

1 **A new accurate low-cost instrument for fast synchronized spatial measurements of light
2 spectra**

3 Bert G. Heusinkveld, Wouter B. Mol, Chiel C. van Heerwaarden

4 *Meteorology and Air Quality Group, Wageningen University & Research, P.O. Box 47, 6700 AA
5 Wageningen, The Netherlands*

6 **Abstract**

7 We developed a cost-effective Fast Response Optical Spectroscopy Time synchronized instrument
8 (FROST). FROST can measure 18 light spectra in 18 wavebands ranging from 400 to 950 nm with a 20
9 nm full width half maximum bandwidth. The FROST 10 Hz measurement frequency is time-synchronized
10 by a Global Navigation Satellite System (GNSS) timing pulse and therefore multiple instruments can be
11 deployed to measure spatial variation of solar radiation in perfect synchronization. We show that FROST
12 is capable of measuring ~~broadband shortwave~~, global horizontal, ~~total~~ irradiance (GHI) despite its limited
13 spectral range.

14 It is very capable of measuring Photosynthetic Active Radiation (PAR) because 11 of its 18 wavebands
15 are situated within the 400 to 700 nm range. A digital filter can be applied to these 11 wavebands to
16 derive the Photosynthetic Photon Flux Density (PPFD) and retain information of the spectral composition
17 of PAR radiation.

18 The 940 nm waveband can be used to derive information about atmospheric moisture.

19 We showed that the silicon sensor has undetectable zero offsets for solar irradiance settings and that the
20 temperature dependency as tested in an oven between 15°C and 46°C appears very low (-250 ppm K⁻¹).
21 For solar irradiance applications, the main uncertainty is caused by our Poly Tetra Fluor Ethylene (PTFE)
22 diffuser (Teflon), a common type of diffuser material for cosine-corrected spectral measurements. The
23 oven experiments showed a significant jump in PTFE transmission of 2% when increasing its temperature
24 beyond around 21°C.

25 The FROST total cost (<€200) is much lower than current field spectroradiometers, PAR sensors or
26 Pyranometers, and includes a mounting tripod, solar power supply, datalogger and GNSS and waterproof
27 housing. The FROST is a fully stand-alone measurement solution. ~~It~~ ~~They~~ can be deployed anywhere with
28 ~~its~~ ~~their~~ own power supply and can be installed in vertical in-canopy profiles as well. This low cost makes
29 it feasible to study spatial variation of solar irradiance using large grid high-density sensor set-ups or to
30 use FROST to replace existing PAR sensor for detailed spectral information.

31 **1. Introduction**

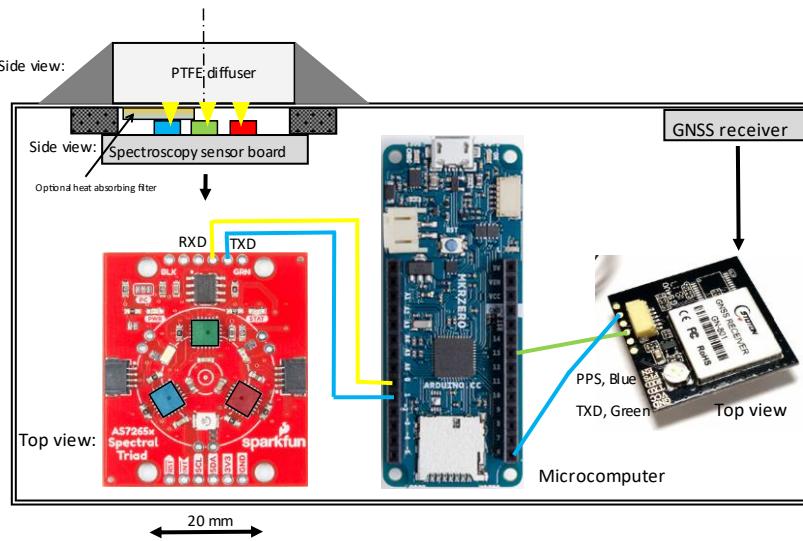
32 Understanding solar irradiance and its interaction with clouds and vegetation is of utmost importance to
33 unravel the complexity of feedback systems that determine our weather and climate. Cloud-shading
34 dynamics of irradiance are highly dynamic (Lohmann, 2018) and Cloud-Resolving Models (CRM) are
35 unable to resolve short time intervals and small spatial scales. At grid scales below 1 km, 3-D radiative
36 transfer models can greatly improve the 3-D surface and atmosphere heating rates in atmospheric
37 models (Calahan et al., 2005, Jakub & Mayer, 2015). A good example is the complexity of the radiative
38 effects of shallow cumulus clouds and its interactions with a vegetated surface. Traditional 1-D radiation
39 models produce unrealistic surface radiation fields but Menno et al. (2020) showed that a 3-D radiation
40 transfer model could greatly improve the coupling mechanisms between clouds and the land surface. The
41 small circulations, turbulence and combined cloud microphysics in convective boundary layers are both
42 highly non-linear and complex. CRMs are crucial for improving weather forecasting models and for the
43 energy meteorology sector. Kreuwel et al.⁷ (2020) showed that solar powered grid loading is highly
44 dynamic and especially so for smaller household PV systems, leading to grid overloading challenges at
45 very short time intervals of seconds. High quality observations, both in high resolution spatially and with

46 a high temporal resolution, are required to test such models but so far such observations are lacking
47 (Guichard and Couvreux, 2017).

48 Yordanov et al., (2013) showed that cloud enhancements can significantly increase solar irradiance levels
49 (>1.5 times), which result in peak irradiance levels well exceeding extraterrestrial levels, even at high
50 altitudes and latitudes (Yordanov, 2015). They used fast response silicon sensors and their highest
51 detected irradiance bursts lasted about 1 s, which led them to believe that the required light sensor
52 response time should be at least 0.15 s, much faster than traditional thermopile pyranometers with a
53 response time of several seconds. The slow response time of those thermopile sensors is related to the
54 thermal mass of the thermopile sensor. Semiconductor light sensors respond faster because photons
55 directly mobilize electrons that can be measured directly. The downside of semiconductor light sensors is
56 their limited and non-flat linear spectral response, and temperature sensitivity. Thermopile based
57 pyranometers are also expensive as compared to a silicon-based solution, which limits their large-scale
58 use in meteorological measurement networks. Martinez et al., (2009) showed that a factor of 10
59 reduction in pyranometer costs as compared to a thermopile sensor is possible with the use of a silicon
60 photodiode, however their spectral response is limited (their version: 400 to 750 nm) and it has a no
61 flat nonlinear spectral response. A major solar spectral change occurs in the infrared due to water
62 absorptions bands, which leads to an overestimation for clear sky conditions and an underestimation for
63 overcast skies when calibrated for average weather conditions.

64 The spectral response limitations of the photodiode used by Martinez et al., (2009) can be improved
65 with a wider spectral response silicon type pyranometer such as applied in the LI-COR 200-SZ as
66 demonstrated by Michalsky et al., (1990). They compared the LI-COR 200-SZ with a thermopile
67 pyranometer (Kipp & Zonen CM-11). The CM-11 has a flat spectral response (300 to 2500 nm) whereas
68 the LI-COR 200-SZ exhibits a very nonlinear and limited spectral response starting at 400 nm and
69 increasing 5-fold in sensitivity towards its peak around 1000 nm, then sharply dropping off to zero at
70 1100 nm (Alados-Arboleda et al., 1995). Their main uncertainty is related to the temperature
71 dependence of silicon sensors. After a temperature correction, they performed similarly to thermopile
72 pyranometers (11.4 W m⁻² rms errors) under clear and cloudy sky conditions. This is surprisingly
73 accurate because LI-COR calibrates their pyranometer against a reference thermopile pyranometer and
74 therefore a change in solar spectrum may affects its accuracy. Michalsky et al., (1990) argued that the
75 clear or cloudy sky global horizontal irradiance (GHI) spectra is similar because of clouds mixing the
76 direct and blue skylight. This, however, is contradicted by a recent study by Durand et al., (2021) where
77 they investigated the spectral differences between clear and overcast skies. They showed that clouds, in
78 relative terms, enrich GHI spectra in wavelengths < 465 nm and is depleted in wavelengths > 465 nm.
79 This may well explain why the LI-COR sensor performed so well because its main sensitivity is in
80 wavelengths > 465 nm thus indirectly correcting for the reduced infrared in the major water absorption
81 bands beyond its spectral range.

82 Optoelectronics are evolving rapidly and innovations in semiconductor integration with optical
83 components and microprocessors are paving the way for cost-effective spectrometers that can provide
84 even temperature-compensated spectral details about solar radiation. A leading manufacturer in this
85 field is AMS (Austria Micro Systems, Austria) and offers various intelligent light sensing products that are
86 capable of measuring light intensity within multiple optical wavebands. These sensors are mass-
87 produced, resulting in low-cost sensors. Tran and Fukuzawa, (2020), tested such a cost-effective 18
88 band multispectral sensor (AS7265x, AMS) for spectroscopy of fruit (between 400 and 950 nm) and
89 useful information could be derived. Such filter spectroscopy sensors would be very interesting for solar
90 global horizontal irradiance measurements (GHI). The spectral signature of radiation is very relevant to
91 quantify since clouds and air pollution modify the solar light spectrum and light scattering. Additionally,
92 multiple reflections between various ground and water surfaces and clouds will further influence the light
93 spectral composition. This is especially relevant in the photosynthetic active radiation wavelengths (PAR)
94 for vegetation cloud feedbacks since it affects photosynthesis and evapotranspiration (Durand et al.,
95 2021).


96 The correct synchronization of the sensor grid measurements is essential and several options were
 97 considered such as a network configuration with synchronized triggering at fixed time intervals. Wires in
 98 the field were not an option due to logistic challenges, and radio communication could be possible but
 99 adds to the cost with reduced reliability due to radio interference. As a robust option, a GNSS receiver
 100 was considered that constantly synchronizes its internal time to an international clock standard. Similar
 101 timing synchronizations are used for sensor grids in seismic activity monitoring of volcanoes where
 102 timing is essential to determine seismic propagation and where synchronization accuracy of 50 ns could
 103 be achieved (Lopez Peirera et al., 2014).

104 Here we present the development of a cost-effective fast-response solar light sensor grid for spatially
 105 and temporally high resolution multiple light waveband-resolved GHI measurements. The required large
 106 number of sensors requires cost-effective design optimization.

107 Additionally, we tested these sensors for meteorological, photosynthesis and remote sensing applications
 108 as well as ~~and tested~~ performance both in the lab and in field experiments.

109 2. Instrument design and measurement method

110 The measurement system we developed is depicted in Fig.~~ure~~ 1 and consists of a silicon light sensor
 111 chipset (AMS AS7265x), a GNSS for time synchronization, a cosine corrector light diffusing input port,
 112 and a microcomputer. See Table 1 for a list of components.

113

114 Figure 1: Mechanical layout and wiring diagram of the FROST spectrometer (Sensor: 3.2 mm below a
 115 Teflon filter with radius of 32 mm). For easy identification we color-coded the three light sensors (blue,
 116 green and red), each measuring 6 channels.

117 Time-synchronized measurements are achieved using a hardware GNSS receiver timing pulse (PPS) to
 118 trigger each measurement and time-stamped data is processed and collected by a microcomputer board
 119 (Fig.~~ure~~ 1, Table 1).

120 Table 1: List of components for the waterproof solar powered spectrometer.

Component	Manufacturer and model	Price (€)
-----------	------------------------	-----------

← Formatted Table

Spectroscopy chipset	AS7265x spectral sensors triple AMS (Austria) with interfacing logic mounted on a PCB by Sparkfun (U.S.A.)	70,00
Optical filter	Schott heat-absorbing colored glass filter KG3 or KG1, 2 mm (Germany)	11,00
UV-sensor	GUVA-S12SD (optional, with a thin second PTFE diffuser)	1,70
PTFE diffuser	32 mm diameter, cut from a plate (S-Polytec GmbH, Germany)	3,00
GNSS receiver	TOPGNSS GN-901, China, GPS and Glonass receiver	6,00
Microcomputer	Arduino MKR Zero	23,00
Memory card	Kingston Canvas Select Plus microSDHC 32GB	4,00
Breadboard	Solderless PCB breadboard Mini protoboard	0,90
Solar panel	First Solar, China, CNC165x165-5, Polycrystalline, 4.2 W, 5 V, 840 mA, 165x165 mm	7,00
Battery	Li-Ion battery LP906090JH, Jauch, Germany	30,00
Charger controller	Mini Solar Lipo Charger board CN3065	1,40
Box	Outdoor Junction Box 100x150x70mm waterproof IP65, Shockproof ABS plastic. ManHua, China (AliExpress)	9,00
Tripod mount adapter	Camera metal shoe mount adapter 1/4" thread	0,75
Tripod	König KN-TRIPOD21/4 camera tripod pan & tilt 130 cm	12,00
Ground anker	Tent herring	1,00
Silicone adhesive sealant	Permatex 81158 or Bizon Black Silicone Adhesive	1,00

121

122 The light sensors are mounted on camera tripods, which makes leveling easy (Fig. 2). A camera metal
 123 shoe mount adapter was glued under the polycarbonate housing for fast mounting. For winds >6 m/s it
 124 is advised to use tent herrings to fix the tripod to the ground. The power consumption is 0.5 W and a 6
 125 Ah LiPo battery [will last for 40 h without sunshine. Battery capacity is reduced at lower temperatures.](#)
 126 [The 4.2 W polycrystalline solar panel](#) together with a LiPo charge regulator is a reliable power supply
 127 solution for [continuous operation](#) in the Dutch climate from April - September. The [4.2-W polycrystalline](#)
 128 solar panel is glued on a special shaped wooden frame that slides over the tripod center tube, with the
 129 solar panel sides resting against the two outer tripod leg (Fig. 2)s. It is fixed to the rear leg with a thin
 130 metal wire. Hot glue appeared unsuitable for the panels and it is advised to use epoxy glue.

131 The PTFE diffuser was glued to the box by roughening the surfaces and using a black silicone adhesive
 132 around the diffuser edges.

133

Figure 2: FROST with solar panel mounted on a camera tripod.

134 The correct synchronization of the sensor grid measurements is essential and several options were
135 considered such as a network configuration with synchronized triggering at fixed time intervals. Wires in
136 the field were not an option due to logistic challenges, and radio communication could be possible but
137 adds to the cost with reduced reliability due to radio interference. As a robust option, a GNSS receiver
138 was considered that constantly synchronizes its internal time to an international clock standard. Similar
139 timing synchronizations are used for sensors grids in seismic activity monitoring of volcanos where
140 timing is essential to determine seismic propagation and where synchronization accuracy of 50 ns could
141 be achieved (Lopez Peirera et al., 2014).
142

143

144 **2.1 Light sensor**

145 The light sensing element is the AMS AS7265x, a smart spectrometer sensor capable of measuring light
146 at 18-Channel 20 nm full width half maximum (FWHM) bandwidth from visible and near infrared spectral
147 bands (410 to 940 nm) with an electronic shutter (manufacturer: AMS, Australia). It has a broad
148 operational temperature range from -40°C to 85°C. The spectrometer consists of three separate
149 integrated circuits with each including six silicon-based photo diodes with integrated optical bandpass
150 interference filters, micro-lenses, a programmable analog amplifier, and an analog to digital converter
151 and a microprocessor. We will identify the AS72651, -52, -53 as the blue, red and green sensor, as and
152 indicated in Fig. 1. The integrated light interference filters are directly deposited on the silicon.
153 Factory calibration values are stored inside the internal memory. Two serial communication options are
154 available for interfacing with a microcomputer; a Universal Asynchronous Transmission (UART) and a
155 synchronous serial transmission (I2C) port. The three light sensor view angles are limited by the chip
156 housing light input port to 41°, which ensures that the optical interference band filters stay within the
157 +/- 210 nm FWHM and +/- 10 nm center-wavelength specifications. AMS states that their filter stability
158 (in time and against temperature) is not detectable but does not provide further specifications. They do
159 mention that the wavelength accuracy is within +/- 10 nm. The AS7265x triple set of light sensor chips,
160 each capturing six light wavebands, poses a challenge to couple optically all three to the same sensing

161 area and to assure a good cosine response needed for the accurate measurement of GHI. The limited
162 opening angle poses an additional challenge for GHI measurements since they require a viewing angle of
163 180°, therefore an achromatic cosine-corrected diffuser is required.

164 **2.2 Diffuser material**

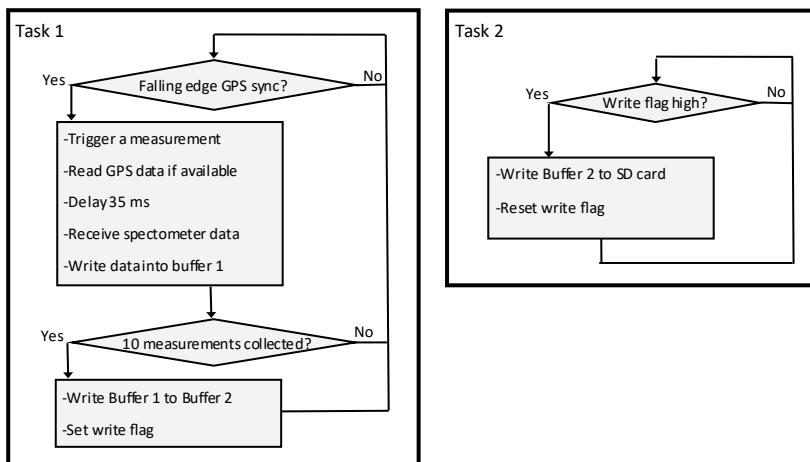
165 Teflon (PTFE) material is commonly used as an effective light diffuser, with a large spectral transmission
166 range starting below 300 nm, and is available from various [manufacturers](#). However, PTFE light
167 transmittance exhibits a temperature dependency caused by a major phase change in its crystalline
168 structure at 19°C. The phase change can cause a significant change in transmittance. Yliantila and
169 Schreder, (20054), tested three commercially available PTFE diffusers and found transmission changes
170 between 1% and 4% [at the phase change temperature](#). By comparison, they also showed a quartz
171 diffuser with a linear response to temperature (0.035% °C⁻¹) without [thea sudden transmission jump as](#)
172 [found in the PTFE diffusers](#). Despite this, PTFE was nevertheless chosen as a cost-effective diffuser to
173 maximize the spatial number of sensors. The diffusers were cut from PTFE plates (S-Polytec GmbH,
174 Goch, Germany) using a vice and a hole punch to press round diffusers. A 10.6 and 2.0 mm thick diffuser
175 were tested. The transmission temperature dependency of our PTFE diffusers was tested in a
176 temperature-controlled oven with [a cooler](#) (WTS Binder, Germany with a EUTHERM temperature
177 controller). The oven is equipped with a front glass door and the lowest possible temperature setting was
178 kept above the dewpoint temperature of the laboratory to avoid moisture condensation issues. An LED
179 light source (LCS, 17 W, 2500 Lumen) was chosen for its high output and limited thermal infrared, and
180 powered by a stabilized voltage power supply. The LED was placed outside the oven in front of the oven's
181 glass door about 1 m away to minimize lamp heating. A second light sensor was placed outside the oven
182 next to the lamp to monitor its output. Diffuser light transmission measurements were corrected for
183 variation in lamp output. Subsequently the light sensor without a diffuser was tested. [Temperature](#)
184 [sensitivity measurement results are presented in Section 3.2.](#)

185 The spectrometer performance was also tested at the DWD (German Weather Service) radiation
186 calibration facility in Lindenberg, Germany. The spectrometer output was compared against a calibrated
187 xenon light source and the intensity was adjusted by varying the lamp sensor distance between 0.5 m
188 and 0.7 m. The possible spectral crosstalk of infrared light was tested by placing a very steep long pass
189 interference filter with a Cut-On Wavelength of 1000 +/- 9 nm (Dielectric Coated Long pass Filter, 25.4
190 mm diameter, 1.1 mm thick, transmission >95%, OD5 Blocking, Edmund optics, Stock #15-463) in front
191 of the sensor. The long pass filter blocks all sensor wavebands and any remaining signal is then
192 considered infrared crosstalk. The position of the optical waveband filters was tested using a Cary 4000
193 (Agilent, USA) UV-Vis NIR spectrophotometer at Wageningen University, The Netherlands. [Results are](#)
194 [presented in Section 3.1.](#)

195 **2.3 Cosine response**

196 The cosine response was determined by placing a LED light source (LED light bulb 2500 Lumen, diameter
197 0.1 m) and our light sensor [5five](#) m apart, both on tripods at 1 m height. Since a darkroom was not
198 available, the measurements were performed outdoors at night to avoid reflection from ceilings and
199 walls. A night with low humidity was chosen to minimize aerosol light scattering. The direction of the
200 light sensor was adjusted from 0° (viewing the light source) to 90° (perpendicular to the light beam). To
201 keep the distance between the sensor and light source constant during rotation, the plane of rotation was
202 exactly located at the diffuser surface. A shading screen was placed between the light source and sensor
203 to shade the ground surface to avoid any light reflection into the sensor. [Results are presented in Section](#)
204 [3.3.](#)

205 **2.4 Time synchronization**


206 Instead of using a GNSS for synchronizing an internal clock or using the serial date and time output, we
207 use the very precise (<100 ns accuracy) hardware timing pulse of a GNSS module to trigger each
208 measurement directly (at 10 Hz.). The data is time-stamped with the GNSS date and time output. A

209 special GNSS receiver was selected that also outputs a programmable timing pulse for synchronization
210 purposes (better than 50 ns). As a bonus, it also provides location data within a few meters. These
211 receivers can be purchased for less than 6€ (Table 1). [The time synchronization analysis can be found in](#)
212 [Section 3.4.](#)

213 2.5 Datalogging

214 The datalogging of the GNSS date, time, latitude, longitude and the 18 channel spectroscopy
215 measurements at 10 Hz results in a dataflow of >100 MB data per day. The spectroscopy sensor outputs
216 ASCII data and the bandwidth of the I2C interface on the spectroscopy side were insufficient, thus the
217 UART serial interface was selected. The sensor can be triggered by serial command to do a measurement
218 and this command in turn is triggered by the hardware timing pulse of the GNSS.

219 For datalogging, the MKR Zero of the Arduino family microprocessor platforms was chosen. It is a cost-
220 effective and low power datalogging solution using a 48 MHz SAMD21 Cortex 32bit low power ARM MCU
221 and a built-in micro-SD card holder (max. 32 GB). [A consumer grade 32 GB SD card was selected, data](#)
222 [rates are low \(<5 KB s⁻¹\) and the large size ensures that the card does not wear down fast \(<4 GB](#)
223 [month⁻¹\).](#) The challenge with this datalogging solution is that the default operating system cannot handle
224 sustained data writing to an SD card at 10 Hz using linear programming ([despite a low data rate of <5](#)
225 [KB s⁻¹\).](#) In fact, the SD card would regularly delay the measurements with an estimated 200 ms resulting
226 in a loss of data (tested with a new, fast SD card with 85 MB/s max write speed). [Thus it therefore](#)
227 needs a microcontroller multitasking real-time operating system and [thus](#)-FreeRTOS (freertos.org) was
228 chosen to overcome this. Two tasks that run semi-parallel on the single core CPU were defined. The first
229 task with the highest priority will initiate a measurement cycle at the falling edge of the hardware timing
230 signal of the GNSS. Task 2 will trigger each second and writes the 10 Hz buffered data to the SD card
231 (Fig. [ure](#) 3).

232
233 Figure 3: Multitasking software implementation for synchronized measurements and data storage. Each
234 Buffer can contain 10 rows of data. The program is available at zenodo.org (DOI
235 10.5281/zenodo.6945812).
236
237 *Restricted access for review:*

Formatted: Superscript

Formatted: Superscript

238 <https://zenodo.org/record/6945812?token=eyJhbGciOiJIUzUxMiIsImV4cCI6MTY3MjQzMzU5OSviaWF0Ijo>
239 xNjU5MzQ0NTQzfQ.eyJXRHfp7InJY2IkIj020TQ1ODEyfSwiaWQiOjI1MDE5LCJybmQiOjImMzc3ZTA40CJ
240 9.Q09Yid2igwh3pHwQFzew_LuwTnkGsGYGjiALRqByop6JeyAAJBjy5D9zKHIgv0cIYZEspWaguAcmeAK6RFP
241 CqQ

242 2.6 Field experiments

243 The field experiments were conducted at various locations. At the Veenkampen weather station,
244 Wageningen, The Netherlands (Lat.: 51.981°, Long.: 5.620°), ~~s.~~ Sensor performance was tested against
245 GHI measurements and a spectrophotometer. Although GHI ~~(Q_g)~~ is directly measured with a
246 pyranometer, it was decided to use the pyrheliometer and diffuse radiation sum to reduce cosine
247 response errors. The instruments consist of a Kipp ~~and~~ Zoonen Pyrheliometer CMP1 with a calibration
248 accuracy of +/-0.5% and a first class pyranometer CM21 for diffuse radiation measurements with a time
249 constant of 5 s, directional error <+/-10W m², tilt error: +/- 0.2%, zero-offset due to T change: <2 W
250 m² at 5K h⁻¹, cosine response error: max +/- 2% at 60°, max. +/- 6% at 80°. Both instruments were
251 mounted on a suntracker (EKO instruments, ~~Japan~~, ~~STR-21~~ with shading disk, ~~Japan~~). On selected days
252 the solar spectrum was measured with the ASD FieldSpec (U.S.A.) field spectroradiometer with a cosine
253 collector ~~and~~, with a ~~factory~~ recalibration made in 2021.

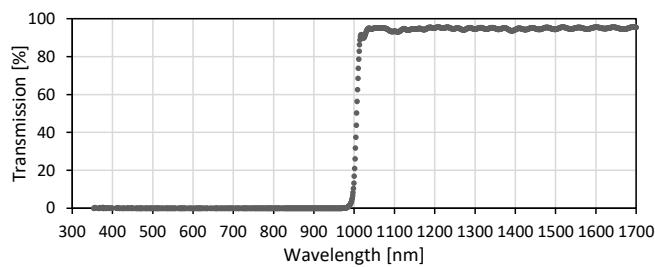
254 Additionally, a large set of sensors were deployed during the FESSTVal~~1~~ campaign (<https://fesstval.de/>)
255 at the German Weather Service (DWD) in Falkenberg, Germany, to study the spatial variation of solar
256 irradiance (June 2021). For that campaign, it was crucial to obtain fast and time synchronized spatial
257 solar irradiance measurements. Their Baseline Surface Radiation Network (BSRN) location at Lindenberg
258 ([Driemel et al., 2018](#)) was used to test long-term stability from 22 June-31 August 2021.

259 The FROST was also deployed in a field experiment in La Cendrosa, Spain (Lat: 41.692537, Long:
260 0.931540) ([from 14-29](#) July 2021. It was used, among other things, to study crop growth.

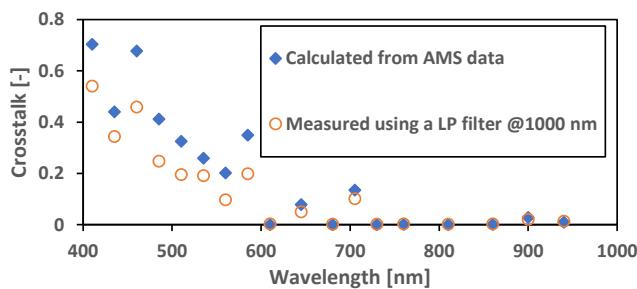
261 3. Performance and applications

262 The performance of the sensor, the temperature dependency ~~and cosine response~~ of the diffuser and the
263 time synchronization ~~are~~ is presented below. ~~The infrared crosstalk is analyzed by measuring signal~~
264 ~~response with all light below 1000 nm blocked using a low-pass infrared filter. Subsequently a correction~~
265 ~~method using heat absorbing infrared filters (referenced to as "correction filters") is introduced and~~
266 ~~tested. This results in~~ ~~Three versions of FROST-are presented~~: one with a 10.6 mm diffuser, one with a
267 2 mm diffuser including a correction filter on the blue sensor, and one with a 2 mm diffuser with two
268 correction filters (on the blue and red sensor).

269 3.1 Spectral response-and calibrationand temperature-sensitivity


270 According to the manufacturer specifications, the normalized (at peak wavelength) responsivity of their
271 spectroradiometer has a good narrow band response (20 nm full width half maximum (FWHM)) and
272 limited overlap for the 18 channels. Wavelength accuracy is within +/- 10 nm and this was confirmed by
273 testing the sensor inside a Cary [4000 UV-Vis](#) spectrophotometer [equipped with a universal attachment](#)
274 [accessory](#). Unfortunately, the Cary spectrophotometer had a limited spectral range so we could not test
275 the crosstalk in the near infrared, [nor the 940 nm band \(Fig. 6a\)](#).

276 [Linearity was tested by comparing](#) ~~the spectroradiometer against a reference thermopile~~
277 ~~pyranometer CM21 (Kipp and Zoonen, The Netherlands) and a stabilized halogen light source. The~~
278 ~~intensity was adjusted by changing the lamp distance. The FROST non-linearity was at least as good as~~
279 ~~the CM21, which has a non-linearity of <+/-0.2%. The factory-calibrated accuracy is +/- 125%~~
280 ~~according to the manufacturer specifications (in counts/uW/cm²)~~. After initial testing using solar radiation
281 as a light source for reflectance measurements of lawn grass, we were confronted with unusual data. The
282 PAR region clearly showed very high reflection values, more than 5 times of what is typical for such a
283 surface.

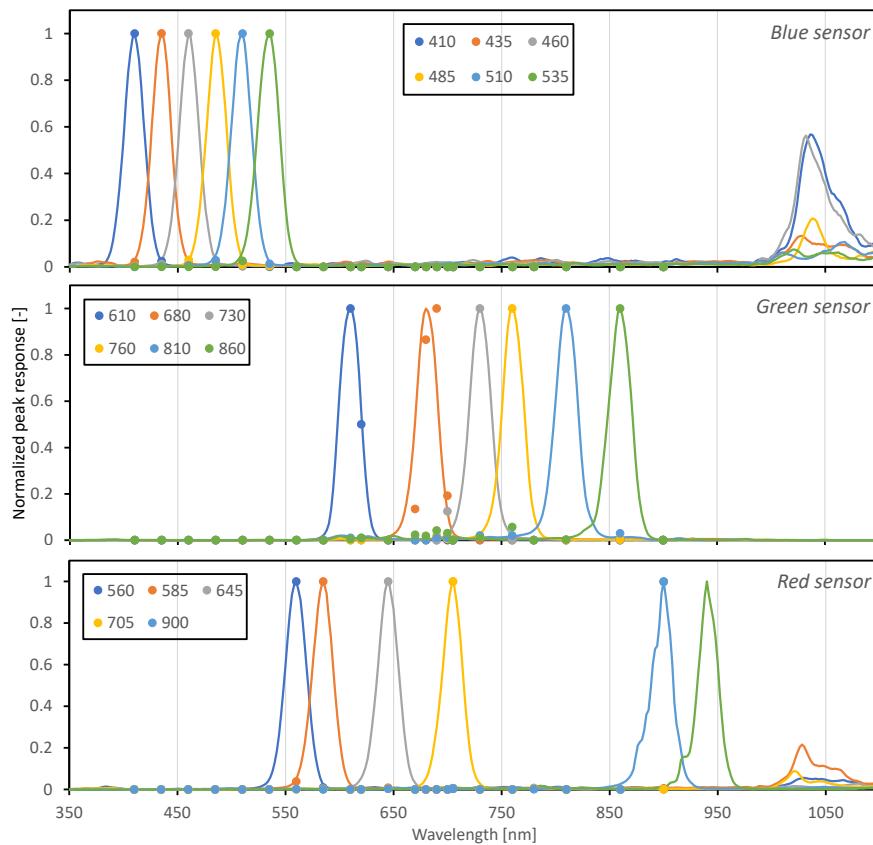

Formatted: Superscript

284 After consultation with the manufacturer (AMS), they clarified that the AS72653 sensor has a strong
285 crosstalk in the near infrared. The sensor was meant to be used with LED light for spectral reflectance
286 measurement applications, which would not produce light > 1000 nm. They recommend for each sensor
287 a specific LED, and therefore each reflectance measurement would consist of 3 separate measurements
288 with each using one sensor and with one specific LED at a time.

289 We tested the sensor at the DWD radiation calibration facility in Lindenberg using a calibrated light
290 source. The crosstalk caused by light wavelengths beyond 1000 nm was measured by using and an
291 optical Long Pass interference (LP) filter that blocks all light below 1000 nm micrometer. Thus, the
292 remaining signal on all 18 channels can be attributed to a crosstalk from wavelengths > 1000 nm. The
293 blocking filter characteristics were tested in a Cary 5000 UV-Vis-NIRphoto spectrophotometer equipped
294 with a universal attachment accessory (Fig.ure 4).

296 Figure 4: Transmission of the optical LP filter measured with a Cary 5000 UV-Vis-NIRphoto
297 spectrophotometer equipped with a universal measurement accessory at the DWD, Lindenberg,
298 Germany.
299

300 Figure 5: Measured spectroscopy sensor infrared crosstalk from wavelengths > 1000 nm, tested with a
301 Xenon lamp and an optical long pass filter (LP at 1000 nm) and calculated from spectral response data as
302 supplied by the manufacturer (AMS). Crosstalk is defined as the fraction of light wavelengths > 1000 nm
303 the sensor is responding to, for example at 410 nm 55% of the measured signal is actually originating
304 from wavelengths > 1000 nm.
305

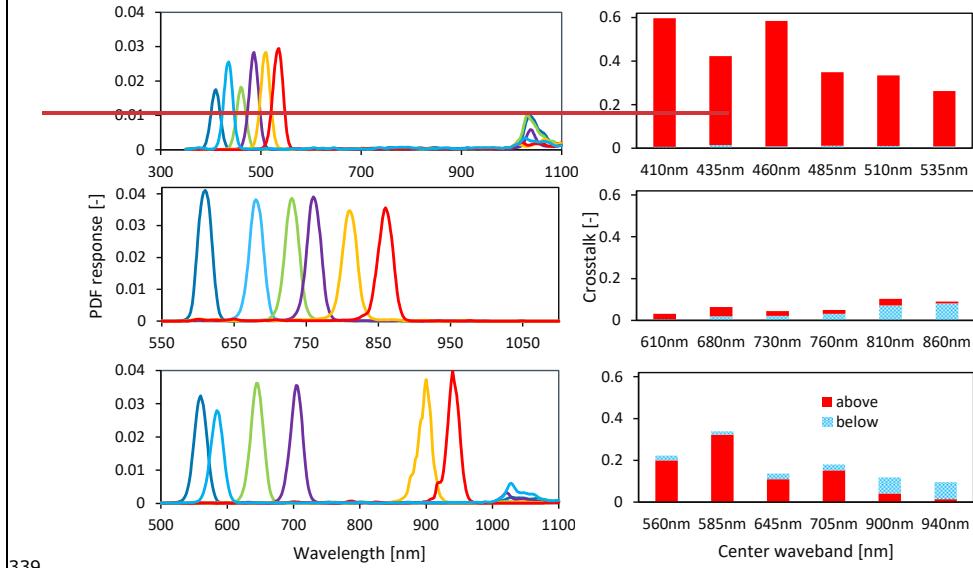

306 Figure 5 shows the fraction of infrared light (> 1000 nm) within the sensor output for each of the 18
307 channels. The sensor output was corrected for the LP filter transmission loss (about 5%, see Fig.ure 4).
308 Note that the crosstalk is larger than during solar radiation measurements because a Xenon light source
309 contains a higherlarge amount of infrared radiation. Cloudy conditions would further reduce crosstalk. For
310 clear sky conditions, the crosstalk would be about half of the Xenon light. The blue dots in Fig. 5 show
311 the calculated crosstalk using the AMS sensor spectral filter response data obtained through personal
312 313

314 communication with the manufacturer (Fig. 6a). The measured crosstalk on the blue sensor appears to
315 be slightly better. The crosstalk is very large in the visible light range and confirms the provided filter
316 transmission curves from AMS (personal communication). Note that those transmission curves (Fig. 6a)
317 are not available on the publicly available datasheet. Figure 5 shows that only half of the channels
318 provide the correct spectral information (if calibrated correctly using the data from Fig. 6a). However,
319 there are enough channels to measure the so-called red edge around 700 nm in vegetation light
320 transmission and reflection. This opens up applications for vegetation growth measurements without
321 further modifications.

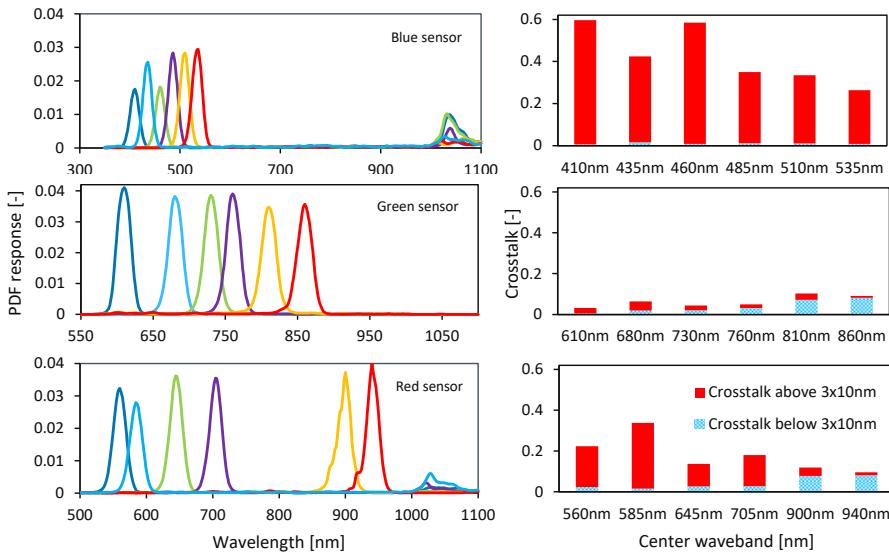
322 All channels in the blue sensor and some of the channels (650 and 685 nm) in the red sensor have very
323 high crosstalk from the 1000 to 1100 nm range, but the crosstalk makes the sensor cover a larger range
324 of the solar spectrum. It is therefore still usable if this can be quantified.

325 After consultation with the manufacturer, they clarified that the AS72653 sensor has a strong crosstalk in
326 the near infrared. The sensor was meant to be used with LED light for spectral reflectance measurement
327 applications. They recommend for each sensor a specific LED, and therefore each reflectance
328 measurement would consist of 3 separate measurements with each using one sensor and with one
329 specific LED at a time.

330



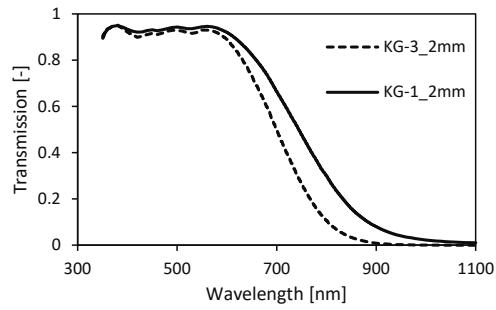
332 [Figure 6a: Normalized peak spectral response of the triple AMS sensor \(denoted as blue, green and red
333 sensor\), data provided by manufacturer after consultation \(solid lines\) and our measured response up to
334 900 nm \(dots\) as measured with a sensor placed inside a Cary 4000 UV-Vis spectrophotometer equipped
335 with a universal measurement accessory.](#)


336

337

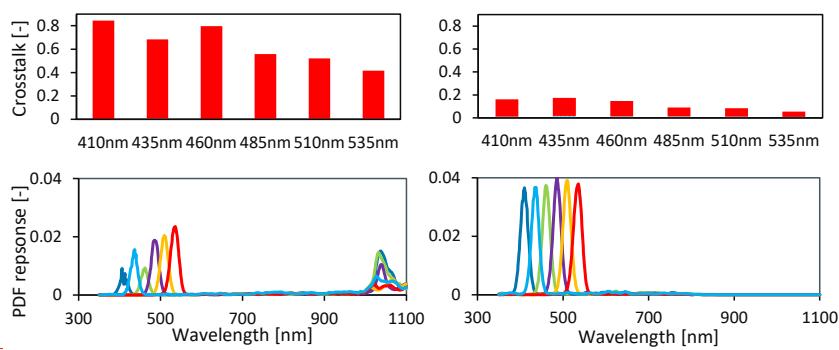
338

339

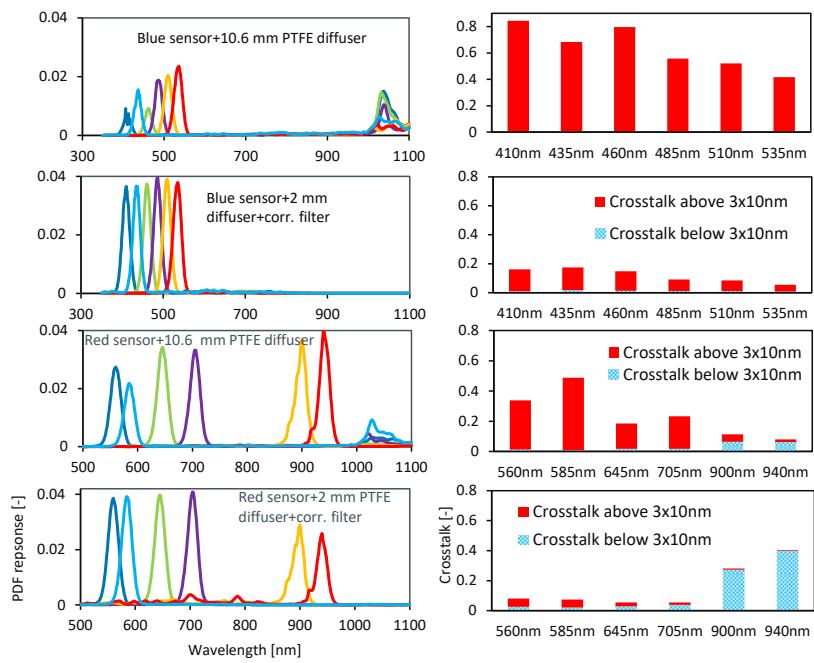


340

341 Figure 6b: Left panels: Spectral response of the triple3 AMS sensors (denoted as blue, green and red sensor), Probability Density Functions (PDF) calculated from data provided by manufacturer AMS
 342 (personal communication). Right panels: The crosstalk for each channel is presented as two values:
 343 Signal originating from >(center wavelength+30 nm) divided by total signal of a channelfraction of
 344 sensor response at 30 nm above (red) and signal <(center wavelength-30 nm) divided by total signal of
 345 a channel30 nm below (blue) the center wavelength of each band is depicted (sensor only, without
 346 diffuser).

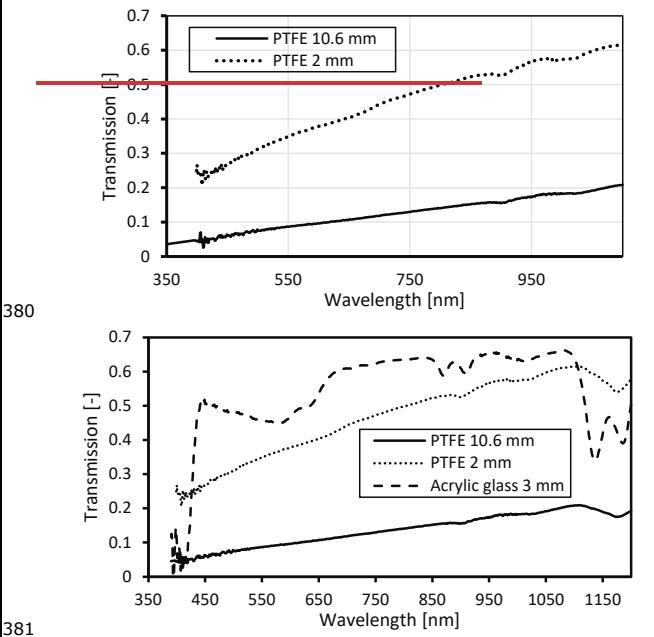

347
 348 In Figure 6b, the right panels, shows that the crosstalk for a flat spectrum, defined as the signal above
 349 or below 3×0.5 FWHM from the center wavelength, is large (up to 60%) in the PAR range for the blue
 350 sensor and mainly from the infrared beyond 1000 nm-micrometer. The green sensor performs much
 351 better and does not exhibits minimal infrared crosstalk (<5%). The red sensor has an issue mainly
 352 within the first two channels.

353 To remove infrared crosstalk, an optical short pass filter is required. However, a filter with a sharp cut-off
 354 at 1000 nm is, to our knowledge, not available or probably very expensive and sensitive to angle of
 355 incidence. Cost-effective short pass filters are made from heat-absorbing glass and haves a dye added to
 356 the glass that absorbs infrared radiation. However, these heat-absorbing filters do not have a steep filter
 357 response and therefore ineffective to correct the red sensor without attenuating the 900 and 940 nm
 358 channels too much. The Schott heat-absorbing filters KG3 and KG1 appear to offer a good solution for
 359 the blue sensor (Figure 7). The remaining crosstalk is mainly related to the slightly broader filter
 360 response. The first 4 channels of the red sensor (Figure 6b8) can also be improved. However, such a
 361 correction filter for the red sensor would increase crosstalk from shorter wavelengths for the 900 and
 362 940 nm wavebands (see lower right panel in Figure 6b) and greatly reduce signal strength. For accurate
 363 PAR measurements, and when the 900 and 940 nm channel are not needed, it is recommended to use
 364 the less-strongweaker KG-1 filter for the red sensor.

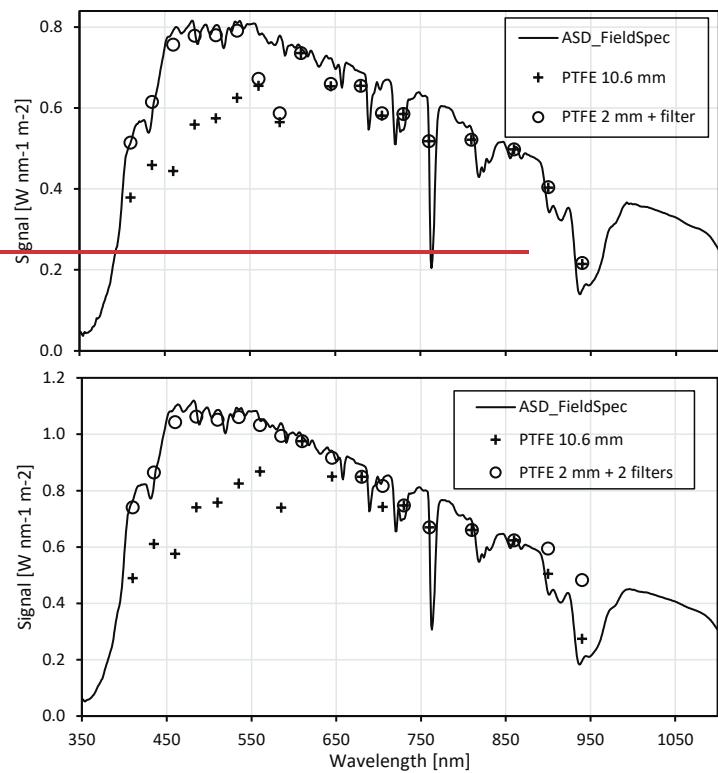


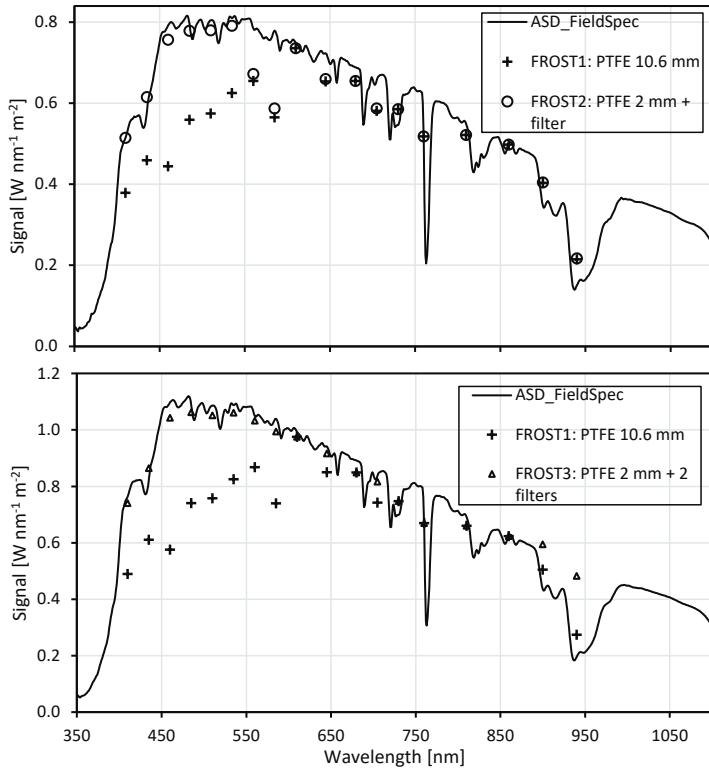
365

366 Figure 7: Correction filters for the infrared crosstalk: Schott heat-absorbing filters (adapted from Schott
367 AG manufacturer data).



368


369
 370 Figure 8: Spectral response and crosstalk (for a flat spectrum) of the blue and red sensor, without or
 371 with correction filter. First row left panels: Blue sensor with 10.6 mm PTFE diffuser. Second row: right
 372 panels: Blue sensor with 2 mm PTFE 2 mm diffuser including a heat absorbing filter (Schott KG-3). Third
 373 row: Red sensor with 10.6 mm PTFE diffuser. Fourth row: Red sensor with 2 mm PTFE diffuser and heat
 374 absorbing filter (Schott KG-1), calculated from manufacturer data of sensor spectral response,
 375 transmission data of the Schott optical correction filter, and measured transmission of PTFE diffusers.


376 Because of the limited view angle of the spectroscopy sensors (40°), it is crucial to add a light diffuser.
 377 Two light diffusing materials were tested, PTFE and Opal cast acrylic sheet glass. The PTFE light diffuser
 378 and the transmission measurements are shown in Fig. 9 (measured with the ASD FieldSpec). Note
 379 that it enhances infrared crosstalk (see Fig. 6b top right panel and Fig. 8 top right panel).

380
381
382 Figure 9: Transmission of PTFE diffusers and an Opal cast acrylic sheet glass diffuser measured with an
383 ASD FieldSpec spectroradiometer.

384 The reduced transmittance of the PTFE diffusers in the shorter wavelengths enhances the near infrared
385 crosstalk (see Fig. 6b top right panel and Fig. 8 top right panel). The combined effect of sensor and PTFE
386 spectral response with or without correction filters is shown in Fig. 10. Three versions of the
387 spectrophotometer were developed: one with a 10.6 mm PTFE diffuser to improve cosine response
388 (FROST1), a second version with a 2 mm PTFE diffuser and a correction filter on the blue sensor
389 (FROST2), and a third version with a 2 mm PTFE diffuser and correction filters on the blue and red
390 sensor (FROST3). The spectral selective quality on real world measurements (Fig. 10) was calculated
391 from the combined effect of the spectrophotometer filter characteristics (Fig. 6), diffuser (Fig. 9)
392 and Schott correction filters (Fig. 7).

394

395 Figure 10: Outdoor measurements (ASD-FieldSpec) with calculated response of 3 FROST versions:
 396 FROST1 with a 10.6 mm diffuser, FROST2 with a 2 mm PTFE diffuser and a correction filter on the Blue
 397 sensor, and FROST3 with a 2 mm PTFE diffuser and a correction filter on the Blue and Red sensor,
 398 considering sensor spectral response and transmission of diffuser and correction filter, during clear sky
 399 conditions, Wageningen.¹⁷ lower panel: 15 May 2022, 14:24 h UTC²⁷ upper panel: 11 March 2022,
 400 13:35 h UTC.

401 Figure 10 shows that the first 6 channels, if uncorrected with a heat absorbing filter,¹⁸ underestimate the
 402 irradiance levels at the expected wavebands because these bands are very sensitive to the infrared
 403 region between 1000 and 1100 nm. At this infrared region, the solar radiation intensity is lower than
 404 what the blue sensor is supposed to see and thus leads to an underestimation of the Blue sensor for the
 405 visible channels. The heat-absorbing filters effectively remove this crosstalk. It also shows that the red
 406 sensor benefits from a heat absorbing filter for the wavebands 560 and 585 nm, but it greatly reduces
 407 the sensitivity of the 900 and 940 nm which makes the contribution of crosstalk from short wavebands
 408 too high (large positive deviation). Therefore the Red sensor should not be equipped with such a filter if
 409 the 900 and 940 nm wavebands are important, for example to estimate column atmospheric moisture
 410 (see application section, Fig.ure 164).

411 The procedure to calibrate each waveband of FROST would require an accurate spectrophotometer and a
 412 clear day. First, each of the 18 PDF band responses of the sensor (with or without a correction filter!)
 413 and diffuser combination is multiplied with the known solar spectrum²⁸ for a very clear day or measured
 414 with a calibrated spectrophotometer. This gives the nW m⁻² reference value ^{that} the FROST sensor
 415 should produce for each waveband. Subsequently the FROST raw 18 wavebands outputs are multiplied

416 by the AMS calibration factors (since we use the uncalibrated output for fast measurement) and divided
 417 by the reference values. The AMS spectroscopy sensor [factory](#) calibration values are written to the SD
 418 card at the very start of the measurements. [The derivation of the calibration values for each FROST](#)
 419 [channel \$i\$ in \[Counts \$nW^{-1} m^{-2}\$ \]](#) can be written as:

$$420 \quad Cal_{FROST,i} = \frac{Counts_i \cdot Cal_{manufacturer,i}}{\sum_{\lambda=1}^{A_2} \left[\frac{R_{sensor,i,\lambda} \cdot T_{diffuser} \cdot T_{filter}}{R_{sensor,i,\lambda}^2 \cdot R_{sensor,i,\lambda} \cdot T_{diffuser} \cdot T_{filter}} - Source_{\lambda} \right]} \quad (1)$$

421 where $Counts_i$ is the signal output of a Frost channel i , from 1 to 18, [-], $Cal_{manufacturer,i}$ is the
 422 manufacturer calibration factor [-] for channel i , $R_{sensor,i,\lambda}$ is the spectral response of channel i [-] at
 423 wavelength λ [nm], $T_{diffuser}$ is the spectral transmission of the diffuser [-] at wavelength λ [nm], T_{filter} is
 424 the transmission of the (optional) crosstalk correction filter [-] at wavelength λ [nm], $Source_{\lambda}$ [$nW m^{-2}$]
 425 is the output of the reference light source at wavelength λ [nm] (preferably the sun), λ_u and λ_l are the
 426 lower and upper boundaries of the spectral sensitivity range (including crosstalk) of the FROST.

427 ▲
 428 The sensor output sensitivity is then expressed as counts per ($nW m^{-2}$). The normalized sensor response
 429 is provided in Fig. 6 and 8 and [in](#) Table S1 in [Supplementary Materials](#). An example of sensitivity
 430 values is presented in Table 2. These values were derived on 11 March 2022 13:35 UTC for the 10.6 mm
 431 diffuser version and the 2 mm diffuser + 1 filter version. The 2 mm diffuser with 2 correction filters was
 432 measured on 15 May 2022 (Fig. 10). Note that these values are only valid for an integration value of
 433 13.94 ms and a gain of 16. We [do not recommend](#) to use channels with Flag 2 or 3 [if spectral](#)
 434 [accuracy is required](#).

435 Table 2: Sensitivity, [or counts \(C\) per \(\$W m^{-2}\$ \) of](#) FROST 1, -2 and -3 with different configurations,
 436 [offsets always zero](#). Every sensor uses a gain of 16 and an integration time of 13.9 ms. The flags denote
 437 quality of measurement (waveband accuracy). Flag 0: low crosstalk, Flag 1: crosstalk<20%, Flag 2:
 438 20%<crosstalk<35%, Flag 3: crosstalk>40%. [The colors in the first column indicate each of the three](#)
 439 [sensors in a FROST](#). The final column shows the improvement factor on sensitivity when using a 3 mm
 440 white Acrylic glass diffuser instead of a 2 mm PTFE diffuser.

Formatted: Subscript

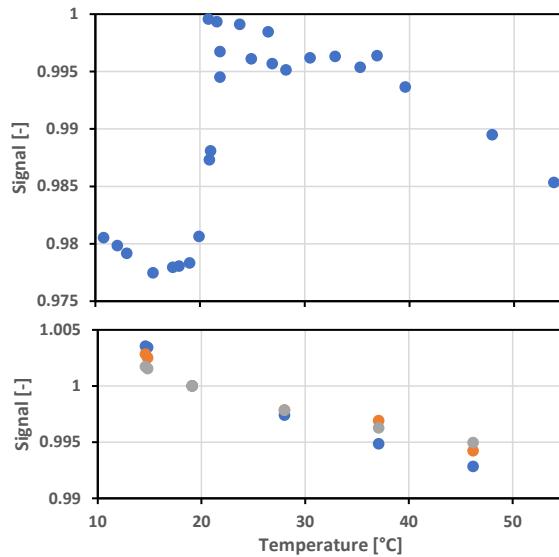
Formatted: Subscript

Formatted: English (United Kingdom)

Formatted: Font: Italic

Formatted: Superscript

Waveband [nm]	10.6 mm diffuser Sensitivity		2 mm diffuser+1 filter Sensitivity		2 mm diffuser+2 filters Sensitivity	
	[Counts nW^{-1}]	Flag	[Counts nW^{-1}]	Flag	[Counts nW^{-1}]	Flag
610	116	0	474	0	494	0
680	132	0	503	0	436	0
730	156	0	549	0	554	0
760	156	0	413	0	387	0
810	188	0	673	0	651	0
860	194	0	760	0	649	0
560	51	2	253	2	186	0
585	70	2	333	2	195	0
645	55	1	256	1	168	0
705	70	1	295	1	117	0
900	90	0	348	0	19	3
940	107	0	395	0	25	3
410	94	3	153	0	157	0
435	100	3	200	0	206	0
460	144	3	211	0	218	0
485	96	3	209	0	217	0
510	94	3	213	0	221	0
535	84	3	204	0	213	0

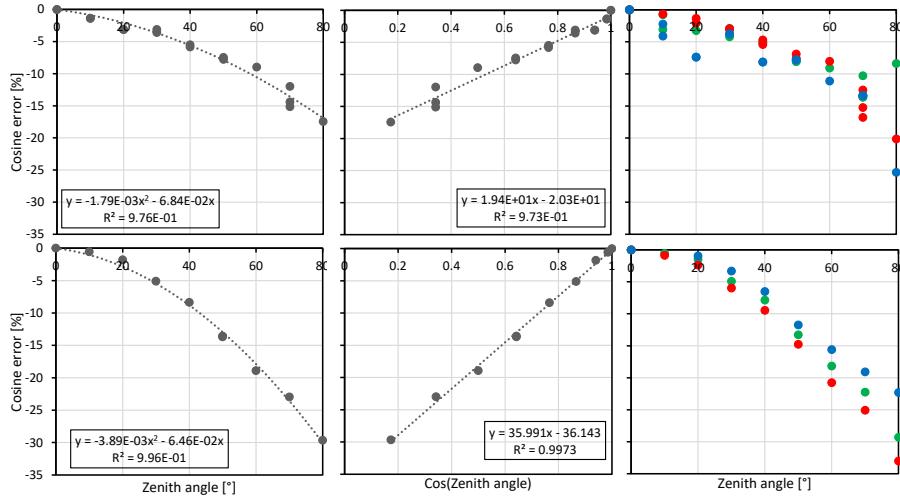

441

	FROST1		FROST2		FROST3		FROST_AG
Diffuser:	PTFE 10.6 mm		PTFE, 2 mm		PTFE, 2 mm		Acrylic glass, 3 mm
Filter:	no		on blue sensor		on blue and red sensor		Sensitivity increase
Waveband	Sensitivity		Sensitivity		Sensitivity		$\frac{T_{Acrylic\ glass_{3mm}}}{T_{PTFE_{2mm}}}$
[nm]	[C W ⁻¹ m ⁻²]	Flag	[C W ⁻¹ m ⁻²]	Flag	[C W ⁻¹ m ⁻²]	Flag	
610	116	0	474	0	494	0	1.61
680	132	0	503	0	436	0	1.49
730	156	0	549	0	554	0	1.39
760	156	0	413	0	387	0	1.36
810	188	0	673	0	651	0	1.31
860	194	0	760	0	649	0	1.25
560	51	2	253	2	186	0	1.70
585	70	2	333	2	195	0	1.65
645	55	1	256	1	168	0	1.56
705	70	1	295	1	117	0	1.43
900	90	0	348	0	19	3	1.12
940	107	0	395	0	25	3	1.20
410	94	3	153	0	157	0	1.55
435	100	3	200	0	206	0	2.38
460	144	3	211	0	218	0	2.08
485	96	3	209	0	217	0	1.94
510	94	3	213	0	221	0	1.85
535	84	3	204	0	213	0	1.76

442

443 3.2 Temperature sensitivity and drift

444 The diffuser and sensor were both tested for temperature effects. The measurements were corrected for
 445 sensor temperature drift or drift in lamp output by measuring the lamp output with an extra sensor
 446 outside the oven. The oven has an internal fan to assure a homogeneous temperature within the oven
 447 chamber. The PTFE filter shows a significant jump in transmission around 21°C, then reaching a plateau
 448 and slowly declining past 35°C (Fig.ure 12, upper panel). The temperature was slowly increased and
 449 ~~stabilized for 30 minutes~~ at each measurement point to minimize thermal delays in the PTFE material.


450

451 Figure 11: Temperature response; upper panel PTFE diffuser, lower panel 3 random light sensors (-250
452 ppm).

453 Three spectroscopy sensor chipsets (3x 18 waveband) were oven-tested for temperature sensitivity
454 between 16 to 46°C. Overall temperature sensitivity is -250 ppm K^{-1} with a small variation among the
455 three sensors. Lower temperatures were not possible due to condensation issues when reaching the
456 dewpoint temperature of the laboratory (Fig. [ure](#) 11).

457 **3.3 Cosine response and GHI**

458 The cosine response measurements (outside, LED lamp) had a better performance for the 10 mm
459 diffuser but nevertheless had some inconsistencies among the three sensors. We tried to improve the
460 cosine response by leaving part of the sides uncovered but this caused a very high asymmetry among
461 the three sensors. The explanation is that the three sensors do not have the same viewing angle location
462 under the diffuser, thus some will see more from the side than [the](#) other sensors. The side sensitivity is
463 greatly reduced with a thinner filter but at the expense of a reduced cosine response (Fig. [ure](#) 12).

464

465 Figure 12: Upper [graph panels](#): 10.6 mm diffuser (black sides). [Bottom lower panel graphs](#): 2 mm
 466 diffuser (sides painted black). The right panels are color-coded [and represent the color code](#) for each
 467 sensor integrated circuit.

468 We found that most of the cosine response errors can be corrected afterwards and is demonstrated for
 469 the 2 mm filter, which had the largest cosine response error [but less transmission loss](#). The accurate
 470 measurement of GHI can be achieved by first correcting for the zenith angle response (see Fig.[ure](#) 13,
 471 middle lower panel) and subsequently applying a second order linear regression against a reference
 472 pyranometer on one clear day (19 March 2021). Additionally, a correction for the limited spectral
 473 response is needed. We tested this calibration method for the average signal of all 18 wavebands and on
 474 single wavebands. The dataset contains clear sky days (Fig.[ure](#) 13), overcast days (Fig.[ure](#) 14) and rainy
 475 weather (Fig.[ure](#) 15). The best overall results were achieved with either channel 645 or channel 705 nm,
 476 with residual errors mainly below 10 W m⁻² during [contrasting weather conditions](#). [Due to the spatial](#)
 477 separation of 156 m between our sensors and the reference solar radiation measurements and the
 478 differences in response speed, we rejected the cloud passage time intervals. The 645 and 705 nm
 479 wavebands seems to correct [cloud effects](#) [of cloud have](#) on the GHI where irradiance is enhanced below
 480 500 nm and reduced due to water absorption bands at wavebands >1 μm.

Formatted: Superscript

481 The remaining uncertainty of the clear-[day calibration](#) ([up to 10 W m⁻² or 5%](#)) is mainly related to small
 482 levelling uncertainties or tolerances in input optics of both reference and our sensors. This is visible as a
 483 shift from a negative to a positive bias around 12 UTC (Fig.[ure](#) 13).

Formatted: Superscript

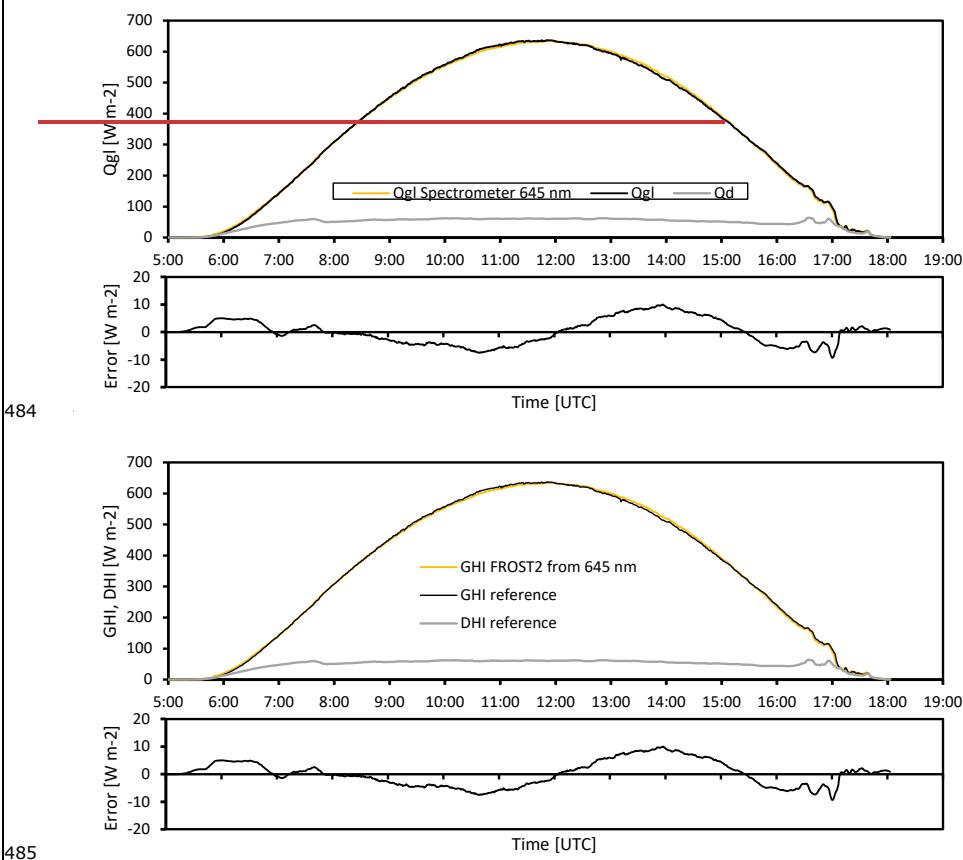
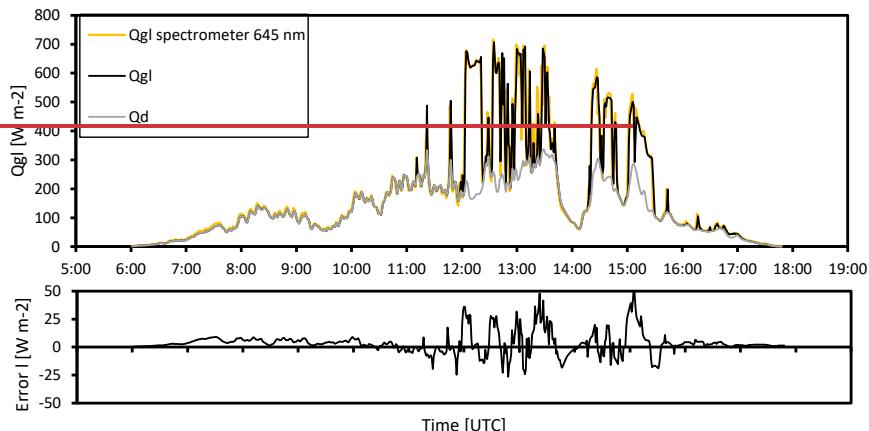
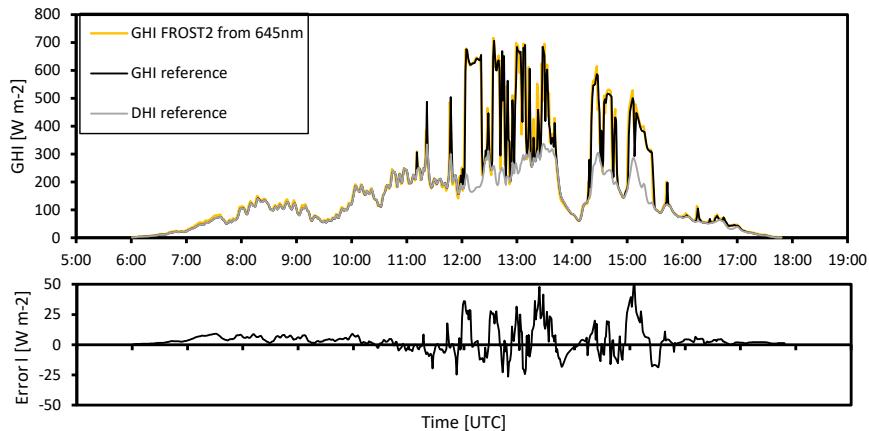
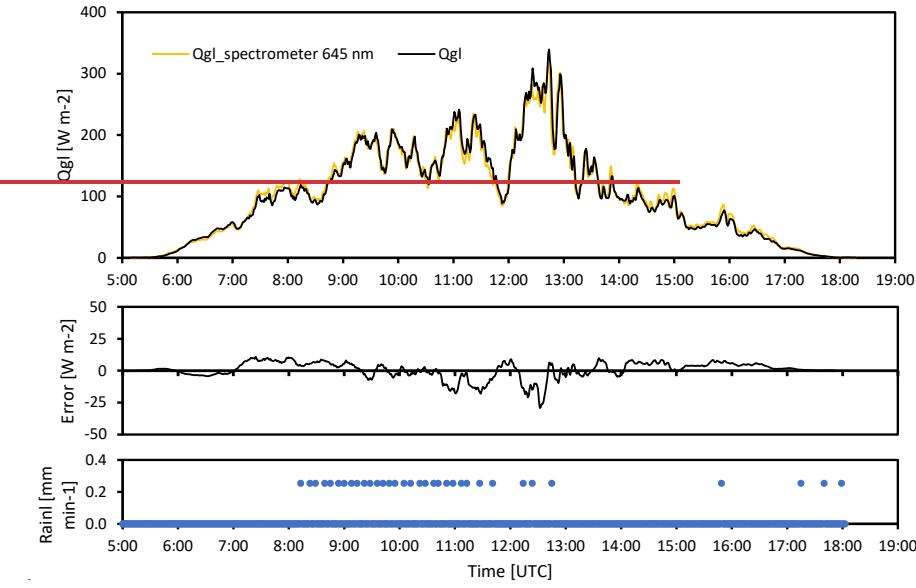
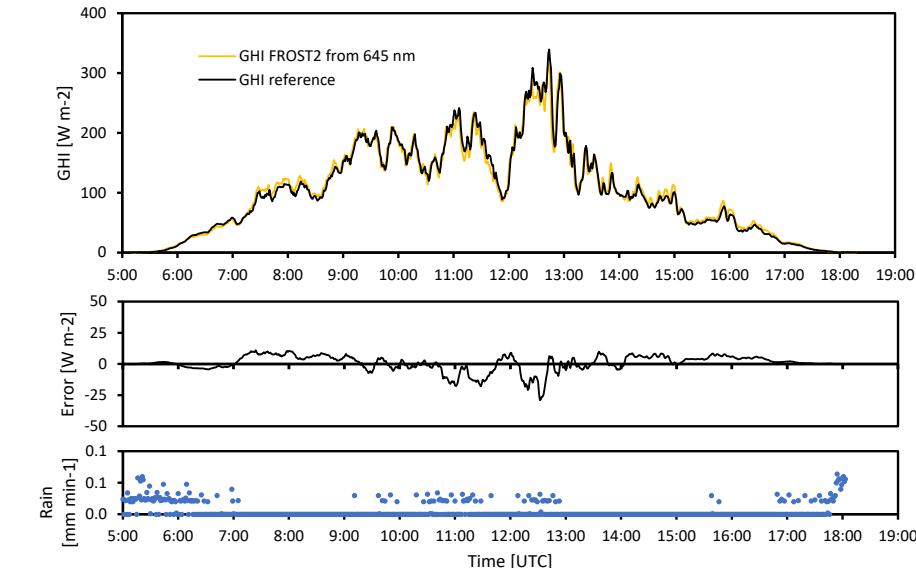




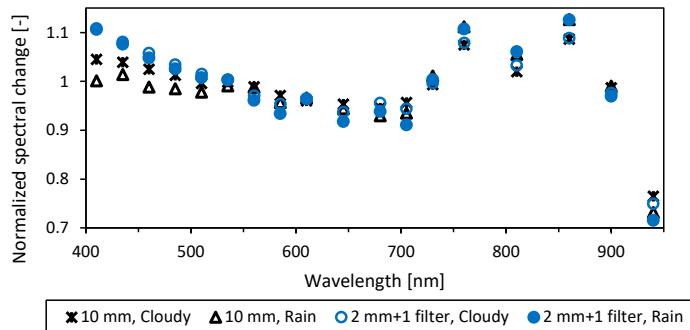
Figure 13: Comparison between GHI (Q_g) measured using a pyrheliometer and diffuse radiation sum (on a suntracker and correcting for zenith angle) converted to horizontal component) + diffuse radiation and a calibrated FROST2 with 2 mm PTFE diffuser and 1 correction filter, diffuse horizontal irradiance (DHI) measured with pyranometer mounted on a suntracker with shading ball, Veenkampen weather station, 19 March 2022.


491

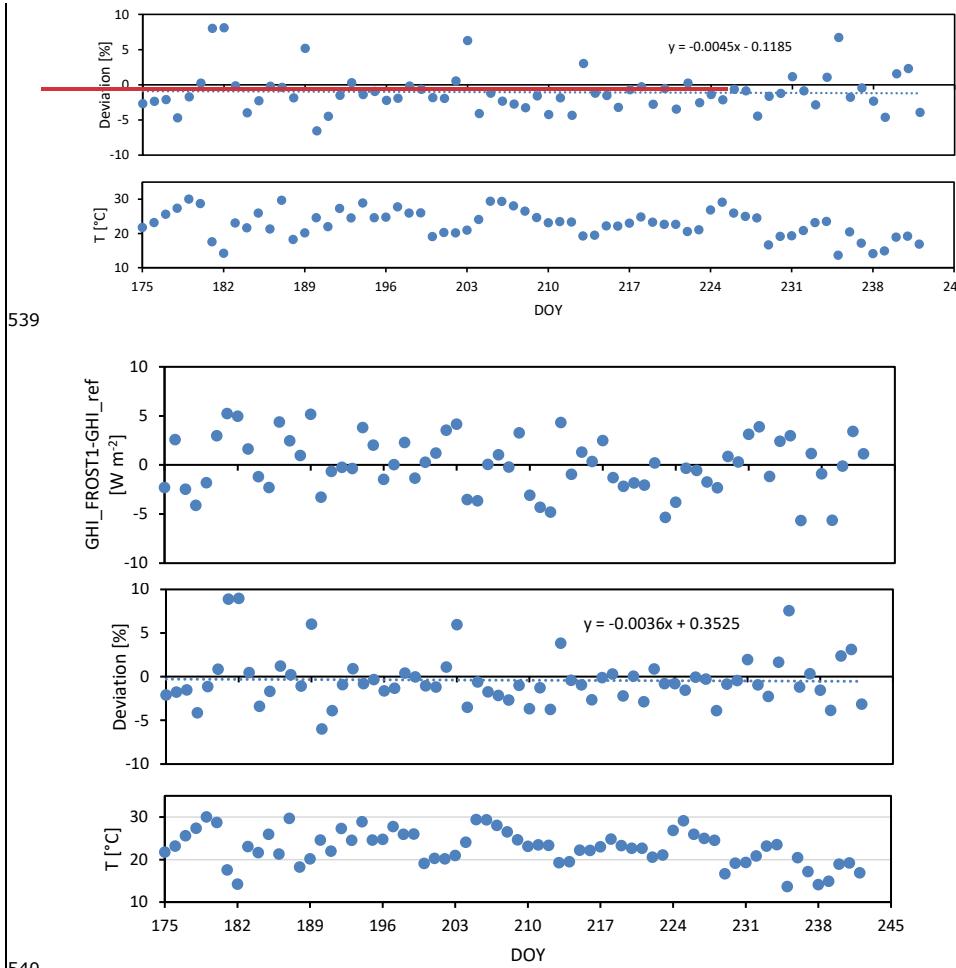

492

493 Figure 14: [Calibrated FROST2 GHI from 645 nm \(calibrated on a clear day, 19 March, see Fig. 13\),](#)
 494 [calibration tested with cloudy weather conditions.](#) Cloudy weather conditions in the morning, some
 495 clearing in the afternoon, 1 minute averaged data, error plot 10 min running mean [to suppress](#)
 496 [differences due to spatial separation of FROST and reference \(145 m apart\)](#), Veenkampen weather
 497 station, 14 March 2022.

498


499

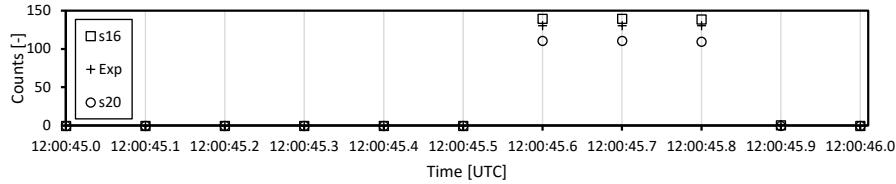
500 Figure 15: Calibrated FROST2 GHI from 645 nm (calibrated on a clear day, 19 March, see Fig. 13),
 501 calibration tested under rainy weather conditions, 1 minute averaged data, error plot 10 min running
 502 mean to suppress differences due to spatial separation of FROST and reference (145 m apart),
 503 Veenkampen weather station, Rainy day, no removal of water from the instruments, Error plot: 10 min
 504 center weighted running mean, 1 minute data, Veenkampen weather station, 31 March 2022.


505 The instruments were not dried during the precipitation event (Figures 15 and 16). [Water droplets on the](#)
 506 [diffuser may affect light transmission and diffuser optical properties.](#)

507 [Next, we investigated how the light spectra is modified by clouds or rain.](#) The two instruments, one with
 508 a 10 mm diffuser ([FROST1](#)) and the second version with a 2 mm diffuser and crosstalk correction filter
 509 on the blue sensor ([FROST2](#)), were used to calculate the spectral change due to cloudy or rainy weather
 510 conditions. Data from the Figures 13-15 experiments were used and, of the three contrasting days, the
 511 11-12 UTC intervals were averaged and normalized for the average spectral signal of the 18 wavebands.
 512 Figure 16 shows that the 940 nm waveband is very sensitive to moisture, with a reduction of more than
 513 20% as compared to its nearest waveband. Accordingly, it can be used to derive information about
 514 atmospheric moisture such as column water vapor. Both cloudy and rainy conditions [appear to](#) modify
 515 the spectra in a similar way ([Fig. 16](#)). The low enhancement in the first four wavebands of the
 516 instrument with the 10 mm diffuser version ([FROST1](#)) is related to the strong crosstalk in the near
 517 infrared. The corrected version with the 2 mm diffuser ([FROST2](#)), which contains the crosstalk correction
 518 filter, shows an enhancement due to clouds and in line with the findings by Durand et al., 2021, who had
 519 an enhancement below 465 nm. -The 645 or 705 nm as shown in Figures 13-15 [appear seem](#) to have the
 520 right amount of sensitivity reduction due to clouds and rain (slightly stronger) to be used for GHI
 521 measurements. It is, however, recommended to use all 18 bands and use a proper weighting function
 522 that reduces sensitivity in the visible region. We currently have no explanation for the enhancements
 523 between 750 and 860 nm.

524
 525 Figure 16: Two FROST instruments, one with a 10 mm diffuser ([FROST1](#)) and one with a 2 mm diffuser
 526 and correction filter ([FROST2](#)). [The normalized spectral cloud modification factor, is the](#) spectral change
 527 of cloudy (14 March, 2022) and rainy weather (31 March, 2022) compared to a cloud-free day (19
 528 March 2022), Veenkampen weather station, data averaged between 11 and 12 UTC for each day.

529 The long-term drift was tested at the Lindenberg rooftop observatory. One instrument was measuring
 530 from 22 June to 31 August 2021 (without any [missing](#) 0.1 s measurements [missing](#)). These 2.5 months
 531 of data were converted to GHI values by using only one relatively clear day (13th August) and compared
 532 with their reference pyranometer. [The GHI standard error was 2.5 W m⁻² for daily averages with a](#)
 533 [diffuser temperature correction obtained by increasing sensor values by 2% at temperatures below 21°C](#)
 534 [according to Fig. 11 and cosine response correction according to Fig. 12 upper panel \(for daily errors see](#)
 535 [Fig. 17 upper panel\).](#) -Additionally, [The GHI deviations in percentage values](#) between 12 and 13 h UTC
 536 [were averaged to reveal possible sensor drift in time and the values were increased by 2% at](#)
 537 [temperatures below 21°C to correct for the diffuser temperature dependent transmission according to](#)
 538 [Figure 12.](#) The diffuser correction practically removed all long-term drift (Figures 17, [middle panel](#)).


546

547 **3.4 Spatial measurements and synchronization**

548 For spatial measurements, exact synchronization is essential. Our GNSS solution uses the hardware
549 timing pulse of the GNSS to trigger a measurement. To illustrate the synchronization performance we
550 set-up three stand-alone FROST sensors and let them run for 1 h outdoors. We then placed them in a
551 dark room and at 12:00:45.6 UTC a LED light source was switched on for 0.3 s. Figure 18 shows 1.1 s of
552 collected 10 Hz data of the 610 nm waveband. The response appears instantaneous and perfectly
553 synchronized. There is still an integration time for each measurement and this was set at 1.394 ms for

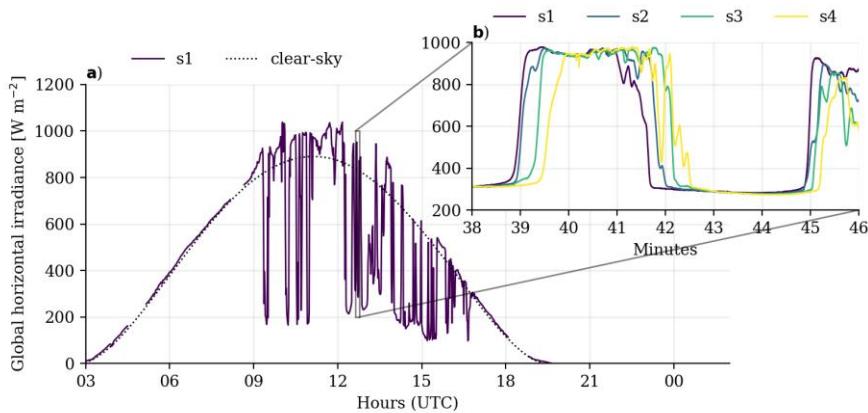
554 FROST s16 and s20 and, for testing purposes, twice as long for the experimental version with a less
 555 transparent diffuser to get more signal. This instrument is denoted with "Exp" in Fig.[18](#). Therefore,
 556 the "Exp" FROST occasionally showed a small delay and illustrates the importance of configuring all
 557 sensors with the same integration time. Figure 18 also shows that the instruments have no zero offset
 558 ([no dark current](#)) errors.

559

560

561 Figure 18: Example of synchronization, response speed and zero offsets of three standalone instruments
 562 (uncalibrated). All three use their own GNSS for synchronization. Light pulse of 0.3 s generated by a LED
 563 lamp.

564 The full sensor readout requires [two](#) integration cycles with each cycle measuring 12 channels (see
 565 Table 3). As a result, there is a maximum of one integration cycle delay between certain channels (with
 566 our default settings: maximum 28 ms). Six channels are measured twice within one default
 567 measurement cycle (Table 3). For critical synchronization applications, it is possible to measure only 12
 568 of the 18 channels during each measurement cycle.

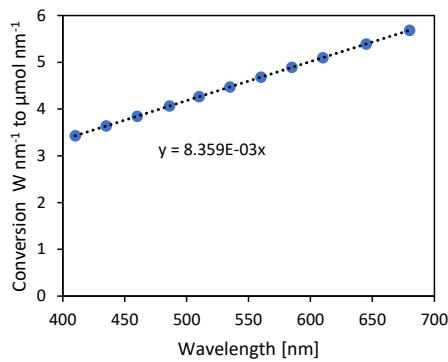
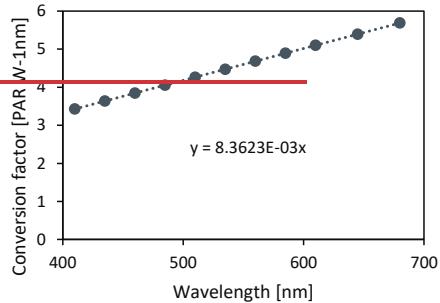

569 Table 3: Readout order during one full measurement cycle.

R	S	T	U	V	W	G	H	I	J	K	L	A	B	C	D	E	F
610nm	680nm	730nm	760nm	810nm	860nm	560nm	585nm	645nm	705nm	900nm	940nm	410nm	435nm	460nm	485nm	510nm	535nm
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2

570 The downside of a fast integration cycle is a smaller output signal. The 10.6 mm diffuser reduces the
 571 light onto the detector significantly, approximately 120 to 30 counts per channel at 650 W m⁻². The 2
 572 mm diffuser increases the signal by a factor of [four](#). Longer integration times are considered but should
 573 be less than 50 ms to assure a sustained 10 Hz output (two integration cycles<100 ms). Additional time
 574 is needed for data communication. The AMS spectroscopy sensor output is in ASCII format and therefore
 575 more digits require more time to transmit.

576 The downside of a fast integration cycle is a smaller output signal. The 10.6 mm diffuser reduces the
 577 light onto the detector significantly, approximately 120 to 30 counts per channel at 650 W m⁻². The 2
 578 mm diffuser increases the signal by a factor of [four](#). Longer integration times are considered but should
 579 be less than 50 ms to assure a sustained 10 Hz output (two integration cycles<100 ms). Additional time
 is needed for data communication. The AMS spectroscopy sensor output is in ASCII format and therefore
 more digits require more time to transmit.

580 the high dynamics and spatial variation along a 150 m transect (Figure 19).



581
582 Figure 19: 10 Hz measurements of spatial variation of GHI at four locations along a 150 m west-east
583 transect (b) compared to one location (a) at 1 minute averages. The dashed line shows the CAMS
584 McClear clear-sky product. Falkenberg, Germany, 27 June, 2021.

585 3.5 Photosynthetic Active Radiation

586 Sensors for measuring Photosynthetic Active Radiation (PAR) are usually constructed using a silicon
587 photo diode and a light bandpass filter from 400 to 700 nm. Photosynthesis is a quantum process and
588 therefore measurement are usually expressed as a Photosynthetic Photon Flux Density (PPFD, μmol
589 photons $\text{m}^{-2} \text{s}^{-1}$). The sensor therefore must account for the larger number of photons at larger
590 wavelengths ($\text{per W m}^{-2} \text{nm}^{-1}$). The wavelength sensitivity ($\text{per W m}^{-2} \text{nm}^{-1}$) is such that the sensitivity at
591 700 nm wavelength is 1.75 times larger than at 400 nm. In our case, we have 11 well-defined
592 wavebands within the PAR region. Therefore, a digital filter can be used to calculate PPFD. Since the
593 sensor outputs in $\text{W m}^{-2} \text{nm}^{-1}$, it must be converted to PPFD by calculating the number of moles per joule
594 per waveband.

595 The photon energy (E_n) at each waveband (n) is related to wavelength (λ) by the speed of light (c) and
596 the Planck constant (h): $E_n = \frac{hc}{\lambda_n}$. The photons (P) per m^2 are: $P_n = \frac{R_n}{E_n}$, where R_n is the irradiance measured
597 at each waveband. The number of moles is linked to the number of photons through Avogadro's number
598 (A) and integration over all FROST3 11 wavebands yields the total PPFD:

$$599 \text{PPFD} = (700 - 400) \int_{n=1}^{11} P_n / A n_{max} \quad (21)$$

601

602

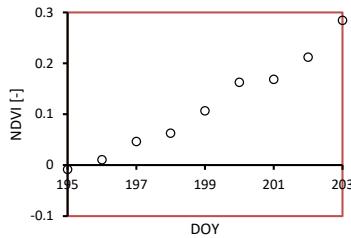
603 Figure 20: Conversion factor for each FROST3 waveband to calculate PPFD [$\mu\text{mol m}^{-2} \text{s}^{-1}$].604 The translation factor from $W \text{ m}^{-2} \text{ nm}^{-1}$ to $\mu\text{mol m}^{-2} \text{ s}^{-1} \text{ nm}^{-1}$ correction for the 11 per wavebands is
605 depicted in Figure 20. The PPFD in Figure 10, lower panel, and the spectra calculated from the 2-mm
606 diffuser version with two correction filters according to Eq. 21 is for example 1293 $\mu\text{mol m}^{-2} \text{ s}^{-1}$.607 Note that the 11 channels within the PPFD range of FROST3 filter characteristics can be used adapted to
608 study for a vegetation specific photosynthesis spectral response.

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

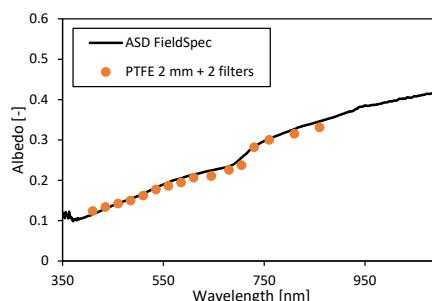
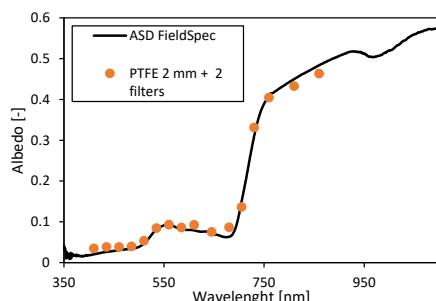
Formatted: Superscript


Formatted: Superscript

609

3.6 Vegetation development

610 The FROST was tested during a field experiment in La Cendroza, Spain (Lat: 41.692537, Long:
611 0.931540) (Liaise Campaign, Boone et al., 2021) from 14-22 July 2021. The instrument was placed on
612 the bare soil surface at the moment the Alfalfa vegetation started to develop. The Normalized Difference
613 Vegetation Index (NDVI) index (NIR-VIS)/(NIR+VIS) is used in remote sensing to quantify crop growth;
614 a low value is bare soil and a value of 1 represents a full-grown crop. It can be computed from at least
615 two wave bands, one in the near infrared (>700 nm) and a second waveband in the visible range. The
616 two wave bands 680 and 730 nm in version 1—that are not affected by infrared crosstalk and both
617 measure at the same sensor chip—were selected to assure that both channels would have the same
618 viewing angle. Figure 21 shows daily values of NDVI.



619

620
621
622
623
624 Figure 21: NDVI measurements calculated from FROST₁ (with 10 mm diffuser) 680 and 730 nm
625 wavebands located inside an alfalfa canopy. Bottom left: FROST_{Sensor} (top at about 8 cm height)
626 placed on the surface in between alfalfa, crop height 30 cm, (18 July).₁₄ Top right: alfalfa crop on 14 July (crop
627 height 23 cm).₁₄ Bottom right: alfalfa crop (height 48 cm) on 22 July; Spain from 14-22 July 2022.

628 3.7 Surface albedo

629 A good test for the quality of the spectral measurements without having to deal with absolute calibration
630 uncertainties are surface reflectance measurements. The typical spectral reflectance signature of a
631 healthy vegetation has two minima in the visible range at 500 and 675 nm and a small peak at 550 nm.
632 Beyond 750 nm it is strongly reflective (about 50%). A bare soil surface, in this case a sandy soil patch
633 from a very deep soil layer that surfaced during the recent drilling of a well at the_{our} weather station,
634 served as a bare soil plot and had a negligible organic soil fraction. The ASD FieldSpec was equipped with
635 a cosine collector and operated in irradiance mode. Weather conditions were sunny with low soil moisture
636 content of the bare soil. The comparison is good considering the difficulty of sampling the same spot for
637 both instruments due to differences in cosine response, size of sensor head and levelling (Fig._{ure} 14).

638
639 Figure 22: Spectral reflectance as measured by the FROST₃ and the ASD FieldSpec with cosine collector.
640 Left panel: _sSpectral reflectance of grassland, Veenkampen weather station, 14:12 UCT 15 May 2022,
641 Right panel: _sSandy soil (dry, no organic fraction), 14:06 UTC 15 May 2022.

642 The small underestimation of the 810 and 860 nm channels is related to the small cross correlation with
643 smaller wavelengths (Fig._{ure} 22).

644 4. Concluding remarksDiscussion

645 The FROST instrument will enable new research opportunities. It is much faster than traditional
646 thermopile pyranometers and the low cost enables the deployment of large sensor grids. It can be
647 deployed very quickly because it is a fully stand-alone, "plug and play" solution and measurements are
648 always fully synchronized to UTC within at least a μ s. The instrument has superior linearity (<0.2%), the
649 temperature coefficient is very low (-250 ppm K $^{-1}$), and was consistent among the three tested
650 instruments. In contrast to thermopile sensors, the FROST has no zero-offset errors. The drift with time
651 appeared insignificant during a 2.5 two and a half month field test. Compared to PAR sensors, FROST can
652 resolve the PAR spectra in 11 narrow wavebands (FWHM: 20 nm). This makes it possible to study
653 wavelength dependent photosynthesis responses of, for example, chlorophyl A and B. This is also
654 relevant in canopy profile studies where solar irradiance extinction through a canopy modifies its light
655 spectra. The fast response makes it possible to investigate the impact of the growth and wind induced
656 movements of vegetation on radiation fluctuations.

657 FROST measures GHI in 18 wavebands and includes a water absorption band, which makes it possible to
658 derive information about atmospheric moisture such as column water vapor. Additionally, by using
659 proper infrared crosstalk correction filters, it can monitor the spectral reflection properties of a surface
660 with its first 16 wavebands from 410 to 860 nm. FROST can also be used to monitor vegetation growth
661 by measuring NDVI.

662 We hope that other researchers will benefit from our crosstalk problem solution. Tran and Fukazawa,
663 (2020), used the same AMS spectroscopy sensor to determine optical properties of fruit, but they did not
664 use LEDs as light sources as recommended by the manufacturer. Their halogen light source emits much
665 infrared light >1000 nm and therefore all their 6 channels of their blue sensor and 2 of their 6 red sensor
666 channels were greatly affected by infrared crosstalk. This is something they may not have been aware of
667 because the AMS spectroscopy sensor datasheet does not show the filter response above 1000 nm. We
668 believe their instrument performance would improve using our proposed correction filters.

669 To date, we have not used the instrument at large zenith angles. Although the proposed cosine
670 correction appears to give good results (2.5 W m $^{-2}$ standard error for daily averaged GHI), we will
671 continue to further improve the cosine collector for large zenith angles. PTFE as a diffuser material has
672 better transmission properties below 400 nm than opal cast Acrylic sheet glass, but it exhibits a 2% step
673 wise increase in transmission beyond 21°C. Since the shortest waveband sensitivity of the FROST sensor
674 is limited to 400 nm (considering FWHM), we recommend using it seems favorable to use opal cast
675 Acrylic glass diffusers for future versions. This would also remove UV radiation exposure and reduce
676 sensor aging.

677 5. Concluding remarks

678 The FROST instrument will enable new research opportunities. It is much faster than traditional
679 thermopile pyranometers and the low cost enables the deployment of large sensor grids. It can be
680 deployed very quickly because it is a fully stand-alone, "plug and play" solution and measurements are
681 always fully synchronized to UTC within at least a μ s. The instrument has superior linearity (<0.2%), the
682 temperature coefficient is very low (-250 ppm K $^{-1}$), and consistent among three tested instruments. In
683 contrast to thermopile sensors, the FROST has no zero offset errors. The drift with time appeared
684 insignificant during a two and a half month field test. Compared to PAR sensors, FROST can resolve the
685 PAR spectra in 11 narrow wavebands (FWHM: 20 nm). This makes it possible to study wavelength
686 dependent photosynthesis responses of, for example, chlorophyl A and B. This is also relevant in canopy
687 profile studies where solar irradiance extinction through a canopy modifies its light spectra. The fast
688 response makes it possible to investigate the impact of the growth and wind induced movements of
689 vegetation on radiation fluctuations.

690 Author contributions

691 B.H. wrote the manuscript draft, methodology of synchronization, fast spatial spectral irradiance
692 measurements, instrument software, electronics and mechanical design, investigation and visualization

Formatted: Superscript

693 of spectral response, thermal sensitivity; W.M. organized the Germany and Spain field campaigns
694 including data organization and visualization of 2D performance in Fig.~~the~~ 19; W.M. and B.H. did the
695 cosine collector and long-term stability experiments and analysis; C.v.H. is the PI of the Shedding Light
696 On Cloud Shadows (SLOCS) project to which this research belongs and ~~has~~ designed the research
697 programme that depends on this instrument; W.M. and C.v.H. reviewed and edited the manuscript.

698 **Acknowledgements**

699 We are grateful for the support and use of the optical calibration facility of DWD Lindenberg and many
700 thanks go to Stefan Wacker and Steffen Gross. We also thank Harm Bartholomeus (Wageningen
701 University, Remote sensing group) for providing the ASD FieldSpec and Emilie Wientjes (Wageningen
702 University) for assistance with their Cary [4000 UV-Vis](#) spectrophotometer. [Simon Berkowicz is thanked](#)
703 [for his valuable input and proofreading.](#)

704 C.v.H., W.M., and B.H. acknowledge funding from the Dutch Research Council (NWO) (grant:
705 VI.Vidi.192.068).

706

707 **References**

708 [Alados-Arboleda, L., Batles, F.J., Olmo, F.J.: Solar radiation resource assessment by means of silicon](#)
709 [cells, Solar Energy, 54-3, 183-191, \[https://doi.org/10.1016/0038-092X\\(94\\)00116-U\]\(https://doi.org/10.1016/0038-092X\(94\)00116-U\), 1995.](#)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

710 Boone, A., Bellvert, J., Best, M., Brooke, J., Canut-Rocafort, G., Cuxart, J., Hartogensis, O., e Moigne, P.,
711 Miró, J. R., Polcher, J., Price, J., Quintana Seguí, P., & Wooster, M.: Updates on the International Land
712 Surface Interactions with the Atmosphere over the Iberian Semi-Arid Environment (LIAISE) Field
713 Campaign. GEWEX News, 31(4), 17–21, 2021.

714 Cahalan, R.F., Oreopoulos, L., Marshak, A., Evans, K.F., Davis, A.B., Pincus, R., Yetzer, K.H., Mayer, B.,
715 Davies, R., Ackerman, T.P., Barker, H.W., Clothiaux, E.E., Ellingson, R.G., Garay, M.J., Kassianov, E.,
716 Kinne, S., Macke, A., O'hirok, W., Partain, P.T., Prigarin, S.M., Rublev, A.N., Stephens, G.L., Szczap, F.,
717 Takara, E.E., Wen, T.V.G., Zhuravleva, T.B.: THE I3RC: Bringing Together the Most Advanced Radiative
718 Transfer Tools for Cloudy Atmospheres. [Bull. Am. Meteorol. Soc.](#), 86-9, 1275-1293,
719 <https://doi.org/10.1175/BAMS-86-9-1275>, 2005.

720

721 [Driemel, A., Augstine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F.M., Duprat, T.,](#)
722 [Fukuda, M., Grobe, H., Kustov, V., Long, C.N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M.,](#)
723 [Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E.B., Schmithüsen,](#)
724 [H., Schumacher, S., Sieger, R., Tamlyn, J., Voigt, R., Vuilleumier, L., Xia, X., Ohmura, A., König-Langlo,](#)
725 [G.: Baseline Surface Radiation Network \(BSRN\): structure and data description \(1992–2017\). \[Earth Syst.\]\(#\)](#)
726 [Sci. Data, 10, 1491-1501, <https://doi.org/10.5194/essd-10-1491-2018>, 2018.](#)

Formatted: English (United States)

Formatted: Default Paragraph Font, English (United Kingdom)

727

728 Durand, M., Murchie, E.H., Lindfors, A.V., Urban, O., Aphalo, P.J., Robson, M.: Diffuse solar radiation and
729 canopy photosynthesis in a changing environment. Agricultural and Forest Met., 311, Article 108684,
730 <https://doi.org/10.1016/j.agrformet.2021.108684>, 2021.

731 Guichard, F. and Couvreux, F.: A short review of numerical cloud-resolving models. Tellus A: Dynamic
732 Meteorology and Oceanography, 69:1, 1373578, <https://doi.org/10.1080/16000870.2017.1373578>,
733 2017.

734 Kreuwel, F. P. M., Knap, W. H., Visser, L. R., Sark, W. G. J. H. M. van, Vilà-Guerau de Arellano, J.,
735 Heerwaarden, C. C. van: Analysis of high frequency photovoltaic solar energy fluctuations. *Solar Energy*
736 206: 381-389, <https://doi10.1016/j.solener.2020.05.093>, 2020.

737 Lohmann, G. M.: Irradiance variability quantification and small-scale averaging in space and time: a
738 short review. *Atmosphere* 9 (7): 264. <https://doi.org/10.3390/atmos9070264>, 2018.

739 Lopes Peirera, R., Trindade, J., Gonçalves, F., Suresh, L., Barbosa, D., Vazão, T.: A wireless sensor
740 network for monitoring volcano-seismic signals. *Nat. Hazards Earth Syst. Sci.*, 14: 3123-3142,
741 <https://doi.org/10.5194/nhess-14-3123-2014>, 2014.

742 [Michalsky, J.J., Perez, R., Harrison, L., LeBaron, B.A.: Spectral and temperature correction of silicon
743 photovoltaic solar radiation detectors. *Solar Energy*, 47, No. 4: 299-305, \[https://doi.org/10.1016/0038-092X\\(91\\)90121-C\]\(https://doi.org/10.1016/0038-092X\(91\)90121-C\), 1991.](https://doi.org/10.1016/0038-092X(91)90121-C)

744

745 Nann, S. and Riordan C.: Solar spectral irradiance under clear and cloudy skies: measurements and a
746 semiempirical model, *J. Appl. Meteor.*, 21:447-462, [https://doi.org/10.1175/1520-0450\(1991\)030<0447:SSIUCA>2.0.CO;2](https://doi.org/10.1175/1520-0450(1991)030<0447:SSIUCA>2.0.CO;2), 1991.

746

747 Tran, N.T., and Fukuzawa, M.: A portable spectrometric system for quantitative prediction of the soluble
748 solids content of apples with a pre-calibrated multispectral sensor chipset. *Sensors*, 20: 5883,
749 <https://doi.org/10.3390/s20205883>, 2020.

750

751 Veerman, M.A., Pedruzo-Bagazgoitia, X., Jakub, F., Vilà-Guerau de Arellano, J., Heerwaarden, C.C. van,
752 2020: Three-dimensional radiative effects by shallow cumulus clouds on dynamic heterogeneities over a
753 vegetated surface. *Journal of Advances in Modeling Earth Systems*, 12,
754 <https://doi.org/10.1029/2019MS001990>, 2020.

755 Ylantilla, L. and Schreder, S., 2005: Temperature effects of PTFE diffusers. *Optical Materials*, 27, 1811-
756 1814, <https://doi.org/10.1016/j.optmat.2004.11.008>, 2004.

757 Yordanov, G.H., Saetre, O., Midtgard, O.: 100-millisecond resolution for accurate overirradiance
758 measurements. *IEEE Journal of Photovoltaics*, 3, 1354-1360,
759 <https://doi.org/10.1109/JPHOTOV.2013.2264621>, 2013.

760 Yordanov, G.H.: A study of extreme overirradiance events for solar energy applications using NASA's
761 13RC Monte Carlo radiative transfer model. *Solar Energy*, 122, 954-965,
762 <https://doi.org/10.1016/j.solener.2015.10.014>, 2015.

763

764

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)