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Abstract 8 

We present an emulation-based approach to understand the interactions among different chemical 9 

and biological processes modelled in environmental reactive transport models (RTMs) and explore 10 

how the parameterisation of these processes influences the results of multi-component RTMs. We 11 

utilize a previously published RTM consisting of 20 primary species, 20 secondary complexes, 17 12 

mineral reactions and 2 biologically-mediated reactions which describes bio-stimulation using 13 

sediment from a contaminated aquifer. We choose a subset of the input parameters to vary over a 14 

range of values. The result is the construction of a new dataset that describes the model behaviour 15 

over a range of environmental conditions. Using this dataset to train a statistical model creates an 16 

emulator of the underlying RTM. This is a condensed representation of the original RTM that 17 

facilitates rapid exploration of a broad range of environmental conditions and sensitivities. As an 18 
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illustration of this approach, we use the emulator to explore how varying the boundary conditions in 19 

the RTM describing the aquifer impacts the rates and volumes of mineral precipitation. A key result 20 

of this work is the recognition of an unanticipated dependency of pyrite precipitation on pCO2 in the 21 

injection fluid due to the stoichiometry of the microbially-mediated sulphatesulfate reduction 22 

reaction. This complex relationship was made apparent by the emulator, while the underlying RTM 23 

was not specifically constructed to create such a feedback. We argue that this emulation approach to 24 

sensitivity analysis for RTMs may be useful in discovering such new coupled sensitives in 25 

geochemical systems and for designing experiments to optimise environmental remediation. Finally, 26 

we demonstrate that this approach can maximise specific mineral precipitation or dissolution 27 

reactions by using the emulator to find local maxima, which can be widely applied in environmental 28 

systems. 29 

Synopsis 30 

This study explores key factors regulating mineralization reactions in near surface environments 31 

revealed by a machine learning approach to reactive transport modelling. 32 

1 Introduction 33 

Reactive transport modelling has been extensively applied across a wide variety of environmental 34 

systems, providing a powerful means of quantifying, and even predicting, processes across Earth’s 35 

(near) surface environments (Richter and DePaolo, 1987; Bain et al., 2000; Johnson et al., 2004; van 36 

Breukelen et al., 2004; Gaus et al., 2005; Torres et al., 2015; Li et al., 2017; Arora et al., 2020; 37 

Molins and Knabner, 2020; Rolle and Borgne, 2020; Druhan et al., 2020; Cama et al., 2020). 38 

Reactive transport models (RTMs) are constructed by combining multiple physical, chemical, and 39 

biological processes to simulate the behaviour of environmental systems. As applications and 40 

software have concurrently expanded (Steefel et al., 2015; Li et al. 2017; Maher & Mayer, 2019; 41 
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Druhan & Tournassatt, 2019), it is becoming increasingly common to explicitly calculate the rates of 42 

production and consumption for a variety of coexisting chemical species, as well as their equilibria 43 

with mineral phases, and their transport as they evolve in time and space. This type of multi-phase, 44 

multi-component RTM is a type of forward modelling where the results of the simulation emerge 45 

from a complex suite of interacting pathways, and hence the causes of observed behaviour are not 46 

always obvious.  47 

RTMs are often designed to describe the behaviour of specific field sites and systems. Due to their 48 

process-based nature, designing RTMs requires selection of a suite of chemical reactions and 49 

transport mechanisms which are thought to dominate the geochemistry of the system over the scales 50 

of interest. However, the parameterisation of various selected processes is often not unique and can 51 

impact system behaviour (Williams et al., 2011; Martinez et al., 2014; Seigneur et al., 2021; Steefel 52 

et al., 2005a). To assess the impact of the choice of parameterisation and the values chosen for 53 

different parameters on model predictions, sensitivity analyses are generally performed (Malaguerra 54 

et al., 2013; Gatel et al., 2019). However, as RTMs become increasingly sophisticated, they 55 

incorporate disparate processes that can interact with each other in complex ways (Dwivedi et al., 56 

2018; Hubbard et al., 2018, 2019; Maavara et al., 2021a, b; Dwivedi et al., 2017). 57 

The sensitivity analysis of an RTM in application to a specific environmental system can elucidate 58 

the relative importance of specific interactions; for example, testing the solubility of mineral phases 59 

relative to changes in the solution chemistry. However, results might emerge that were not 60 

anticipated. These results might represent a real, but unexpected, interactions in which case the 61 

sensitivity analysis has yielded new insight into the system being modelled. Equally, the result might 62 

represent an incorrect interaction between two different processes that are known to act 63 

independently of each other, in which case the RTM can be improved. Unfortunately, due to the 64 

computational expense of many modern multi-component RTMs (e.g. Abd and Abushaikha, 2021; 65 



 
4 

Seigneur et al., 2021; Gharasoo et al., 2022), it is normally impractical to perform sensitivity analyses 66 

in more than a few dimensions and it is up to the investigator to use their knowledge of the system to 67 

choose which sensitivity analyses are necessary to explore (Steefel et al., 2005b). Ideally, we would 68 

be able to systematically perform sensitivity analyses over many model parameters, considering how 69 

model outputs vary as a function of multiple input parameters simultaneously (i.e. in a multivariate 70 

way), while also lightening the computational burden that commonly occurs when using inverse 71 

modelling approaches implemented by codes like PEST and iTOUGH2 (Doherty, 2004; Finsterle et 72 

al., 2017). Such a capacity could direct future laboratory-based investigations to test whether these 73 

model results are real-world phenomena, ultimately offering improved parameterisation of critical 74 

components within the reaction network. 75 

Here, we demonstrate a method for exploring a wide variety of potential model parameters by 76 

adopting an emulator-based approach. Ours is not the first work to apply emulators to RTM 77 

simulations. Notably, a rich vein of research based around replacing the geochemical solver in RTMs 78 

with an emulator has emerged over the past few years (see Laloy and Jacques (2021) and Kyas et al. 79 

(2022), among others). However, the work presented here is less concerned with speeding up 80 

individual RTM simulations as it is with developing new methods to explore geochemical parameter 81 

spaces. We also investigate the effect of changing geochemical parameters on the overall outcome of 82 

RTM simulations, with an eye towards predicting system outcomes in real world scenarios. This is 83 

similar in nature to recent work conducted by Ahmmed et al. (2021), which explores the ability of 84 

different machine learning methods to predict the degree of mixing and the progression of a 85 

simplified, generic reaction (A + B ® C) in a finite element simulation, and we extend the idea of 86 

predicting the final state of a simulation to published RTMs describing real world systems. 87 

Such emulation approaches in predicting the outcomes of physical systems have a long history, 88 

including applications in physics-based animation (Grzeszczuk et al., 1998),complex multi-physics 89 
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simulators (Lu et al., 2021; Bianchi et al., 2016), climate models (Beucler et al., 2019; Krasnopolsky 90 

et al., 2005; Castruccio et al., 2014; Kashinath et al., 2021), and emulating fluid flow through 91 

Dolomite using a neural network (Li et al., 2022). In an emulator approach, the underlying physical 92 

system is approximated by a statistical model (the emulator) which can be evaluated more quickly 93 

than a conventional forward model. How this emulator is constructed varies by implementation and 94 

may encode assumptions about the underlying system to be modelled (e.g. conservation of energy 95 

(Beucler et al., 2019)). In this study, we are primarily interested in exploring and emulating the 96 

geochemical behaviour of RTMs; therefore we focus less on transport effects and restrict ourselves to 97 

emulating one dimensional RTMs. 98 

In our implementation the emulator is built by training a Gradient Boosted Trees (GBT) regressor 99 

(Chen and He, 2015) on a synthetic dataset generated from the original RTM. By training such a 100 

GBT model on the synthetic dataset generated by the original RTM, we create an emulator of the 101 

original system. This emulation approach is general and can be applied to a wide range of RTMs, 102 

using “off the shelf” statistical libraries, requiring no special construction of the statistical model 103 

beyond the choice of some training parameters. This approach can identify the critical processes and 104 

parameters within RTMs and address the requirement for comprehensive, multivariate sensitivity 105 

analyses. 106 

We first present a tool that automates creation of synthetic datasets: a Python wrapper for the RTM 107 

software CrunchTope (Druhan et al., 2013; Steefel et al., 2015), which we have named Omphalos. 108 

Omphalos edits and runs CrunchTope input files in an automated fashion, systematically changing 109 

model parameters according to user specification. It then records the output data, along with the 110 

corresponding model input parameters for later analysis. We then apply a machine learning method 111 

(Gradient Boosted Trees) to these recorded inputs and outputs to create a predicative model that can 112 
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reproduce RTM outputs based on the input variables, which we term a Reactivate Transport 113 

Emulator (RTE). 114 

We suggest that our contribution to the development of Reactive Transport Emulators could be used 115 

to direct new experimental investigation to identify and corroborate predicted dependencies; 116 

providing much-needed multivariate analysis of RTMs and helping to identify effects that can, in the 117 

future, be considered explicitly when developing new RTMs. In pursuit of this goal, we demonstrate 118 

our emulator approach in application to an RTM built for biostimulation of a contaminated aquifer. 119 

We also show an additional application of this approach to efficiently predict the condition which 120 

maximises an RTM-predicted time-integrated rate over the set of chosen parameters. We also 121 

present, in the Supporting InformationSupplement, another example in application to a deep-sea 122 

sediment column. 123 

2 Description of the Case Study 124 

2.1 Old Rifle Site, Colorado 125 

The Old Rifle site is located near Rifle, Colorado, USA. The location historically hosted a vanadium 126 

and uranium ore processing facility, and the groundwater at the site remains high in aqueous 127 

uranium. Oxidised uranium (U(VI)) is fluid-mobile and highly toxic, while reduced uranium (U(IV)) 128 

is much less soluble and forms stable precipitates such as uraninite (UO2) (Anderson et al., 2003; Wu 129 

et al., 2006; Dullies et al., 2010; Williams et al., 2011; Long et al., 2015)(Anderson et al., 2003; Wu 130 

et al., 2006; Dullies et al., 2010; Williams et al., 2011; Long et al., 2015). Thus, uranium reduction 131 

has been suggested as a means for remediating uranium contamination in groundwater. It has been 132 

shown that iron sulfide minerals (FeS2(s)) aid the reduction of soluble U(VI) to insoluble U(IV) 133 

precipitates even after active remediation has ceased (Komlos et al., 2008; Moon et al., 2010; Bargar 134 

et al., 2013; Long et al., 2015; Bone et al., 2017).  135 
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The RTM published for Old Rifle, upon which the RTE is based, was originally created as a 136 

comprehensive model of microbial sulfate reduction and sulfide precipitation in Old Rifle sediment 137 

during stimulation of microbial activity by amendment with C2H3O2# (Druhan et al., 2014) (for a 138 

schematic illustration of this RTM, see Fig. S2S3). In this context, we choose to vary the influent 139 

boundary condition chemistry, representing changes to the chemical composition of the artificial 140 

groundwater injectate. The original experiment was designed to model microbial sulfate and iron 141 

reduction in the sediment; therefore, we use net amorphous iron (II) sulfide (FeS(am)), and pyrite 142 

(FeS2(s)) precipitation (both hereafter referred to simply as ‘pyrite’) as an observable that will record 143 

the sensitivities of the model predictions to changes in the injection fluid. We also demonstrate the 144 

utility of the emulator in predicting the chemical composition of the injection fluid that will 145 

maximise the volume of pyrite precipitated in the sediments when amended with a labile organic 146 

carbon source via injection wells. 147 

3 Methodology 148 

3.1 General Strategy 149 

To explore the dependence of the RTM on the chosen environmental variables, we begin with a 150 

Monte Carlo approach; we draw random values for each parameter and record the model output 151 

under that randomised condition. We then fit a model to this Monte-Carlo-generated dataset using a 152 

GBT regressor. This fitting results in a model (our emulator—RTE) that reproduces the complex 153 

interdependencies of chemical species that are encoded in the original, underlying, RTM. This 154 

emulator can be interrogated to examine the dependence of the RTM outputs on the originally chosen 155 

environmental variables in an efficient, multivariate way. This new way of performing sensitivity 156 

analyses has the potential to give insight into trends and relationships that would not be apparent 157 

otherwise and ultimately allows us to investigate the sensitivity of the model outputs with respect to 158 
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the RTM’s original parameterisation. First, we will describe how we use the Monte Carlo approach 159 

to generate data and then how we fit a model to this data. The overall workflow is shown in Figure 160 

1Fig. 1. 161 

 162 

Figure 1: Flowchart describing the overall reactive transport emulation workflow developed in 163 
this study. It is divided into two key sections: preparation of the input reactive transport model 164 
for submission to Omphalos, and the analysis and emulation of the resultant data. 165 

3.2 Generating Data 166 

We use the open-source software CrunchTope as the reactive transport framework for the models in 167 

this study. To generate the synthetic datasets necessary for our approach, and given the time-168 
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consuming nature of generating a single point (requiring a complete run of the RTM, along with 169 

modified boundary conditions), we developed a software package in Python to automate this process. 170 

This software package can manage the automatic generation and submission of unique input files to 171 

CrunchTope, as well as recording the output of each run, storing it in a manageable data structure for 172 

future use. Use of the software package is straight-forward, requiring the configuration of a single file 173 

listing which species/parameters are to be varied, and how they should be varied. 174 

We have named this software package Omphalos (available for download—Sect. 6.15.1). Omphalos 175 

can be run on clusters using Simple Linux Utility for Resource Management (Yoo et al., 2003)(Yoo 176 

et al., 2003) to execute input files in parallel, or run locally with CrunchTope simulations on 177 

individual CPUs, which considerably reduces the time required to generate large datasets. Omphalos 178 

works by taking random values which are drawn from uniform distributions (other statistical 179 

distributions are possible) of the chosen variables, sampling the space evenly. This provides a 180 

complete dataset for training the emulator. 181 

While the underlying principle of training emulators on synthetic data can be applied to any reactive 182 

transport code, currently the software used to implement the approach is only compatible with 183 

CrunchTope, because the input file reading and writing must be in a specific format. The approach is 184 

readily generalized, however, and the methodology could be applied to any RTM software (e.g. 185 

Geochemist’s Workbench, TOUGHREACT), provided that the string input/output code is adapted 186 

for compatibility. To use other RTMs with Omphalos, two key factors need to be addressed: 187 

compatibility with Omphalos, and the computational expense of a single RTM run. 188 

3.3 Application to Contaminated Aquifer Case Study 189 

We begin by applying the emulation methodology to our case study. To create the dataset for training 190 

the emulator, we collected the results of 10,927 unique CrunchTope simulations based on the original 191 
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RTM describing Old Rifle using Omphalos, drawing random concentrations for each speciesfive 192 

chosen species (NH4+, SO42#, Ca2+, C2H3O2#, and pCO2) in the boundary condition. Of these 10,927 193 

runs, 9416 provide useable data because some runs fail to converge within the specified timeframe, 194 

or the geochemical condition generated cannot be charge balanced. Excluding these runs helps ensure 195 

that our dataset is kept realistic, because our RTM is built on a mechanistic understanding and 196 

implementation of the physical processes at work in the system that have been validated in some 197 

way. Therefore, runs that take excessively long to run are failing to converge in the simulation 198 

scheme of CrunchTope, and hence likely to be unphysical in some way. Similarly, runs that fail to 199 

speciate or charge balance indicate some kind of extreme physical condition that is unlikely to be 200 

realistic and so are excluded. The concentrations for NH4+, SO42#, Ca2+, and C2H3O2# are varied 201 

between 0–30 mM. The pCO2 is varied between 0–10 bar. We acknowledge that these ranges of 202 

concentrations are somewhat higher than those that occur in natural systems, but we extend the range 203 

to observe RTM behaviours at limiting concentrations. Related to this, it is possible for the dominant 204 

reaction mechanism in a system to change under differing conditions (e.g. the change in calcite 205 

dissolution mechanism as a function of pH (Dolgaleva et al., 2005)) and any such behaviour should 206 

be explicitly encoded into the RTM, otherwise the emulator may give invalid predictions under 207 

conditions that are far from the original model run. We have assumed in this study that the 208 

mechanisms governing the precipitation of pyrite do not change under very low or very high 209 

concentrations of these species.  210 

The injection fluid was constrained at pH 7.2. This constraint, in conjunction with the concentration 211 

of various species iterated in Omphalos, speciates according to CrunchTope’s internal speciation 212 

calculation. Therefore, for example, although the total amount of SO42# in the injection will be 213 

iterated in, and dictated by, Omphalos, the amount that speciates into other aqueous complexes (i.e. 214 
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secondary species) like HSO4# or H$SO%(&') is controlled by CrunchTope. For the sake of simplicity, 215 

we will report the input concentration, not the concentration after speciation. 216 

The RTM describing Old Rifle has 100 grid cells with a size of 1 cm. Each run of the RTM took 217 

approximately 90 seconds, so the total time to generate the dataset was roughly four hours when run 218 

on a remote machine with 200 CPUs. The number of runs was chosen as a balance between what was 219 

computationally tractable and the ability of the emulator to achieve a good fit. We have intentionally 220 

chosen to vary some chemical species in the influent boundary condition that do not play an obvious 221 

role in the mineral precipitation process we are particularly interested in, namely, the precipitation of 222 

pyrite in Old Rifle sediments (e.g., NH4+ or Ca2+, respectively). We did this to see if we can use the 223 

emulator to detect behaviour in the RTM beyond what we might initially hypothesise. 224 

3.4 Fitting the emulator 225 

We implement the GBT regressor using XGBoost (Chen and He, 2015) in Python. The code for 226 

fitting the models is available in the Supplement. For a precis on GBT models, see the supplement 227 

Sect. S1.2. 228 

3.4.1 Data Strategy 229 

Data generated by Omphalos was imported into a Jupyter notebook environment from the .pkl output 230 

file. There are 9416 different input file runs in this data file., having excluded 1511 runs on the 231 

grounds of them being unrealistic, as discussed previously. The relevant data was indexed out of the 232 

data structure; in our case this meant the concentrations of NH4+, SO42-,SO42#, Ca2+, and C2H3O2# in 233 

the boundary condition, as well as value of pCO2. This results in a 5´9416 array of floating-point 234 

numbers for the features. Each feature was then normalised to be in the range 0 to 1 for training. For 235 

example, values of SO42# concentration in the simulations were drawn randomly between 0 and 30 236 

mM, so all SO42# concentrations were divided through by 30 to have values in the range 0–1. We did 237 
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this to improve the training performance of the GBT model over different datasets (i.e. so that the 238 

same GBT model can be applied to both the Old Rifle case study, and our supplementary case study 239 

of ODP Site 1086 (see Supplement, Sect. 3). 240 

 Similarly, the relevant data was also extracted from the data file: for each cell in the gridded RTM, 241 

we calculated the net pyrite precipitation over the course of the simulation, and then summed this 242 

value over the column to get the net pyrite precipitated across the domain. This results in a 1´9416 243 

array of floating-point labels to be predicted from the feature array. We scale this feature array by a 244 

factor of 1´104 to avoid issues with small floating-point numbers in XGBoost. 245 

We prepared these data for training the GBT regressor with a hold-out strategy using the 246 

scikitlearn.train_test_split method, keeping 10% of the dataset back for validating the model. Data 247 

was split randomly within the dataset. This means that 8474 randomly selected data points were used 248 

to train the model and 942 randomly selected data points were used to test it by using the model to 249 

predict a value based on the held back data and comparing the prediction to the true value. 250 

3.4.2 Training Strategy 251 
We use the test set of data points generated by Omphalos to train an XGBoost regressor using 252 

squared error as the loss function to predict the amount of pyrite precipitated in the column as a 253 

function of varied species concentrations in the boundary condition. Squared log loss, and pseudo-254 

Huber error wewere also tried but squared loss performed best overall. Training curves showing the 255 

testing and training loss as training progressions are given the supplement, Fig. S2. 256 

 Hyperparameter choices for the model are explained and given in the supplement, Sect. S1.3, Table 257 

S1. The choice of hyperparameters is the same for each emulator model, and we are able to achieve 258 

high quality fits using the default XGBoost regularisations, only changing a few settings relating to 259 

tree growth policy. While it is a known problem in machine learning that the choice of optimal 260 



 

 
13 

hyperparameter is dependent on the data being modelled (Claesen and De Moor, 2015), it appears 261 

that in the context of these RTEs, the hyperparameters chosen give a good fit for both Old Rifle and 262 

our supplementary case study of ODP Site 1086: datasets describing very different natural 263 

environments, with different length and time scales. This makes the workflow applicable across a 264 

wide variety of reactive transport modelling domains. 265 

It is possible that with more complex hyperparameter tuning, better emulator fits may be achieved, 266 

but for the purposes outline in this paper, we suggest that this automated optimisation of a subset of 267 

the available hyperparameters is sufficient, and represents a balance between emulator fit, 268 

generalisability across differing RTMs, and time spent by the user. 269 

3.4.3 Model metrics 270 

We report our model goodness-of-fit to the underlying dataset as the R2 value for the model, using 271 

the built in XGBRegressor.score() method from XGBoosts Scikit-Learn API, on both the original 272 

training dataset, as well as the 10% of the dataset held back for validation, show in Table 1. We also 273 

report the root-mean-square error (RMSE) over both the training and validation datasets, calculated 274 

using the Booster.eval() method. Training curves are shown in the supplementary, Figure S2. We 275 

report the same metrics for our second model in the supplementary, Table S4. 276 

Dataset R2 RMSE 

Training 0.99996 1.95012 

Validation 0.99964 5.65848 

Table 1: Training and validation metrics for the XGBoost regressor model fit to the Old Rifle 277 
dataset. R2 represent a normalized measure of the fit quality, with the best possible score being 278 
1. RMSE is the root-mean-squared error in the predictions, where we recall that in data pre-279 
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processing that the values to be predicted were multiplied by a factor of 104,  and so the RMSE 280 
should be divided by that factor when assessing the average error on data presented in Figures 281 
2, 3, and 4. 282 

4 Results and discussion 283 

4.1 Application to the Old Rifle Site 284 

The synthetic data generated using Omphalos to interrogate the underlying RTM are shown in Fig. 2, 285 

colour mapped by the pCO2 with which the injectate solution is in equilibrium. The colour mapping 286 

helps visualise how variability in the precipitated volume of pyrite over the 43-day RTM simulation 287 

might be considered in conjunction with other model parameters. Ultimately, pyrite forms because 288 

aqueous hydrogen sulfide, produced through microbial sulfate reduction, reacts with reduced ferrous 289 

iron (Fe(II)) to form pyrite. Thus, we aim to explore the interdependencies between the mechanisms 290 

driving microbial sulfate reduction and the subsequent precipitation of pyrite, as they emerge due to 291 

variations in injectate chemical composition. 292 
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 293 

Figure 2: Scatter plots of chemical concentrations in the fluid injectate (influent boundary 294 

condition) for an RTM adapted to Old Rifle sediments colour-mapped by the pCO2 with which 295 

the inlet boundary condition is in equilibrium. The dataset comprises 9416 points generated by 296 

drawing concentrations for all five species independently from uniform random distributions, 297 

with the corresponding net increase in pyrite volume fraction precipitated (y-axis) calculated 298 

by running the Old Rifle RTM designed by Druhan et al. (2014) with the randomised influent 299 
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boundary condition.(2014) with the randomised influent boundary condition. The green 300 

diamond indicates the net pyrite volume fraction generated from the original boundary 301 

condition used in Druhan et al. (2014). 302 

We then train the emulator on this synthetic dataset. Fitting a GBT regressor to the data in Fig. 2 303 

means Fig. 3 can be generated by the emulator. This figure shows how the emulator predicts the 304 

change in pyrite volume fraction as the concentration of each of the species in the injection fluid is 305 

varied (other species in the RTM not defined as variables in this study are held constant at values 306 

reported by Druhan et al. (2014)). The convergence of the emulator is shown in Fig. S3.(2014)). We 307 

stress that the RTM results shown in Fig. 3 are not part of the training dataset, and that the emulator 308 

has not been exposed to these exact values. This demonstrates the capability of the emulator to 309 

reproduce the underlying RTM itself. For example, Fig. 2A suggests visually that the concentration 310 

of NH4+ in the system is uncorrelated with net pyrite precipitation at the Old Rifle Site. Fig. 3A 311 

confirms this lack of dependence on NH4+., capturing the correct trend (with some noise) although 312 

being slightly offset. This slight offset also applies to Fig. 3C in the fit of the Ca2+ dependence. We 313 

suggest that these slight offsets to the fits in the cases of the weakly or uncorrelated variables is due 314 

to the emulator preferentially capturing stronger dependencies and slightly drawing down the 315 

predicated variable on average. 316 

In contrast to the minimal impact that changing NH4+ concentration has on pyrite precipitation, 317 

C2H3O2# and SO42# concentrations correlate strongly with net pyrite precipitation. This is as expected 318 

in a system where C2H3O2#, which is the electron donor for microbial sulfate reduction, enables 319 

sulfate to be reduced to sulfide and thus drive pyrite precipitation in the presence of Fe(II). 320 

Approximately 20 days after C2H3O2# amendment, microbial sulfate reduction takes over from 321 

dissimilatory iron reduction as the dominant process consuming C2H3O2#. As microbial sulfate 322 
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reduction requires eight-times the number of electrons per mole of SO42# reduced than dissimilatory 323 

iron reduction requires (per mole of iron reduced), the electron donor (C2H3O2#) begins to be rapidly 324 

consumed, whereas during dissimilatory iron reduction it was effectively in excess. As a result of this 325 

new scarcity of C2H3O2#, the rate of dissimilatory iron reduction drops and so does the concentration 326 

of Fe(II). However, dissimilatory iron reduction is still active in the column, releasing a small—but 327 

non-zero—flux of aqueous Fe(II) that allows for continued pyrite precipitation. The emulator 328 

interprets this as Fe(II) being ‘always’ available in this system, and thus predicts that pyrite 329 

precipitation can scale linearly with SO42# and C2H3O2#, as shown in Fig, 4A. The sediment itself 330 

would need to contain abundant ferrihydrite, goethite, or another bioavailable ferri(hydr)oxide for 331 

this reduction to continue indefinitely; this may not be the case. This highlights the need for the range 332 

of parameters sampled when training the emulator to be sufficiently wide to capture all the RTM 333 

behaviour, otherwise it may extrapolate and “learn” incorrect assumptions about the system: in this 334 

case that bioavailable iron never limits dissimilatory iron reduction. One solution would be to expand 335 

the range over which concentrations are drawn to reach the limit where iron-bearing mineral volume 336 

fraction becomes a limiting factor so that the model can learn what happens when this occurs. 337 
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 338 

Figure 3: Plots of the GBT model fit (blue line) plotted over the results from the underlying 339 

RTM (black + symbols) when interrogated with the same input parameters (which are taken as 340 

ground truth). Each plot shows the net volume fraction due to pyrite precipitation as a 341 

percentage of the initial volume fraction of the sediment as each parameter is varied while all 342 

other parameters are held at the values used in the original experiment by Druhan et al. (2014). 343 

The emulator (blue line) captures the overall trends in the data. The lack of smoothness in the 344 

emulator predications arises from the inability to encode this as a condition in XGBoost and 345 

the discreet nature of the decision tree algorithm. The RTM results compared to here are not 346 

part of the training dataset, and so the emulator has not been exposed to those exact values. 347 

We also note that our emulator suggests that increasing pCO2 leads to decreased pyrite precipitation 348 

(Figure 4Fig. 3E), a relationship that may not have been apparent in a single run of the RTM. Three-349 

dimensional visualisation of the data confirms that the pyrite-volume-fraction-change varies as a 350 
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function of pCO2 net pyrite precipitated decreasing as pCO2 increases (Fig. 4B and Fig. 4C). This 351 

three-dimensional visualisation allows us to see that the gradient of the pyrite-volume-fraction-352 

change with respect to SO42# and C2H3O2# is itself a function of pCO2 and flattens as pCO2 increases. 353 

To understand why the gradient changes, we must first understand why pCO2 affects the amount of 354 

pyrite precipitated in the first place. 355 

Sediment samples from Old Rifle are initially poised for dissimilatory iron reduction and there is a 356 

sizeable community of iron-reducing bacteria naturally present in the system. The background 357 

sulfate-reducing microbial community is initially relatively small and thus, for microbial sulfate 358 

reduction to proceed at significant rates, the mass of sulfate-reducing bacteria must first increase. In 359 

the original experiment by Druhan et al. (2014), the sulfate-reducing biomass begins reaching a size 360 

where it can start consuming large quantities of C2H3O2# around day 20 of the experiment. This 361 

biomass growth is modelled in CrunchTope using a Monod-biomass rate law (Jin and Bethke, 2005), 362 

which has both an anabolic and catabolic component. In the formulation of this Monod-Biomass rate 363 

law as implemented in CrunchTope, the thermodynamic term (Gibbs free energy of the reaction) is 364 

calculated exclusively using the catabolic pathway. The catabolic pathway for this reaction (in terms 365 

of the exchange of one electron) is given below in Equation (4.1), and the form of the Gibbs free 366 

energy is this context is given in Equation (4.2) (we take the phosphorylation potential to be 0, and 367 

the average stoichiometric number to be 1, see derivation in Jin and Bethke (2005) for further 368 

details). 369 
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Taking this form for the Gibbs free energy of the reaction and substituting it into the thermodynamic 372 

term of the reaction rate calculation as implemented in CrunchTope (Steefel et al., 2015) gives 373 

Equation (4.3) below describing the rate of microbial sulfate reduction in the Rifle RTM. 374 
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𝑅./ is the overall rate of microbial sulfate reduction, 𝑘012 the rate constant for microbial sulfate 378 

reduction, 𝐵 is the biomass concentration, and 𝐾7189[X] is a half-saturation constant. The two Monod 379 

kinetic factors for the electron donor (C2H3O2#) and the electron acceptor (SO42#) are referred to as FD 380 

and FA respectively (Jin and Bethke, 2003, 2005, 2007). Equation (4.4) illustrates the underlying 381 

relationship between pCO2 in the injectate solution and the resulting accumulation of pyrite. As the 382 

pCO2 of in the injectate increases, the FT term becomes smaller, inhibiting the overall rate of 383 

microbial sulfate reduction (Fig. S5). Consequently, biomass growth is also inhibited, and the rate of 384 

microbial sulfate reduction is never high enough to produce the concentration of H2S(aq) required for 385 

significant pyrite precipitation. This explains why the model suggests that the gradient of the pyrite 386 

volume precipitated with respect to both C2H3O2# and SO42# varies as a function of pCO2 in the 387 
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injectate. When pCO2 is low and both SO42# and C2H3O2# are large with respect to their half 388 

saturation constants (Equation (4.4)), the overall Monod-biomass rate law will approach 𝐵𝑘012. 389 

 390 

Figure 4: A selection of the GBT model predictions of the percentage volume fraction increase 391 

due to pyrite precipitation as a result of varying two parameters simultaneously for selected 392 

pairs of variables. Other model parameters are held at the values used in Druhan et al. (2014). 393 

The remaining variable-pair plots are provided in Fig. S4. 394 

This dependence emerged somewhat unexpectedly from the emulator, as one would not inherently 395 

expect a relationship between injectate pCO2 and SO42# reduction rates, yet it agrees with results 396 

previously reported by Jin and Kirk (2016, 2018) as well as Paper et al. (2021). These studies related 397 

the influence of pCO2 and pH to the rate of microbial reactions, both in vitro, in situ, and in silico. 398 

We suggest that our type of analysis could be used to direct future lab and field work to test 399 

hypotheses suggested by the results generated by running the emulator. 400 

This analysis also explains some of the features observed in Fig. 4A: the gradients of C2H3O2# and 401 

SO42# are coupled in such a way as to indicate that if one is in excess, then the other becomes limiting 402 

in the production of H2S(aq) and hence the precipitation of pyrite. However, the limiting behaviour 403 

when both are in excess seems to indicate that given enough SO42# and C2H3O2#, pyrite precipitation 404 

can continue indefinitely assuming suitably low pCO2. Given this prediction, it is sensible to check 405 
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whether, at such high levels of SO42# and C2H3O2# as the model suggests for maximum pyrite 406 

precipitation, there is indeed enough Fe(II) available in the system to precipitate pyrite: this is a 407 

second potential dependence as mentioned above. 408 

Lastly, the model can be interrogated in all 5 dimensions and the amendment fluid composition that 409 

corresponds to the largest net pyrite precipitation over the modelled interval can be determined. We 410 

do this simple optimisation by evaluating the emulator at regular intervals across all 5 dimensions at 411 

intervals of ~2 mM (intervals of ~0.67 mM for pCO2) in the range that the emulator was trained on 412 

(0–30 mM, except for pCO2 which has a range of 0–10 mM). This corresponds to checking 759375 413 

different boundary conditions to find which boundary condition results in the most net pyrite 414 

precipitation and takes ~7 minutes. This amendment composition is shown in Table S1. The total 415 

change in volume fraction due to pyrite precipitation predicted by the emulator is 0.143 and the 416 

actual RTM modelled precipitation when this boundary condition is used is 0.150. There is a 4.7% 417 

absolute error on the net pyrite volume fractions change predicted by the emulator when compared to 418 

the actual net pyrite precipitation calculated by the RTM. This error is inherent in statistical learning 419 

techniques but can be further mitigated with larger training datasets, in conjunction with different 420 

emulator training hyperparameterisations: an area for future improvement to the methodology. These 421 

optimised conditions represent an almost four-fold increase in the amount of pyrite precipitated in the 422 

original RTM for Old Rifle (Druhan et al., 2014). 423 

4.2 Advantages and drawbacks of the emulation approach 424 

In this study, 9416 individual RTM simulations were used to train a GBT regression model to predict 425 

a specific model output, in this case net pyrite precipitation. This emulator is a reduced representation 426 

of the complex system of equations in the underlying RTM, having a faster computational time but 427 

introducing some prediction errors. We now discuss the key advantages and drawbacks of this 428 

emulation approach. 429 
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4.3 Advantages of the emulation approach 430 

9416 RTM runs were used to train the emulator (the data shown in Fig. 2). This number of runs could 431 

instead be used to perform a sensitivity analysis in all five variables at a spacing of ~4.8 mM between 432 

points by directly interrogating the simulator. What then, is the advantage of the emulation approach, 433 

if the same information can be visualised from discreet runs of the original RTM without having to 434 

go to the extra effort to train the model, which introduces prediction errors? The key advantages are 435 

outlined below. 436 

4.3.1 Advantages over directly interrogating the simulator 437 

The first and most obvious advantage is the lack of a need for an explicit interpolation scheme. 438 

Correlations generated by directly plotting simulator results in both test cases lead to data points 439 

lying on a grid of finite resolution. If intermediate values on this grid were to be determined, an 440 

explicit interpolation scheme would have to be applied, which would introduce errors of its own that 441 

would then need to be quantified. Furthermore, an improvement in the interpolation scheme would 442 

come at the expense of adding one extra point to the grid in each dimension: in the context of Old 443 

Rifle this is an extra 9031 data points (7: − 6:  =  9031 going from a 5D grid of 6 points in all 444 

directions to 7) roughly doubling the dataset size. In contrast, since any number of points can be 445 

submitted to the emulator for inference, concerns relating dataset size to sampling resolution are 446 

assuaged. Beyond that, the errors in the model fit are already quantified during training. 447 

More broadly, to explore the dataspace, emulators are extremely fast compared to simulators. The 448 

time for a single query of the emulator is on the order of milliseconds rather than the 449 

seconds/minutes/hours for a single forward RTM simulation. This allows the emulator to be used as a 450 

tool for efficiently exploring the simulator by rapidly developing intuition for the space itself and 451 

how the simulator behaves in different circumstances. Furthermore, emulator models are easy to 452 
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distribute and share with collaborators. Model weights can be published directly or distributed as 453 

standalone files. This means that a well-trained emulator can be made once and then the encoded data 454 

shared. 455 

Lastly, performing a direct interrogation of the simulator requires choices of parameters and ranges, 456 

and results in a grid of points over the region of interest at limited resolution. A similar procedure 457 

must be undertaken when creating a dataset to train the emulator, in so far as ranges and parameters 458 

of interest must be chosen. However, the dataset can always be further added to in a straightforward 459 

manner, further drawing from the random distribution to increase the size of the dataset and thus 460 

improve model performance. With both approaches, using Omphalos means that the data generation 461 

process can be parallelised and using high-performance computing facilities can reduce the 462 

computational expense of interrogating the simulator. This means that all the computational expense 463 

is upfront in both cases since the emulator need only be fit once. 464 

The advantages we outline make the case for the emulator as a tool to be used in conjunction with the 465 

RTM, rather than a replacement for it. The alacrity with which the emulator can be interrogated 466 

means that it is an invaluable tool for investigating RTM behaviour in multiple dimensions. Further 467 

to this, the ability to evaluate the state of a system after a fixed period of time makes the emulator 468 

approach ideally suited for modelling more complex time-series models with time varying boundary 469 

conditions: instead of having to run the RTM forward each time the system changes boundary 470 

conditions, the emulator can be interrogated for the expected result given the system’s current state 471 

from the previous regime. 472 

Emulation makes sensitivity analysis for RTMs simple and allows us to identify correlations and 473 

interactions among parameters that would otherwise be difficult to anticipate, for example the CO2 474 

dependency of microbially mediated reactions (Bethke et al., 2011; Jin and Kirk, 2016, 2018; Paper 475 
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et al., 2021). This ability to elucidate unexpected but key model dependencies and sensitivities could 476 

prove invaluable in helping direct RTM development. 477 

4.3.2 Application to Bayesian optimization 478 

4.3.2 A critical advantage of the technique proposed here is that working emulators are 479 

essential toUsing emulators to identify new feedbacks 480 

As modern RTMs grow in sophistication and complexity, they increasingly draw on large suites of 481 

chemical and mineralogical information from vast databases, which constitute large sets of non-linear 482 

equations all coupled through transport and fluid chemistry. While it is true that for a sufficiently 483 

simple model, coupled geochemical behavior could be deduced by reasoning about the governing 484 

equation of the systems, for a large, modern RTM it is inevitable that during development some 485 

feedbacks will be overlooked. 486 

Emulation makes sensitivity analysis for RTMs simple and allows us to identify correlations and 487 

interactions among parameters that would otherwise be difficult to anticipate by allowing an 488 

investigator to quickly test a wide variety of hypotheses.  We demonstrate this in the case of Old 489 

Rifle by identifying the CO2 dependency of microbially mediated reactions (Bethke et al., 2011; Jin 490 

and Kirk, 2016, 2018; Paper et al., 2021). This ability to elucidate unexpected but key model 491 

dependencies and sensitivities could prove invaluable in helping direct RTM development. 492 

4.3.3 Application to Bayesian optimization 493 

A critical advantage of the technique proposed here is that emulation is an essential part of Bayesian 494 

optimization. Bayesian optimisation is an approach for finding global maxima and minima in systems 495 

whose objective function is expensive to evaluate and does not return the gradients of that function 496 

(of which RTMs are an example) (Frazier, 2018).(Frazier, 2018). Bayesian optimisation works by 497 

applying an acquisition function that calculates the point that will give the most information about 498 
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the function that requires optimisation. An emulator is then fit using these data points selected by the 499 

acquisition function and the emulator is updated with a new point each iteration. In this way, the 500 

optimiser balances exploitation of known optima, and exploration of unevaluated regions of the 501 

function. Such an approach can find the global maximum with relatively few evaluations of the 502 

RTM. 503 

This study lays the groundwork for future application of Bayesian optimization to highly 504 

dimensioned RTMs, potentially allowing for effective optimization over many different (twenty or 505 

more) parameters at once. By demonstrating that broad (but local) fits to the RTM with an emulator 506 

are possible, we have demonstrated that a GBT regressor can be used as an emulator informing a 507 

Bayesian optimization algorithm in this context. This allows for a constellation of local fits in a 508 

highly dimensioned space as the algorithm searches for the global optimum in problems that would 509 

otherwise be computationally intractable. Bayesian optimisation could even be applied, with a 510 

suitable loss function, to optimise for multiple objectives at once (subject to trade-offs among 511 

objectives). 512 

4.4 Disadvantages of the emulation approach 513 

This emulation approach relies on the relative computational inexpensiveness of the RTM. In 514 

situations where the underlying model is expensive or time-consuming to evaluate, and 515 

computational resources are limited, then this modelling approach becomes unfeasible. One way to 516 

overcome this limitation is to reduce the resolution of the RTM (as was done in this work), both in 517 

time and space, to lower computation time but this comes at the expense of RTM accuracy. In the 518 

context of analysing the interaction of underlying modelled processes in an RTM, this loss of 519 

resolution may be less of a problem, as we would be primarily concerned with the relationship 520 

among parameters and their impact on outputs, rather than their magnitudes. However, this issue of 521 
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computational expense is primarilycan be allayed by the parallelised generation of data alluded to 522 

earlier and only the most expensive RTMs would be intractable for a full emulator fit if this 523 

technique was deployed correctly, and even in this extreme case, Bayesian optimisation would still 524 

be possible. 525 

Additionally, caution is needed when choosing the ranges over which the parameters will be drawn 526 

from the uniform random distributions. Key considerations include the number of points being 527 

generated relative to the size of the space being covered—a denser cluster of training data will result 528 

in a tighter fit, at the expense of range. Conversely, too small of a range and the emulator will not 529 

capture key behaviour, or be unable to learn about simulator edge cases, as discussed above with 530 

respect to the bioavailable iron in the Old Rifle RTM. 531 

4.5 Choice of learning algorithm 532 

Gradient boosted trees outperformed other machine-learning methods that we tested while building 533 

the emulators, such as Gaussian process regression. The downsides of GBT include the lack of ability 534 

to encode smoothness to preclude sharp discontinuities in the concentration-precipitation space or 535 

other such prior assumptions. Furthermore, a low root mean squared error over the entire model fit 536 

region does not necessarily imply a good fit globally; it may be that there are some regions of good 537 

fit and other regions of poor fit which make up an acceptable root mean square error over the whole 538 

space. 539 

4.6 The effect of scale on emulator predictions 540 

Our case study relies on the capacity of CrunchTope to predict changes in mineral volume fraction. 541 

Therefore, the errors in the predictions, and hence the utility of the approach, ultimately depend on 542 

the scale of the system being modelled and thus the sensitivity to what could be very small changes 543 

in mineral volume fraction.  544 
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When analysing the emulator to investigate how different processes in the underlying RTM affect 545 

each other, we are primarily considering an issue of whether the emulator can correctly learn the 546 

underlying model behaviour. We are also considering whether the emulator can capture the 547 

behaviour in the output variables with respect to a changing subset of RTM parameters (some of 548 

which we may not have expected at the outset). In this use-case, the emulator is largely concerned 549 

with trends and gradients; Figs. 2, 3,3, 4, S4, S8, and S9 show that this is accurately reported in all 550 

case studies. Comparing the case study considered in this paper to the additional case study presented 551 

in the Supplement we see that they are discretised at different scales (2 m and 1 cm for the deep-sea 552 

sediment column and Old Rifle respectively). However, the emulator for each RTM has root mean 553 

squared error over the dataset (and hence absolute error in prediction) of the same order of 554 

magnitude. This implies that the error in absolute volume precipitated that each model predicts is 555 

different. However, the analysis of the trends and interactions emerging from both RTMs is equally 556 

valid in both cases. 557 

When concerned with the optimisation capabilities of the emulator, the absolute value of the 558 

optimised quantity and hence the model scale must be considered. In large-scale systems, such as 559 

weathering of the critical zone, the error in the volume fraction change (5.5×10-5 for pyrite) is below 560 

the resolution of measurement techniques for mineral abundance (e.g. XRD and SEM—(Gu et al., 561 

2020)(Gu et al., 2020)). However, in smaller-scale systems where the microscale environment 562 

becomes increasingly important, these errors in volume fraction become much harder to ignore. For 563 

example, in the RTM experiments exploring the effects of scale on simulating mineral dissolution in 564 

porous media described by Jung and Navarre-Sitchler (2018), significant errors in changes in 565 

predicted volume fraction would propagate into calculated dissolution/precipitation rates, losing 566 

sensitivity in the results. 567 

4.7 Extension to multiple outputs 568 
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Multiple output regression (the prediction of a vector of outputs, rather than a single label) is 569 

experimentally available in active development for XGBoost and is currently available forsupported 570 

by other machine learning implementations that we explored, including GPFlow for Gaussian 571 

process regression. Given that our approach is currently limited to the prediction of one label-per-572 

emulator trained, the availability of regressors that can predict more than one label ‘off the shelf’ will 573 

greatly improve the utility of reactive transport emulation. The prediction of multiple outputs 574 

simultaneously will expand the scope of analysis to investigate the interaction of modelled processes 575 

in multiple outputs at once. In the context of optimisation problems, one possible application of the 576 

emulator like this could be to maximise mineral precipitation in one region of a system while trying 577 

to maximise dissolution in another region. 578 

4.8 Improvements to the model 579 

This proof-of-concept model demonstrates the fitting of an emulator over a relatively small range of 580 

environmental parameters. Future work will involve expanding the scope of the emulators both in 581 

terms of the number of parameters being varied, but also the range over which they are varied, so the 582 

whole behaviour of the underlying model can be captured with more accuracy. There is also scope 583 

for adding time dependency to the GBT modelling approach, to predict a time series of intermediate 584 

RTM states during the evolution of geochemical systems. 585 

4.9 Potential applications 586 

Our emulator approach is flexible; any quantity recorded by an RTM can be used as a target variable, 587 

and so the behaviour of any RTM output can be explored in detail to evaluate the model formulation. 588 

The behaviour of the system in response to the variation of any parameter under any other set of 589 

conditions can be projected out of the model and plotted in a straight-forward manner. This approach 590 

can be extended to two or even three dimensions and time series thereof and ultimately the emulator 591 
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can be interrogated for local maxima and minima to solve optimisation problems. This new approach 592 

has potential applications in industry and in environmental remediation where the chemical 593 

composition of amendments can be predicted using an underlying reactive transport simulation, 594 

provided that that system is well understood. 595 

Omphalos also has utility outside of generating datasets for emulation; its automated submission of 596 

CrunchTope input files means it can be used to systematically explore sets of input variables in an 597 

easy way, simply by editing the Omphalos configuration file. 598 

5 Conclusions 599 

We have presented a newan emulator based approach for interrogating and understanding multi-600 

component RTMs. By building an emulator of an RTM that captures the multidimensional nature of 601 

the underlying model we have created a newdemonstrated that such an approach can be used as a tool 602 

for performing global sensitivity analyses on RTMs. This allows us to investigate behaviour arising 603 

from the interaction among the many disparate processes that comprise RTMs. For example, we 604 

investigated how the Monod-biomass parameterisation of microbial sulfate reduction interacted with 605 

the mechanism of pyrite precipitation. In this example, pyrite precipitation was inhibited when there 606 

was an excess of CO2 in the column because the catabolic pathway was partially dependent on CO2 607 

concentration. This prevented the growth of sulfate reducing biomass, ultimately curtailing the 608 

production of hydrogen sulfide required for pyrite precipitation. This behaviour reproduced results 609 

previously reported by Jin and Kirk (2016, 2018)(2016, 2018), and suggest that our emulation 610 

approach hasapproaches have utility in discovering unexpected, but nonetheless real, model 611 

behaviours, potentially directing future lab and field work. 612 

The approachmethodology we have laid out is flexible; any quantity recorded by an RTM can be 613 

used as a target variable, and so the behaviour of any RTM output can be explored in detail to 614 
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evaluate the model formulation. The behaviour of the system in response to the variation of any 615 

parameter under any other set of conditions can be projected out of the model and plot in a straight-616 

forward manner. This approachEmulator approaches can be extended to two or even three 617 

dimensions and ultimately the emulator can be interrogated for local maxima and minima to solve 618 

optimisation problems. This new approach hasWe suggest that emulator based approaches to 619 

exploring RTMs have potential applications in industry and in environmental remediation where the 620 

chemical composition of amendments can be predicted using an underlying reactive transport 621 

simulation, provided that that system is well understood. The presentation of this optimisation 622 

process to Old Rifle (and to ODP Site 1086, see supplementary) represents a proof of concept. 623 

6 Code availability 624 

6.1 Omphalos 625 

Omphalos is available on GitHub and Zenodo. Please note you must provide your own CrunchTope 626 

executable. 627 

https://github.com/a-fotherby/Omphalos 628 

https://doi.org/10.5281/zenodo.7113298 629 

6.2 GBT Models 630 

Jupyter notebooks for fitting the GBT models and plotting the figures are available on GitHub, and a 631 

permanent record is available on Zenodo. 632 

https://github.com/a-fotherby/dissertation_xgboost. 633 

https://doi.org/10.5281/zenodo.7113323 634 

7 Data availability 635 
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The data used is available on GitHub and Zenodo. 636 

 https://github.com/a-fotherby/GMD_2022 637 

https://doi.org/10.5281/zenodo.7113379 638 

8 Supplement 639 

Codebase for Omphalos. Model fitting code. Schematic figures of decision tree and the Old Rifle 640 

RTM. Table of predicted optimal values for precipitating pyrite at Old Rifle. Convergence behaviour 641 

of the GBT regressors. Additional co-dependency plots for Old Rifle. Figure showing the effect of 642 

rate law choice on CO2 dependency in the Old Rifle RTM. Supplementary Case Study detailing 643 

application to a deep-sea sediment column. Description of XGBoost implementation. 644 
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