Supporting information: Seismic amplitude response to internal
heterogeneity of mass-transport deposits

Jonathan Ford', Angelo Camerlenghi1 , Francesca Zolezzi%, and Marilena Calarco?

'National Institute of Oceanography and Applied Geophysics — OGS, Trieste, Italy
2RINA Consulting, Genova, Italy

Correspondence: J. Ford (jford@inogs.it)



GH-H-PGC7 GH-H-PGC8 GH-H-JPC4A GH-H-JPC5A

9 0 = I T —=
2';;?; '_3“}' 2| 5
S =R
BT = || F
12 —

1000 1300 1600000 1300 1600000 1300 160000 1300 1600
P-wave velocity [ms™!]

b) 0 T g T )| I T

==
= 4- . — A b—
o) I I [
£ o I ' i
£ 6 e [
& ! i i
o 81 | y | y y

10 4 I . I : :

12 l: l: T T l:

0 50 1000 50 100 0 50 100 0 50 100
P-wave amplitude [%)]
C) 0 T —_
=
N i{ _2 = [ <
é = ‘z 2

s °] = | = § 1 %

10 1 . 13 | ;%

12 T T §l T

1 2 31 2 3 1 2 3 1 3

Density [kg m~3]

Figure S1. Multi-sensor core logger (MSCL) results from cores GH-H-PGC7, GH-H-PGC8, GH-H-JPC4A and GH-H-JPB5A. a) P-wave
velocity, b) P-wave amplitude (60% cutoff marked), c) density, d) cross-plot of P-wave velocity and density logs, for depth intervals where
the P-wave amplitude exceeds the 60% cutoff. Parameters for the water layer and the two component sediment lithologies used in the realistic

multi-source synthetic experiment (Section 3.2) (cont.)
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Figure S2. Cone-penetration test (CPT) results for site GH-T-PCPT7. a) Cone-tip resistance (q.) log, b) De-trended cone-tip resistance log
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(Aqc), de-trended with a best fit linear trend, ¢) Autocorrelation function (ACF) of the cone-tip resistance log.
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Figure S3. Envelope of trace amplitude for individual realisations (grey) and the RMS envelope of the single-source synthetic experiment
for each unique set of correlation lengths (red) for vertical correlation lengths a. = {0.01,0.05,0.1,0.5,1} m (a-e) and lateral correlation
lengths a, = {1000,100,10,1,0.1} m (left to right). The two-way traveltime (TWTT) extent of the heterogeneous layer is shaded in blue.

(cont.)
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Figure S4. Realisations of the realistic multi-source synthetic experiment models (left) and resulting synthetic sub-bottom profiles (right) for

seed 3021, lateral scale lengths a, = {1 x 107,1 x 10%,1000,100, 10,1,0.1, 0.05} (a-h) and vertical scale length a, = 0.05 m.
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Figure S5. Realisations of the realistic multi-source synthetic experiment models (left) and resulting synthetic sub-bottom profiles (right) for

seed 3022, lateral scale lengths a, = {1 X 107,1 x 10%,1000,100, 10,1,0.1, 0.05} (a-h) and vertical scale length a, = 0.05 m.
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Figure S6. Realisations of the realistic multi-source synthetic experiment models (left) and resulting synthetic sub-bottom profiles (right) for

seed 3023, lateral scale lengths a, = {1 x 107,1 x 10%,1000,100, 10,1,0.1, 0.05} (a-h) and vertical scale length a, = 0.05 m.
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Figure S7. Realisations of the realistic multi-source synthetic experiment models (left) and resulting synthetic sub-bottom profiles (right) for

seed 3024, lateral scale lengths a, = {1 x 107,1 x 10%,1000,100, 10,1,0.1, 0.05} (a-h) and vertical scale length a, = 0.05 m.
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Figure S8. Realisations of the realistic multi-source synthetic experiment models (left) and resulting synthetic sub-bottom profiles (right) for

seed 3025, lateral scale lengths a, = {1 x 107,1 x 10%,1000,100, 10,1,0.1, 0.05} (a-h) and vertical scale length a, = 0.05 m.
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