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Abstract. This article presents the results of automatic detection of dust impact signals observed by the Solar Orbiter – Radio

and Plasma Waves instrument.

A sharp and characteristic electric field signal is observed by the Radio and Plasma Waves instrument when a dust particle

impacts the spacecraft at high velocity. In this way, ∼5–20 dust impacts are daily detected as the Solar Orbiter travels through

the interplanetary medium. The dust distribution in the inner solar system is largely uncharted and statistical studies of the5

detected dust impacts will enhance our understanding of the role of dust in the solar system.

It is however challenging to automatically detect and separate dust signals from the plural of other signal shapes for two main

reasons. Firstly, since the spacecraft charging causes variable shapes of the impact signals, and secondly because electromag-

netic waves (such as solitary waves) may induce resembling electric field signals.

In this article, we propose a novel machine learning-based framework for detection of dust impacts. We consider two different10

supervised machine learning approaches: the support vector machine classifier and the convolutional neural network classifier.

Furthermore, we compare the performance of the machine learning classifiers to the currently used on-board classification

algorithm and analyze two years of Radio and Plasma Waves instrument data.

Overall, we conclude that detection of dust impact signals is a suitable task for supervised machine learning techniques. The

convolutional neural network achieves the highest performance with 96% ± 1% overall classification accuracy and 94% ± 2%15

dust detection precision, a significant improvement to the currently used on-board classifier with 85% overall classification

accuracy and 75% dust detection precision. In addition, both the support vector machine and the convolutional neural network

classifiers detect more dust particles (on average) than the on-board classification algorithm, with 16% ± 1% and 18% ± 8%

detection enhancement respectively.

The proposed convolutional neural network classifier (or similar tools) should therefore be considered for post-processing of20

the electric field signals observed by the Solar Orbiter.
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1 Introduction

1.1 The Dust Population in the Inner Solar System

The interplanetary dust population in the inner solar system (≤ 1 AU) is formed by collisional fragmentation of asteroids,

comets and meteoroids. The meteoroids and the larger dust particles are in bound orbits around the Sun and their lifetime is25

limited by collisions, while the smaller particles that form through collisional fragmentation are repelled from the Sun by the

radiation pressure force (Mann et al., 2004). The sources and sinks of the interplanetary dust particles are well-studied at the

orbit of Earth (Grün et al., 1985), while there have been few observations inside 1 AU until recent years.

Model calculations show that the number density of dust within 1 AU is diminished by collisional destruction (Ishimoto,30

2000). However, there are a number of uncertainties that enter the model calculations since the dust collision rates depend both

on the dust number density distribution and on the relative velocities between the dust particles. These parameters are generally

unknown inside the orbit of the Earth and the estimated sizes of the fragmented dust particles are currently based on empirical

relations, inferred from laboratory measurements of accelerated dust particles (Mann and Czechowski, 2005). Furthermore,

there is an additional dust population with an interstellar origin that streams through the solar system. The interstellar dust35

distribution is largely unknown and thus complicates the analysis of the interplanetary dust population. Remote observations

of the zodiacal light and the Fraunhofer corona (F-corona) provide some information of the dust population within 1 AU, but

mainly of the larger (> µm) dust particles (Mann et al., 2004). For all these reasons, in-situ measurements are needed in order

to better understand the role of dust in the inner solar system.

1.2 Exploration of the Inner Solar System40

At present, the inner solar system is explored by the Parker Solar Probe (Szalay et al., 2020), launched August 12, 2018, and

the Solar Orbiter (Müller et al., 2020), launched February 10, 2020. While systematic studies of the dust flux near 1 AU are

conducted with the Solar Terrestrial Relations Observatory (STEREO) (Zaslavsky et al., 2012) and Wind (Malaspina et al.,

2014). The first analyses show that a large fraction of the observed dust particles are repelled from the Sun, i.e. the dust parti-

cles are in unbound orbits (Zaslavsky et al., 2021; Szalay et al., 2020; Malaspina et al., 2020). Mann and Czechowski (2021)45

used model calculations to explain the impact rates observed by the Parker Solar Probe. The dust production was modeled by

collisional fragmentation near the Sun and the dust trajectories were calculated with included radiation pressure and Lorentz

force terms. Mann and Czechowski (2021) showed that the observed impact rates largely agree with the model calculations

for dust > 100 nm and proposed that the differences may be explained by the influence of smaller particles and of other dust

components, such as dust in bound orbits and interstellar dust.50

In this work, we analyze data acquired by the Solar Orbiter. The spacecraft orbits the Sun in an elliptic orbit with a period

of approximately 6 months. At perihelion, the Solar Orbiter reaches a minimum solar distance of 0.28 AU, just within the

perihelion of the Mercury orbit. The expected mission duration is 7 years, with a possible 3-year extension. The Solar Orbiter
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will thus provide long-term, in-situ observations of the environment in the inner solar system with multiple instruments. One55

of these instruments is the Radio and Plasma Waves instrument, allowing observations of the cosmic dust flux with typical

diameters ranging from ∼100 nm to ∼500 nm (Zaslavsky et al., 2021).

1.3 Radio and Plasma Waves Instruments for Dust Detection

Radio and plasma waves instruments (i.e. antennas) have been used for studying dust in the solar system since the Voyager

mission (Gurnett et al., 1983; Aubier et al., 1983). A dust impact is observed by the spacecraft antennas as a sharp and charac-60

teristic electric field signal, produced by the impact ionization process.

The impact ionization process occurs when dust particles hit a target in space with impact speeds on the order of ∼km/s or

larger, impact speeds which are typical for space missions in the interplanetary medium. The kinetic energy of the impact is

transferred into deformation, shattering, melting and vaporization of the dust projectile– and target material, producing a cloud65

of free electrons and ions on the surface of the spacecraft. Laboratory measurements (Collette et al., 2014) and model calcula-

tions (Hornung et al., 2000) indicate that the free-charge yield depends on multiple parameters, where the most important are

the dust impact velocity, the dust mass, and the material of both the dust projectile and the target (the spacecraft surface) (Mann

et al., 2019). The forming cloud of charged particles is partly expanding into the ambient solar wind and is partly recollected

by the spacecraft. This induces the characteristic electric field signal, hereafter referred to as the dust impact signal/waveform.70

Radio and plasma waves instruments allow for the entire spacecraft body to serve as a dust detector, providing a large

collection area in comparison to dedicated dust detection instruments. Thus, radio and plasma waves instruments can provide

dust distribution estimates based on thousands of dust impacts each year, statistical products that are difficult to acquire by

dedicated dust instruments. Still, radio and plasma waves instruments have lower sensitivities than dedicated dust detectors75

(Zaslavsky, 2015) and the shape of the dust impact waveform is highly dependent on the potential difference between the

spacecraft and the ambient plasma (Vaverka et al., 2017). This complicates the analysis of the dust distribution in the solar

system since statistical studies rely on automatic dust detection with high accuracy, which is difficult to attain with the software

currently in use.

1.4 Machine Learning Classification of Time Series Data80

In this article, we present a machine learning-based framework as a novel method for detecting dust impact signals in radio

and plasma waves instrument data. Machine learning methods, in particular neural networks in the recent decade, have been

extensively used for challenging time series classification problems, such as: speech recognition (Trosten et al., 2019), heart

rate monitoring (Wickstrøm et al., 2022) and human activity classification (Villar et al., 2016).

85

A neural network has previously been used for selecting the signals of interest observed by the WAVES instrument on board

the Wind spacecraft (Bougeret et al., 1995). While an unsupervised method (self-organizing maps) was used for identifying and
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categorizing plasma waves in the magnetic field data observed by the MMS1 spacecraft (Vech and Malaspina, 2021). Still, no

machine learning tools have been developed for classifying dust impacts in radio and plasma waves instrument data, although

the characteristic signal produced by the impact ionization process is distinctive and could therefore be suitable for machine90

learning detection.

1.5 Motivation and Article Structure

The main motivation for this work was to develop a dedicated dust detection tool that can be used to automatically process the

large amount of data acquired by the Radio and Plasma Waves instrument on board the Solar Orbiter. The aim was to develop

a classifier with a high overall classification accuracy on a balanced data set that can make statistical studies more reliable and95

easier to conduct. For this project, we defined high accuracy to be (≳ 95%) after some initial testing. We considered (≳ 95%)

accuracy to be satisfactory for meaningful statistical studies and a significant improvement to the currently used classification

system. In order to achieve this objective, we used supervised machine learning techniques to develop the dust classifiers,

trained and tested on a set of 3000 manually labeled observations.

100

The remaining of this article is structured as follows. Section 2 explains the Solar Orbiter – Radio and Plasma Waves

observations and the on-board algorithm that is currently used for dust impact detection. Section 3 describes the procedure

that was used for developing the machine learning classifiers; from the downloaded data to the training– and testing of the

classifiers. Section 4 investigate the performance of the classifiers and includes the resulting dust impact rates, calculated by

analyzing two years of automatically classified Solar Orbiter data. Finally, Section 5 presents the overall conclusions of this105

project.

2 Observations and Data Acquisition

2.1 The Radio and Plasma Waves (RPW) Instrument and the Time Domain Sampler (TDS) Receiver

This work focuses on electric field signals (i.e. waveforms) observed by the Radio and Plasma Waves (RPW) instrument on-

board the Solar Orbiter (Maksimovic et al., 2020). The RPW instrument consists of 3 antennas operating synchronously and110

the measured electric potential is recorded by the Time Domain Sampler (TDS) receiver unit (Soucek et al., 2021).

The TDS receiver is designed to capture plasma waves (such as ion-acoustic and Langmuir waves) in the frequency

range 200 Hz – 100 kHz, in addition to the dust impact signals (Soucek et al., 2021). The antenna voltages are converted

to electric field values using the antenna effective lengths but are otherwise uncalibrated. We consider only signals sampled115

with a sampling rate of 262.1 kHz in snapshots of 16384 time-steps, acquired when the TDS receiver was operating in the

XLD1 mode.
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The XLD1 mode is the most commonly used observational mode of the RPW-TDS system (Soucek et al., 2021). XLD1

is a hybrid mode, where channel 3 (CH3) is operating in monopole mode while channel 1 (CH1) and channel 2 (CH2) are120

operating in dipole mode:
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where Vi−VSC denotes the potential difference between antenna i and the spacecraft body along the antenna boom with unit125

vector L̂i and effective length Li. For this work however, the 3 RPW antenna signals are all converted to monopole electric
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Ē2 =CH3 =

(
V2 −VSC

L2

)
L̂2 (5)
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The Solar Orbiter RPW-TDS detection threshold is ∼5 mV, allowing dust impact identification of the cosmic dust flux with

typical diameters ranging from ∼100 nm to ∼500 nm (Zaslavsky et al., 2021).

2.2 The Triggered Snapshot WaveForms (TSWF) data product and the TDS Classifier

For this project, we use the Triggered Snapshot WaveForms (TSWF) data product, processed with software version 2.1.1 and135

acquired over a 25 month-period, spanning between June 15, 2020, to July 14, 2022. The TSWF data product consists of signal

packets (63 ms snapshots) that are down-linked only if the classification algorithm on-board the Solar Orbiter is triggered.

The accuracy of the on-board classification algorithm is therefore important in order to optimize the data transfer and provide

reliable data products for statistical analysis.

140

The input to the on-board classification algorithm, hereafter named the TDS classifier or the TDS classification algorithm,

is the 63 ms signal packet, while the output is categorized into one out of three labels: dust, wave or other. The TDS classifier

assigns the label based on 3 extracted features.

1. The snapshot peak amplitude (Vmax)

2. The ratio of the peak amplitude to the median absolute value of the signal (Vmax/Vmed)145

3. The full width half maximum (BW) of the main spectral peak, identified by analyzing the discrete Fourier transform of

the signal.
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The signal label is then determined by comparing the extracted feature values against configurable thresholds. The threshold

criterion reflects that observations of waves are typically narrow-band (low BW) and the peak of the signal is not much larger

than the median value (low Vmax/Vmed). In contrast, dust observations are sharp non-periodic signals (high BW) that gener-150

ally have a high maximum to median amplitude ratio (high Vmax/Vmed). For more detailed descriptions of the TDS classifier,

see Maksimovic et al. (2020) and Soucek et al. (2021). Figure 1 presents a few examples of recorded snapshots with included

labels, as classified by the TDS classification algorithm.

Figure 1 illustrates that it is challenging to detect and separate dust signals from the plural of other signal shapes. In particular,155

the dust waveform in Sub-figure c) is classified as other, while the Langmuir wave and solitary wave snapshots in Sub-figures g)

and h) are erroneously classified as dust by the TDS classification algorithm. For more information on observations of Langmuir

and ion-acoustic waves in the Solar Orbiter data, see e.g. Soucek et al. (2021), and for an analysis of Wind observations of

electrostatic solitary waves, see Malaspina et al. (2013).

3 Machine Learning-Based Framework for Automatic Dust Impact Detection160

The goal of the machine learning classifier is to take a monopole RPW snapshot as an input and automatically output if the

signal contains a dust impact or not. For this purpose, we use a supervised classifier. A supervised classifier relies on manually

labeled data to learn (i.e. train) the function that maps the input observation (the electric field signal) to the output label. For

this work, we focus exclusively on detecting dust impact signals, we therefore use the binary labels: dust or no dust. Additional

labels, such as: ion-acoustic waves, Langmuir waves and solitary waves, could however be implemented in a similar machine165

learning-based framework.

3.1 Data Pre-Processing for Machine Learning Classification

In order to construct a balanced data set, we selected ∼ 1500 waveforms classified as dust and ∼ 1500 waveforms classified

as wave/other by the TDS classification algorithm. The signals were randomly drawn from the TDS data archive and acquired

between 15 June 2020 to 16 December 2021. The TDS signals were then pre-processed to standardize the input to the classifier170

and speed up the training. Standardized data further reduces bias effects and makes the manual labeling of the signals easier to

conduct. For this work, a 4-step pre-processing procedure was used independently on each antenna signal, the pre-processing

procedure applied on a sample signal is illustrated in Figure 2.

1. Remove the signal offset The electric field offset is removed by subtracting the raw signal with the median of a heavily

filtered version of the raw data. A sliding median filter over 21 time-steps was selected by visual inspection of the noise175

characteristics. The removal of the electric field offset centers the signal around zero and reduces bias effects from offset

waveforms.
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Figure 1. Waveforms recorded by the TDS receiver and measured by one of the RPW antennas. The signal label, classified by the TDS

classification algorithm, is included for each snapshot in the subplot titles. The top row presents dust waveforms: a) is a clean dust impact

waveform, b) shows a dust impact that saturates the receiver unit (or reaches the non-linearity limit), c) presents a weak dust impact signal

that is strongly affected by noise. The middle row presents ambiguous waveforms: d) might be a dust impact, but information is limited by

the signal framing, e) is likely a dust impact, but the signal shape resembles solitary waves and is strongly affected by noise, f) might be a dust

impact, but noise and possible electromagnetic waves make the signal difficult to interpret. The bottom row presents waveforms without dust:

g) shows Langmuir waves, characterized by the high-frequency E-field oscillations with a lower-frequency amplitude modulation, h) presents

solitary waves, which sometimes resemble dust impact waveforms, i) shows a signal dominated by noise, without any clear features. Note

that the full (63 ms) snapshots are zoomed to 15 ms intervals around the interesting features and that the signal amplitudes are normalized to

±1 and centered around zero for illustrative purposes.
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2. Filter the data The signal is filtered using a sliding median filter over 7 time-steps in order to reduce the high-frequency

noise. The 7 time-step filter was selected by inspecting the power spectrum of impact signals and by noticing that most

information above (fN = 35 kHz) is buried in noise, although the TDS sampling frequency is higher (fs = 262.1 kHz),180

thus making a filter length (< fs/fN ≈ 7.5) appropriate without significant loss of information.

3. Compress the data The signal is re-sampled with a compression factor of 4 using linear 1-dimensional interpolation. The

compression is done to speed up the training of the classifier, resulting in a re-sampling from 16384 to 4096 time-steps.

4. Normalize the signal The data is normalized to be between -1 and 1 by dividing all data samples with the maximum

absolute value of the signal. The normalization makes the machine learning classifier more robust to variations in the185

signal strength and eases the parameter optimization during training.
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Figure 2. A dust waveform observed by antenna 2 on September 8, 2021. The sub-figures illustrate the different stages of the pre-processing

procedure. a) The electric field offset is removed and the signal is centered around 0 mV/m. b) The signal is filtered by a median filter over

7 time-steps to reduce the high-frequency noise. c) The signal is compressed by a factor of 4 to reduce the data size. d) The waveform is

normalized by the maximum absolute value of the signal in order to ease the parameter optimization of the machine learning classifier. Note

the waveform is zoomed to a 15 ms time period around the dust impact in order to better visualize the impact shape modification by the

pre-processing procedure.
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3.2 Manual Waveform Labeling

Manually labeled data is used both to train the machine learning classifiers and to test the performance of the trained models.

Thus, great care is needed in order to construct a high-quality labeled data set, without significant contamination of corrupted

data files, biases and mislabeled signals.190

We manually labeled the data into either dust or no dust. Each signal was displayed without indications of the previously

assigned label by the TDS classifier in order to reduce bias effects. Furthermore, a zoom function was used to investigate the

areas of interest and options were included both to correct labeling mistakes by the user and to indicate ambiguous signals that

do not clearly fit into any label (dust or no dust). Appendix A presents the Graphical User Interface (GUI) that was used to195

label the 3000 observations.

It should be noted that 134 signals (i.e. 4.5%), out of 3000 manually labeled waveforms, were marked as ambiguous and did

not clearly fit into either the dust or no dust label, see the middle row of Figure 1 for ambiguous examples. Furthermore, the

manual waveform labeling was done by one scientist, although with consultations with other experts. Thus, it is to be expected200

that different scientists will disagree on a proportion (up to 5%) of the manual labels. The disagreement level could possibly

be reduced if several experts labeled the same data set, and the labeling consensus was used as the effective waveform label.

3.3 Developing the Machine Learning Classifiers

The manually labeled data was split into a training set (containing 80% of the data) and a testing set (with the remaining 20%).

The training data is used to optimize the free parameters of the machine learning classifiers with respect to the assigned labels,205

while the testing data is used as an independent set to evaluate the performance of the trained classifiers. The performance of a

machine learning classifier is quantified by comparing the outputs of the trained model to the labels of the testing data. Figure 3

illustrates the data flow; from the TDS data sets to the machine learning performance metrics.

There are numerous machine learning techniques that are suitable for time series classification. In this work, we focus on210

two well-known techniques: the Support Vector Machine (SVM), described in Sub-section 3.4, and the Convolutional Neural

Network (CNN), discussed in Sub-section 3.5.

3.4 The Support Vector Machine (SVM)

The support vector machine (Boser et al., 1992; Cortes and Vapnik, 1995) is a robust and versatile classification algorithm,

considered to be one of the most influential approaches in supervised learning (Goodfellow et al., 2016). SVMs learn the215

decision hyperplane that maximizes the discriminative power between the observations categorized into two classes (in this

case: dust or no dust). However, SVMs are highly dependent on the representation of the data and often achieve sub-optimal

performance on high-dimensional data (when used directly). In this case, the observations from 3 antenna measurements, each
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Figure 3. Data flow; from the TDS data sets to the machine learning performance metrics. The diagram illustrates the data flow by the

black arrows and the applied process by the arrow label. The cylinders indicate the signal waveforms and the cylinder color indicates the

associated label. The gray circles mark data transformation processes. The random draw of the TDS data and the pre-processing is explained

in Sub-section 3.1, while the manual labeling is described in Sub-section 3.2. A description of the randomization and splitting of the manually

labeled data into a training and a testing set is included in Sub-section 3.3. Sub-sections 3.4 and 3.5 explain the training and testing of the

machine learning classifiers. Finally, the performances of the machine learning classifiers are compared and evaluated in Sub-section 4.1.

with 4096 time-steps, are both high dimensional and noisy (each time-step contain little information). It is therefore common

to extract important characteristics (i.e. features) from the data to provide the SVM with compactly represented information220

with less noise and redundancies.

3.4.1 Feature Extraction

In order to develop a baseline machine learning classifier, comparable to the on-board TDS classification algorithm, a sim-

ple 2-dimensional SVM classifier was considered. Thus, every observation with dimension (3x4096) is represented by a 2-225

dimensional feature vector (1x2). After some initial testing, we selected two features that had a high discriminative power

between the dust and no dust observations.

1. The standard deviation The mean standard deviation is calculated over the 3 antenna channels, each with 4096 time-

steps. The standard deviation is an appropriate feature since normalized dust signals typically have a lower mean standard230

deviation than normalized no dust signals.
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2. The convolution ratio The log10 value of the convolution ratio (|conv|max/|conv|median) is calculated, where |conv| is

the absolute values of the convolution of the antenna signals with a normalized Gaussian of width 0.5 ms. |conv|max is

the maximum value of |conv|, while |conv|median is the median. The convolution ratio was selected as a feature since

the dust signals typically have a larger convolution ratio than the no dust signals. The Gaussian width of 0.5 ms was235

experimentally found to give high correlations with dust impact signals.

3.4.2 Training the Support Vector Machine

The 2 features (standard deviation and convolution ratio) were extracted from all observations in the training data. The decision

hyperplane, in this 2-dimensional case a decision line, is defined by a polynomial of degree 2 that is optimized by minimizing

the non-separable SVM cost function, see e.g. Theodoridis and Koutroumbas (2009) for details. The SVM classifier was trained240

with a slack variable factor of 1 and equal weighting between the dust and no dust observations. The 2-dimensional SVM is

computationally inexpensive to optimize with a training time of ∼1 second on a modern laptop. Figure 4 illustrates the training

of the SVM classifier.
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Figure 4. a) The (1x2) feature vectors extracted from all (2400) observations in the training data, the associated labels are indicated in green

(dust) and red (no dust). b) The SVM decision line is defined as a second-order polynomial, obtained by minimizing the non-separable SVM

cost function. The optimized SVM decision line appears to be reasonable, and most observations are separable in the training data.
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3.4.3 Testing the Support Vector Machine245

The performance of the trained SVM classifier is evaluated using the independent testing data, i.e. the remaining manually

labeled data (20 %) that was not used for training the classifier. Figure 5 presents the SVM classification performance on the

testing data.
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Figure 5. a) The (1x2) feature vectors extracted from the testing data (600 observations with hidden labels). b) The testing data is classified

using the trained SVM decision line, where all observation within the polynomial line is classified as dust while all observations outside

are classified as no dust. c) The “true” labels (from the manual labeling) are revealed. It is clear that some observations are confused,

predominantly near the decision line. Still, the SVM classifier achieves an overall classification accuracy of 94%, calculated by comparing

the outputs from the SVM classification (Sub-figure b) to the “true” labels (Sub-figure c).

Overall, the SVM classifier achieves a classification accuracy of 94% on the testing data using the 2-dimensional feature250

vectors. Note that the inclusion of additional extracted features can possibly enhance the SVM performance. Several additional

features can be considered, such as; the mean amplitude of the signal, the range between the signal maximum and minimum

values and the cross-correlation length (the time lag to the first zero crossing).

3.4.4 Explainability of the Support Vector Machine

Ideally, we want to develop a machine learning classifier that not only has a high accuracy, but also makes decisions that are255

understandable for human experts (Holzinger et al., 2019). In other words, we want to be able to explain why the machine

learning classifier selected the predicted class for a given observation. In machine learning, this is often referred to as the
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explainability of the trained classifier. Figure 5 presents the testing data in the 2–D feature vector space, but this plot gives no

clear indications of how different signal shapes are distributed and which signatures are confused by the SVM classifier. In

order to better understand the decisions made by the SVM classifier, the signal examples in Figure 1 are studied in detail. The260

analysis is presented in Figure 6.

It should be noted that the signal examples in Figure 6 are not representative for the general distribution of observations

in the 2–D feature vector space, since most observations are clustered in distinct dust and no dust regions, as can be seen in

Figure 5. Figure 6 focuses mostly on signal examples that are challenging to classify. Still, Figure 6 indicates that the SVM265

classifier provides mostly comprehensible outputs, but might have difficulties classifying weak dust impact signals and signals

with important signatures located at the edge of the snapshot frame.

3.5 The Convolutional Neural Network (CNN)

Convolutional Neural Networks are algorithms designed for processing grid-like data and have achieved premium performance

on a number of different tasks in the recent decade, such as image (He et al., 2016; Kvammen et al., 2020), video (Karpathy270

et al., 2014), and time series (Wang et al., 2017; Wickstrøm et al., 2021) classification.

3.5.1 Feature Extraction

Unlike the SVM, the CNN does not require pre-defined feature extraction routines. Instead, the CNN extracts the features

based on a chain of convolution operations and automatically optimizes the convolution filters based on the training data and

the associated labels.275

For this work, we employed the 3-layer fully convolutional network architecture presented in Wang et al. (2017) and sug-

gested for time series classification after extensive testing (Wickstrøm et al., 2022; Fawaz et al., 2020; Karim et al., 2019). The

Rectified Linear Unit (ReLU) function (Glorot et al., 2011) was used as the activation function and Batch Normalization (BN)

(Ioffe and Szegedy, 2015) was used at each convolutional layer in order to regularize the network and accelerate the training280

process. Figure 7 presents the employed CNN architecture.

3.5.2 Training the Convolutional Neural Network

The 3-layer fully convolutional network consists of 267010 free parameters (weights and biases) that need to be optimized to

solve the dust impact classification task. The free parameters are randomly initialized and thereafter optimized using the ADAM

gradient descent optimizer (Kingma and Ba, 2014). The CNN was trained for 225 epochs with a cross-entropy loss function285

using the 2400 labeled observations in the training data. CNNs are computationally expensive to optimize, as compared to the

SVM classifier, and a training time of ∼20 minutes was required using TensorFlow on a MacBook Pro with a 32-core M1 Max

GPU chip. For more details on neural network training and optimization, see for example (Montavon et al., 2012).
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Figure 6. The signal examples are presented in Sub-figures (a-i), the manual labels are indicated along the y-axis and the predicted labels,

classified by the SVM decision line, are presented in the sub-plot titles. Sub-figure j) presents the associated signal examples in the 2–D

feature vector space along with the SVM decision line. The dust signals are illustrated in green, the ambiguous signals are marked in yellow

and the no dust signals are indicated in red. The SVM classifier provides mostly explainable outputs. The clear dust signals (a-b) are located

well within the SVM decision line, the ambiguous signals (e-f) are located near the decision line while the no dust signals (g-i) are clearly

located outside. However, dust signal c) is erroneously located just outside the decision line, this can possibly be explained by the weak

signal-to-noise ratio. In addition, signal d) is located well within the decision line, although this signal is labeled ambiguous-no dust due to

the signal framing, this indicates that the SVM might have difficulties classifying signatures located at the edge of the snapshot frame. Note

that the signals are zoomed to 15 ms intervals around the interesting features, similar to the examples in Figure 1.
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Figure 7. The 3-layer fully convolutional network used for the dust impact classification task. The input to the network is the (3x4096)

waveform. The feature extraction process is defined by 3 convolutional layers, consisting of 128, 256 and 128 independent filters with

kernel lengths of 8, 5 and 3 weights, respectively. Batch normalization (BN) is used at each convolutional layer to regularize the inputs

and the Rectified Linear Unit (ReLU) function was used as the activation function. Finally, the output of the convolutional layers (with

dimension 128x4096) is averaged in the global pooling layer to a feature vector with dimension (128x1). The class score is then determined

in a Fully Connected (FC) network layer and the output label probabilities (Pdust, Pno dust) are calculated using the softmax function. The

figure is adopted from Wickstrøm et al. (2021).

3.5.3 Testing the Convolutional Neural Network

In order to visualize the features extracted by the CNN, we employ the t-distributed Stochastic Neighbor Embedding (t-SNE)290

method (Van der Maaten and Hinton, 2008). The t-SNE method is used for visualizing high-dimensional data by assigning each

observation a location in a 2–D space such that similar observations are modeled by nearby points while dissimilar observations

are modeled by distant points with high probability. The (128x1) testing feature vectors, extracted in the global pooling layer,

are presented in a 2–D t-SNE map in Figure 8, along with a visualization of the CNN classification performance.

295

Overall, the CNN obtains a high (≳ 95%) classification accuracy and might therefore be suitable for automatic processing

of electric field signals observed by the RPW instrument on board the Solar Orbiter.

3.5.4 Explainability of the Convolutional Neural Network

Neural networks have traditionally been regarded as black boxes (Shwartz-Ziv and Tishby, 2017; Alain and Bengio, 2016),

where the network carries out the desired task, but the network decisions are difficult to interpret. However, progress has been300

made in recent years for making the neural network decisions more accessible and easier to interpret (i.e. explainable) for

human users (Samek et al., 2021). In this section, we analyze the CNN decisions by employing Class Activation Maps and the

previously described t-SNE method.

Class Activation Maps (CAMs) (Zhou et al., 2016) highlights the regions of the data that are important for a considered305

label (c) by analyzing the features extracted in the global pooling layer and the weights in the FC layer that are associated with

label (c), see e.g. (Wang et al., 2017) for a detailed description. The outcome of the CAM analysis is that we can visualize

the sections of the signal that are influential for the CNN classification decision. Figure 9 presents the CAM analysis of the

signal examples in Figure 1 along with an illustration of the signal features in a dimension-reduced t-SNE space. Note that the

15



-40 -20 0 20

T-SNE x-axis

-30

-20

-10

0

10

20

30

T
-S

N
E

 y
-a

x
is

a) Testing Data

Test Data

-40 -20 0 20

T-SNE x-axis

-30

-20

-10

0

10

20

30
b) CNN Classification

No Dust

Dust

-40 -20 0 20

T-SNE x-axis

-30

-20

-10

0

10

20

30
c) Manual Labels, Accuracy: 0.96

No Dust

Dust

Figure 8. a) The testing data (600 observations with hidden labels) is visualized by a dimension-reduced t-SNE map where similar feature

vectors are modeled by nearby points while dissimilar observations are modeled by distant points with high probability. b) The testing data

classified by the trained CNN. c) The “true” manual labels are presented. Only a few observations, predominantly in the transition region

between the dust and no dust observations are confused. An overall classification accuracy of 96% is calculated by comparing the labels

predicted by the CNN to the manual labels. Note that the presented testing data is the same data set that was used to test the SVM classifier,

illustrated in Figure 5.

t-SNE mapping in Figure 9 is different from the t-SNE mapping in Figure 8, since Figure 9 considers a different CNN where310

the signal examples are specifically excluded from the training data.

The CAM analysis in Figure 9 illustrates that the CNN makes classification decisions that are comprehensible (in most

cases). It is however interesting to note that signal c), manually labeled as dust, is erroneously classified as no dust by the

CNN, and that this decision is largely based on the tail (the relaxation period) of the impact signal. It should however be noted315

that it is more difficult to explain the no dust predictions than the dust predictions since the no dust CNN decisions are based

on the lack of a signature (dust impact), rather than on the presence of a signature. In addition, signal d), manually labeled as

ambiguous-no dust, is classified as dust by the CNN, and this decision is based on a wide region of the signal with emphasis

on the tail of the (ambiguous) dust impact signal, this section might not have been highlighted as particularly important by a

human expert.320

In general however, the CNN achieves a high accuracy (≳ 95%) and makes decisions that are mostly in-line with human

interpretation. It is therefore reasonable to infer that the CNN will have a performance comparable to the agreement level
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Figure 9. The signal examples and the CAM analysis are presented in Sub-figures (a-i), the manual labels are indicated along the y-axis

and the predicted label, classified by the CNN, is presented in the sub-plot titles. The highlighted green color indicates the CAM values

associated with the dust class, the green regions therefore emphasize the regions that are considered important by the CNN for detecting dust

impact signatures. Similarly, the red color indicates the regions that are influential for the no dust class. Note that the signals are zoomed

to 15 ms intervals around the interesting features, similar to Figure 1 and Figure 6. Sub-figure j) presents the associated signal examples in

the t-SNE space along with the training data signals as transparent points. The dust signals are illustrated by the green dots, the ambiguous

signal examples are marked in yellow and the no dust signals are indicated in red. The t-SNE map shows that the clear dust signals (a-b) are

distinctly located in a green (dust) region whereas the clear no dust signal i) is distinctly located in a red (no dust) region. The remaining

signals are located in more mixed regions. It should however be noted that the observations are represented by a 128-dimensional feature

vector in the CNN and that the (2–D) t-SNE representation presented in Sub-figure j) diminishes a lot of information, meaning that even the

signals located in a mixed region of the t-SNE plot might be separable in the 128-dimensional feature vector space.
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between human experts, where disagreement predominantly occurs for ambiguous and noisy signals, while clear dust and clear

no dust signals are classified correctly.325

4 Results and Discussions

4.1 Analysis of the Classification Performance

The average classification performance is obtained by training and testing the machine learning classifiers over 10 runs, each

run with different training and testing sets. The classifiers are initialized from scratch and the training and testing sets are

selected independently 10 times by randomization and splitting of the manually labeled data, as indicated by the gray circles330

in Figure 3. The average class-wise performance of the on-board TDS classifier and the machine learning SVM and CNN

classifiers are summarized as confusion matrices in Figure 10. Overall, the CNN has the highest performance for both dust and

no dust classification. In addition, both the SVM and the CNN classifiers obtain stable performances with only small variations

for each run.
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Figure 10. a) The confusion matrix entries are described by the true (correctly classified) and false (erroneously classified) values, as

compared to the manual labels (Lab), positive indicate dust predictions (Pred) and negative indicate no dust predictions. b) The TDS classifier

confuses dust and no dust observations, where a significant proportion (> 0.20) of dust predictions are manually labeled as no dust. c) The

SVM classifier predicts both dust and no dust observations with a high (> 0.90) accuracy. d) The CNN classifier predicts a very large

(> 0.95) proportion of both dust and no dust observations correctly.
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The classification performance is further evaluated by the accuracy, precision, recall and F1 score. The definitions for the

performance metrics are included in Appendix B. The average performance metrics, calculated over 10 runs, are summarized

in Table 1. Again, the CNN has the highest performance across all metrics. The CNN obtain a significant improvement in the

classification performance with a statistical significance at a level of 0.01, computed using a t-test. The t-test was computed in

a pairwise manner between both the CNN and the SVM scores, and the CNN and the TDS scores. In all cases, the enhanced340

performance of the CNN classifier was significant.

Table 1. The TDS, SVM and CNN classification performance metrics: accuracy, precision, recall and F1-score. The SVM and CNN scores

and error values are the mean and the standard deviation across 10 training runs. The bold numbers indicate statistically enhanced perfor-

mance with a significance level of 0.01, computed using a t-test.

Classifier Accuracy Precision Recall F1 Score

TDS 0.850 0.746 0.944 0.833

SVM 0.936 ± 0.012 0.903 ± 0.027 0.941 ± 0.017 0.921 ± 0.015

CNN 0.964 ± 0.006 0.939 ± 0.020 0.972 ± 0.008 0.955 ± 0.008

The results from both the confusion matrices and the performance metrics strongly suggest that the SVM and CNN classifiers

provide binary classification results with higher reliability than the TDS classifier, and further that the CNN is the most reliable

classifier overall. We therefore propose that the CNN classifier (or similar tools) should be considered for post-processing of345

the TDS data product in statistical studies of dust impacts observed by the Solar Orbiter RPW instrument.

In addition, it should be noted that 134 signals (i.e. 4.5%), out of 3000 manually labeled waveforms, were marked as am-

biguous, illustrated by the yellow cylinder in Figure 3, and did not clearly fit into either the dust or no dust label, see Figure 1

for label examples. It is therefore improbable to achieve a classification accuracy exceeding ∼98% for the considered data set,350

and an accuracy approaching ∼99% should be considered suspicious and can be an indication of over-fitting.

Both the trained SVM and CNN classifiers are computationally inexpensive to run. 1000 observations are classified in

5 seconds using the SVM model while the CNN classifier requires 50 seconds on a modern laptop, including the needed time

for pre-processing and feature extraction. The proposed machine learning classifiers are therefore suitable for processing large355

data sets with thousands of new observations acquired every month as the Solar Orbiter continues its operation.

4.2 The Dust Impact Rate

In this section, we use the trained classifiers to automatically process a large data set, consisting of 104 032 observations. This

data set contains all TSWF observations acquired over a 25-month period, spanning between June 15, 2020, to July 14, 2022,
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that satisfies the criteria in Section 2.1 (sampling rate of 262.1 kHz, 16384 time-steps and XLD1 mode).360

Figure 11 presents the TDS, SVM and CNN daily impact rates with included error estimates. The daily impact rate is

calculated from the automatically detected daily dust impact number and the time-dependent TDS-RPW duty cycle. The

number of dust particles detected by the Solar Orbiter on each day can be modeled as a Poisson process (Kočiščák et al., 2022),

where the variance in the daily count is equal to the daily count number, resulting in the standard deviation errorbars presented365

in Figure 11. The impact rate function curves are obtained by fitting the dust flux model from Zaslavsky et al. (2021) with an

included offset:

R= F1AUScol

( r

1AU

)−2 νimpact

νβ

(
νimpact

νimpact(1AU)

)αδ

+C (7)

Where F1AU is the unknown cumulative flux of particles above the detection threshold at 1 AU and Scol = 8m2 is the Solar

Orbiter collection area, as defined in Zaslavsky et al. (2021). Furthermore, r is the radial distance from the sun, νimpact is the370

relative velocity between the spacecraft and the dust particles, assuming a constant radial and azimuthal velocity vector for

the dust particles: νβ = [50 km/s, 0 km/s], and the product αδ = 1.3, as suggested in Zaslavsky et al. (2021). The assumed

constant radial velocity is a good approximation for dust in hyperbolic orbits originating near the Sun that is deflected outward

by the radiation pressure force. Finally, we included a constant impact rate offset: C, in order to obtain an improved fit. The

description of the dust flux in Equation 7 is based on the assumption that the dust– and spacecraft orbits are in the same orbital375

plane.

Figure 11 shows that the machine learning classifiers detected significantly more dust particles than the TDS classifier. The

SVMs obtained a dust impact detection enhancement of 16% ± 1% while the CNNs had an 18% ± 8% increase. Both the SVM

and the CNN classifiers obtain impact rates that are notably higher around the aphelion and distinctly lower in the vicinity of380

the perihelion, resulting in a lower dynamic range of the impact rates than observed in the TDS data product.

Furthermore, Figure 11 illustrates that the fitted SVM and CNN impact rate function cures are in very good agreement. It

is promising that two entirely different machine learning approaches provide comparable impact rates after classifying a large

data set (consisting of 104 032 observations) when trained– and tested on a limited data set consisting of 3000 observations.385

This suggests that both the SVM and CNN classifiers have obtained stable performances and can be used to classify observa-

tions outside the domain of the training and testing data.

Still, the shape of the dust impact signal is dependent on the local plasma environment, where influential parameters are:

the electron plasma density, the mean electron velocity and the electron temperature (Zaslavsky, 2015; Babic et al., 2022).390

These parameters will vary throughout the spacecraft orbit. It should therefore be noted that the machine learning classifiers

were trained and tested on waveforms acquired over a one-and-a-half-year period, spanning between June 15, 2020, to Decem-

ber 16, 2021. During this period, the Solar Orbiter sampled the interplanetary medium at solar distances ranging from ∼0.5 AU
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Figure 11. a) The daily dust impact rates according to the TDS classifier. The full vertical lines indicate times when the Solar Orbiter is at

aphelion while the dashed lines indicate times at perihelion. b) The median of the daily impact rates classified by 10 trained SVM classifiers.

c) The median of the daily impact rates from the 10 CNN classifiers. The impact rate function curves are obtained by fitting the dust flux

model from Zaslavsky et al. (2021), Equation 7. d) The impact rate function cures are compared. The SVM and CNN dust impact rates are

very similar, whereas the TDS provides notably smaller impact rates at aphelion and higher impact rates at perihelion. The accumulated dust

impact detections for the TDS classification algorithm and the mean and standard deviation of the dust impact detections for the 10 CNN

and SVM classifiers are presented in the sub-plot titles. Note that the large data gap around April 2022 (perihelion 3) is due to a different

observational setup for the Solar Orbiter RPW-TDS system, where the sampling frequency was doubled. This data was excluded since it can

not be reliably classified by the SVM/CNN methods without additional data processing and/or training.
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to ∼1.0 AU. The spacecraft will however reach a minimum solar distance of 0.28 AU, and the performance of the machine

learning classifiers might suffer if the observed dust impact shapes in the vicinity of ∼0.3 AU are significantly different from395

the dust impact shapes at ∼0.5 AU to ∼1.0 AU.

Finally, we note that a dip in the SVM and CNN dust impact rates can be observed in Figure 11, roughly 0.5 – 1 month

before perihelia 1 and 2 (no data for perihelion 3). This dip is possibly due to a change in the relative velocity between the

spacecraft and the interstellar dust particles, which is upstream at 259◦ in the Ecliptic coordinate system. Still, there is a large400

natural (Poisson) variation in the dust impact rates at perihelion that make visual analysis difficult with the presented data set.

In addition, complicating effects will have an enhanced influence on the daily dust count number towards the sun, such as an

enhancement in false detections due to increased variability in the ambient plasma and validity degradation of the dust flux

model assumptions in Equation 7 close to the formation region of the hyperbolic dust particles.

5 Conclusions405

5.1 Summary and Scientific Implications

We have presented a machine learning-based framework for fully automated detection of dust impacts observed by the Solar

Orbiter – Radio and Plasma Waves (RPW) instrument. Two different supervised machine learning approaches were consid-

ered: the Support Vector Machine (SVM) and the Convolutional Neural Network (CNN). The CNN classifier obtained the

highest performance across all evaluation metrics and achieved 96% ± 1% overall classification accuracy and 94% ± 2% dust410

detection precision, a significant improvement to the currently used on-board TDS classification algorithm with 85% over-

all classification accuracy and 75% dust detection precision. We therefore conclude that the CNN classifier (or similar tools)

should be considered for post-processing of the TDS data product for statistical studies of dust impacts observed by the Solar

Orbiter.

415

The SVM and CNN classifiers were used to analyze 104 032 observations acquired over a two-year period, spanning be-

tween June 15, 2020, to July 14, 2022. On average, the machine learning classifiers detected more dust particles than the

currently used TDS algorithm, the SVMs had a 16% ± 1% detection enhancement and the CNNs had an 18% ± 8% increase.

Furthermore, the SVM and CNN classifiers were in very good agreement and both classifiers obtained a notably higher dust

impact rate in the vicinity of aphelion and a distinctly lower impact rate at perihelion, as compared to the dynamic range of the420

TDS impact rates. This might indicate a higher ambient dust distribution than previously observed. This result is significant

since it suggests the presence dust populations other than the hyperbolic dust particles in the data. Possible other populations

are interstellar dust and interplanetary dust in bound orbits.

The labeled data and the trained SVM and CNN classifiers are available online with included user instructions. The proposed425

method and the presented classifiers can thus provide the interplanetary dust community with thoroughly tested and more
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reliable data products than those currently in use. The daily dust count numbers from the CNN classification were employed by

Kočiščák et al. (2022) to infer meaningful physical properties of the dust population by modeling the number of dust detections

within a day as a Poisson-distributed random variable. Kočiščák et al. (2022) further demonstrated that the same procedure

did not provide dust parameters that were in-line with prior knowledge when using the daily dust detections from the TDS430

classification. This result is independent of the manually labeled testing data, which might be prone to biases, and further

suggests that the CNN approach provides more reliable data products than the currently used TDS algorithm.

5.2 Outlook and Method Constraints

The presented machine learning classifiers may be considered for on-board processing of the observed electric field signals.

However, the trained SVM and CNN classifiers presented in this article are trained on Triggered Snapshot WaveForms (TSWF)435

data, and should not be used for processing ‘untriggered” signals without additional training and testing on ‘untriggered” data.

Additional training can also be used to further enhance the performance of the machine learning classifiers. In particular,

adding labeled data acquired near the sun (∼0.3 AU) and during periods of strong solar activity will likely improve the overall

accuracy and make the machine learning classifiers more robust to challenging conditions.

440

It should also be noted that the classifiers presented in this work are trained and tested on data labeled by one scientist,

although with consultations with other experts. Labeled data from several experts can provide machine learning classifiers that

are more in-line with the labeling consensus in the interplanetary dust community. Additional labeling can also be used to

extend the machine learning classifiers to include automatic detection of other characteristic signatures, such as: ion-acoustic,

Langmuir and solitary waves (Soucek et al., 2021).445

Finally, we would like to highlight that a machine learning-based framework can be developed for automatic post-processing

of data acquired by radio and plasma waves instruments on-board other spacecrafts, such as: the Solar Terrestrial Relations

Observatory (STEREO) (Zaslavsky et al., 2012), Wind (Malaspina et al., 2014), and the Parker Solar Probe (Szalay et al.,

2020). Automatic and reliable detection of dust impact signals observed by multiple instruments at several locations and over450

several years will likely facilitate statistical studies that will enhance our understanding of the role of dust in the inner solar

system, beyond what is attainable with the data products that are currently in use.

Code and data availability. The code used for this work, the trained classifiers and the training and testing data sets are available at: https:

//github.com/AndreasKvammen/ML_dust_detection. The Triggered Snapshot WaveForms (TSWF) data files can be downloaded at: https:

//rpw.lesia.obspm.fr/roc/data/pub/solo/rpw/data/L2/tds_wf_e/455
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Appendix A: Graphical User Interface for Manual Labeling

Figure A1 presents the Graphical User Interface (GUI) that was used to manually label all considered (3000) signals into either

dust or no dust. In addition, efforts were made to use a similar setup (with the same monitor and figure resolution) throughout

the manual labeling in order to reduce bias effects.
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Figure A1. The manual labeling user interface showing a signal observed July 28, 2021. The left column displays the full snapshot (from

0 to ∼63 ms) at all antennas. An area of interest is selected by adjusting the red vertical lines. The right column displays the signal within

the area of interest. The signal can be labeled as dust by pressing the [d] key on the keyboard and no dust by pressing the [r] key. The

signal is indicated to be ambiguous if the waveform does not fit clearly into either of the two labels, note however that signals indicated to

be ambiguous were also labeled into either dust or no dust using the [a] and [w] keys. There is also an option to correct [c] the previously

labeled signal (in case of an error), repeat [t] the area of interest selection and quit [q] the manual labeling user interface.
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Appendix B: The Classification Performance Metrics460

The classification performance metrics are calculated using the True Positive (TP), True Negative (TN), False Positive (FP)

and False Negative (FN) values, defined by comparing the predicted classes and the manually labeled classes, illustrated in

Figure 10.

The overall accuracy of the classifier is the proportion of observations that were correctly predicted by the classifier. The465

accuracy is mathematically defined as:

Accuracy =
TP+TN

TP+TN+FP+FN
(B1)

Precision (in this case) is defined as the proportion of data points predicted by the classifier as dust, whose “true” label is

indeed dust. Precision is therefore calculated as:

Precision =
TP

TP+FP
(B2)470

Recall (in this case) is the proportion of observations manually labeled as dust, that were correctly predicted as dust by the

classifier. Recall is defined as:

Recall =
TP

TP+FN
(B3)

The F1 score acts as a weighted average of precision and recall and is calculated as:

F1 = 2

(
Precision ·Recall
Precision+Recall

)
(B4)
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