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Abstract 6 

We present a new approach to understand the interactions among different chemical and biological 7 

processes modelled in environmental reactive transport models (RTMs) and explore how the 8 

parameterisation of these processes influences the results of multi-component RTMs. We utilize a 9 

previously published RTM consisting of 20 primary species, 20 secondary complexes, 17 mineral 10 

reactions and 2 biologically-mediated reactions which describes bio-stimulation using sediment from 11 

a contaminated aquifer. We choose a subset of the input parameters to vary over a range of values. 12 

The result is the construction of a new dataset that describes the model behaviour over a range of 13 

environmental conditions. Using this dataset to train a statistical model creates an emulator of the 14 

underlying RTM. This is a condensed representation of the original RTM that facilitates rapid 15 

exploration of a broad range of environmental conditions and sensitivities. As an illustration of this 16 

approach, we use the emulator to explore how varying the boundary conditions in the RTM 17 

describing the aquifer impacts the rates and volumes of mineral precipitation. A key result of this 18 
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work is the recognition of an unanticipated dependency of pyrite precipitation on pCO2 in the 19 

injection fluid due to the stoichiometry of the microbially-mediated sulphate reduction reaction. This 20 

complex relationship was made apparent by the emulator, while the underlying RTM was not 21 

specifically constructed to create such a feedback. We argue that this emulation approach to 22 

sensitivity analysis for RTMs may be useful in discovering such new coupled sensitives in 23 

geochemical systems and for designing experiments to optimise environmental remediation. Finally, 24 

we demonstrate that this approach can maximise specific mineral precipitation or dissolution 25 

reactions by using the emulator to find local maxima, which can be widely applied in environmental 26 

systems. 27 

Synopsis 28 

This study explores key factors regulating mineralization reactions in near surface environments 29 

revealed by a machine learning approach to reactive transport modelling. 30 

1 Introduction 31 

Reactive transport modelling has been extensively applied across a wide variety of environmental 32 

systems, providing a powerful means of quantifying, and even predicting, processes across Earth’s 33 

(near) surface environments (Richter and DePaolo, 1987; Bain et al., 2000; Johnson et al., 2004; van 34 

Breukelen et al., 2004; Gaus et al., 2005; Torres et al., 2015; Li et al., 2017; Arora et al., 2020; 35 

Molins and Knabner, 2020; Rolle and Borgne, 2020; Druhan et al., 2020; Cama et al., 2020). 36 

Reactive transport models (RTMs) are constructed by combining multiple physical, chemical, and 37 

biological processes to simulate the behaviour of environmental systems. As applications and 38 

software have concurrently expanded (Steefel et al., 2015; Li et al. 2017; Maher & Mayer, 2019; 39 

Druhan & Tournassatt, 2019), it is becoming increasingly common to explicitly calculate the rates of 40 

production and consumption for a variety of coexisting chemical species, as well as their equilibria 41 
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with mineral phases, and their transport as they evolve in time and space. This type of multi-phase, 42 

multi-component RTM is a type of forward modelling where the results of the simulation emerge 43 

from a complex suite of interacting pathways, and hence the causes of observed behaviour are not 44 

always obvious.  45 

RTMs are often designed to describe the behaviour of specific field sites and systems. Due to their 46 

process-based nature, designing RTMs requires selection of a suite of chemical reactions and 47 

transport mechanisms which are thought to dominate the geochemistry of the system over the scales 48 

of interest. However, the parameterisation of various selected processes is often not unique and can 49 

impact system behaviour (Williams et al., 2011; Martinez et al., 2014; Seigneur et al., 2021; Steefel 50 

et al., 2005a). To assess the impact of the choice of parameterisation and the values chosen for 51 

different parameters on model predictions, sensitivity analyses are generally performed (Malaguerra 52 

et al., 2013; Gatel et al., 2019). However, as RTMs become increasingly sophisticated, they 53 

incorporate disparate processes that can interact with each other in complex ways (Dwivedi et al., 54 

2018; Hubbard et al., 2018, 2019; Maavara et al., 2021a, b; Dwivedi et al., 2017). 55 

The sensitivity analysis of an RTM in application to a specific environmental system can elucidate 56 

the relative importance of specific interactions; for example, testing the solubility of mineral phases 57 

relative to changes in the solution chemistry. However, results might emerge that were not 58 

anticipated. These results might represent a real, but unexpected, interaction in which case the 59 

sensitivity analysis has yielded new insight into the system being modelled. Equally, the result might 60 

represent an incorrect interaction between two different processes that are known to act 61 

independently of each other, in which case the RTM can be improved. Unfortunately, due to the 62 

computational expense of many modern multi-component RTMs (e.g. Abd and Abushaikha, 2021; 63 

Seigneur et al., 2021; Gharasoo et al., 2022), it is normally impractical to perform sensitivity analyses 64 

in more than a few dimensions and it is up to the investigator to use their knowledge of the system to 65 
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choose which sensitivity analyses are necessary to explore (Steefel et al., 2005b). Ideally, we would 66 

be able to systematically perform sensitivity analyses over many model parameters, considering how 67 

model outputs vary as a function of multiple input parameters simultaneously (i.e. in a multivariate 68 

way), while also lightening the computational burden that commonly occurs when using inverse 69 

modelling approaches implemented by codes like PEST and iTOUGH2 (Doherty, 2004; Finsterle et 70 

al., 2017). Such a capacity could direct future laboratory-based investigations to test whether these 71 

model results are real-world phenomena, ultimately offering improved parameterisation of critical 72 

components within the reaction network. 73 

Here, we demonstrate an approach to explore a wide variety of potential model parameters, by 74 

adapting an emulation method similar to that previously applied in physics-based animation 75 

(Grzeszczuk et al., 1998) to complex multi-physics simulators (Lu et al., 2021; Bianchi et al., 2016) 76 

and climate models (Beucler et al., 2019; Krasnopolsky et al., 2005; Castruccio et al., 2014; 77 

Kashinath et al., 2021) as well as applied to emulating fluid flow through Dolomite using a neural 78 

network (Li et al., 2022). In this emulation approach, the underlying physical system is approximated 79 

by a statistical model (the emulator) which can be evaluated more quickly than a conventional 80 

forward model. How this emulator is constructed varies by implementation and may encode 81 

assumptions about the underlying system to be modelled (e.g. conservation of energy (Beucler et al., 82 

2019)). In our implementation the emulator is built by training a Gradient Boosted Trees (GBT) 83 

regressor (Chen and He, 2015) on a synthetic dataset generated from the original RTM. By training 84 

such a GBT model on the synthetic dataset generated by the original RTM, we create an emulator of 85 

the original system. This emulation approach is general and can be applied to a wide range of RTMs, 86 

using “off the shelf” statistical libraries, requiring no special construction of the statistical model 87 

beyond the choice of some training parameters. This approach can identify the critical processes and 88 
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parameters within RTMs and address the requirement for comprehensive, multivariate sensitivity 89 

analyses. 90 

We first present a tool that automates creation of synthetic datasets: a Python wrapper for the RTM 91 

software CrunchTope (Druhan et al., 2013; Steefel et al., 2015), which we have named Omphalos. 92 

Omphalos edits and runs CrunchTope input files in an automated fashion, systematically changing 93 

model parameters according to user specification. It then records the output data, along with the 94 

corresponding model input parameters for later analysis. We then apply a machine learning method 95 

(Gradient Boosted Trees) to these recorded inputs and outputs to create a predicative model that can 96 

reproduce RTM outputs based on the input variables, which we term a Reactivate Transport 97 

Emulator (RTE). 98 

We envision that such Reactive Transport Emulators could be used to direct new experimental 99 

investigation to identify and corroborate predicted dependencies; providing much-needed 100 

multivariate analysis of RTMs and helping to identify effects that can, in the future, be considered 101 

explicitly when developing new RTMs. In pursuit of this goal, we demonstrate our emulator 102 

approach in application to an RTM built for biostimulation of a contaminated aquifer. We also show 103 

an additional application of this approach to efficiently predict the condition which maximises an 104 

RTM-predicted time-integrated rate over the set of chosen parameters. We also present, in the 105 

Supporting Information, another example in application to a deep-sea sediment column. 106 

2 Description of the Case Study 107 

2.1 Old Rifle Site, Colorado 108 

The Old Rifle site is located near Rifle, Colorado, USA. The location historically hosted a vanadium 109 

and uranium ore processing facility, and the groundwater at the site remains high in aqueous 110 
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uranium. Oxidised uranium (U(VI)) is fluid-mobile and highly toxic, while reduced uranium (U(IV)) 111 

is much less soluble and forms stable precipitates such as uraninite (UO2) (Anderson et al., 2003; Wu 112 

et al., 2006; Dullies et al., 2010; Williams et al., 2011; Long et al., 2015). Thus, uranium reduction 113 

has been suggested as a means for remediating uranium contamination in groundwater. It has been 114 

shown that iron sulfide minerals (FeS2(s)) aid the reduction of soluble U(VI) to insoluble U(IV) 115 

precipitates even after active remediation has ceased (Komlos et al., 2008; Moon et al., 2010; Bargar 116 

et al., 2013; Long et al., 2015; Bone et al., 2017).  117 

The RTM published for Old Rifle, upon which the RTE is based, was originally created as a 118 

comprehensive model of microbial sulfate reduction and sulfide precipitation in Old Rifle sediment 119 

during stimulation of microbial activity by amendment with C2H3O2
-
 (Druhan et al., 2014) (for a 120 

schematic illustration of this RTM, see Fig. S2). In this context, we choose to vary the influent 121 

boundary condition chemistry, representing changes to the chemical composition of the artificial 122 

groundwater injectate. The original experiment was designed to model microbial sulfate and iron 123 

reduction in the sediment; therefore, we use net amorphous iron (II) sulfide (FeS(am)), and pyrite 124 

(FeS2(s)) precipitation (both hereafter referred to simply as ‘pyrite’) as an observable that will record 125 

the sensitivities of the model predictions to changes in the injection fluid. We also demonstrate the 126 

utility of the emulator in predicting the chemical composition of the injection fluid that will 127 

maximise the volume of pyrite precipitated in the sediments when amended with a labile organic 128 

carbon source via injection wells. 129 

3 Methodology 130 

3.1 General Strategy 131 

To explore the dependence of the RTM on the chosen environmental variables, we begin with a 132 

Monte Carlo approach; we draw random values for each parameter and record the model output 133 
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under that randomised condition. We then fit a model to this Monte-Carlo-generated dataset using a 134 

GBT regressor. This fitting results in a model (our emulator—RTE) that reproduces the complex 135 

interdependencies of chemical species that are encoded in the original, underlying, RTM. This 136 

emulator can be interrogated to examine the dependence of the RTM outputs on the originally chosen 137 

environmental variables in an efficient, multivariate way. This new way of performing sensitivity 138 

analyses has the potential to give insight into trends and relationships that would not be apparent 139 

otherwise and ultimately allows us to investigate the sensitivity of the model outputs with respect to 140 

the RTM’s original parameterisation. First, we will describe how we use the Monte Carlo approach 141 

to generate data and then how we fit a model to this data. The overall workflow is shown in Figure 1. 142 
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 143 

Figure 1: Flowchart describing the overall reactive transport emulation workflow developed in 144 

this study. It is divided into two key sections: preparation of the input reactive transport model 145 

for submission to Omphalos, and the analysis and emulation of the resultant data. 146 

3.2 Generating Data 147 

We use the open-source software CrunchTope as the reactive transport framework for the models in 148 

this study. To generate the synthetic datasets necessary for our approach and given the time-149 

consuming nature of generating a single point (requiring a complete run of the RTM, along with 150 

modified boundary conditions), we developed a software package in Python to automate this process. 151 

This software package can manage the automatic generation and submission of unique input files to 152 
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CrunchTope, as well as recording the output of each run, storing it in a manageable data structure for 153 

future use. Use of the software package is straight-forward, requiring the configuration of a single file 154 

listing which species/parameters are to be varied, and how they should be varied. 155 

We have named this software package Omphalos (available for download—Sect. 6.1). Omphalos can 156 

be run on clusters using Simple Linux Utility for Resource Management (Yoo et al., 2003) to execute 157 

input files in parallel, which considerably reduces the time required to generate large datasets. 158 

Omphalos works by taking random values which are drawn from uniform distributions (other 159 

statistical distributions are possible) of the chosen variables, sampling the space evenly. This 160 

provides a complete dataset for training the emulator. 161 

While the underlying principle of training emulators on synthetic data can be applied to any reactive 162 

transport code, currently the software used to implement the approach is only compatible with 163 

CrunchTope, because the input file reading and writing must be in a specific format. The approach is 164 

readily generalized, however, and the methodology could be applied to any RTM software (e.g. 165 

Geochemist’s Workbench, ToughReact), provided that the string input/output code is adapted for 166 

compatibility. To use other RTMs with Omphalos, two key factors need to be addressed: 167 

compatibility with Omphalos, and the computational expense of a single RTM run. 168 

3.3 Application to Contaminated Aquifer Case Study 169 

We begin by applying the emulation methodology to our case study. To create the dataset for training 170 

the emulator, we collected the results of 10,927 unique CrunchTope simulations based on the original 171 

RTM describing Old Rifle using Omphalos, drawing random concentrations for each species in the 172 

boundary condition. Of these 10,927 runs, 9416 provide useable data because some runs fail to 173 

converge within the specified timeframe, or the geochemical condition generated cannot be charge 174 

balanced by CrunchTope. The concentrations for NH4
+, SO4

2-
, Ca2+, and C2H3O2

-
 are varied between 175 
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0–30 mM. The pCO2 is varied between 0–10 bar. We acknowledge that these ranges of 176 

concentrations are somewhat higher than those that occur in natural systems, but we extend the range 177 

to observe RTM behaviours at limiting concentrations. Related to this, it is possible for the dominant 178 

reaction mechanism in a system to change under differing conditions (e.g. the change in calcite 179 

dissolution mechanism as a function of pH (Dolgaleva et al., 2005)) and any such behaviour should 180 

be explicitly encoded into the RTM, otherwise the emulator may give invalid predictions under 181 

conditions that are far from the original model run. We have assumed in this study that the 182 

mechanisms governing the precipitation of pyrite do not change under very low or very high 183 

concentrations of these species.  184 

The injection fluid was constrained at pH 7.2. This constraint, in conjunction with the concentration 185 

of various species iterated in Omphalos, speciates according to CrunchTope’s internal speciation 186 

calculation. Therefore, for example, although the total amount of SO4
2-

 in the injection will be iterated 187 

in, and dictated by, Omphalos, the amount that speciates into other aqueous complexes (i.e. 188 

secondary species) like HSO4
-
 or H2SO4(aq) is controlled by CrunchTope. For the sake of simplicity, 189 

we will report the input concentration, not the concentration after speciation. 190 

The RTM describing Old Rifle has 100 grid cells with a size of 1 cm. Each run of the RTM took 191 

approximately 90 seconds, so the total time to generate the dataset was roughly four hours when run 192 

on a remote machine with 200 CPUs. The number of runs was chosen as a balance between what was 193 

computationally tractable and the ability of the emulator to achieve a good fit. We have intentionally 194 

chosen to vary some chemical species in the influent boundary condition that do not play an obvious 195 

role in the mineral precipitation process we are particularly interested in, namely, the precipitation of 196 

pyrite in Old Rifle sediments (e.g., NH4
+ or Ca

2+
, respectively). We did this to see if we can use the 197 

emulator to detect behaviour in the RTM beyond what we might initially hypothesise. 198 
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3.4 Fitting the emulator 199 

We implement the GBT regressor using XGBoost (Chen and He, 2015) in Python. The code for 200 

fitting the models is available in the Supporting Information. For a precis on GBT models, see the 201 

supplement Sect. S1.2. 202 

3.4.1 Data Strategy 203 

Data generated by Omphalos was imported into a Jupyter notebook environment from the .pkl output 204 

file. There are 9416 different input file runs in this data file. The relevant data was indexed out of the 205 

data structure; in our case this meant the concentrations of NH4
+, SO4

2-
, Ca2+, and C2H3O2

-
 in the 206 

boundary condition, as well as value of pCO2. This results in a 5x9416 array of floating-point 207 

numbers for the features. Each feature was then normalised to be in the range 0 to 1 for training. For 208 

example, values of SO4
2-

 concentration in the simulations were drawn randomly between 0 and 30 209 

mM, so all SO4
2-

 concentrations were divided through by 30 to have values in the range 0–1. We did 210 

this to improve the training performance of the GBT model over different datasets (i.e. so that the 211 

same GBT model can be applied to both the Old Rifle case study, and our supplementary case study 212 

of ODP Site 1086 (see Supplement, Sect. 3). 213 

 Similarly, the relevant data was also extracted from the data file: for each cell in the gridded RTM, 214 

we calculated the net pyrite precipitation over the course of the simulation, and then summed this 215 

value over the column to get the net pyrite precipitated across the domain. This results in a 1x9416 216 

array of floating-point labels to be predicted from the feature array. We scale this feature array by a 217 

factor of 1x104 to avoid issues with small floating-point numbers in XGBoost. 218 

We prepared these data for training the GBT regressor with a hold-out strategy using the 219 

scikitlearn.train_test_split method, keeping 10% of the dataset back for validating the model. Data 220 

was split randomly within the dataset. This means that 8474 randomly selected data points were used 221 
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to train the model and 942 randomly selected data points were used to test it by using the model to 222 

predict a value based on the held back data and comparing the prediction to the true value. 223 

3.4.2 Training Strategy 224 

We use the test set of data points generated by Omphalos to train an XGBoost regressor using 225 

squared error as the loss function to predict the amount of pyrite precipitated in the column as a 226 

function of varied species concentrations in the boundary condition. Squared log loss, and pseudo-227 

Huber error we also tried but squared loss performed best overall. Training curves showing the 228 

testing and training loss as training progressions are given the supplement, Fig. S4. 229 

 Hyperparameter choices for the model are explained and given in the supplement, Sect. S1.3, Table 230 

S1. The choice of hyperparameters is the same for each emulator model, and we are able to achieve 231 

high quality fits using the default XGBoost regularisations, only changing a few settings relating to 232 

tree growth policy. While it is a known problem in machine learning that the choice of optimal 233 

hyperparameter is dependent on the data being modelled (Claesen and De Moor, 2015), it appears 234 

that in the context of these RTEs, the hyperparameters chosen give a good fit for both Old Rifle and 235 

our supplementary case study of ODP Site 1086: datasets describing very different natural 236 

environments, with different length and time scales. This makes the workflow applicable across a 237 

wide variety of reactive transport modelling domains. 238 

It is possible that with more complex hyperparameter tuning, better emulator fits may be achieved, 239 

but for the purposes outline in this paper, we suggest that this automated optimisation of a subset of 240 

the available hyperparameters is sufficient, and represents a balance between emulator fit, 241 

generalisability across differing RTMs, and time spent by the user. 242 

4 Results and discussion 243 

4.1 Application to the Old Rifle Site 244 
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The synthetic data generated using Omphalos to interrogate the underlying RTM are shown in Fig. 2, 245 

colour mapped by the pCO2 with which the injectate solution is in equilibrium. The colour mapping 246 

helps visualise how variability in the precipitated volume of pyrite over the 43-day RTM simulation 247 

might be considered in conjunction with other model parameters. Ultimately, pyrite forms because 248 

aqueous hydrogen sulfide, produced through microbial sulfate reduction, reacts with reduced ferrous 249 

iron (Fe(II)) to form pyrite. Thus, we aim to explore the interdependencies between the mechanisms 250 

driving microbial sulfate reduction and the subsequent precipitation of pyrite, as they emerge due to 251 

variations in injectate chemical composition. 252 
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 253 

Figure 2: Scatter plots of chemical concentrations in the fluid injectate (influent boundary 254 

condition) for an RTM adapted to Old Rifle sediments colour-mapped by the pCO2 with which 255 

the inlet boundary condition is in equilibrium. The dataset comprises 9416 points generated by 256 

drawing concentrations for all five species independently from uniform random distributions, 257 

with the corresponding net increase in pyrite volume fraction precipitated (y-axis) calculated 258 

by running the Old Rifle RTM designed by Druhan et al. (2014) with the randomised influent 259 
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boundary condition. The green diamond indicates the net pyrite volume fraction generated 260 

from the original boundary condition used in Druhan et al. (2014). 261 

We then train the emulator on this synthetic dataset. Fitting a GBT regressor to the data in Fig. 2 262 

means Fig. 3 can be generated by the emulator. This figure shows how the emulator predicts the 263 

change in pyrite volume fraction as the concentration of each of the species in the injection fluid is 264 

varied (other species in the RTM not defined as variables in this study are held constant at values 265 

reported by Druhan et al. (2014)). The convergence of the emulator is shown in Fig. S3. We stress 266 

that the RTM results shown in Fig. 3 are not part of the training dataset, and that the emulator has not 267 

been exposed to these exact values. This demonstrates the capability of the emulator to reproduce the 268 

underlying RTM itself. For example, Fig. 2A suggests visually that the concentration of NH4
+ in the 269 

system is uncorrelated with net pyrite precipitation at the Old Rifle Site. Fig. 3A confirms this lack of 270 

dependence on NH4
+. 271 

In contrast to the minimal impact that changing NH4
+ concentration has on pyrite precipitation, 272 

C2H3O2
-
 and SO4

2-
 concentrations correlate strongly with net pyrite precipitation. This is as expected 273 

in a system where C2H3O2
-
, which is the electron donor for microbial sulfate reduction, enables 274 

sulfate to be reduced to sulfide and thus drive pyrite precipitation in the presence of Fe(II). 275 

Approximately 20 days after C2H3O2
-
 amendment, microbial sulfate reduction takes over from 276 

dissimilatory iron reduction as the dominant process consuming C2H3O2
-
. As microbial sulfate 277 

reduction requires eight-times the number of electrons per mole of SO4
2-

 reduced than dissimilatory 278 

iron reduction requires (per mole of iron reduced), the electron donor (C2H3O2
-
) begins to be rapidly 279 

consumed, whereas during dissimilatory iron reduction it was effectively in excess. As a result of this 280 

new scarcity of C2H3O2
-
, the rate of dissimilatory iron reduction drops and so does the concentration 281 

of Fe(II). However, dissimilatory iron reduction is still active in the column, releasing a small—but 282 
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non-zero—flux of aqueous Fe(II) that allows for continued pyrite precipitation. The emulator 283 

interprets this as Fe(II) being ‘always’ available in this system, and thus predicts that pyrite 284 

precipitation can scale linearly with SO4
2-

 and C2H3O2
-
, as shown in Fig, 4A. The sediment itself 285 

would need to contain abundant ferrihydrite, goethite, or another bioavailable ferri(hydr)oxide for 286 

this reduction to continue indefinitely; this may not be the case. This highlights the need for the range 287 

of parameters sampled when training the emulator to be sufficiently wide to capture all the RTM 288 

behaviour, otherwise it may extrapolate and “learn” incorrect assumptions about the system: in this 289 

case that bioavailable iron never limits dissimilatory iron reduction. One solution would be to expand 290 

the range over which concentrations are drawn to reach the limit where iron-bearing mineral volume 291 

fraction becomes a limiting factor so that the model can learn what happens when this occurs. 292 

 293 

Figure 3: Plots of the GBT model fit (blue line) plotted over the results from the underlying 294 

RTM (black + symbols) when interrogated with the same input parameters (which are taken as 295 
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ground truth). Each plot shows the net volume fraction due to pyrite precipitation as a 296 

percentage of the initial volume fraction of the sediment as each parameter is varied while all 297 

other parameters are held at the values used in the original experiment by Druhan et al. (2014). 298 

The emulator (blue line) captures the overall trends in the data. The lack of smoothness in the 299 

emulator predications arises from the inability to encode this as a condition in XGBoost and 300 

the discreet nature of the decision tree algorithm. 301 

We also note that our emulator suggests that increasing pCO2 leads to decreased pyrite precipitation 302 

(Figure 4E), a relationship that may not have been apparent in a single run of the RTM. Three-303 

dimensional visualisation of the data confirms that the pyrite-volume-fraction-change varies as a 304 

function of pCO2 net pyrite precipitated decreasing as pCO2 increases (Fig. 4B and Fig. 4C). This 305 

three-dimensional visualisation allows us to see that the gradient of the pyrite-volume-fraction-306 

change with respect to SO4
2-

 and C2H3O2
-
 is itself a function of pCO2 and flattens as pCO2 increases. 307 

To understand why the gradient changes, we must first understand why pCO2 affects the amount of 308 

pyrite precipitated in the first place. 309 

Sediment samples from Old Rifle are initially poised for dissimilatory iron reduction and there is a 310 

sizeable community of iron-reducing bacteria naturally present in the system. The background 311 

sulfate-reducing microbial community is initially relatively small and thus, for microbial sulfate 312 

reduction to proceed at significant rates, the mass of sulfate-reducing bacteria must first increase. In 313 

the original experiment by Druhan et al. (2014), the sulfate-reducing biomass begins reaching a size 314 

where it can start consuming large quantities of C2H3O2
-
 around day 20 of the experiment. This 315 

biomass growth is modelled in CrunchTope using a Monod-biomass rate law (Jin and Bethke, 2005), 316 

which has both an anabolic and catabolic component. In the formulation of this Monod-Biomass rate 317 

law as implemented in CrunchTope, the thermodynamic term (Gibbs free energy of the reaction) is 318 

calculated exclusively using the catabolic pathway. The catabolic pathway for this reaction (in terms 319 
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of the exchange of one electron) is given below in Equation (4.1), and the form of the Gibbs free 320 

energy is this context is given in Equation (4.2) (we take the phosphorylation potential to be 0, and 321 

the average stoichiometric number to be 1, see derivation in Jin and Bethke (Jin and Bethke, 2005) 322 

for further details). 323 

1

8
SO4

2-
+

1

8
C2H3O2

-
+

3

8
H+→

1

8
H2S(aq)+

1

4
CO2(aq) +

1

4
H2O   (4.1) 324 

Δ𝐺 = ℛ𝒯 ln(
[CO2(aq)]

1
4[H2S(aq)]

1
8

[SO4
2-]

1
8[C2H3O2

- ]
1
8[H+]

3
8

)     (4.2) 325 

Taking this form for the Gibbs free energy of the reaction and substituting it into  the thermodynamic 326 

term of the reaction rate calculation as implemented in CrunchTope (Steefel et al., 2015) gives 327 

Equation (4.3) below describing the rate of microbial sulfate reduction in the Rifle RTM. 328 

𝑅𝑀𝐵 = 𝑘𝑚𝑎𝑥𝐵
[C2H3O2

- ]

[C2H3O2
- ]+𝐾ℎ𝑎𝑙𝑓[Ace]

[SO4
2-]

[SO4
2-]+𝐾

ℎ𝑎𝑙𝑓[SO4
2-]

𝐹𝑇  (4.3) 329 

where 330 

𝑭𝑻 = (𝟏 −
[CO2(aq)]

1
4[H2S(aq)]

1
8

[SO4
2-]

1
8[C2H3O2

- ]
1
8[H+]

3
8

)     (4.4) 331 

𝑅𝑀𝐵 is the overall rate of microbial sulfate reduction, 𝑘𝑚𝑎𝑥  the rate constant for microbial sulfate 332 

reduction, 𝐵 is the biomass concentration, and 𝐾ℎ𝑎𝑙𝑓[X] is a half-saturation constant. The two Monod 333 

kinetic factors for the electron donor (C2H3O2
-
) and the electron acceptor (SO4

2-
) are referred to as FD 334 

and FA respectively (Jin and Bethke, 2003, 2005, 2007). Equation (4.4) illustrates the underlying 335 

relationship between pCO2 in the injectate solution and the resulting accumulation of pyrite. As pCO2 336 

of in the injectate increases, the FT term becomes smaller, inhibiting the overall rate of microbial 337 
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sulfate reduction (Fig. S5). Consequently, biomass growth is also inhibited, and the rate of microbial 338 

sulfate reduction is never high enough to produce the concentration of H2S(aq) required for significant 339 

pyrite precipitation. This explains why the model suggests that the gradient of the pyrite volume 340 

precipitated with respect to both C2H3O2
-
 and SO4

2-
 varies as a function of pCO2 in the injectate. 341 

When pCO2 is low and both SO4
2-

 and are large with respect to their half saturation constants 342 

(Equation (4.4)), the overall Monod-biomass rate law will approach 𝐵𝑘𝑚𝑎𝑥. 343 

 344 

Figure 4: A selection of the GBT model predictions of the percentage volume fraction increase 345 

due to pyrite precipitation as a result of varying two parameters simultaneously for selected 346 

pairs of variables. Other model parameters are held at the values used in Druhan et al. (2014). 347 

The remaining variable-pair plots are provided in Fig. S4. 348 

This dependence emerged somewhat unexpectedly from the emulator, as one would not inherently 349 

expect a relationship between injectate pCO2 and SO4
2-

 reduction rates, yet it agrees with results 350 

previously reported by Jin and Kirk (2016, 2018) as well as Paper et al. (2021). These studies related 351 

the influence of pCO2 and pH to the rate of microbial reactions, both in vitro, in situ, and in silico. 352 

We suggest that our type of analysis could be used to direct future lab and field work to test 353 

hypotheses suggested by the results generated by running the emulator. 354 
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This analysis also explains some of the features observed in Fig. 4A: the gradients of C2H3O2
-
 and 355 

SO4
2-

 are coupled in such a way as to indicate that if one is in excess, then the other becomes limiting 356 

in the production of H2S(aq) and hence the precipitation of pyrite. However, the limiting behaviour 357 

when both are in excess seems to indicate that given enough SO4
2-

 and C2H3O2
-
, pyrite precipitation 358 

can continue indefinitely assuming suitably low pCO2. Given this prediction, it is sensible to check 359 

whether, at such high levels of SO4
2-

 and C2H3O2
-
 as the model suggests for maximum pyrite 360 

precipitation, there is indeed enough Fe(II) available in the system to precipitate pyrite: this is a 361 

second potential dependence as mentioned above. 362 

Lastly, the model can be interrogated in all 5 dimensions and the amendment fluid composition that 363 

corresponds to the largest net pyrite precipitation over the modelled interval can be determined. This 364 

amendment composition is shown in Table S1. The total change in volume fraction due to pyrite 365 

precipitation predicted by the emulator is 0.143 and the actual RTM modelled precipitation when this 366 

boundary condition is used is 0.150. There is a 4.7% absolute error on the net pyrite volume fractions 367 

change predicted by the emulator when compared to the actual net pyrite precipitation calculated by 368 

the RTM. This error is inherent in statistical learning techniques but can be further mitigated with 369 

larger training datasets, in conjunction with different emulator training hyperparameterisations: an 370 

area for future improvement to the methodology. These optimised conditions represent an almost 371 

four-fold increase in the amount of pyrite precipitated in the original RTM for Old Rifle (Druhan et 372 

al., 2014). 373 

4.2 Advantages and drawbacks of the emulation approach 374 

In this study, 9416 individual RTM simulations were used to train a GBT regression model to predict 375 

a specific model output, in this case net pyrite precipitation. This emulator is a reduced representation 376 

of the complex system of equations in the underlying RTM, having a faster computational time but 377 
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introducing some prediction errors. We now discuss the key advantages and drawbacks of this 378 

emulation approach. 379 

4.3 Advantages of the emulation approach 380 

9416 RTM runs were used to train the emulator (the data shown in Fig. 2). This number of runs could 381 

instead be used to perform a sensitivity analysis in all five variables at a spacing of ~4.8 mM between 382 

points by directly interrogating the simulator. What then, is the advantage of the emulation approach, 383 

if the same information can be visualised from discreet runs of the original RTM without having to 384 

go to the extra effort to train the model, which introduces prediction errors? The key advantages are 385 

outlined below. 386 

4.3.1 Advantages over directly interrogating the simulator 387 

The first and most obvious advantage is the lack of a need for an explicit interpolation scheme. 388 

Correlations generated by directly plotting simulator results in both test cases lead to data points 389 

lying on a grid of finite resolution. If intermediate values on this grid were to be determined, an 390 

explicit interpolation scheme would have to be applied, which would introduce errors of its own that 391 

would then need to be quantified. Furthermore, an improvement in the interpolation scheme would 392 

come at the expense of adding one extra point to the grid in each dimension: in the context of Old 393 

Rifle this is an extra 9031 data points (75 − 65  =  9031 going from a 5D grid of 6 points in all 394 

directions to 7) roughly doubling the dataset size. In contrast, since any number of points can be 395 

submitted to the emulator for inference, concerns relating dataset size to sampling resolution are 396 

assuaged. Beyond that, the errors in the model fit are already quantified during training. 397 

More broadly, to explore the dataspace, emulators are extremely fast compared to simulators. The 398 

time for a single query of the emulator is on the order of milliseconds rather than the 399 

seconds/minutes/hours for a single forward RTM simulation. This allows the emulator to be used as a 400 
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tool for efficiently exploring the simulator by rapidly developing intuition for the space itself and 401 

how the simulator behaves in different circumstances. Furthermore, emulator models are easy to 402 

distribute and share with collaborators. Model weights can be published directly or distributed as 403 

standalone files. This means that a well-trained emulator can be made once and then the encoded data 404 

shared. 405 

Lastly, performing a direct interrogation of the simulator requires choices of parameters and ranges, 406 

and results in a grid of points over the region of interest at limited resolution. A similar procedure 407 

must be undertaken when creating a dataset to train the emulator, in so far as ranges and parameters 408 

of interest must be chosen. However, the dataset can always be further added to in a straightforward 409 

manner, further drawing from the random distribution to increase the size of the dataset and thus 410 

improve model performance. With both approaches, using Omphalos means that the data generation 411 

process can be parallelised and using high-performance computing facilities can reduce the 412 

computational expense of interrogating the simulator. This means that all the computational expense 413 

is upfront in both cases since the emulator need only be fit once. 414 

The advantages we outline make the case for the emulator as a tool to be used in conjunction with the 415 

RTM, rather than a replacement for it. The alacrity with which the emulator can be interrogated 416 

means that it is an invaluable tool for investigating RTM behaviour in multiple dimensions. Further 417 

to this, the ability to evaluate the state of a system after a fixed period of time makes the emulator 418 

approach ideally suited for modelling more complex time-series models with time varying boundary 419 

conditions: instead of having to run the RTM forward each time the system changes boundary 420 

conditions, the emulator can be interrogated for the expected result given the systems current state 421 

from the previous regime. 422 
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Emulation makes sensitivity analysis for RTMs simple and allows us to identify correlations and 423 

interactions among parameters that would otherwise be difficult to anticipate, for example the CO2 424 

dependency of microbially mediated reactions (Bethke et al., 2011; Jin and Kirk, 2016, 2018; Paper 425 

et al., 2021). This ability to elucidate unexpected but key model dependencies and sensitivities could 426 

prove invaluable in helping direct RTM development. 427 

4.3.2 Application to Bayesian optimization 428 

A critical advantage of the technique proposed here is that working emulators are essential to 429 

Bayesian optimization. Bayesian optimisation is an approach for finding global maxima and minima 430 

in systems whose objective function is expensive to evaluate and does not return the gradients of that 431 

function (of which RTMs are an example) (Frazier, 2018). Bayesian optimisation works by applying 432 

an acquisition function that calculates the point that will give the most information about the function 433 

that requires optimisation. An emulator is then fit using these data points selected by the acquisition 434 

function and the emulator is updated with a new point each iteration. In this way, the optimiser 435 

balances exploitation of known optima, and exploration of unevaluated regions of the function. Such 436 

an approach can find the global maximum with relatively few evaluations of the RTM. 437 

This study lays the groundwork for future application of Bayesian optimization to highly 438 

dimensioned RTMs, potentially allowing for effective optimization over many different (twenty or 439 

more) parameters at once. By demonstrating that broad (but local) fits to the RTM with an emulator 440 

are possible, we have demonstrated that a GBT regressor can be used as an emulator informing a 441 

Bayesian optimization algorithm in this context. This allows for a constellation of local fits in a 442 

highly dimensioned space as the algorithm searches for the global optimum in problems that would 443 

otherwise be computationally intractable. Bayesian optimisation could even be applied, with a 444 
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suitable loss function, to optimise for multiple objectives at once (subject to trade-offs among 445 

objectives). 446 

4.4 Disadvantages of the emulation approach 447 

This emulation approach relies on the relative computational inexpensiveness of the RTM. In 448 

situations where the underlying model is expensive or time-consuming to evaluate, and 449 

computational resources are limited, then this modelling approach becomes unfeasible. One way to 450 

overcome this limitation is to reduce the resolution of the RTM (as was done in this work), both in 451 

time and space, to lower computation time but this comes at the expense of RTM accuracy. In the 452 

context of analysing the interaction of underlying modelled processes in an RTM, this loss of 453 

resolution may be less of a problem, as we would be primarily concerned with the relationship 454 

among parameters and their impact on outputs, rather than their magnitudes. However, this issue of 455 

computational expense is primarily allayed by the parallelised generation of data alluded to earlier 456 

and only the most expensive RTMs would be intractable for a full emulator fit if this technique was 457 

deployed correctly, and even in this extreme case, Bayesian optimisation would still be possible. 458 

Additionally, caution is needed when choosing the ranges over which the parameters will be drawn 459 

from the uniform random distributions. Key considerations include the number of points being 460 

generated relative to the size of the space being covered—a denser cluster of training data will result 461 

in a tighter fit, at the expense of range. Conversely, too small of a range and the emulator will not 462 

capture key behaviour, or be unable to learn about simulator edge cases, as discussed above with 463 

respect to the bioavailable iron in the Old Rifle RTM. 464 

4.5 Choice of learning algorithm 465 

Gradient boosted trees outperformed other machine-learning methods that we tested while building 466 

the emulators, such as Gaussian process regression. The downsides of GBT include the lack of ability 467 
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to encode smoothness to preclude sharp discontinuities in the concentration-precipitation space or 468 

other such prior assumptions. Furthermore, a low root mean squared error over the entire model fit 469 

region does not necessarily imply a good fit globally; it may be that there are some regions of good 470 

fit and other regions of poor fit which make up an acceptable root mean square error over the whole 471 

space. 472 

4.6 The effect of scale on emulator predictions 473 

Our case study relies on the capacity of CrunchTope to predict changes in mineral volume fraction. 474 

Therefore, the errors in the predictions, and hence the utility of the approach, ultimately depend on 475 

the scale of the system being modelled and thus the sensitivity to what could be very small changes 476 

in mineral volume fraction.  477 

When analysing the emulator to investigate how different processes in the underlying RTM affect 478 

each other, we are primarily considering an issue of whether the emulator can correctly learn the 479 

underlying model behaviour. We are also considering whether the emulator can capture the 480 

behaviour in the output variables with respect to a changing subset of RTM parameters (some of 481 

which we may not have expected at the outset). In this use-case, the emulator is largely concerned 482 

with trends and gradients; Figs. Figure 3, Figure 4, S4, S8, and S9 show that this is accurately 483 

reported in all case studies. Comparing the case study considered in this paper to the additional case 484 

study presented in the Supporting Information we see that they are discretised at different scales (2 m 485 

and 1 cm for the deep-sea sediment column and Old Rifle respectively). However, the emulator for 486 

each RTM has root mean squared error over the dataset (and hence absolute error in prediction) of 487 

the same order of magnitude. This implies that the error in absolute volume precipitated that each 488 

model predicts is different. However, the analysis of the trends and interactions emerging from both 489 

RTMs is equally valid in both cases. 490 
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When concerned with the optimisation capabilities of the emulator, the absolute value of the 491 

optimised quantity and hence the model scale must be considered. In large-scale systems, such as 492 

weathering of the critical zone, the error in the volume fraction change (5.5×10-5 for pyrite) is below 493 

the resolution of measurement techniques for mineral abundance (e.g. XRD and SEM—(Gu et al., 494 

2020)). However, in smaller-scale systems where the microscale environment becomes increasingly 495 

important, these errors in volume fraction become much harder to ignore. For example, in the RTM 496 

experiments exploring the effects of scale on simulating mineral dissolution in porous media 497 

described by Jung and Navarre-Sitchler (2018), significant errors in changes in predicted volume 498 

fraction would propagate into calculated dissolution/precipitation rates, losing sensitivity in the 499 

results. 500 

4.7 Extension to multiple outputs 501 

Multiple output regression (the prediction of a vector of outputs, rather than a single label) is in 502 

active development for XGBoost and is currently available for other machine learning 503 

implementations that we explored, including GPFlow for Gaussian process regression. Given that our 504 

approach is currently limited to the prediction of one label-per-emulator trained, the availability of 505 

regressors that can predict more than one label ‘off the shelf’ will greatly improve the utility of 506 

reactive transport emulation. The prediction of multiple outputs simultaneously will expand the scope 507 

of analysis to investigate the interaction of modelled processes in multiple outputs at once. In the 508 

context of optimisation problems, one possible application of the emulator like this could be to 509 

maximise mineral precipitation in one region of a system while trying to maximise dissolution in 510 

another region. 511 

4.8 Improvements to the model 512 
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This proof-of-concept model demonstrates the fitting of an emulator over a relatively small range of 513 

environmental parameters. Future work will involve expanding the scope of the emulators both in 514 

terms of the number of parameters being varied, but also the range over which they are varied, so the 515 

whole behaviour of the underlying model can be captured with more accuracy. There is also scope 516 

for adding time dependency to the GBT modelling approach, to predict a time series intermediate 517 

RTM states during the evolution of geochemical systems. 518 

4.9 Potential applications 519 

Our emulator approach is flexible; any quantity recorded by an RTM can be used as a target variable, 520 

and so the behaviour of any RTM output can be explored in detail to evaluate the model formulation. 521 

The behaviour of the system in response to the variation of any parameter under any other set of 522 

conditions can be projected out of the model and plotted in a straight-forward manner. This approach 523 

can be extended to two or even three dimensions and time series thereof and ultimately the emulator 524 

can be interrogated for local maxima and minima to solve optimisation problems. This new approach 525 

has potential applications in industry and in environmental remediation where the chemical 526 

composition of amendments can be predicted using an underlying reactive transport simulation, 527 

provided that that system is well understood. 528 

Omphalos also has utility outside of generating datasets for emulation; its automated submission of 529 

CrunchTope input files means it can be used to systematically explore sets of input variables in an 530 

easy way, simply by editing the Omphalos configuration file. 531 

5 Conclusions 532 

We have presented a new approach for interrogating and understanding multi-component RTMs. By 533 

building an emulator of an RTM that captures the multidimensional nature of the underlying model 534 

we have created a new tool for performing global sensitivity analyses on RTMs. This allows us to 535 
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investigate behaviour arising from the interaction among the many disparate processes that comprise 536 

RTMs. For example, we investigated how the Monod-biomass parameterisation of microbial sulfate 537 

reduction interacted with the mechanism of pyrite precipitation. In this example, pyrite precipitation 538 

was inhibited when there was an excess of CO2 in the column because the catabolic pathway was 539 

partially dependent on CO2 concentration. This prevented the growth of sulfate reducing biomass, 540 

ultimately curtailing the production of hydrogen sulfide required for pyrite precipitation. This 541 

behaviour reproduced results previously reported by Jin and Kirk (2016, 2018), and suggest that our 542 

emulation approach has utility in discovering unexpected, but nonetheless real, model behaviours, 543 

potentially directing future lab and field work. 544 

The approach is flexible; any quantity recorded by an RTM can be used as a target variable, and so 545 

the behaviour of any RTM output can be explored in detail to evaluate the model formulation. The 546 

behaviour of the system in response to the variation of any parameter under any other set of 547 

conditions can be projected out of the model and plot in a straight-forward manner. This approach 548 

can be extended to two or even three dimensions and ultimately the emulator can be interrogated for 549 

local maxima and minima to solve optimisation problems. This new approach has potential 550 

applications in industry and in environmental remediation where the chemical composition of 551 

amendments can be predicted using an underlying reactive transport simulation, provided that that 552 

system is well understood. The presentation of this optimisation process to Old Rifle (and to ODP 553 

Site 1086, see supplementary) represents a proof of concept. 554 

6 Code availability 555 

6.1 Omphalos 556 

Omphalos is available on GitHub and Zenodo. Please note you must provide your own CrunchTope 557 

executable. 558 
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https://github.com/a-fotherby/Omphalos 559 

https://doi.org/10.5281/zenodo.7113298 560 

6.2 GBT Models 561 

Jupyter notebooks for fitting the GBT models and plotting the figures are available on GitHub, and a 562 

permanent record is available on Zenodo. 563 

https://github.com/a-fotherby/dissertation_xgboost. 564 

https://doi.org/10.5281/zenodo.7113323 565 

7 Data availability 566 

The data used is available on GitHub and Zenodo. 567 

 https://github.com/a-fotherby/GMD_2022 568 

https://doi.org/10.5281/zenodo.7113379 569 

8 Supplement 570 

Codebase for Omphalos. Model fitting code. Schematic figures of decision tree and the Old Rifle 571 

RTM. Table of predicted optimal values for precipitating pyrite at Old Rifle. Convergence behaviour 572 

of the GBT regressors. Additional co-dependency plots for Old Rifle. Figure showing the effect of 573 

rate law choice on CO2 dependency in the Old Rifle RTM. Supplementary Case Study detailing 574 

application to a deep-sea sediment column. Description of XGBoost implementation. 575 
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