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Abstract. Previously developed software packages that generate probabilistic age models for ocean sediment cores are 10 

designed to use either interpolate between different age proxies at discrete depths (e.g., radiocarbon, or tephra layers, or tie 

points) or perform a probabilistic stratigraphic alignment to a dated target (e.g., of benthic δ18O) e.g., of benthic δ18Oin which 

residuals between the input and target records are minimized) and cannot combine age inferences from both techniques. 

Furthermore, many radiocarbon dating packages are not specifically designed for marine sediment cores and default settings 

may not accurately reflect the probability of sedimentation rate variability in the deep ocean, requiring subjective tuning of 15 

parameter settings. Here we present a new technique for generating Bayesian age models and stacks using ocean sediment core 

radiocarbon and probabilistic alignment of benthic δ18O data, implemented in a software package named BIGMACS (Bayesian 

Inference Gaussian Process regression and Multiproxy Alignment of Continuous Signals). BIGMACS constructs multiproxy 

age models by combining age inferences from both radiocarbon ages and probabilistic benthic δ18O stratigraphic alignment 

and constrains sedimentation rates using an empirically derived prior model based on 37 14C-dated ocean sediment cores (Lin 20 

et al., 2014). BIGMACS also constructs continuous benthic δ18O stacks via a Gaussian process regression, which requires a 

smaller number of cores than previous stacking methods. This feature allows users to construct stacks for a region that shares 

a homogeneous deep water δ18O signal, while leveraging radiocarbon dates across multiple cores. Thus, BIGMACS efficiently 

generates local or regional stacks with smaller uncertainties in both age and δ18O than previously available techniques. We 

present two example regional benthic δ18O stacks and demonstrate that the multiproxy age models produced by BIGMACS 25 

are more precise than their single proxy counterparts.  

1 Introduction 

The accuracy with which ocean sediment core data can reconstruct the timing of past climate events depends on the 

quality of the core’s age model (i.e., estimates of age as a function of core depth)., yetHowever, age models are often 
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constrained by only a single dating proxy type. A common technique is radiocarbon dating, which directly dates individual 30 

sediment layers. However, this method is restricted to the last 550 ka BP, suffers from variable surface reservoir ages 

(Waelbroeck et al., 2001; Sikes et al., 2016; Stern & Lisiecki, 2013; Skinner et al., 2019), and radiocarbon data are is often  

lower resolution than benthic δ18O data, causing the age model to be highly more dependent on assumptions regarding sediment 

accumulation rate variability. Radiocarbon age models are oftensometimes supplemented with stratigraphic tie points to a 

dated target, however this method requires the subjective identification of shared features that are often recorded in different 35 

archives. An alternative technique is the stratigraphic alignment of benthic δ18O to a target stack (e.g., Imbrie et al., 1984; 

Lisiecki & Raymo, 2005), which represents the mean benthic δ18O signal across multiple cores. Benthic δ18O is often measured 

at higher resolution than radiocarbon data,, but this dating technique provides only relative age information between cores by 

assuming that the input and target have synchronous benthic δ18O signals. ; additionally, and tTemporal offsets between the 

aligned benthic δ18O signalsrecords cancan cause  introduce age errors duringin the finalaligned age model stratigraphic 40 

alignment (Skinner & Shackleton, 2005; Labeyrie et al., 2005; Waelbroeck et al., 2011; Stern & Lisiecki, 2014; Lund et al., 

2015).  

 

Software packages exist to produce probabilistic age models using by interpolating between age proxies (such as 

radiocarbon ages, tephra layers, or/and tie points; (Blaauw & Christen 2011; Lougheed & Obroachta, 2019), or by performing 45 

a probabilistic benthic δ18O alignments (in which residuals between input and target records are minimized; Lin et al., 2014; 

Ahn et al., 2017), but none of these packages can probabilistically combine age inferences from both dating techniques. While 

one study presented a Bayesian multiproxy age model for a single core from the Arctic Ocean, the methodology is specific to 

the high latitude region in which radiocarbon data is unreliable and aligned porosity rather than benthic δ18O (Muschitiello et 

al., 2020). Furthermore, many age modelling software of these packages were not specifically designed for marine sediment 50 

cores (Ramsey, 1995; Haslett & Parnell, 2008; Blaauw, 2010; Blaauw & Christen 2011) and default settings may not accurately 

reflect the probability of sediment accumulation rate variability in marine settings. Users must often subjectively choose 

parameter settings which may ultimately affect the interpretation of a studypaleoclimate records.   

 

Here we present a new technique for generating Bayesian age models and stacks of ocean sediment core data, 55 

implemented in a software package named BIGMACS (Bayesian Inference Gaussian Process regression and Multiproxy 

Alignment of Continuous Signals). BIGMACS constructs radiocarbon age models, benthic δ18O age models, and multiproxy 

age models by which combining combine age inferences from both radiocarbon ages and δ18O δ18O stratigraphic alignment. 

Radiocarbon ages directly date sediment layers while benthic δ18O provides relative age constraints between radiocarbon ages 

and beyond 550 ka BP. We use the term “multiproxy” to indicate the combined inference from two types of “age proxies”: 60 

absolute age information provided by radiocarbon and relative age information from the benthic δ18O stratigraphic alignment 

of benthic δ18O. Note that this method is distinct from an alignment of multiple climate proxies (e.g., benthic and planktonic 

δ18O). However, BIGMACS can also probabilistically incorporate any additionalother types of absolute age information at 
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specified depths, such as inferences from tephra layers, magnetic reversals, or user-identified tie points. Sedimentation rates 

are realistically constrained with an empirically derived prior model from Lin et al. (2014) rather than subjective parameter 65 

settings (see section Sxxx). Median age models and their uncertainties are defined by the distribution of Markov Chain Monte 

Carlo (MCMC) samples. The distribution of MCMC samples at a given depth of a radiocarbon age model reflects the absolute 

age uncertainty of the sediment. However, δ18O age model uncertainty reflects only the relative age uncertainty and excludes 

the absolute age uncertainty of the alignment target. BIGMACS does not use any orbital tuning unless, however users can 

choose to align to a target stack that has been orbitally tuned.   70 

Another functionality of BIGMACS is the automated construction of multiproxy also constructs continuous benthic 

δ18O stacks withusing an iterative process that that simultaneously considers the probabilistic fit to both absolute age 

information (e.g., from radiocarbon dates) and relative age information from alignment of all cores’ benthic δ18O signals. 

results in an age model for each core. Age models for each core are constructed by aligning benthic δ18O to the stack from the 

previous iteration, and then a new stack is calculated from the aligned δ18O from every core. Radiocarbon ages (if included) 75 

will help constrain the age models for their respective cores during each iteration of stack construction. Similar to “errors-in-

variables” regression, which is used to construct the Intcal20 curve due to uncertainty in both the radiocarbon measurements 

and their calendar ages (Reimer et al., 2020; Heaton et al., 2020), BIGMACS calculates a time series of mean and variance for 

benthic δ18O by performing Gaussian process regressions (Rasmussen and Williams, 2006) across MCMC age model samples.  

Thus the resulting stack variance is a combination of both age model uncertainty from individual cores and the spread of 80 

benthic δ18O from every core. This method requires fewer cores than previous stacking methods (e.g., Ahn et al., 2017; Lisiecki 

& Stern, 2016) and, thus, encouragesallows users to construct target stacks from a small number of neighbouring cores that 

share homogeneous δ18O signals.  

via a Gaussian process regression (Rasmussen and Williams, 2006) that requires a smaller number of cores than 

previous methods (e.g., Ahn et al., 2017; Lisiecki & Stern, 2016).  time series ofThis feature encourages users to construct 85 

target stacks from neighboring cores that share homogeneous δ18O signals, thus leveraging radiocarbon observations across 

multiple cores. 

Section 2 provides a summary of some common techniques used for radiocarbon dating, δ18O alignment and δ18O 

stack construction. Section 3 describes the statistical methods used in BIGMACS, including an overview of the Bayesian 

framework, the prior model that constrains sedimentation rates, and the likelihood models for different proxy types. We also 90 

describe the methods used to draw Markov Chain Monte Carlo (MCMC) age model samples and the regression technique 

employed to construct continuous stacks from a small number of cores. In section 4, we present two example regional Atlantic 

stacks: a Deep Northeast Atlantic (DNEA) stack, and an Intermediate Tropical West Atlantic (ITWA) stack. The two stacks 

are composed of 6 and 4 cores respectively, that are chosen based on an evaluation of their water mass histories.   In section 

5, we compare a multiproxy age model, a δ18O-only age model, and a radiocarbon-only age model for one additional core. We 95 

demonstrate that age model precision is increased when using both radiocarbon ages and δ18O alignment. Finally, we discuss 

potential future applications of BIGMACS and the factors affecting its runtime. 
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2 Background 

2.1 Radiocarbon Age Models 100 

Radiocarbon ages must be calibrated from 14C years to calendar years with a calibration curve that accounts for the 

changing magnetic fields of the Sun and Earth, solar storms, and variations in the terrestrial carbon cyclechanges in past 

atmospheric 14C production rates (Reimer et al., 2020; Heaton et al., 2020; Heaton et al., 2021). The uncertainty of the 

calibrated age is a combination of the calibration curve uncertainty, the radiocarbon measurement uncertainty, the time-

dependent local reservoir age offset from the calibration curve (∆R) and the marine reservoir ageassociated reservoir age 105 

uncertainty. Techniques to calibrate radiocarbon ages have evolved from interpolation techniques such as Calib (Stuiver & 

Reimer, 1993) to Bayesian calibration methods (e.g., Oxcal by Ramsey, 1995; Bcal by Buck and Christen, 1999; Matcal by 

Lougheed & Obroachtha, 2016) which typically generate asymmetric, nonparametric calendar age distributions due to slope 

changes in the calibration curve. 

Planktonic foraminiferal radiocarbon dates must also be corrected for the reservoir age of the surface ocean relative 110 

to the atmosphere  or calibrated with a curve that accounts for thecorrected for the reservoir age of the surface ocean reservoir 

age of the surface ocean of the surface ocean (e.g., the Marine20 curve; Heaton et al., 2020). Previous studies have used 

different methods to estimate past reservoir ages, including using modern measurements from the Global Ocean Data Analysis 

Project (GLODAP, Key et al., 2004, Waelbroeck et al., 2019) and the Calib database (Reimer & Reimer, 2001), comparing 

stratigraphically aligned age models with radiocarbon age models (Stern & Lisiecki, 2013; Skinner et al., 2021), and modelled 115 

reservoir ages from a Large Scale Geostrophic Ocean General Circulation Model (LSGGS-OGCM, Butzin et al., 2020; Butzin 

et al., 2017, Langner & Mulitza 2019; Heaton et al., 2020).  

Constructing a sediment core age model, which estimates sediment ages for all core depths, from a sequence of 

radiocarbon ages requires the assumptions or /models of the core’s evolving sedimentation rate between dated 

intervalssimulating the core’s sedimentation rate. The median age model and age model uncertainty depend on the radiocarbon 120 

calibration method, the applied sedimentation rate constraints, and the outlier identification procedure (Christen, 1994; 

Ramsey, 2009b, Christen & Peréz, 2009). Multiple software packages have been published to construct probabilistic 

radiocarbon age models that apply a variety of statistical techniques (e.g., Ramsey, 1995, 2001, 2008, 2013; Blaauw & 

Christen, 2005; Haslett & Parnell 2008; Blaauw, 2010; Blaauw & Christen, 2011; Lougheed & Obroachta, 2019). 

Oxcal (Ramsey, 1995) provides modelling routines for multiple depositional environments; the routine known as the 125 

P_Sequence is commonly used for modelling marine and lacustrine cores. P_Sequence uses a Poisson process in which the 

number of depositional events per unit depth is determined by a tuneable, user-specified parameter which affects the 

uncertainty of the age model. Oxcal also includes multiple options to identify outliers, including an agreement index which 
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measures the overlap between the posterior distribution of the age model and the radiocarbon likelihood at depths where 

radiocarbon ages exist.  130 

Bchron (Haslett & Parnell, 2008) constructs age-depth models using a monotone Markov process and piecewise linear 

interpolation paths with random durations. While Bchron requires few user-specified parameter settings and posits less prior 

knowledge on sedimentation rate constraints, ; the minimal sedimentation rate constraints applied by the software package can 

result in age model samples that exhibit extreme sedimentation rate variabilitythus,. Aage models constructed with Bchron 

often have have confidence interval widths that are larger age uncertainties than other software packages, particularly those 135 

withfor radiocarbon records of low resolution (Blaauw & Christen, 2011). Bchron identifies two types of outliers based on the 

shift required to satisfy the monotonicity constraint. Standard outliers have a prior probability of 5% and require a shift defined 

a priori by a normal distribution with variance equal to double the radiocarbon analytical measurement error. Larger outliers 

have a prior probability of 0.1% and are excluded from the age model construction process.  

Bacon (Blaauw & Christen, 2011) separates cores into fixed segments and uses an auto-regressive gamma process to 140 

simulate sedimentation rates. The user specifies tuneable priors for a beta distribution that controls age model autocorrelation 

and a gamma distribution that governs sedimentation rate variability.  Radiocarbon ages are modelled with a generalized 

student’s t-distribution (Christen & Peréz, 2009) that scales the error associated with radiocarbon measurements. The amount 

of scaling depends on two parameters which are set by default to assign a 70% chance that the reported error was 

underestimated by a factor between 1 and 2. Christen & Peréz (2009) explain that the choice of these parameter values is a 145 

“practical guideline” which they estimated to reflect the state of radiocarbon data at the time. 

Undatable (Lougheed & Obroachtha, 2019) uses a Monte Carlo sampling algorithm designed to emulate statistical 

models of sedimentation rate variability with the goal of producing. Its quick runtimes. Users are encouraged to follows author 

recommendations for parameter tuning through trial and errorbased on author recommendations. Users set two parameters: a 

scaling parameter that controls scales age uncertainties at the midpoints between radiocarbon ages as well asand a 150 

bootstrapping percent age designed to handle that provides a framework to address outlierying radiocarbon ages. These 

parameters have large effects on the resulting age model, requiring the user to decide select which age model is most 

appropriate values, e.g., according to recommendations in Lougheed & Obrochta, (2019), based on trial and error rather than 

calculating an age model based onusingrelying on a prior model of sedimentation rate variability. 

2.2 Benthic δ18O Age Models 155 

In the calcite tests shells of foraminifera, the ratio of 18O to 16O measured relative to a standard, denoted δ18O, is a 

proxy for global ice volume, local water temperature and the local δ18O of seawater, which often correlates with salinity.  Due 

to the relatively homogeneous temperature and salinity changes of the deep ocean, previous studies have assumed benthic δ18O 

changes synchronously throughout the deep ocean (Shackleton, 1967) and have used the proxy as a global stratigraphic signal 

to construct ocean sediment core age models (e.g., Pisias et al., 1984; Lisiecki and Raymo, 2005). The most conservative 160 

technique for aligning records to a target is to assume that large, easily identifiable features in the signals, such as glacial 
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terminations, occurred simultaneously, create tie points between these features, and linearly interpolate between the tie points 

(e.g., Huybers & Wunsch, 2004). However, this linear interpolation method may misalign smaller scale features due to changes 

in sedimentation rates between tie points.  

Software packages have been published that automate the alignment process and optimize the fit of the entire signal. 165 

Lisiecki & Lisiecki (2002) developed the deterministic software package Match, which utilizes dynamic programming to 

minimize a cost function based on sedimentation rate changes and the sum-of-square error misfit between signals. Match was 

used to align 57 benthic δ18O records and construct the global “LR04” Plio-Pleistocene stack (Lisiecki & Raymo, 2005) and a 

1.5-Myr multiproxy geomagnetic paleointensity and δ18O stack (Channell et al., 2009).  

The Bayesian package HMM-Match (Lin et al., 2014) performs a point-based alignment using a hidden Markov 170 

model and returns estimates of alignment uncertainty based on the distribution of Markov Chain Monte Carlo (MCMC) age 

model samples. HMM-Match considers the probability of every possible alignment given the fit to the alignment target and 

the modelled sedimentation accumulation rate changes. The probability of a given benthic δ18O residual to the target is 

modelled with a fixed Gaussian distribution based on the record’s δ18O residuals and a mean shift from the target. 

Sedimentation rates are realistically constrained using a log-normal mixture distribution fit to observed normalized 175 

sedimentation rate estimates derived by linearly interpolating between calibrated radiocarbon ages in 37 cores.  

Heaton et al., (2013) presents an age model construction method which uses a Gaussian process regression to 

interpolate between benthic δ18O tie points. The method incorporates uncertainty from the target age model, tie point 

identification, and interpolation between tie points and was used to construct chronologies for records incorporated into the 

IntCal13 and Intcal20 curve (Reimer et al., 2013; Reimer et al., 2020). Heaton et al., (2013) argue against using a deterministic 180 

automated alignment process (e.g., Lisiecki and Lisiecki, 2002) due to a lack of uncertainty estimates and concerns about 

aligning across different proxy types which may differ in sensitivity to climate responses. We assert that using BIGMACS to 

align across a set of sediment cores with homogeneous signals of the same proxy (such as benthic δ18O in neighbouring cores), 

addresses these concerns. BIGMACS formally incorporates multiple sources of age uncertainty to create probabilistic 

alignments that are both more informative and less subjective than tie point identification.  185 

Diachronous benthic δ18O signals are an additional source of uncertainty in benthic δ18O aligned age models. Previous 

studies have identified temporal offsets up to 4 kyr between δ18O records during terminations (Skinner & Shackleton, 2005; 

Lisiecki & Raymo, 2009; Stern & Lisiecki, 2014). Because stratigraphic alignment relies on the assumption that benthic δ18O 

between the input and the target core varies synchronously, these offsets can cause age errors in δ18O-aligned age models. 

Thus, without a direct dating proxy (e.g., radiocarbon, tephra, etc.), δ18O stratigraphic alignment is an inadequate tool to study 190 

the sequence of climate responses at different locations during glacial terminations (e.g., Khider et al., 2017) or millennial-

scale events. Causes of offsets in the timing of benthic δ18O offsetschange include asynchronous surface signals, changes in 

deep ocean water mass geometry, or/and different deep water transit times for northern and southern sourced water masses 

(Gebbie, 2012). To mitigate the impacts of diachronous δ18O change, benthic δ18O alignment should ideally be restricted to 
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cores which have experienced a similar history of deep water mass change. We present one method to identify cores with 195 

synchronous benthic δ18O signals in section 4.1. 

2.3 Benthic δ18O Stacks 

Benthic δ18O stacks are used as a common framework by which new paleoceanographic measurements are compared 

and are often used as targets during stratigraphic alignment (e.g., Imbrie et al., 1984; Lisiecki & Raymo, 2005; Channell et al., 

2009). Stacks require that the individual δ18O records are first aligned to have comparable relative or absolute ages so that each 200 

point in the stack represents a snapshot of δ18O values from multiple locations at the same time. Inaccuracy in relative age 

estimates between cores will typically decrease the signal-to-noise ratio of the stacked signal, but over-alignment of noise in 

the signals could artificially enhance variability that was not globally synchronous. The risk of over-alignment can be reduced 

by placing constraints on sedimentation rate variability (e.g., Lisiecki & Lisiecki, 2002; Lin et al., 2014). 

To create a stack using software that performs pairwise alignments of cores, all δ18O records to be included in the 205 

stack are aligned to a single target core, which is typically a δ18O record that spans the entire length of the stack with high 

resolution, low noise, and no apparent hiatuses. Any problems in the signal of the target core could propagate to create errors 

in core alignments and the average δ18O value of the stack. In the LR04 global stack, the authors checked for such errors by 

performing pairwise alignments to multiple target cores and comparing the stacks (Lisiecki and Raymo, 2005); however, this 

is a laborious process and requires subjective evaluation. Because δ18O variability is not globally synchronous (Skinner & 210 

Shackleton, 2005; Labeyrie et al., 2005; Waelbroeck et al., 2011; Stern & Lisiecki, 2014; Lund et al., 2015), Lisiecki and Stern 

(2016) created regional stacks and used a different alignment target for Atlantic versus Pacific cores.  

The sensitivity of stacks to the choice of a single alignment target can be mitigated by aligning to a target that 

incorporates information from all cores in the stack. HMM-Stack (Ahn et al., 2017), which models the stack using a profile 

Hidden Markov model (HMM), begins with an initial alignment to a user specified target and then aligns all cores to an 215 

iteratively updated stack, which is optimized to fit all cores in the stack. Here we present a new stack construction algorithm 

which offers several improvements to HMM-Stack, including the opportunity to simultaneously incorporate age constraints 

from all cores during the stacking process. 

3 Methods 

3.1 Bayesian Framework 220 

BIGMACS probabilistically constructs realistic age models and stacks by combining information from age proxies 

and stratigraphic alignment with a the prior model of sedimentation rate variability from Lin et al., (2014). In Bayesian 

statistics, the age information from proxy data are termed the likelihoods. Specifically, the likelihoods returns the probability 

of observing the age proxies given the proposed age model and the set of model parameters. Here we refer to the likelihoods 

as the emission model. Simply stated, the emission model returns the probabilities of residuals (or misfit) between observed 225 
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data and estimated values from a particular age model. The emission model for each proxy (radiocarbon, δ18O, and 

additional age information) is discussed in section 3.3 and detailed formulations are given in the supplement (S2 and S4.1).  

The prior model forrepresents our a priori understanding of sedimentation rate variability s and model is called 

termed a prior distributionthe transition model. The transition model calculates the probability of a simulated sequence of 

sedimentation rates, independent of the proxy data, as described in section 3.2 and the supplement (S1 and S4.1). The prior 230 

transition model calculates the probabilities for a particular depth in the core are calculated as a function ofy of both 

sedimentation rate change andthe  normalized sedimentation rate (i.e., sedimentation rate expressed as a ratio the core’s 

estimated mean sedimentation rate)for a particular depth in the core as well as any sedimentation rate change, given the 

model parameters which are derived from the same sedimentation rate data as Lin et al., (2014). We refer to the prior 

distribution as the transition model. The transition model calculates the probability of a simulated sequence of sedimentation 235 

rates, independent of the proxy data, as described in section 3.2 and the supplement (S1 and S4.1).  

The posterior distribution is calculated using Bayes’ rule and is proportional to the product of transition and 

emission models. The posterior distribution of a multiproxy age model includes likelihoods returned by the radiocarbon 

emission model, the benthic δ18O emission model, and the additional age emission model. Because there is no closed form 

for this posterior distribution (i.e., it is not known), we employ a sampling approximation. To improve computational 240 

efficiency, we sample the posterior using a combination of the particle smoothing (Doucet et al. 2001; Klaas et al. 2006) and 

Metropolis Hastings algorithms (Metropolis et al. (1953); Hastings (1970); Martino et al. (2015); section 3.4). The median 

age model and 95% confidence credible bands intervals are calculated from the distribution of age model samples.  

In Bayesian statistics, the parameter of interest (in this case the age of sediment at a given depth) is represented by 

the posterior distribution, rather than a single value. Therefore, a Bayesian 95% credible interval spans 95% of the central 245 

portion of the posterior distribution. This is compared to a frequentist 95% confidence interval, which posits that there is a 

95% chance that the limits are correct and encapsulate the true value. Here the 95% credible intervals and the median age 

model are defined by the distribution of Monte Carlo samples drawn from the posterior distribution. 

The stacking algorithm is completed in two steps: an age model construction step in which a set of δ18O records are 

aligned in parallel to a target stack (as described above), and a stack construction step in which a nonparametric regression is 250 

performed across the δ18O data on the set of aligned cores. These two steps are performed iteratively until convergence. The 

alignment target during age model construction is the stack from the previous iteration; for the first iteration, an initial target 

stack is provided by the user. The stack construction process is described in more detail in section 3.5 and S5. 

3.2 Transition Model 

For a given age, the transition model calculates the probability of the normalized sedimentation rate and the change 255 

in sedimentation rate from the previous depth (for a more detailed description, see S1 and S4.1). In its default mode, BIGMACS 

uses the transmission model developed by Lin et al. (2014) for the HMM-Match software. . Probabilities for normalized 

sedimentation rates are calculated with a prior distribution fit to observed sedimentation rates from a global compilation of 37 
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radiocarbon dated cores  (Lin et al., 2014)). Cores in the compilation span multiple environments (open ocean, mid-ocean 

ridges, continental shelves), water depths between 1086 – 4718 m, and cover a time period from the LGM to the Holocene 260 

making the prior a physically realistic distribution of normalized sedimentation rates representative of most marine sediment 

cores. However, where the previous study interpolated sedimentation rates every 1 kyr, we interpolate by 1 cm depth 

increments and fit a new log-normal mixture distribution (Figure S1). Interpolating sedimentation rates by depth correctly 

represents the frequency at which higher sedimentation rates are observed in the sediment archive, whereas interpolating by 

time over represents frequency of lower sedimentation rates (which deposit less sediment per unit time). Sedimentation rates 265 

are normalized relative to a time-dependent average sedimentation rate calculated using the Nadaraya-Watson Kernel 

(Langrene and Warin, 2019). This accounts for longer scale changes in the depositional environment, which can be associated 

with transitions between glacial and interglacial oceanographic conditions.  

Changes in sedimentation rates depend on both the current and previous sedimentation rate, and thus the previous 

two depths. However, because storing all sampled combinations of three consecutive depths is intractable for computation 270 

(𝑂(𝑁3), where N is the number of age model samples), normalized sedimentation rates are classified into three states: 

expansion, contraction, and steady. Expansion specifies a below average sedimentation rate and referswhich effectively 

stretches to a stretching of the local portion of the record. Contraction specifies a higher sedimentation rate than the average, 

which requires “squeezing” the record during alignment to the target. If the local sedimentation rate is within 8% of the core’s 

average, the state is classified as steady. The probabilities of transitioning from one state to the other states are optimized via 275 

the Baum-Welch Expectation Maximization algorithm (Rabiner, 1989; Dubrin et al., 1998). However users can also choose to 

keep these probabilities fixed using the sedimentation rate data from Lin et al., (2014).  

BIGMACS allows a sedimentation rate change at every depth where there is proxy data (δ18O, 14C, or additional age 

information). However, in the case of low-resolution records, BIGMACS imposes a minimum age model resolution, which 

forces a sedimentation rate calculation every 15 cm. This depth interval was selected based on the depth spacing between the 280 

radiocarbon data used for the prior (Lin et al., 2014).  

3.3 Emission Model 

BIGMACS uses different emission models for radiocarbon, δ18O and additional age information (see S2 and S4.1 for 

more information).  For radiocarbon and δ18O data, the emission model is specified via generalized student’s t-distributions 

(Christen & Peréz, 2009).   285 

For radiocarbon data, the emission model returns the likelihood of observing age offsets from measured radiocarbon 

ages and depends on the radiocarbon measurement, calibration curve, and the reservoir age. The emission model also depends 

on two fixed parameters that control the scaling of the standard deviation.  While Christen & Peréz (2009) and Blaauw & 

Christen (2011) set the fixed parameters of  and  to three and four, we choose values of ten and eleven which produces a 

distribution that is more peaked and more similar to  a Gaussian distribution. In other words, our student’s t-distribution has 290 
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smaller tails than the distribution from Christen & Perez, (2009) causing age model samples to pass closer to the mean 

radiocarbon age. This effectively improves agreement between the core age models and the radiocarbon observations.  

The δ18O emission model returns the likelihood of observing different magnitudes of δ18O offsets from the alignment 

target and depends on the target stack’s time-dependent mean and variance.  During alignment, Gaussian stacks are translated 

into a generalized student’s-t distribution with the fixed parameters of  and  set to three and four, respectively, based on 295 

observed δ18O residuals for the ITWA and DNEA stacks (Figure S2), to address deal with potential δ18O outliers. The δ18O 

emission model also includes core-specific scale and shift parameters which are learned across alignment iterations with the 

Baum-Welch Expectation Maximization algorithm (Rabiner, 1989; Durbin et al., 1998). These parameters account for vital 

effects among different benthic foraminifera species (e.g., Marchitto et al., 2014) and different local water mass properties at 

different locations (e.g., temperature and δ18O of seawater). The resolution-weighted average of the shift and scale parameters 300 

learned for each core will have final values close to zero and one, respectively. In other words, the final mean and amplitude 

of the stack will reflect a resolution-weighted average of the stack’s component cores; thus, the average shift and scale 

parameters of the stacked cores will be close to zero and one (when weighted by the resolution of δ18O data in each core). 

Optionally, the user can choose not to shift or scale individual cores during stack construction; with this setting, the variance 

in the stack would reflect the total δ18O variance between across cores. 305 

The emission model for the additional age information (e.g., stratigraphic tie points or dated tephra layers) can either 

be specified as a uniform or Gaussian distribution with a mean and uncertainty specified by the user. Specifying the model as 

a uniform distribution will assign an equal probability  will forcefor  the age model to pass anywhere through the given 

uncertainty range and should be used when the user is confident about the age information. Specifying aA Gaussian distribution 

will assign higher probabilities to age model samples that pass close to the mean of the additional age, but could potentially 310 

allows for potentially larger residuals due to the tails of the distribution assigning non-zero probabilitiesallow the age model 

to pass farther from the additional age constraint.  

3.4 Record Alignment 

This section describes the sampling strategy employed during age model construction and section 3.5 describes the 

Gaussian process regression used to construct a stack. Formulations for both the sampling algorithms and stack construction 315 

are provided in the supplement (S4.2 and S5). 

Because the posterior is not given as a distribution in a closed form, age model samples are drawn using a Markov-

Chain Monte Carlo (MCMC) algorithm (Peters, 2008; Martino et al., 2015). To increase computational efficiency, BIGMACS 

first initializes each sample using particle smoothing (Doucet et al. 2001; Klaas et al. 2006) and then refines the initialized 

samples with the MCMC algorithm. Particle smoothing can be understood as a continuous version of a Hidden Markov model 320 

(HMM, Durbin et al. (1998)). Whereas the HMM considers all possible hidden states because they are finite, the particle 

smoothing considers only a finite number of proposals because there are infinitely many possible states. In BIGMACS, the 

hidden states, or “particles”, represent possible ages for each depth in the core. Particle smoothing consists of a forward 
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algorithm and a backward algorithm. The forward algorithm iteratively samples and reweights particles, while the backward 

algorithm samples from the particles one-by-one in reverse based on their assigned weights. BIGMACS first runs particle 325 

smoothing with the state-space model defined by the transition and emission models. 

BIGMACS then runs the Metropolis-Hastings algorithm (Metropolis et al. (1953); Hastings (1970); Martino et al. 

(2015)) to sample the proposed ages with starting points from provided by the particle smoothing algorithm as the starting 

points. The Metropolis-Hastings algorithm updates the samples block-wise, meaning that hidden states in the same 

sedimentation state category (expansion, contraction, and steady) are simultaneously treated in each iteration. Initialized age 330 

samples from particle smoothing allows the use of shorter chains to reach the burn-in phase. 

Once the set of sampled ages are obtained, BIGMACS updates parameters of the transition and emission models via 

the Expectation Maximization (EM) algorithm (Dempster et al., 1977) and then iterates the process with the updated 

transition and emission models until convergence. If a stack is to be constructed, the final age samples are inputs to the stack 

construction algorithm. 335 

3.5 Stack Construction Algorithm 

Here we describe the Gaussian Process regression used to construct a stack construction. A formal mathematical 

description is presented in the supplement (section S5).  

During stack construction BIGMACS first aligns records to an initial δ18O stack by drawing age model samples from 

the posterior, and then updates the stack based on the new alignments. The updated stack serves as the target for the next 340 

alignment iteration and the whole process is repeated until convergence.  

A benthic δ18O stack serves as a target for aligning multiple records simultaneously. Because age models are 

continuous, we design the stack construction algorithm to also be continuous, such that a mean and standard deviation can be 

defined explicitly for any age. Previous stack construction methods (Lisiecki & Stern 2016; Ahn et al., 2017) involved binning 

δ18O data and were thus limited by the amount of data in each bin. In contrast, the continuous approach of BIGMACS allows 345 

the creation of a stack using a smaller number of records and/or with uneven data resolution over time.  

BIGMACS constructs a stack via ausing Gaussian process regression (Rasmussen and Williams, 2006), which is a 

continuous and nonparametric kernel-based method. In contrast to the well-known polynomial regression, a distinctive feature 

of a Gaussian process regression is that its variance function is permitted to change along the inputs (i.e. the x-axis). BIGMACS 

uses the Ornstein-Uhlenbeck (OU, Rasmussen and Williams, 2006) kernel, which we find allows enough variance to resolve 350 

millennial scale events (e.g., see sections 4.3 and 6.1.2). BIGMACS trains the OU kernel’s hyperparameters, which adjust its 

amplitude and width, across iterations based on the data used to make the stack.  

To allow the stack to reflect changes in the variance of δ18O as a function of time, BIGMACS follows a heteroscedastic 

Gaussian process regression (Lee & Lawrence 2019) instead of a homoscedastic one. A homoscedastic Gaussian process 

assumes that the residuals of the data from the regression is constant but nevertheless adjusts its variance function to the 355 

proximity of data points. Thus, its variance function is narrow when data points are dense and wide where the data are less 
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dense. A heteroscedastic Gaussian process model (used by BIGMACS) has a variance function that changes in response to the 

spread of the data points along inputs which allows the variance of the regression to be sensitive to the spread of responses in 

addition to changes in variance associated with data density from the homoscedastic Gaussian process model.  

Gaussian process regressions have two major drawbacks: time complexity and outlier sensitivity. A matrix inversion, 360 

which has a time complexity equal to size of the data set cubed, is required to estimate hyperparameters for the kernel and to 

compute the posterior predictions. Thus, the model becomes intractable as the size of dataset increases. To address this, 

BIGMACS adopts the variational free energy approximation (Titsias, 2009) to make the time complexity linear to the size of 

dataset.  

Outliers are identifiedsensitivity results from by the Gaussian modelling of residuals. During stack construction 365 

BIGMACS disregards outliers before performing the regression. The following two steps are iterated: 1) kernel 

hyperparameters are estimated after disregarding outliers, 2) outliers are classified based ony the stack which is constructed 

from the estimated kernel hyperparameters.  

After BIGMACS obtains a Gaussian process regression using the δ18O data from every core on each sample age 

model, the software averages the set of regressions using moment-matching (Murphy, 2012) to produce a single Gaussian 370 

model stack in a closed form. Detailed formulations for the stack construction algorithm can be found in the supplementary 

note (section S5). 

4 Results 

To demonstrate the performance of BIGMACS with differing amounts and quality of data, we present two example 

stacks: a Deep Northeast Atlantic (DNEA) stack and an Intermediate Tropical West Atlantic (ITWA) stack. The DNEA stack 375 

is constructed using high-resolution data with relatively little noise; it consists of 2,112 δ18O data points and 150 radiocarbon 

ages from six cores that range in depth between 2273 and 3166 m (two from the western Iberian Margin and three off the west 

coast of Africa). The ITWA stack is constructed from 1,066 δ18O data points and 51 radiocarbon ages across four cores from 

the Caribbean to the northern coast of Brazil that range in depth from 1100 and 1299 m; these cores contain a relatively large 

number of δ18O outliers (Figure 1). Core locations for both stacks are plotted in Figure 1. The DNEA stack spans a full glacial 380 

cycle while the ITWA stack extends to ~55 ka. We used the Deep North Atlantic (DNA) and Intermediate North Atlantic 

(INA) stacks from Lisiecki & Stern (2016) as initial targets for the DNEA and ITWA stacks, respectively. Default settings 

were used to construct both stacks. Additionally, we construct radiocarbon-only and δ18O-only age models for each input core 

to compare with the stack’s multiproxy age models.  

 385 
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Figure 1: Cores used to construct the DNEA stack (circles) and the ITWA stack (squares). A star indicates the core for which we 

use the DNEA stack as the alignment target. Dotted lines indicate east and west transects plotted in Figure 2. 390 

 

 

 

 

 395 



14 

 

 

 

 

 

 400 

 

 

 

 

 405 

Core Lat oN Lon oE Depth m 14C Citation δ18O Citation 

DNEA 

MD95-2042 37.80 349.8350 3146 Shackleton et al., 2004; Bard et al., 2017 Shackleton et al., 2000 

MD99-2334 37.80 339.8350 3166 
Skinner & Elderfieldet al.,, 2003; Skinner & 
Shackleton., 2004; Skinner et al., (2014); 
Skinner et al., (2021)Waelbroeck et al., 2019 

Skinner & Shackleton, 
2005 

SU81-18 37.778 349.8250 3135 Vogelsang et al., 2001; Waelbroeck et al., 2001 

GeoB7920-2 20.758 341.42 2278 Collins  et al., 2011 Tjallingii et al., 2008 

ODP658C 20.758 341.42 2273 deMenocal et al., 2000 Knaack & Sarnthein, 2005 

GeoB9508-5 14.5 342.05 2384 Mulitza et al., (2008) Mulitza et al., (2008) 

ITWA 

M35003-4 12.091 298.769 1299 Hülls & Zahn, 2010 Hülls & Zahn, 2000 

KNR197-3-53GGC 8.23 306.777 1272 Oppo et al., 2018 Oppo et al., 2018 

KNR197-3-9GGC 7.93 306.42 1100 Oppo et al., 2018 Oppo et al., 2018 

GeoB16206-1 -1.58 316.987 1367 Porthilo-Ramos et al., 2017 Voigt et al., 2017 

Example 

GIK13289-2 18.071 341.992 2485 Sarnthein et al., 1994 Sarnthein et al., 1994 

 

Table 1: Core locations and data citations. 

4.1 Core Selection and Assessing Homogeneity 

When choosing alignment targets or a population of cores to construct a stack, we suggest that researchers evaluate 

core locations with respect to water mass reconstructions and directly compare the features of the δ18O time series to evaluate 410 

whether the algorithm’s assumption of homogeneous δ18O variability is reasonable. Before constructing a regional stack, the 

user should identify select neighboring cores evaluated to have homogeneous δ18O signals, or similar water mass histories. 

Figure 2 shows model estimates of the fraction of Southern Component Water (SCW) in two Atlantic transects, during the 
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present day (coloured contours, Gebbie & Huybers, 2010) and at the LGM (solid black line, Oppo et al., 2018). Here SCW 

refers to water that formed in the Antarctic and sub-Antarctic regions defined by Gebbie & Huybers (2010).  415 

Core sites in the DNEA stack are just below the core of modern Northern Component Water (NCW, Figure 2) and 

are bathed today by 23-26% SCW and 74-77% NCW (Table S1). Glacial water mass reconstructions suggest that water mass 

composition at these sites was very similar during the LGM (Gebbie & Huybers, 2010; Oppo et al., 2018). A relatively constant 

water mass composition during the deglaciation at these sites is also suggested by neodymium isotope compilations (Howe et 

al., 2016; Pöppelmeier et al., 2020). Collectively, these studies support our assumption that the benthic δ18O signals of these 420 

cores changed homogeneously (i.e., nearly synchronously) during Termination 1.  

The cores compiled for the ITWA stack are located near the boundary between AAIW and NADW, yielding more 

variability in their modelled water mass percentages. SCW percentages for cores in the ITWA stack range from 31-48% and 

20-28% for the modern and 20-28% for the LGM, respectively. During the deglaciation, AAIW experienced expansion in this 

region as demonstrated by a decrease in nutrients in the phosphate maximum zone (Oppo et al., 2018). Thus, the cores in the 425 

ITWA stack may have experienced moderately heterogeneous water mass changes during Termination 1. Despite moderate 

differences between these sites, BIGMACS is able to align these records and generate a stack that is representative of their 

δ18O variability. 
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Figure 2: (A) Western and (B) Eastern Atlantic transects of water mass composition. Transect paths are shown as dotted lines in 

Figure 1. Colored contours show modern Southern Component Water percentages (Gebbie & Huybers 2010) along each transect 

and solid black line shows the 50% contour during the LGM (Oppo et al., 2018). Solid circles represent cores in the DNEA stack, 

squares are cores in the ITWA stack. Histograms of modern (red) and LGM (black) southern component water percentages for 435 
cores in the (C) ITWA and (D) DNEA stacks. 

 

4.2 Age Proxies 

To calibrate radiocarbon ages to calendar years, we use the Marine20 calibration curve (Heaton et al., 2020), a 

constant reservoir age offset (ΔR) equal to zero, and a reservoir age standard deviation of 200 years (although it should be 440 

noted that future users can find potential reservoir age offsets using the Calib database; Reimer & Reimer, 2001). We make no 

corrections for the different planktonic species used to measure radiocarbon in each core (see Table 1 for data citations).   

For the longest core in each stack, we provide additional age information (crosses in Figures 34A and 45A) beyond 

the last radiocarbon date. MD95-2042 in the DNEA stack is constrained with ages from Lisiecki & Stern (2016) identified 

based on an alignment of the alkenone-based SST record (Pailler & Bard, 2002) to a synthetic Greenland δ18O record on a 445 
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speleothem age model (Barker et al., 2011; Barker & Diz., 2014). M35003-4 in the ITWA stack is constrained by an age 

estimate of 55.4 ka BP at 9.5 m depth based on the alignment by Hülls & Zahn, (2000) of variations in N. dutertrei and CaCO3 

to Dansgaard/Oeschger events in the GISP2 δ18O record (Grootes & Stuiver, 1997). This additional age information is 

modelled using Gaussian distributions with the standard deviations reported in Lisiecki & Stern (2016) for MD95-2042 and a 

standard deviation of 1 kyr for M35003-4. 450 

4.3 Stack Results 

Figure 56 compares the DNEA and ITWA stacks. The ITWA stack is, on average, 0.56 ‰ lighter than the DNEA 

stack due to the differences in deep water properties at the core sites. The ITWA core sites which span 1100-1299 m are bathed 

by warmer and less saline waters than the DNEA cores from 2273-3166 m. The time-dependent standard deviation in each 

stack (defined by the distribution of Gaussian Process regressions) reflects the variance in the aligned δ18O records. Between 455 

0 and 60 ka BP, the average standard deviation of the stacks is 0.13 ‰ in the DNEA stack and 0.2 ‰ in the ITWA stack. In 

particular, the ITWA stack has larger standard deviation during the termination, which reflects anomalously high δ18O values 

during the deglaciation in some of the ITWA cores. For example, many of the records in the ITWA stack include several 

anomalously high δ18O values during the deglaciation; Oppo et al., (2018) attributes these outliers to slope instabilities at the 

Demerara Rise. Because BIGMACS models a Gaussian distribution for δ18O residuals, the outliers produce large, symmetric 460 

confidence intervals about the mean. 

The standard deviations of the two BIGMACS stacks are both smaller than the DNA and INA regional stacks from 

Lisiecki & Stern (2016), which average 0.24 ‰ and 0.36 ‰, respectively. This likely stems from greater benthic δ18O spatial 

variability within the larger regions defined in Lisiecki & Stern (2016) and the application of (small) record-specific shift and 

scale adjustments to the DNEA and ITWA cores during stacking with BIGMACS.  465 

The Gaussian process regression also creates smoother stacks than previous binning methods. Figure S4 compares 

the new DNEA and ITWA stacks with the Deep North Atlantic (DNA) and Intermediate North Atlantic (INA) regional stacks 

from Lisiecki & Stern (2016). The Gaussian process regression creates estimates of δ18O for each point in time by incorporating 

information from neighbouring data points, which increases the stack’s autocorrelation, compared to the binning procedure 

used in Lisiecki & Stern (2016). Given the large volume of the deep ocean, we expect changes in benthic δ18O to respond 470 

gradually; hence smoothing may actually increase the signal-to-noise ratio of “local” stacks with less densely sampled δ18O 

measurements and relatively few cores. Although there is a risk that the Gaussian process regression may over-smooth the 

data, our DNEA stack still resolves millennial scale events. For example, figure 4(a) shows peaks at 24, 29 and 38 kyr 

corresponding to approximate ages of Heinrich Events H2 to H4 (Hemming, 2004), and similar in to the DNA stack (Figure 

S4).  475 

To evaluate the multiproxy age models of the ITWA and DNEA stacks, we compare them with radiocarbon-only and 

δ18O-only age models for each core (with inclusion of the same additional ages in cores MD95-2042 and M35003-4). We find 

good agreement between median radiocarbon-only and multiproxy age models for each core (panels B and C in Figures 3 and 
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4), indicating that the δ18O alignments did not cause the multiproxy age models to stray significantly from the radiocarbon 

dataage constraints.  Furthermore, the multiproxy age models have 95% confidence credible interval widths that are on average 480 

262 years smaller than the radiocarbon age models and 1.92 kyr smaller than δ18O-only age models (Figure S3).   

The good agreement between the radiocarbon and multiproxy median age models also supports our assertion that the 

input cores for each stack share homogeneous δ18O signals. If the δ18O records changed asynchronously, the alignments (which 

rely on the assumption of synchronous δ18O change) would likely cause differences between the median age estimates of the 

radiocarbon-only and multiproxy age models. This assertion of synchronous δ18O change is also supported by the relatively 485 

small shift and scale parameters learned for each core during the stacking procedure, indicating similar δ18O values across all 

core sites (Table S1). 
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Figure 3: The Deep Northeast Atlantic (DNEA) stack. (A) The solid black line and shaded region represents the median stack value 490 
and 2-sigma upper and lower bounds. Filled circles are the shifted and scaled δ18O data points from each core on the multiproxy age 

models. Filled triangles mark the radiocarbon ages from the respective cores. Purple crosses are the tie points for MD95-2042 taken 

from Lisiecki & Stern (2016). (B) 14C-only age models vs. the multiproxy age models for each core in the DNEA stack. Each core 

plots along the black dashed 1:1 line. (C) The difference between the multiproxy age models and the 14C age models for each core in 

the DNEA stack. Coloured shading shows the joint uncertainty distribution for 14C and multiproxy age estimates for each core. 495 
 



22 

 



23 

 

 

 

Figure 4: The Intermediate Tropical West Atlantic (ITWA) stack. (A) The solid black line and shaded region represents the median 500 
stack value and 2-sigma upper and lower bounds. Filled circles are the shifted and scaled δ18O data points from each core on the 

multiproxy age models. Filled triangles mark radiocarbon ages from the respective cores. The green cross is the tie point for M35003-

4 from Hulz et al., (2000). (B) 14C-only age models vs. the multiproxy age models for each core in the ITWA stack. Each core plots 

along the black dashed 1:1 line. (C) The difference between the multiproxy age models and the 14C age models for each core. Coloured 

shading shows the joint uncertainty distribution for 14C and multiproxy age estimates for each core. 505 
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Figure 5: Comparison of the DNEA and ITWA stacks. Median values are displayed as the thick solid line, and shading marks plus 

and minus two standard deviations. 

5 GIK13289-2 Age Model Comparison 

To further evaluate the differences between single proxy and multiproxy age models, we compare three age models 510 

for GIK13289-2 constructed by BIGMACS: a radiocarbon-only age model, a δ18O-only age model, and a multiproxy age 

model constrained by both δ18O and radiocarbon data (Figure 6).  The alignment target for the multiproxy and δ18O-only age 

models is the DNEA stack. While the radiocarbon and multiproxy age models have direct age constraints via radiocarbon ages, 

the δ18O-only age model provides only relative age constraints. Furthermore, the uncertainty for the δ18O-only age model 

reflects only the alignment uncertainty. The absolute age uncertainty would be a combination of the alignment uncertainty and 515 

the absolute age uncertainty from the DNEA stack.    

The multiproxy and radiocarbon-only age models show similar median ages. However, the radiocarbon age model 

has larger confidence intervals between core depths of 1.7 and 2.2 m where there is a ~10-kyr gap between radiocarbon 

measurements. The multiproxy age model is constrained by five δ18O data points between these depths which serve to decrease 

age uncertainty. At a depth of 2 m, the 95% confidence credible interval width for the multiproxy age model (5.0 kyr) is 3.8 520 

kyr smaller than the 95% confidence credible interval width for the radiocarbon age model (8.8 kyr).  

The δ18O-only age model for GIK13289-2 is based only on δ18O alignment and has considerably larger uncertainty 

than the multiproxy age model, with a 95% confidence credible interval width as much as 6.6 kyr larger. Furthermore, there is 

disagreement between the median age models during the Holocene, with a maximum age difference of 2.2 kyr. The apparent 

error in median age estimates from δ18O-only alignments likely results from near-constant δ18O values during the Holocene, 525 

which allows for more possible alignments that fit the target and a less precise age model. The 95% confidence credible interval 
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for the δ18O age model spans both the multiproxy and radiocarbon median ages, suggesting realistic uncertainty estimates for 

the alignment.   

In Figure 7, the purple shading of the δ18O-based age model represents age model sample density. The non-Gaussian 

nature of the δ18O-based age estimates is evident at the end of the age model, where the median age and darker shading are 530 

located near the upper end of the 95% confidence credible interval. The multiproxy age model samples at this depth (which 

are constrained by the final radiocarbon age) agree with the dense cluster of δ18O-only age model samples. Frameworks have 

been developed to use the distribution of age model samples, such as those provided by BIGMACS, to estimate the probability 

of timing differences between climate responses recorded in multiple cores (Parnell et al., 2008; Khider et al., 2017).  

 535 

 

Figure 6: Comparison of a δ18O-only age model, radiocarbon-only age model, and multiproxy age model for GIK13289-2. (A) Age 

vs. depth plot, solid black lines represent calibrated radiocarbon ages. (B) The shifted and scaled δ18O for the δ18O-only age model 

and multiproxy age model aligned to the DNEA stack. (C) 95% confidence credible interval widths for each age model. Black 

triangles indicate the depths of the radiocarbon ages. Note that the radiocarbon-only age model does not extend beyond the top 14C 540 
date of ~10 ka BP, and we do not display the 14C age model in panel (B).  
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Figure 7: (A) Sample density of the δ18O-only age model for GIK13289-2. The median age model and 95% confidence credible bands 

are plotted as solid purple lines. The multiproxy median age model and 95% confidence bands are also plotted (solid blue lines) 545 
along with the calibrated radiocarbon ages (horizontal black lines). (B) Histogram of δ18O-only age samples (purple) and multiproxy 

age model samples (blue) for the last depth in the δ18O-only age model (approximately 2 m). Vertical lines mark the Confidence 95% 

credible intervals at the same depth widths for both age models are indicated with vertical lines.   

6 Discussion 

6.1 Applications 550 

In this section we discuss the advantages and limitations of the BIGMACS software compared to other available age 

modelling and stacking techniques and provide practical advice on the types of applications most suitable for BIGMACS.   

6.1.1 Pros and consApplicability of the transition model 

Most Ssoftware packages commonly used towhich generate probabilistic age models (ei.ge., Bacon, Oxcal, 

Undatable) use models of sedimentation rate variability with tuneable parameters, which adjustaffect the amount of age 555 

uncertainty between age proxies measured at discrete depths (e.g., radiocarbon, tephra layers, tie points, etc.).  During benthic 

δ18O alignment, sedimentation rate constraints also limit the degree to which the input record is stretched or squeezed to match 

the target recordIn. In most cases, users have no specific information on which values for sedimentation rate parameter values 

are most appropriate for the specific core analysed. Thus, parameter tuning usually increases the subjectivity and labour 

involved to create an age model. Therefore, BIGMACS canis designed to be used to produce age models for ocean sediment 560 

cores without parameter tuning. TheBecause BIGMACS uses a prior that is constructed from a global compilation of marine 

sediment cores representing different environments (Lin et al., 2014; see figure S2 and table S1), the age uncertainty returned 
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by BIGMACS is physically realistic for most marine cores and less subjective than using tuned parameters in other software 

packages.   

The current version of BIGMACS uses the same prior that was used in HMM-Match (Lin et al., 2014) based on a 565 

global compilation of cores. BIGMACS can also adjust its state change probabilities based on information learned from the 

particular cores being aligned (see S4.3). However, BIGMACS has the flexibility to updateduse other priors that may focus 

on a particular oceanographic setting or based on larger compilations of sedimentation rate variability that may be created. For 

example, Mulitza et al., (2021) presents a compilation of 6153 radiocarbon ages from 598 ocean sediment cores. This is 

potentially enough data to construct regionally specific priors if trends in the behaviours of sedimentation rates are observed 570 

in different environments.  

In addition to larger and/or more regionally focused compilations, future work includes plans to address several 

limitations of the method used for the Lin et al. (2014) compilation. Lin et al. (2014) used Bchron age models to identify 

outliers and reversals, and calculated sedimentation rates by interpolating between the mode of the Bchron age model for each 

calibrated 14C date rather than the full probability distribution (see S1 for a more thorough description). Additionally, Lin et 575 

al. (2014) used radiocarbon ages were calibrated with the Marine09 curve (Reimer et al., 2009) with R=0 for reservoir ages. 

Although we expect this to introduce relatively little bias to the sedimentation rate priors, and future priors should  use the 

updated Marine20 curve and estimates of marine reservoir ages (Heaton et al., 2020).  

If users find that the default transition model does not allow enough sedimentation rate variability to fit the age proxies 

for a particular set of cores, it is also possible to use your own prior distribution (see the User’s Manual). However, we have 580 

not encountered such problems in testing the software, and we encourage users to exercise caution when changing this 

distribution.  

 

6.1.1 2 Radiocarbon and mMultiproxy age models 

Sediment core age models spanning the last 40-50 kyr are most commonly generated using only radiocarbon dates, 585 

occasionally supplemented by one or two tie points or other age constraints. Software packages commonly used to generate 

probabilistic radiocarbon age models (i.e., Bacon, Oxcal, Undatable) use models of sedimentation rate variability with tuneable 

parameters, which adjust the amount of age uncertainty between measured 14C dates. In most cases, users have no specific 

information on which parameter values are most appropriate for the specific core analysed. Thus, parameter tuning usually 

increases the subjectivity and labour involved to create an age model. BIGMACS can be used in 14C-only mode to produce 590 

radiocarbon age models for ocean sediment cores without parameter tuning. Because BIGMACS applies a prior model based 

on observed sedimentation rate variability (Lin et al., 2014), the age uncertainty between 14C observations returned by 

BIGMACS is physically realistic and less subjective than using tuned parameters in other software packages. BIGMACS can 

also estimate a time-varying baseline sedimentation rate that facilitates analysis of cores with large sedimentation rate changes 
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between glacial and interglacial climates. BIGMACS allows users to choose the calibration curve and reservoir ages applied 595 

to each core, including the addition of new calibration curve files.  

Multiproxy age models generated by BIGMACS provide additional advantages compared to traditional probabilistic 

14C age models. In 14C-only age models, each core’s age model is constrained only by the 14C dates from an individual core; 

however, multiproxy age models can use age constraints from multiple nearby cores, which are often available for locations 

of particular paleoceanographic interest (e.g., cores SU81-18, MD95-2042, and MD99-2334 on the Iberian Margin). For cores 600 

sharing a similar water mass history (which is likely for neighbouring cores from similar water depths), multiproxy age models 

use both benthic δ18O alignment and 14C dates to generate age models for each core that are constrained by all 14C dates in the 

group of cores.  This is particularly useful for cores with lower resolution 14C dating or with ambiguous 14C outliers. Our 

example of GIK13289-2 (Figure 6) demonstrates that multiproxy alignment is helpful for extending age estimates beyond the 

range of 14C dates (e.g., the Holocene portion of GIK13289-2) and decreasing age uncertainty between widely spaced 14C 605 

dates, even in cases where benthic δ18O data are also relatively low resolution. In most cases, these age model benefits are 

enhanced when BIGMACS is used to generate a multiproxy stack (e.g., Figures 3 and 4) instead of alignment to a fixed target.  

Users should be aware that the age uncertainties returned by BIGMACS for age models generated by multiproxy 

alignment or stacking do not include the age uncertainty of the alignment target. Thus, age uncertainties (other than those 

frombetween the 14C-only mode dates (or other direct age proxies) in a core should interpreted as relative age uncertainties 610 

that reflect alignment uncertainty, rather than absolute age uncertainty. For multiproxy stacks constrained by densely sampled 

14C dates with small calibration uncertainty, such as the DNEA stack from 0-25 ka (Figure 3), the absolute age uncertainty of 

the stack will be small. However, where the absolute age uncertainty of the alignment target or stack is larger, an assessment 

of a core’s absolute age uncertainty should incorporate both the absolute age uncertainty of the target/stack and alignment 

uncertainty. For example, absolute age uncertainty for the DNEA stack beyond 45 ka can be estimated by constructing an age 615 

model for MD95-2042 using only the 14C dates and additional age information (i.e., tie points marked as crosses in Figure 3A). 

Because GeoB7920-2 contains no direct age proxies beyond 45 ka, it’s absolute age uncertainty could be estimated as the sum 

of variance in the alignment uncertainty (the age model uncertainty resulting from alignment to the DNEA stack) and the 

variance of the age model constructed for MD95-2042 using only radiocarbon data and the additional tie points.  

6.1.2 3 Stacking 620 

Creating a multiproxy stack in BIGMACS offers several advantages compared to traditional stacking techniques. 

First, BIGMACS can createthese multiproxy stacks can be created with as few as two cores. All cores in the multiproxy stack 

must have benthic δ18O for alignment, but the stack can include cores that lack 14C or other age constraints. Second, whereas 

most previous stacks have been constructed by pairwise alignments of each core to a single target (e.g., Lisiecki and Stern, 

2016), BIGMACS aligns all cores simultaneously while updating the alignment target until convergence is achieved. This 625 

process reduces the time required to create a stack as well as sensitivity to the choice of the initial alignment target. Third, the 

multiproxy stack’s age model and alignments evolve simultaneously based on the direct age proxies in all the aligned cores, 



29 

 

whereas most recent previously constructed stacks aligned all cores before estimating the stack’s age model (e.g., Huybers and 

Wunsch, 2004; Lisiecki & Raymo, 2005; Lisiecki & Stern, 2016). Although BIGMACS and HMM-Stack both iteratively 

update the alignment target using the aligned δ18O signals, stacks produced by HMM-Stack implicitly inherit the age model of 630 

the original alignment target because HMM-Stack contains no procedure to input absolute age information or adjust the 

alignment target’s age model.  

Another innovation in BIGMACS is the use of the Gaussian process regression to create time-continuous estimates 

of the δ18O stack’s mean and variance. Most previous stacks relied on either interpolation of each core’s δ18O measurements 

to an even time spacing (e.g., Huybers & Wunsch, 2004) or binning and averaging all cores’ δ18O measurements within a 635 

certain time window (e.g., Lisiecki and Raymo, 2005). The Gaussian process regression requires fewer cores, samples at any 

resolution without interpolation, smooths the stack to increase its signal-to-noise ratio, and realistically increases stack variance 

across δ18O gaps. LearnedThe hyperparameters of the OU kernel determine the overall smoothness of each stack and, hence, 

the timescale of features that are well described by the stack., but Ffor the stacks presented here, smoothing from the Gaussian 

process regression inhibits precise estimates of the amplitude and rate of change of events occurring on timescales of ~2 kyr 640 

or less. For example, the DNA stack of Lisiecki and Stern (2016), which averaged δ18O values using 0.5 kyr bins, decreased 

by 0.47 ‰ in 1.5 kyr (from 87 to 85.5 ka) during Heinrich event 8; however, in the DNEA stack produced by BIGMACS, the 

δ18O change is spread over an interval at least twice as long (89 to 85 ka BP, Figure S4). Additionally, although a δ18O response 

during Greenland interstadial 19 is recorded in both the DNA and DNEA stack at 72 ka, smoothing by the Gaussian process 

regression and alignment uncertainty appears to have reduced its amplitude in the BIGMACS DNEA stack. 645 

An important caveat that applies to all δ18O alignments, including BIGMACS multiproxy alignments and stacks, is 

that the δ18O records aligned should all be homogeneous, meaning that they share the same underlying δ18O signal. Because 

previous studies have observed temporal offsets between benthic δ18O signals from core sites bathed by different water masses 

(Skinner & Shackleton, 2005; Labeyrie et al., 2005; Waelbroeck et al., 2011; Stern & Lisiecki, 2014), users should only align 

or stack cores which share the same deep water mass history over the length of the records analysed. Whether δ18O is 650 

homogeneous across core sites can, in part, be evaluated by comparing the amplitude of change and mean offset (after species-

corrections) between cores. For example, BIGMACS estimates only small shift and scale differences between the cores 

included in the DNEA and ITWA stacks (Table S1), although large shifts are observed between the stacks. Another test is to 

compare the core sites’ present-day deep water mass composition and reconstructions or models of deep water mass extents at 

the LGM. Although glacial water mass estimates are inherently uncertain due to differences between various models and 655 

reconstructions, BIGMACS offers the flexibility to easily build different stacks to evaluate the sensitivity of results to different 

models of benthic δ18O homogeneity. 

BIGMACS may be able to align and stack proxies other than benthic δ18O; however, the software can currently only 

align and stack one proxy at a time. For BIGMACS to accurately construct a probabilistic stack of an alternate proxy, the 

proxy must be homogeneous across the records in the stack with residuals that can reasonably be described with the generalized 660 

student’s t-distribution that BIGMACS uses for the δ18O emission model. Because the emission model is based on the variance 
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that best describes the observations, it does not require a specific assumption about the level of noise in the measurements. 

However, low ratios of signal-to-noise in the proxy aligned could yield unreliable results. Preliminary analysis of planktonic 

δ18O alignments and stacks have yielded encouraging results, but the more heterogeneous nature of surface variability requires 

caution in the selection of cores which can reasonably be considered heterogeneoushomogeneous. 665 

The computational complexity of BIGMACS also places constraints on its applications. For the records in this study, 

multiproxy alignment of a single core to a target takes only 1-2 minutes while the multiproxy stacks take 1-2 hours to build on 

a typical desktop machine. In testing, we have successfully created δ18O -only and multiproxy stacks of Late Pleistocene δ18O 

spanning the past 800 kyr, which take approximately 12 hours to run. However, we have not yet evaluated the performance of 

BIGMACS for records longer than 800 kyr. For a more detailed discussion of the time complexity for BIGMACS, see 670 

supplemental text S6.  

7 Conclusion 

The new software package, BIGMACS, constructs multiproxy sediment core age models and benthic δ18O stacks 

constrained by radiocarbon ages, δ18O alignment, and other additional age constraints. BIGMACS requires no parameter tuning 

and uses an empirically derived prior model of sedimentation rate variability specific to the marine depositional environment. 675 

Radiocarbon ages are modelled using a student’s t-distribution, following the methods of Christen and Peréz (2009). 

BIGMACS also constructs time-continuous stacks using Gaussian process regression and requires fewer cores than traditional 

binning methods. This facilitates building stacks for more localized regions using as few as two cores from within a 

homogeneous water mass as assessed by deep water mass reconstructions and/or evaluation of the estimated shift and scale 

parameters for the aligned cores. Example multiproxy regional stacks are presented for the Deep Northeast Atlantic (DNEA) 680 

and Intermediate Tropical West Atlantic (ITWA). The stacks’ median δ18O values provide well-dated regional climate signals, 

while the stacks’ standard deviations include the effects of spatial variability, multiproxy age uncertainty, measurement noise, 

and, in the ITWA stack, the effects of δ18O outliers likely caused by sediment disturbances. Finally, a comparison of 

radiocarbon-only, δ18O-only, and multiproxy age models for one core demonstrates that the multiproxy age model yields 

smaller age uncertainties, particularly between radiocarbon measurements and during the Holocene δ18O plateau. 685 

Code Availability and Software Requirements 

The software package BIGMACS (developed and tested in MATLAB R2021b) and the user guide can be downloaded from 

https://github.com/eilion/BIGMACS. BIGMACS requires the statistics and machine learning toolbox as well as the parallel 

computing toolbox.   
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