to identify cores with synchronous benthic §'80 signals in section 4.1.

2.3 Benthic 880 Stacks

Benthic §*0 stacks are used as a common framework by which new paleoceanographic measurements are compared
and are often used as targets during stratigraphic alignment (e.g., Imbrie et al., 1984; Lisiecki & Raymo, 2005; Channell et al.,
2009). Stacks require that the individual 5'80 records are first aligned to have comparable relative or absolute ages so that each
point in the stack represents a snapshot of §'80 values from multiple locations at the same time. Inaccuracy in relative age
estimates between cores will typically decrease the signal-to-noise ratio of the stacked signal, but over-alignment of noise in
the signals could artificially enhance variability that was not globally synchronous. The risk of over-alignment can be reduced
by placing constraints on sedimentation rate variability (e.g., Lisiecki & Lisiecki, 2002; Lin et al., 2014).

To create a stack using software that performs pairwise alignments of cores, all §180 records to be included in the
stack are aligned to a single target core, which is typically a 8180 record that spans the entire length of the stack with high
resolution, low noise, and no apparent hiatuses. Any problems in the signal of the target core could propagate to create errors
in core alignments and the average 3'80 value of the stack. In the LR04 global stack, the authors checked for such errors by
performing pairwise alignments to multiple target cores and comparing the stacks (Lisiecki and Raymo, 2005); however, this
is a laborious process and requires subjective evaluation. Because 520 variability is not globally synchronous (Skinner &
Shackleton, 2005; Labeyrie et al., 2005; Waelbroeck et al., 2011; Stern & Lisiecki, 2014; Lund et al., 2015), Lisiecki and Stern

(2016) created regional stacks and used a different alignment target for Atlantic versus Pacific cores.
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The sensitivity of stacks to the choice of a single alignment target can be mitigated by aligning to a target that
incorporates information from all cores in the stack. HMM-Stack (Ahn et al., 2017), which models the stack using a profile
Hidden Markov model (HMM), begins with an initial alignment to a user specified target and then aligns all cores to an
iteratively updated stack, which is optimized to fit all cores in the stack. Here we present a new stack construction algorithm
which offers several improvements to HMM-Stack, including the opportunity to simultaneously incorporate age constraints

from all cores during the stacking process.

3 Methods
3.1 Bayesian Framework

BIGMACS probabilistically constructs realistic age models and stacks by combining information from age proxies
and stratigraphic alignment with the prior model of sedimentation rate variability from Lin et al., (2014). In Bayesian
statistics, the age information from proxy data are termed likelihoods. Specifically, likelihoods return the probability of
observing the age proxies given the proposed age model and the set of model parameters. Here we refer to likelihoods as the
emission model. Simply stated, the emission model returns the probabilities of residuals (or misfit) between observed data
and estimated values from a particular age model. The emission model for each proxy (radiocarbon, §'80, and additional age
information) is discussed in section 3.3 and detailed formulations are given in the supplement (S2 and S4.1).

The prior model represents our a priori understanding of sedimentation rate variability and is termed the transition
model. The transition model calculates the probability of a simulated sequence of sedimentation rates, independent of the
proxy data, as described in section 3.2 and the supplement (S1 and S4.1). The transition model probabilities for a particular
depth in the core are calculated as a function of both sedimentation rate change and normalized sedimentation rate (i.e.,
sedimentation rate expressed as a ratio the core’s estimated mean sedimentation rate), given model parameters which are
derived from the same sedimentation rate data as Lin et al., (2014).

The posterior distribution is calculated using Bayes’ rule and is proportional to the product of transition and
emission models. The posterior distribution of a multiproxy age model includes likelihoods returned by the radiocarbon
emission model, the benthic §'80 emission model, and the additional age emission model. Because there is no closed form
for this posterior distribution (i.e., it is not known), we employ a sampling approximation. To improve computational
efficiency, we sample the posterior using a combination of the particle smoothing (Doucet et al. 2001; Klaas et al. 2006) and
Metropolis Hastings algorithms (Metropolis et al. (1953); Hastings (1970); Martino et al. (2015); section 3.4).

In Bayesian statistics, the parameter of interest (in this case the age of sediment at a given depth) is represented by
the posterior distribution, rather than a single value. Therefore, a Bayesian 95% credible interval spans 95% of the central

portion of the posterior distribution. This is compared to a frequentist 95% confidence interval, which posits that there is a



225

230

235

240

245

250

255

95% chance that the limits are correct and encapsulate the true value. Here the 95% credible intervals and the median age
model are defined by the distribution of Monte Carlo samples drawn from the posterior distribution.

The stacking algorithm is completed in two steps: an age model construction step in which a set of 880 records are
aligned in parallel to a target stack (as described above), and a stack construction step in which a nonparametric regression is
performed across the 5'0 data on the set of aligned cores. These two steps are performed iteratively until convergence. The
alignment target during age model construction is the stack from the previous iteration; for the first iteration, an initial target

stack is provided by the user. The stack construction process is described in more detail in section 3.5 and S5.

3.2 Transition Model

For a given age, the transition model calculates the probability of the normalized sedimentation rate and the change

in sedimentation rate from the previous depth (for a mathematical description, see S1 and S4.1). In its default mode, BIGMACS

uses the transmission model developed for the HMM-Match software by Lin et al. (2014); this study calculated the probabilities

of normalized sedimentation rates with an empirically derived prior distribution fit to the observed sedimentation rates in 37

radiocarbon dated cores. Here we summarize the methods of Lin et al., (2014) to construct the prior; however, for more

information see the original publication.

Radiocarbon ages were calibrated with the Marine09 calibration curve (Reimer et al., 2009) and sedimentation rates

were assumed to be constant between radiocarbon ages. To identify outliers and age reversals in a statistically robust manner,

a Bchron age model (Haslett & Parnell, 2008) was constructed for each core. Sedimentation rates were calculated by

interpolating between the modes of the Bchron ages at the depths of the radiocarbon measurements. The resulting

sedimentation rates were only included in the final compilation if the following criteria was met: (1) the core was south of 40
degrees N if in the Atlantic (due to high latitude North Atlantic reservoir ages, Lisiecki & Stern 2013), (2) the core had an

average sedimentation rate of at least 8 cm/kyr, and (3) adjacent pairs of radiocarbon dates were between 0.5 kyr and 4 kyr

apart. After the criteria was met, the compilation totalled 544 kyr of sediment from 37 ocean sediment cores (Figure 1, Table

S1). The original study interpolated sedimentation rates every 1 kyr; however, we interpolate by 1 cm depth increments and

fit a new log-normal mixture distribution (Figure 2). Interpolating sedimentation rates by depth correctly represents the

frequency at which higher sedimentation rates are observed in the sediment archive, whereas interpolating by time over

represents frequency of lower sedimentation rates (which deposit less sediment per unit time).

Changes in sedimentation rates depend on both the current and previous sedimentation rate, and thus the previous

two depths. However, because storing all sampled combinations of three consecutive depths is intractable for computation

(O(N?), where N is the number of age model samples), normalized sedimentation rates are classified into three states:

expansion, contraction, and steady. Expansion specifies a below average sedimentation rate which effectively stretches the

local portion of the record. Contraction specifies a higher sedimentation rate than the average, which requires “squeezing” the

record during alignment to the target. If the local sedimentation rate is within 8% of the core’s average, the state is classified

as steady. In BIGMACS the probabilities of transitioning from one state to the other states are optimized via the Baum-Welch

8
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Expectation Maximization algorithm (Rabiner, 1989; Dubrin et al., 1998). However users can also choose to keep these

probabilities fixed using the sedimentation rate data from Lin et al., (2014).

BIGMACS allows a sedimentation rate change at every depth where there is proxy data (580, *C, or additional age

information). However, in the case of low-resolution records, BIGMACS imposes a minimum age model resolution, which

forces a sedimentation rate calculation every 15 cm. This depth interval was selected based on the depth spacing between the

radiocarbon data used for the prior (Lin et al., 2014). Furthermore, BIGMACS normalizes sedimentation rates relative to a

time-dependent average sedimentation rate calculated by the Nadaraya-\Watson kernel regression (Langrene and Warin, 2019).

This accounts for longer scale changes in the depositional environment, which can be associated with transitions between

glacial and interglacial oceanographic conditions.
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Figure 1: Locations of cores from Lin et al., (2014) used to construct the mixed log-normal distribution.
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Figure 2: The log-normal mixture fit to observed sedimentation rates from 37 cores compiled in Lin et al., (2014).
Sedimentation rates are interpolated to 1 cm increments.
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3.3 Emission Model

BIGMACS uses different emission models for radiocarbon, 580 and additional age information (see S2 and S4.1 for
more information). For radiocarbon and 880 data, the emission model is specified via generalized student’s t-distributions
(Christen & Peréz, 2009).

For radiocarbon data, the emission model returns the likelihood of observing age offsets from measured radiocarbon
ages and depends on the radiocarbon measurement, calibration curve, and the reservoir age. The emission model also depends
on two fixed parameters that control the scaling of the standard deviation. While Christen & Peréz (2009) and Blaauw &
Christen (2011) set the fixed parameters of o and B to three and four, we choose values of ten and eleven which produces a
distribution that is more peaked and more similar to a Gaussian distribution. In other words, our student’s t-distribution has
smaller tails than the distribution from Christen & Perez, (2009) causing age model samples to pass closer to the mean
radiocarbon age. This effectively improves agreement between the age model and the radiocarbon observations.

The 880 emission model returns the likelihood of observing different magnitudes of 5120 offsets from the alignment
target and depends on the target stack’s time-dependent mean and variance. During alignment, Gaussian stacks are translated
into a generalized student’s-t distribution with the fixed parameters of o and B set to three and four, respectively, based on
observed 520 residuals for the ITWA and DNEA stacks (Figure S1), to address potential §'0 outliers. The §*80 emission
model also includes core-specific scale and shift parameters which are learned across alignment iterations with the Baum-
Welch Expectation Maximization algorithm (Rabiner, 1989; Durbin et al., 1998). These parameters account for vital effects
among different benthic foraminifera species (e.g., Marchitto et al., 2014) and different local water mass properties at different
locations (e.g., temperature and %0 of seawater). The final mean and amplitude of the stack will reflect a resolution-weighted
average of the stack’s component cores; thus, the average shift and scale parameters of the stacked cores will be close to zero
and one (when weighted by the resolution of 580 data in each core). Optionally, the user can choose not to shift or scale
individual cores during stack construction; with this setting, the variance in the stack would reflect the total 80 variance
across cores.

The emission model for the additional age information (e.g., stratigraphic tie points or dated tephra layers) can either
be specified as a uniform or Gaussian distribution with a mean and uncertainty specified by the user. Specifying the model as
a uniform distribution will assign an equal probability for the age model to pass anywhere through the given uncertainty range.
A Gaussian distribution will assign higher probabilities to age model samples that pass close to the mean of the additional age

but allows for potentially larger residuals due to the tails of the distribution assigning non-zero probabilities.

3.4 Record Alignment

This section describes the sampling strategy employed during age model construction. Formulations for the sampling

algorithm are provided in the supplement (S4.2).
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Because the posterior is not given as a distribution in a closed form, age model samples are drawn using a Markov-
Chain Monte Carlo (MCMC) algorithm (Peters, 2008; Martino et al., 2015). To increase computational efficiency, BIGMACS
first initializes each sample using particle smoothing (Doucet et al. 2001; Klaas et al. 2006) and then refines the initialized
samples with the MCMC algorithm. Particle smoothing can be understood as a continuous version of a Hidden Markov model
(HMM, Durbin et al. (1998)). Whereas the HMM considers all possible hidden states because they are finite, the particle
smoothing considers only a finite number of proposals because there are infinitely many possible states. In BIGMACS, the
hidden states, or “particles”, represent possible ages for each depth in the core. Particle smoothing consists of a forward
algorithm and a backward algorithm. The forward algorithm iteratively samples and reweights particles, while the backward
algorithm samples from the particles one-by-one in reverse based on their assigned weights. BIGMACS first runs particle
smoothing with the state-space model defined by the transition and emission models.

BIGMACS then runs the Metropolis-Hastings algorithm (Metropolis et al. (1953); Hastings (1970); Martino et al.
(2015)) to sample the proposed ages with starting points provided by the particle smoothing algorithm. The Metropolis-
Hastings algorithm updates the samples block-wise, meaning that hidden states in the same sedimentation state category
(expansion, contraction, and steady) are simultaneously treated in each iteration. Initialized age samples from particle
smoothing allows the use of shorter chains to reach the burn-in phase.

Once the set of sampled ages are obtained, BIGMACS updates parameters of the transition and emission models via
the Expectation Maximization (EM) algorithm (Dempster et al., 1977) and then iterates the process with the updated
transition and emission models until convergence. If a stack is to be constructed, the final age samples are inputs to the stack

construction algorithm.

3.5 Stack Construction Algorithm

Here we describe the Gaussian Process regression used to construct a stack construction. A formal mathematical
description is presented in the supplement (section S5). During stack construction BIGMACS first aligns records to an initial
5180 stack by drawing age model samples from the posterior, and then updates the stack based on the new alignments. The
updated stack serves as the target for the next alignment iteration and the whole process is repeated until convergence.

A benthic §*80 stack serves as a target for aligning multiple records simultaneously. Because age models are
continuous, we design the stack construction algorithm to also be continuous, such that a mean and standard deviation can be
defined explicitly for any age. Previous stack construction methods (Lisiecki & Stern 2016; Ahn et al., 2017) involved binning
5180 data and were thus limited by the amount of data in each bin. In contrast, the continuous approach of BIGMACS allows
the creation of a stack using a smaller number of records and/or with uneven data resolution over time.

BIGMACS constructs a stack using Gaussian process regression (Rasmussen and Williams, 2006), which is a
continuous and nonparametric kernel-based method. In contrast to the well-known polynomial regression, a distinctive feature
of Gaussian process regression is that its variance function is permitted to change along the inputs (i.e. the x-axis). BIGMACS

uses the Ornstein-Uhlenbeck (OU, Rasmussen and Williams, 2006) kernel, which we find allows enough variance to resolve
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millennial scale events (e.g., see sections 4.3 and 6.1.2). BIGMACS trains the OU kernel’s hyperparameters, which adjust its
amplitude and width, across iterations based on the data used to make the stack.

To allow the stack to reflect changes in the variance of %0 as a function of time, BIGMACS follows a heteroscedastic
Gaussian process regression (Lee & Lawrence 2019) instead of a homoscedastic one. A homoscedastic Gaussian process
assumes that the residuals of the data from the regression is constant but nevertheless adjusts its variance function to the
proximity of data points. Thus, its variance function is narrow when data points are dense and wide where the data are less
dense. A heteroscedastic Gaussian process model (used by BIGMACS) has a variance function that changes in response to the
spread of the data points along inputs which allows the variance of the regression to be sensitive to the spread of responses in
addition to changes in variance associated with data density from the homoscedastic Gaussian process model.

Gaussian process regressions have two major drawbacks: time complexity and outlier sensitivity. A matrix inversion,
which has a time complexity equal to size of the data set cubed, is required to estimate hyperparameters for the kernel and to
compute the posterior predictions. Thus, the model becomes intractable as the size of dataset increases. To address this,
BIGMACS adopts the variational free energy approximation (Titsias, 2009) to make the time complexity linear to the size of
dataset. Outliers are identified by the Gaussian modelling of residuals. During stack construction BIGMACS disregards
outliers before performing the regression. The following two steps are iterated: 1) kernel hyperparameters are estimated after
disregarding outliers, 2) outliers are classified based on the stack constructed from the estimated kernel hyperparameters.

After BIGMACS obtains a Gaussian process regression using the 580 data from every core on each sample age
model, the software averages the set of regressions using moment-matching (Murphy, 2012) to produce a single Gaussian
model stack in a closed form. Detailed formulations for the stack construction algorithm can be found in the supplementary

note (section S5).

4 Results

To demonstrate the performance of BIGMACS with differing amounts and quality of data, we present two example
stacks: a Deep Northeast Atlantic (DNEA) stack and an Intermediate Tropical West Atlantic (ITWA) stack. The DNEA stack
is constructed using high-resolution data with relatively little noise; it consists of 2,112 §'80 data points and 150 radiocarbon
ages from six cores that range in depth between 2273 and 3166 m (two from the western Iberian Margin and three off the west
coast of Africa). The ITWA stack is constructed from 1,066 8180 data points and 51 radiocarbon ages across four cores from
the Caribbean to the northern coast of Brazil that range in depth from 1100 and 1299 m; these cores contain a relatively large
number of 820 outliers. Core locations for both stacks are plotted in Figure 3. The DNEA stack spans a full glacial cycle while
the ITWA stack extends to ~55 ka. We used the Deep North Atlantic (DNA) and Intermediate North Atlantic (INA) stacks
from Lisiecki & Stern (2016) as initial targets for the DNEA and ITWA stacks, respectively. Default settings were used to
construct both stacks. Additionally, we construct radiocarbon-only and §'®0-only age models for each input core to compare

with the stack’s multiproxy age models.
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Figure 3: Cores used to construct the DNEA stack (circles) and the ITWA stack (squares). A star indicates the core for
which we use the DNEA stack as the alignment target. Dotted lines indicate east and west transects plotted in Figure 4.

Core Lat°N Lon°E Depth m  !C Citation 8180 Citation

DNEA

MD95-2042 37.80 349.83 3146 Shackleton et al., 2004; Bard et al., 2017 Shackleton et al., 2000
Skinner et al., 2003; Skinner & Shackleton., Skinner & Shackleton

MD99-2334 37.80 339.83 3166 2004; Skinner et al., (2014); Skinner et al., !
(2021) 2005

SU81-18 37.77 349.82 3135 Vogelsang et al., 2001; Waelbroeck et al., 2001

GeoB7920-2 20.75 341.42 2278 Collins et al., 2011 Tjallingii et al., 2008

ODP658C 20.75 341.42 2273 deMenocal et al., 2000 Knaack & Sarnthein, 2005

GeoB9508-5 14.5 342.05 2384 Mulitza et al., (2008) Mulitza et al., (2008)

ITWA

M35003-4 12.09 298.76 1299 Hulls & Zahn, 2010 Hills & Zahn, 2000

KNR197-3-53GGC  8.23 306.77 1272 Oppo et al., 2018 Oppo et al., 2018

KNR197-3-9GGC 7.93 306.42 1100 Oppo et al., 2018 Oppo et al., 2018

GeoB16206-1 -1.58 316.98 1367 Porthilo-Ramos et al., 2017 Voigt et al., 2017

Example

GIK13289-2 18.07 341.99 2485 Sarnthein et al., 1994 Sarnthein et al., 1994

Table 1: Core locations and data citations.
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4.1 Core Selection and Assessing Homogeneity

When choosing alignment targets or a population of cores to construct a stack, we suggest that researchers evaluate
core locations with respect to water mass reconstructions and directly compare the features of the §180 time series to evaluate
whether the algorithm’s assumption of homogeneous 880 variability is reasonable. Before constructing a regional stack, the
user should select cores evaluated to have homogeneous 520 signals or similar water mass histories. Figure 4 shows model
estimates of the fraction of Southern Component Water (SCW) in two Atlantic transects, during the present day (coloured
contours, Gebbie & Huybers, 2010) and at the LGM (solid black line, Oppo et al., 2018). Here SCW refers to water that formed
in the Antarctic and sub-Antarctic regions defined by Gebbie & Huybers (2010).

Core sites in the DNEA stack are just below the core of modern Northern Component Water (NCW, Figure 4) and
are bathed today by 23-26% SCW and 74-77% NCW (Table S1). Glacial water mass reconstructions suggest that water mass
composition at these sites was very similar during the LGM (Gebbie & Huybers, 2010; Oppo et al., 2018). A relatively constant
water mass composition during the deglaciation at these sites is also suggested by neodymium isotope compilations (Howe et
al., 2016; Poppelmeier et al., 2020). Collectively, these studies support our assumption that the benthic 30 signals of these
cores changed homogeneously (i.e., nearly synchronously) during Termination 1.

The cores compiled for the ITWA stack are located near the boundary between AAIW and NADW, yielding more
variability in their modelled water mass percentages. SCW percentages for cores in the ITWA stack range from 31-48% for
the modern and 20-28% for the LGM. During the deglaciation, AAIW experienced expansion in this region as demonstrated
by a decrease in nutrients in the phosphate maximum zone (Oppo et al., 2018). Thus, the cores in the ITWA stack may have
experienced moderately heterogeneous water mass changes during Termination 1. Despite moderate differences between these

sites, BIGMACS is able to align these records and generate a stack that is representative of their 580 variability.
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Figure 4: (A) Western and (B) Eastern Atlantic transects of water mass composition. Transect paths are shown as dotted lines in
Figure 3. Colored contours show modern Southern Component Water percentages (Gebbie & Huybers 2010) along each transect
and solid black line shows the 50% contour during the LGM (Oppo et al., 2018). Solid circles represent cores in the DNEA stack,
squares are cores in the ITWA stack. Histograms of modern (red) and LGM (black) southern component water percentages for
cores in the (C) ITWA and (D) DNEA stacks.

4.2 Age Proxies

To calibrate radiocarbon ages to calendar years, we use the Marine20 calibration curve (Heaton et al., 2020), a

constant reservoir age offset (AR) equal to zero, and a reservoir age standard deviation of 200 years (although it should be
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noted that future users can find potential reservoir age offsets using the Calib database; Reimer & Reimer, 2001). We make no
corrections for the different planktonic species used to measure radiocarbon in each core (see Table 1 for data citations).

For the longest core in each stack, we provide additional age information (crosses in Figures 5A and 6A) beyond the
last radiocarbon date. MD95-2042 in the DNEA stack is constrained with ages from Lisiecki & Stern (2016) identified based
on an alignment of the alkenone-based SST record (Pailler & Bard, 2002) to a synthetic Greenland 380 record on a speleothem
age model (Barker et al., 2011; Barker & Diz., 2014). M35003-4 in the ITWA stack is constrained by an age estimate of 55.4
ka BP at 9.5 m depth based on the alignment by Hulls & Zahn, (2000) of variations in N. dutertrei and CaCOs to
Dansgaard/Oeschger events in the GISP2 §'80 record (Grootes & Stuiver, 1997). This additional age information is modelled
using Gaussian distributions with the standard deviations reported in Lisiecki & Stern (2016) for MD95-2042 and a standard
deviation of 1 kyr for M35003-4.

4.3 Stack Results

Figure 7 compares the DNEA and ITWA stacks. The ITWA stack is, on average, 0.56 %o lighter than the DNEA stack
due to the differences in deep water properties at the core sites. The ITWA core sites which span 1100-1299 m are bathed by
warmer and less saline waters than the DNEA cores from 2273-3166 m. The time-dependent standard deviation in each stack
(defined by the distribution of Gaussian Process regressions) reflects the variance in the aligned 830 records. Between 0 and
60 ka BP, the average standard deviation is 0.13 %o in the DNEA stack and 0.2 %o in the ITWA stack. In particular, the [ITWA
stack has larger standard deviation during the termination, which reflects anomalously high §*80 values during the deglaciation
in some of the ITWA cores. For example, many of the records in the ITWA stack include several anomalously high 580 values
during the deglaciation; Oppo et al., (2018) attributes these outliers to slope instabilities at the Demerara Rise. Because
BIGMACS models a Gaussian distribution for §*80 residuals, the outliers produce large, symmetric confidence intervals about
the mean.

The standard deviations of the two BIGMACS stacks are both smaller than the DNA and INA regional stacks from
Lisiecki & Stern (2016), which average 0.24 %o and 0.36 %o, respectively. This likely stems from greater benthic 80 spatial
variability within the larger regions defined in Lisiecki & Stern (2016) and the application of (small) record-specific shift and
scale adjustments to the DNEA and ITWA cores during stacking with BIGMACS.

The Gaussian process regression also creates smoother stacks than previous binning methods. Figure S3 compares
the new DNEA and ITWA stacks with the Deep North Atlantic (DNA) and Intermediate North Atlantic (INA) regional stacks
from Lisiecki & Stern (2016). The Gaussian process regression creates estimates of §:80 for each point in time by incorporating
information from neighbouring data points, which increases the stack’s autocorrelation compared to the binning procedure
used in Lisiecki & Stern (2016). Given the large volume of the deep ocean, we expect changes in benthic 80 to respond
gradually; hence smoothing may actually increase the signal-to-noise ratio of “local” stacks with less densely sampled 880

measurements and relatively few cores. Although there is a risk that the Gaussian process regression may over-smooth the
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data, our DNEA stack still resolves millennial scale events. For example, Figure 5(a) shows peaks at 24, 29 and 38 kyr
corresponding to approximate ages of Heinrich Events H2 to H4 (Hemming, 2004), similar to the DNA stack (Figure S3).

To evaluate the multiproxy age models of the ITWA and DNEA stacks, we compare them with radiocarbon-only and
5'80-only age models for each core (with inclusion of the same additional ages in cores MD95-2042 and M35003-4). We find
good agreement between median radiocarbon-only and multiproxy age models for each core (panels B and C in Figures 5 and
6), indicating that the !0 alignments did not cause the multiproxy age models to stray significantly from the radiocarbon age
constraints. Furthermore, the multiproxy age models have 95% credible interval widths that are on average 262 years smaller
than the radiocarbon age models and 1.92 kyr smaller than §*80-only age models (Figure S2).

The good agreement between the radiocarbon and multiproxy median age models also supports our assertion that the
input cores for each stack share homogeneous 620 signals. If the 630 records changed asynchronously, the alignments (which
rely on the assumption of synchronous 580 change) would likely cause differences between the median age estimates of the
radiocarbon-only and multiproxy age models. This assertion of synchronous 30 change is also supported by the relatively
small shift and scale parameters learned for each core during the stacking procedure, indicating similar 6'80 values across all

core sites (Table S1).
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Figure 5: The Deep Northeast Atlantic (DNEA) stack. (A) The solid black line and shaded region represents the median stack value
and 2-sigma upper and lower bounds. Filled circles are the shifted and scaled 30 data points from each core on the multiproxy age
models. Filled triangles mark the radiocarbon ages from the respective cores. Purple crosses are the tie points for MD95-2042 taken
from Lisiecki & Stern (2016). (B) “C-only age models vs. the multiproxy age models for each core in the DNEA stack. Each core
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460 plots along the black dashed 1:1 line. (C) The difference between the multiproxy age models and the “C age models for each core in
the DNEA stack. Coloured shading shows the joint uncertainty distribution for 1*C and multiproxy age estimates for each core.
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465  Figure 6: The Intermediate Tropical West Atlantic (ITWA) stack. (A) The solid black line and shaded region represents the median
stack value and 2-sigma upper and lower bounds. Filled circles are the shifted and scaled 820 data points from each core on the
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multiproxy age models. Filled triangles mark radiocarbon ages from the respective cores. The green cross is the tie point for M35003-
4 from Hulz et al., (2000). (B) “C-only age models vs. the multiproxy age models for each core in the ITWA stack. Each core plots
along the black dashed 1:1 line. (C) The difference between the multiproxy age models and the *4C age models for each core. Coloured
shading shows the joint uncertainty distribution for 4C and multiproxy age estimates for each core.

—DNEA
— ITWA

Figure 7: Comparison of the DNEA and ITWA stacks. Median values are displayed as the thick solid line, and shading marks plus
and minus two standard deviations.

5 GIK13289-2 Age Model Comparison

To further evaluate the differences between single proxy and multiproxy age models, we compare three age models
for GIK13289-2 constructed by BIGMACS: a radiocarbon-only age model, a §*30-only age model, and a multiproxy age
model constrained by both §*%0 and radiocarbon data (Figure 8). The alignment target for the multiproxy and §*80-only age
models is the DNEA stack. While the radiocarbon and multiproxy age models have direct age constraints via radiocarbon ages,
the 8'80-only age model provides only relative age constraints. Furthermore, the uncertainty for the §'80-only age model
reflects only the alignment uncertainty. The absolute age uncertainty would be a combination of the alignment uncertainty and
the absolute age uncertainty from the DNEA stack.

The multiproxy and radiocarbon-only age models show similar median ages. However, the radiocarbon age model
has larger confidence intervals between core depths of 1.7 and 2.2 m where there is a ~10-kyr gap between radiocarbon
measurements. The multiproxy age model is constrained by five 180 data points between these depths which serve to decrease
age uncertainty. At a depth of 2 m, the 95% credible interval width for the multiproxy age model (5.0 kyr) is 3.8 kyr smaller
than the 95% credible interval width for the radiocarbon age model (8.8 kyr).

The 3'80-only age model for GIK13289-2 is based only on 520 alignment and has considerably larger uncertainty

than the multiproxy age model, with a 95% credible interval width as much as 6.6 kyr larger. Furthermore, there is
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disagreement between the median age models during the Holocene, with a maximum age difference of 2.2 kyr. The apparent
490 error in median age estimates from §'80-only alignments likely results from near-constant 80 values during the Holocene,
which allows for more possible alignments that fit the target and a less precise age model. The 95% credible interval for the
580 age model spans both the multiproxy and radiocarbon median ages, suggesting realistic uncertainty estimates for the
alignment.
In Figure 9, the purple shading of the 5'80-based age model represents age model sample density. The non-Gaussian
495 nature of the 6'80-based age estimates is evident at the end of the age model, where the median age and darker shading are
located near the upper end of the 95% credible interval. The multiproxy age model samples at this depth (which are constrained
by the final radiocarbon age) agree with the dense cluster of §'80-only age model samples. Frameworks have been developed
to use the distribution of age model samples, such as those provided by BIGMACS, to estimate the probability of timing
differences between climate responses recorded in multiple cores (Parnell et al., 2008; Khider et al., 2017).

25 A
2
Est
=
2
a1
0.5F
0 .
0 10 20 30 40
Age (ka BP)
25 B
3
3.5F ?‘<
o) ey
x 4 'Y
B '.% [ g
45 e
LA R P
50 1
55
0 10 20 30 40
Age (ka BP)
12- C
10
s,
=< 8
£
=]
z 6
[}
R 4
uy
o]
oL
0 A AAAAAA A A A
0 0.5 1 15 2 2.5
500 Depth (m)

21



505

510

515

520

Figure 8: Comparison of a 8'0-only age model, radiocarbon-only age model, and multiproxy age model for G1K13289-2. (A) Age
vs. depth plot, solid black lines represent calibrated radiocarbon ages. (B) The shifted and scaled 380 for the 3'80-only age model
and multiproxy age model aligned to the DNEA stack. (C) 95% credible interval widths for each age model. Black triangles indicate
the depths of the radiocarbon ages. Note that the radiocarbon-only age model does not extend beyond the top *C date of ~10 ka BP,
and we do not display the “C age model in panel (B).
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Figure 9: (A) Sample density of the $'¥0-only age model for G1K13289-2. The median age model and 95% credible bands are plotted
as solid purple lines. The multiproxy median age model and 95% confidence bands are also plotted (solid blue lines) along with the
calibrated radiocarbon ages (horizontal black lines). (B) Histogram of 8'80-only age samples (purple) and multiproxy age model
samples (blue) for the last depth in the 8'80-only age model (approximately 2 m). Vertical lines mark the 95% credible intervals at
the same depth for both age models.

6 Discussion

6.1 Applications
In this section we discuss the advantages and limitations of the BIGMACS software compared to other available age

modelling and stacking techniques and provide practical advice on the types of applications most suitable for BIGMACS.

6.1.1 Applicability of the transition model

Most software packages which generate probabilistic age models (e.g., Bacon, Oxcal, Undatable) use models of
sedimentation rate variability with tuneable parameters, which affect the amount of age uncertainty between age proxies
measured at discrete depths (e.g., radiocarbon, tephra layers, tie points, etc.). During benthic §'80 alignment, sedimentation
rate constraints also limit the degree to which the input record is stretched or squeezed to match the target record. In most
cases, users have no specific information on which values for sedimentation rate parameters are most appropriate for the

specific core analysed. Thus, parameter tuning usually increases the subjectivity and labour involved to create an age model.
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Therefore, BIGMACS is designed to be used without parameter tuning. Because BIGMACS uses a prior that is constructed
from a global compilation of marine sediment cores representing different environments (Lin et al., 2014; see Figure 1 and
table S1), the age uncertainty returned by BIGMACS is physically realistic for most marine cores and less subjective than
using tuned parameters in other software packages.

The current version of BIGMACS uses the same prior that was used in HMM-Match (Lin et al., 2014) based on a
global compilation of cores. BIGMACS can also adjust its state change probabilities based on information learned from the
particular cores being aligned (see S4.3). However, BIGMACS has the flexibility to use other priors that may focus on a
particular oceanographic setting or based on larger compilations of sedimentation rate variability that may be created. For
example, Mulitza et al., (2021) presents a compilation of 6153 radiocarbon ages from 598 ocean sediment cores. This is
potentially enough data to construct regionally specific priors if trends in the behaviours of sedimentation rates are observed
in different environments.

In addition to larger and/or more regionally focused compilations, future work includes plans to address several
limitations of the method used for the Lin et al. (2014) compilation. Lin et al. (2014) used Bchron age models to identify
outliers and reversals, and calculated sedimentation rates by interpolating between the mode of the Bchron age model for each
calibrated 1“C date rather than the full probability distribution (see S1 for a more thorough description). Additionally, Lin et
al. (2014) used radiocarbon ages were calibrated with the Marine09 curve (Reimer et al., 2009) with AR=0 for reservoir ages.
Although we expect this to introduce relatively little bias to the sedimentation rate priors, future priors should use the updated
Marine20 curve and estimates of marine reservoir ages (Heaton et al., 2020).

If users find that the default transition model does not allow enough sedimentation rate variability to fit the age proxies
for a particular set of cores, it is also possible to use your own prior distribution (see the User’s Manual). However, we have
not encountered such problems in testing the software, and we encourage users to exercise caution when changing this
distribution.

6.1.2 Multiproxy age models

Multiproxy age models generated by BIGMACS provide additional advantages compared to traditional probabilistic
14C age models. In *C-only age models, each core’s age model is constrained only by the *4C dates from an individual core;
however, multiproxy age models can use age constraints from multiple nearby cores, which are often available for locations
of particular paleoceanographic interest (e.g., cores SU81-18, MD95-2042, and MD99-2334 on the Iberian Margin). For cores
sharing a similar water mass history (which is likely for neighbouring cores from similar water depths), multiproxy age models
use both benthic 80 alignment and C dates to generate age models for each core that are constrained by all 14C dates in the
group of cores. This is particularly useful for cores with lower resolution **C dating or with ambiguous **C outliers. Our
example of GIK13289-2 (Figure 8) demonstrates that multiproxy alignment is helpful for extending age estimates beyond the

range of C dates (e.g., the Holocene portion of GIK13289-2) and decreasing age uncertainty between widely spaced “C
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dates, even in cases where benthic §'80 data are also relatively low resolution. In most cases, these age model benefits are
enhanced when BIGMACS is used to generate a multiproxy stack (e.g., Figures 5 and 6) instead of alignment to a fixed target.

Users should be aware that the age uncertainties returned by BIGMACS for age models generated by multiproxy
alignment or stacking do not include the age uncertainty of the alignment target. Thus, age uncertainties (other than those from
14C-only mode) should interpreted as relative age uncertainties that reflect alignment uncertainty, rather than absolute age
uncertainty. For multiproxy stacks constrained by densely sampled 4C dates with small calibration uncertainty, such as the
DNEA stack from 0-25 ka (Figure 5), the absolute age uncertainty of the stack will be small. However, where the absolute age
uncertainty of the alignment target or stack is larger, an assessment of a core’s absolute age uncertainty should incorporate
both the absolute age uncertainty of the target/stack and alignment uncertainty. For example, absolute age uncertainty for the
DNEA stack beyond 45 ka can be estimated by constructing an age model for MD95-2042 using only the C dates and
additional age information (i.e., tie points marked as crosses in Figure 5A). Because GeoB7920-2 contains no direct age proxies
beyond 45 ka, it’s absolute age uncertainty could be estimated as the sum of variance in the alignment uncertainty (the age
model uncertainty resulting from alignment to the DNEA stack) and the variance of the age model constructed for MD95-2042

using only radiocarbon data and the additional tie points.

6.1.3 Stacking

Creating a multiproxy stack in BIGMACS offers several advantages compared to traditional stacking techniques.
First, BIGMACS can create multiproxy stacks with as few as two cores. All cores in the multiproxy stack must have benthic
5180 for alignment, but the stack can include cores that lack *C or other age constraints. Second, whereas most previous stacks
have been constructed by pairwise alignments of each core to a single target (e.g., Lisiecki and Stern, 2016), BIGMACS aligns
all cores simultaneously while updating the alignment target until convergence is achieved. This process reduces the time
required to create a stack as well as sensitivity to the choice of the initial alignment target. Third, the multiproxy stack’s age
model and alignments evolve simultaneously based on the direct age proxies in all the aligned cores, whereas most previously
constructed stacks aligned all cores before estimating the stack’s age model (e.g., Huybers and Wunsch, 2004; Lisiecki &
Raymo, 2005; Lisiecki & Stern, 2016). Although BIGMACS and HMM-Stack both iteratively update the alignment target
using the aligned &*0 signals, stacks produced by HMM-Stack implicitly inherit the age model of the original alignment target
because HMM-Stack contains no procedure to input absolute age information or adjust the alignment target’s age model.

Another innovation in BIGMACS is the use of the Gaussian process regression to create time-continuous estimates
of the §'80 stack’s mean and variance. Most previous stacks relied on either interpolation of each core’s 580 measurements
to an even time spacing (e.g., Huybers & Wunsch, 2004) or binning and averaging all cores’ §*30 measurements within a
certain time window (e.g., Lisiecki and Raymo, 2005). The Gaussian process regression requires fewer cores, samples at any
resolution without interpolation, smooths the stack to increase its signal-to-noise ratio, and realistically increases stack variance
across 580 gaps. Learned hyperparameters of the OU kernel determine the overall smoothness of each stack and, hence, the

timescale of features that are well described by the stack. For the stacks presented here, smoothing from the Gaussian process
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regression inhibits precise estimates of the amplitude and rate of change of events occurring on timescales of ~2 kyr or less.
For example, the DNA stack of Lisiecki and Stern (2016), which averaged &80 values using 0.5 kyr bins, decreased by 0.47
%o in 1.5 kyr (from 87 to 85.5 ka) during Heinrich event 8; however, in the DNEA stack produced by BIGMACS, the §'%0
change is spread over an interval at least twice as long (89 to 85 ka BP, Figure S3). Additionally, although a 520 response
during Greenland interstadial 19 is recorded in both the DNA and DNEA stack at 72 ka, smoothing by the Gaussian process
regression and alignment uncertainty appears to have reduced its amplitude in the BIGMACS DNEA stack.

An important caveat that applies to all 320 alignments, including BIGMACS multiproxy alignments and stacks, is
that the 580 records aligned should all be homogeneous, meaning that they share the same underlying 50 signal. Because
previous studies have observed temporal offsets between benthic §*80 signals from core sites bathed by different water masses
(Skinner & Shackleton, 2005; Labeyrie et al., 2005; Waelbroeck et al., 2011; Stern & Lisiecki, 2014), users should only align
or stack cores which share the same deep water mass history over the length of the records analysed. Whether §*0 is
homogeneous across core sites can, in part, be evaluated by comparing the amplitude of change and mean offset (after species-
corrections) between cores. For example, BIGMACS estimates only small shift and scale differences between the cores
included in the DNEA and ITWA stacks (Table S1), although large shifts are observed between the stacks. Another test is to
compare the core sites’ present-day deep water mass composition and reconstructions or models of deep water mass extents at
the LGM. Although glacial water mass estimates are inherently uncertain due to differences between various models and
reconstructions, BIGMACS offers the flexibility to easily build different stacks to evaluate the sensitivity of results to different
models of benthic 580 homogeneity.

BIGMACS may be able to align and stack proxies other than benthic 5'80; however, the software can currently only
align and stack one proxy at a time. For BIGMACS to accurately construct a probabilistic stack of an alternate proxy, the
proxy must be homogeneous across the records in the stack with residuals that can reasonably be described with the generalized
student’s t-distribution that BIGMACS uses for the 510 emission model. Because the emission model is based on the variance
that best describes the observations, it does not require a specific assumption about the level of noise in the measurements.
However, low ratios of signal-to-noise in the proxy aligned could yield unreliable results. Preliminary analysis of planktonic
580 alignments and stacks have yielded encouraging results, but the more heterogeneous nature of surface variability requires
caution in the selection of cores which can reasonably be considered homogeneous.

The computational complexity of BIGMACS also places constraints on its applications. For the records in this study,
multiproxy alignment of a single core to a target takes only 1-2 minutes while the multiproxy stacks take 1-2 hours to build on
a typical desktop machine. In testing, we have successfully created §'80-only and multiproxy stacks of Late Pleistocene §¥0
spanning the past 800 kyr, which take approximately 12 hours to run. However, we have not yet evaluated the performance of
BIGMACS for records longer than 800 kyr. For a more detailed discussion of the time complexity for BIGMACS, see

supplemental text S6.
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7 Conclusion

The new software package, BIGMACS, constructs multiproxy sediment core age models and benthic 5§80 stacks
constrained by radiocarbon ages, §'80 alignment, and additional age constraints. BIGMACS requires no parameter tuning and
uses an empirically derived prior model of sedimentation rate variability specific to the marine depositional environment.
Radiocarbon ages are modelled using a student’s t-distribution, following the methods of Christen and Peréz (2009).
BIGMACS also constructs time-continuous stacks using Gaussian process regression and requires fewer cores than traditional
binning methods. This facilitates building stacks for more localized regions using as few as two cores from within a
homogeneous water mass as assessed by deep water mass reconstructions and/or evaluation of the estimated shift and scale
parameters for the aligned cores. Example regional stacks are presented for the Deep Northeast Atlantic (DNEA) and
Intermediate Tropical West Atlantic ITWA). The stacks’ median §'80 values provide well-dated regional climate signals,
while the stacks’ standard deviations include the effects of spatial variability, multiproxy age uncertainty, measurement noise,
and, in the ITWA stack, the effects of 8'%0 outliers likely caused by sediment disturbances. Finally, a comparison of
radiocarbon-only, §'¥0-only, and multiproxy age models for one core demonstrates that the multiproxy age model yields

smaller age uncertainties, particularly between radiocarbon measurements and during the Holocene 680 plateau.

Code Availability and Software Requirements

The software package BIGMACS (developed and tested in MATLAB R2021b) and the user guide can be downloaded from
https://github.com/eilion/BIGMACS. BIGMACS requires the statistics and machine learning toolbox as well as the parallel

computing toolbox.
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