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Abstract. This article presentresultsfrompresents the results of automatic detection of dust impact signals observed by the
Solar Orbiter — Radio and Plasma Waves instrument.

A sharp and characteristic electric field signal is observed by the Radio and Plasma Waves instrument when a dust particle
impaetimpacts the spacecraft at high velocity. In this way, ~5-20 dust impacts are daily detected as the Solar Orbiter travels
through the intersteHar-interplanetary medium. The dust distribution in the inner solar system is largely uncharted and statisti-
cal studies of the detected dust impacts will enhance our understanding of the role of dust in the solar system.

It is however challenging to automatically detect and separate dust signals from the plural of other signal shapes for two main
reasons. Firstly, since the spacecraft charging causes variable shapes of the impact signals, and secondly because electromag-
netic waves (such as solitary waves) may induce resembling electric field signals.

In this article, we propose a novel machine learning-based framework for detection of dust impacts. We consider two different
supervised machine learning approaches: the support vector machine classifier and the convolutional neural network classifier.
Furthermore, we compare the performance of the machine learning classifiers to the currently used on-board classification
algorithm and analyze ene-and-a-half-year-two years of Radio and Plasma Waves instrument data.

Overall, we conclude that elassifieation-detection of dust impact signals is a suitable task for supervised machine learning
techniques. Ia-particutar—the-The convolutional neural network achieves a-the highest performance with 96% £ 1% overall
classification accuracy and 94% = 2% dust detection precision, a significant improvement to the currently used on-board clas-
sifier with 85% overall classification accuracy and 75% dust detection precision. In addition, both the support vector machine
and the convolutional neural network deteets-classifiers detect more dust particles (on average) than the on-board classification
algorithm, with+4% 16% + 1% and+6% 18% +7 8% detection enhancement respectively.

The proposed convolutional neural network classifier (or similar tools) should therefore be considered for post-processing of

the electric field signals observed by the Solar Orbiter.
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1 Introduction
1.1 The Dust Population in the Inner Solar System

The interplanetary dust population in the inner solar system (< 1 AU) is formed by collisional fragmentation of asteroids,
comets and meteoroids. The meteoroids and the larger dust particles are in bound orbits around the Sun and their lifetime
is limited by collisions, while the smaller particles that form through collisional fragmentation are repelled from the Sun by
the radiation pressure force (Mann et al., 2004). The sources and sinks of the interplanetary dust particles are wel-measured
well-studied at the orbit of Earth (Griin et al., 1985), while there are-have been few observations inside 1AH AU until recent

years.

Model calculations show that the number density of dust within 1 AU is diminished by collisional destruction (Ishimoto,
2000). However, there are a number of uncertainties that enter the model calculations since the dust collision rates depend both
on the dust number density distribution and on the relative velocities between the dust particles. These parameters are generally
unknown inside the orbit of the Earth and the estimated sizes of the fragmented dust particles are currently based on empirical
relations, inferred from laboratory measurements of accelerated dust particles (Mann and Czechowski, 2005). Furthermore,
there is an additional dust population with an interstellar origin that stream-streams through the solar system. The interstellar
dust distribution is largely unknown and thus complicates the analysis of the steHar-interplanetary dust population. Remote
observations of the zodiacal light and the Fraunhofer corona (F-corona) provide some information of the dust population
dust-withinwithin 1 AU, but mainly of the larger (> pm) dust particles (Mann et al., 2004). For all these reasons, in-situ

measurements are needed in order to better understand the role of dust in the inner solar system.
1.2 Exploration of the Inner Solar System

At present, the inner solar system is explored by the Parker Solar Probe (Szalay et al., 2020), launched August 12, 2018, and the
Solar Orbiter (Miiller et al., 2020), launched February 10, 2020. While systematic studies of the dust flux near 1 AU are con-
ducted with the Solar Terrestrial Relations Observatory (STEREO) (Zaslavsky et al., 2012) and Wind (Malaspina et al., 2014).
The first analyses show that a large fraction of the observed dust particles are repelled from the Sun, i.e. the dust particles
are in unbound orbits (Zaslavsky et al., 2021; Szalay et al., 2020; Malaspina et al., 2020). Mann and Czechowski (2021) used
model calculations to explain the impact rates observed by the Parker Solar Probewith-dust-particles-inunbound-orbits—with

torr-, The dust production was modeled by

collisional fragmentation near the Sun and the dust trajectories were calculated with included radiation pressure and Lorentz

force terms. Mann and Czechowski (2021) showed that the observed impacts-targely-agreesimpact rates largely agree with the

model calculations for dust > 100 nm and proposed that the differences may be explained by the differences-are-pessibly-due
to-the-influence of smaller particles ;-oftocal-and-temporal-variations-and-and of other dust components, such as dust in bound

orbits and interstellar dust.
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In this work, we analyze data acquired by the Solar Orbiter. The spacecraft orbits the Sun in an elliptic orbit with a period
of approximately 6 months. At perihelion, the Solar Orbiter reaches a minimum solar distance of 0.28 AU, just within the
perihelion of the Mercury orbit. The expected mission duration is 7 years, with a possible 3-year-3-year extension. The Solar
Orbiter will thus provide long-term, in-situ observations of the environment in the inner solar system with multiple instruments.
One of these instruments is the Radio and Plasma Waves instrument, allowing observations of the cosmic dust flux with typical

diameters ranging from ~100 nm to ~500 nm (Zaslavsky et al., 2021).
1.3 Radio and Plasma Waves Instruments for Dust Detection

Radio and plasma waves instruments (i.e. antennas) have been used for studying dust in the solar system since the Voyager
mission (Gurnett et al., 1983; Aubier et al., 1983). A dust impact is observed by the spacecraft antennas as a sharp and charac-

teristic electric field signal, produced by the impact ionization process.

The impact ionization process eeet—occurs when dust particles hit a target in space with impact speeds on the order of
~km/s or larger, impact speeds which are typical for space missions in the interplanetary medium. The kinetic energy of the
impact is transferred into deformation, shattering, melting and vaporization of the dust projectile— and target material, produc-
ing a cloud of free electrons and ions on the spaceerafi-surface-surface of the spacecraft. Laboratory measurements (Collette
et al., 2014) and model calculations (Hornung et al., 2000) indicate that the free-charge yield depends on multiple parameters,
where the most important are the dust impact velocity, the dust mass, and the material of both the dust projectile and the target
(the spacecraft surface) (Mann et al., 2019). The forming cloud of charged particles is partly expanding into the ambient solar
wind and is partly recollected by the spacecraft. This induces the characteristic electric field signal, hereafter eated-areferred

to as the dust impact signal/waveform.

Radio and plasma waves instruments allow for the the-entire spacecraft body to serve as a dust detector, providing a large
collection area in comparison to dedicated dust detection instruments. Thus, radio and plasma waves instramentinstruments
can provide dust distribution estimates based on thousands of dust impacts each year, statistical products that are difficult to
acquire by dedicated dust instruments. Still, the-radio and plasma waves instruments have lower sensitivities than dedicated
dust detectors (Zaslavsky, 2015) and the shape of the dust impact waveform is highly dependent on the potential difference
between the spacecraft and the ambient plasma (Vaverka et al., 2017). This complicates the analysis of the dust distribution in

the solar system since statistical studies rely on automatic dust impaet-detectionseftware-detection with high accuracy, which
is difficult to attain with the software currently in use.

1.4 Machine Learning Classification of Time Series Data

In this article, we present a machine learning-based framework as a novel method for detecting dust impact signals in radio
and plasma waves instrument data. Machine learning methods, in particular neural networks in the recent decade, have been

extensively used for challenging time series classification problems, such as: speech recognition (Trosten et al., 2019), heart
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rate monitoring (Wickstrgm et al., 2022) and human activity classification (Villar et al., 2016).

A neural network has previously been used for selecting the signals of interest observed by the WAVES instrument on board
the Wind spacecraft (Bougeret et al., 1995). While an unsupervised method (self-organizing maps) was used for identifying and
categorizing plasma waves in the magnetic field data observed by the MMS; spacecraft (Vech and Malaspina, 2021). Still, no
machine learning tools have been developed for classifying dust impacts in radio and plasma waves instrument data, although
the characteristic signal produced by the impact ionization process is distinctive and could therefore be suitable for machine

learning detection.
1.5 Motivation and Article Structure

The main purpese-ef-motivation for this work was to develop a dedicated dust detection tool that can be used to automatically
process the large amount of data acquired by the Radio and Plasma Waves instrument on board the Solar Orbiter. The aim was
to develop a classifier with a high overall classification accuracy on a balanced data set that weuld-can make statistical studies
more reliable and easier to conduct. For this project, we defined high accuracy to be (= 95%) after some initial testing. We
considered (2 95%) accuracy to be satisfactory for meaningful statistical studies and a significant improvement to the currently
used classification system. In order to achieve this objective, we used supervised machine learning techniques to develop the

dust classifiers, trained and tested on a set of 3000 manually labeled observations.

The remaining of this article is structured as follows. Section 2 explains the Solar Orbiter — Radio and Plasma Waves
observations and the on-board algorithm that is currently used for dust impact detection. Section 3 describes the procedure
that was used for developing the machine learning classifiers; from the downloaded data to the training— and testing of the
classifiers. Section 4 investigate the performance of the classifiers and includes the resulting dust impact rates, calculated by
analyzing ene-and-a-half-year-two years of automatically classified Solar Orbiter data. Finally, Section 5 presents the overall

conclusions of this project.

2 Observations and Data Acquisition
2.1 The Radio and Plasma Waves (RPW) Instrument and the Time Domain Sampler (TDS) Receiver

This work focuses on electric field signals (i.e. waveforms) observed by the Radio and Plasma Waves (RPW) instrument
on-board the Solar Orbiter (Maksimovic et al., 2020). The RPW instrument eensist-ofconsists of 3 antennas operating syn-
chronously and the measured electric potential is recorded by the Time Domain Sampler (TDS) receiver unit (Soucek et al.,
2021).
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The TDS receiver is designed to capture plasma waves (such as ion-acoustic and Langmuir waves) in the frequency
range 200 Hz — 100 kHz, in addition to the dust impact signals (Soucek et al., 2021). The antenna voltages are converted
to electric field values using the antenna effective lengths ;-but are otherwise uncalibrated. We consider only signals sampled
with a sampling rate of 262.1 kHz in snapshots of 16384 time-stepstime-steps, acquired when the TDS receiver was operating
in the XLD1 mode.

The XLD1 mode is the most commonly used observational mode of the RPW-TDS system (Soucek et al., 2021). XLD1
is a hybrid mode, where channel 3 (CHz) is operating in monopole mode while channel 1 (CH;) and channel 2 (CHs) are

operating in dipole mode:
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where V; — Vg denotes the potential difference between antenna ¢ and the spacecraft body along the antenna boom with unit
vector L; and effective length L;. For this work however, the 3 RPW antenna signals are all converted to monopole electric

field signals (E;, E5, E3) by the following conversion:
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The Solar Orbiter RPW-TDS detection threshold is ~5 mV, allowing dust impact identification of the cosmic dust flux with
typical diameters ranging from ~100 nm to ~500 nm (Zaslavsky et al., 2021).

2.2 The Triggered Snapshot WaveForms (TSWF) data product and the TDS Classifier

For this project, we use the Triggered Snapshot WaveForms (TSWF) data product, processed with software version 2.1.1
and acquired over aone-and-a-half—yearperiod 25 month-period, spanning between June 15, 2020, to Deeember—16;2021-
July 14, 2022, The TSWF data product consists of signal packets (63 ms snapshots) that are dewnlinked-down-linked only if
the classification algorithm on-board the Solar Orbiter is triggered. The accuracy of the on-board classification algorithm is

therefore important in order to optimize the data transfer and provide reliable data products for statistical analysis.
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The input to the on-board classification algorithm, hereafter named the TDS classifier or the TDS classification algorithm,
is the 63 ms signal packet, while the output is categorized into one out of three labels: dust, wave or other. The TDS classifier

assigns the label based on 3 extracted features.
1. The snapshot peak amplitude (Vyax)
2. The ratio of the peak amplitude to the median absolute value of the signal (Vy,ax/Viged)

3. The bandwidth-full width half maximum (BW) of the main spectral peaki i i i - identified
by analyzing the discrete Fourier transform of the signal.

The signal label is then determined by comparing the extracted feature values against configurable thresholds. The threshold

criterion reflects that observations of waves are typically narrow-band (low BW) and the peak of the signal is not much

larger than the median value (low V. non-periodic signals (high BW) that

enerally have a high maximum to median amplitude ratio (high V Vwed). For more detailed descriptions of the TDS

classifier, see Maksimovic et al. (2020) and Soucek et al. (2021). Figure 1 presents a few examples of recorded snapshots with

). In contrast, dust observations are sha

included labels, as classified by the TDS classification algorithm.

Figure 1 illustrates that it is challenging to detect and separate dust signals from the plural of other signal shapes. In particular,
the dust waveform in Sub-figure c) is classified as other, while the Langmuir wave and solitary wave snapshots in Sub-figures g)
and h) are erroneously classified as dust by the TDS classification algorithm. For more information on observations of Langmuir
. Soucek et al. (2021 sis of Wind observations of

and ion-acoustic waves in the Solar Orbiter data, see e. and for an anal

electrostatic solitary waves, see Malaspina et al. (2013).

3 Machine Learning-Based Framework for Automatic Dust Impact Detection

The goal of the machine learning classifier is to take a monopole RPW snapshot as an input and automatically output if the
signal contains a dust impact or not. For this purpose, we use a supervised classifier. A supervised classifier relies on manually
labeled data to learn (i.e. train) the function that maps the input observation (the electric field signal) to the output label. For
this work, we focus exclusively on detecting dust impact signals, we therefore use a-binarytabelthe binary labels: dust or no
dust. Additional labels, such as: ion-acoustic waves, Langmuir waves and solitary waves, could however be implemented in a

similar machine learning-based framework.
3.1 Data Pre-Processing for Machine Learning Classification

In order to construct a balanced data set, we selected ~ 1500 waveforms classified as dust and ~ 1500 waveforms classified
as wave/other by the TDS classification algorithm. The signals were randomly drawn from the TDS data archive and acquired

between 15 June 2020 to 16 December 2021. The TDS signals were then pre-processed in-order-to standardize the input to
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Figure 1. Waveforms recorded by the TDS receiver and measured by one of the RPW antennas. The signal label,

waveform, b) shows a dust impact that saturates the receiver unit (or reaches the non-linearity limit), ¢) presents a weak dust impact signal
that is strongly affected by noise. The middle row presents ambiguous waveforms: d) might be a dust impact, but information is limited by
the signal framing, e) is likely a dust impact, but the signal shape resembles solitary waves and is strongly affected by noise, f) might be a
dust impact, but noise and possible electromagnetic waves makes-make the signal difficult to interpret. The bottom row presents waveforms
without dust: g) shows Langmuir waves, characterized by the high-frequency E-field oscillations with a lower-frequency amplitude modula-
tion, h) presents solitary waves, which sometimes resemble dust impact waveforms, i) shows a signal dominated by noise, without any clear

features. Note that the full (63 ms) snapshots are zoomed to 15 ms intervals around the interesting features and that the signal amplitudes are

normalized to £1 and centered around zero for illustrative purposes.

classified by the TDS

classification algorithm, is included for each snapshot in the subplot titles. The top row presents dust waveforms: a) is a clean dust impact
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the classifier and speed up the training. Standardized data further reduces bias effects and makes the manual labeling of the
signals easier to conduct. For this work, a 4-step pre-processing procedure was used independently on each antenna signal, the

pre-processing procedure applied on a sample signal is illustrated in Figure 2.

1. Remove the signal offset The electric field offset is removed by subtracting the raw signal with the median of a heavily
filtered version of the raw data. A sliding median filter over 21 time-steps-time-steps was selected by visual inspection of
the noise characteristics. The removal of the electric field offset centers the signal around zero and reduces bias effects

from offset waveforms.

2. Filter the data The signal is filtered using a sliding median filter over 7 time-steps-time-steps in order to reduce the
high-frequency noise. The 7 time-step-time-step filter was selected by inspecting the power spectrum of impact signals
and by noticing that most information above (fn = 35 kHz) is buried in noise, although the TDS sampling frequency is

higher (fs = 262.1 kHz), thus making a filter length (< fs/fn ~ 7.5) appropriate without significant loss of information.

3. Compress the data The signal is re-sampled with a compression factor of 4 using linear 1-dimensional interpolation.

The compression is done to speed up the training of the classifier, resulting in a re-sampling from 16384 to 4096 time

4. Normalize the signal The data is normalized to be between -1 and 1 by dividing all data samples with the maximum
absolute value of the signal. The normalization makes the machine learning classifier more robust to variations in the

signal strength and eases the parameter optimization during training.

3.2 Manual Waveform Labeling

Manually labeled data is used both to train the machine learning classifiers and to test the performance of the trained models.
Thus, great care is needed in order to construct a high-quality labeled data set, without significant contamination of corrupted

data files, biases and mislabeled signals.

We manually labeled the data into either dust or no dust. Each signal was displayed without indications of the previously
assigned label by the TDS classifier in order to reduce bias effects. Furthermore, a zoom function was used to investigate the
areas of interest and options were included both to correct labeling mistakes by the user and to indicate ambiguous signals that
do not clearly fit into any label (dust or no dust). Appendix A presents the Graphical User Interface (GUI) that was used to
label the 3000 observations.

It should be noted that 134 signals (i.e. 4.5%), out of 3000 manually labeled waveforms, were marked as ambiguous and did
not clearly fit into either the dust or no dust label, see the middle row of Figure 1 for ambiguous examples. Furthermore, the
manual waveform labeling was done by one scientist, although with consultations with other experts. Thus, it is to be expected

that different scientists will disagree on a proportion (areund-up to 5%) of the the-manual labels. The disagreement level could
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Figure 2. A dust waveform observed by antenna 2 on September 8, 2021. The sub-figures illustrate the different stages of the pre-processing
procedure. a) The electric field offset is removed and the signal is centered around 0 mV /m. b) The signal is filtered by a median filter over 7

time-steps-time-steps to reduce the high-frequency noise. ¢) The signal is compressed by a factor of 4 to reduce the data size. d) The waveform
is normalized by the maximum absolute value of the signal in order to ease the parameter optimization of the machine learning classifier.

Note the waveform is zoomed to a 15 ms time period around the dust impact in order to better visualize the impact shape modification by the

pre-processing procedure.

possibly be reduced if several experts labeled the same data set, and the labeling consensus was used as the effective waveform

label.
3.3 Developing the Machine Learning Classifiers

The manually labeled data was split into a training set (containing 80% of the data) and a testing set (with the remaining 20%).
The training data is used to optimize the free parameters of the machine learning etassifier—classifiers with respect to the
assigned labels, while the testing data is used as an independent set to test-evaluate the performance of the trained classifiers.
The performance of a machine learning classifier is quantified by comparing the outputs of the trained model to the labels of

the testing data. Figure 3 illustrates the data flow; from the TDS data sets to the machine learning performance metrics.

There are numerous machine learning techniques that are suitable for time series classification. In this work, we focus on
two well-known techniques: the Support Vector Machine (SVM), described in Sub-section 3.4, and the Convolutional Neural

Network (CNN), discussed in Sub-section 3.3.
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Figure 3. Data flow:; from the TDS data sets to the machine learning performance metrics. The diagram illustrates the data flow by the black
arrows and the applied process by the arrow label. The cylinders indicate the signal waveforms and the cylinder color indieate-indicates the
associated label. The gray circles mark data transformation processes. The random draw of the TDS data and the pre-processing is explained
in Sub-section 3.1, while the manual labeling is described in Sub-section 3.2. Fhe-A description of the randomization and splitting of the
manually labeled data into a training and a testing set is deseribed-included in Sub-section 3.3. Sub-sections 3.4 and 3.5 explain the training
i i i -5. Finally, the performanee-performances of the machine

and testing of the machine learning classifiersis

learning classifiers are compared and evaluated in Sub-section 4.1.

3.4 The Support Vector Machine (SYM)

The support vector machine (Boser et al., 1992; Cortes and Vapnik, 1995) is a robust and versatile classification algorithm, con-
sidered to be one of the most influential approaches in supervised learning (Goodfellow et al., 2016). SVMs learn the decision
hyperplane that maximizes the discriminative power between the observations categorized into two classes (in this case: dust
or no dust). However, SVMs are highly dependent on the representation of the data and often achieve sub-optimal performance
on high-dimensional data (when used directly). In this case, the ebservation-observations from 3 antenna measurements, each
with 4096 time-steps;is-time-steps, are both high dimensional and noisy (each time-step-time-step contain little information).
It is therefore common to extract important characteristics (i.e. features) from the data to provide the SVM with compactly

represented information with less noise and redundancies.

3.4.1 Feature Extraction

In order to develop a baseline machine learning classifier, comparable to the on-board TDS classification algorithm, a simple 2-

dimensional SVM classifier was considered. Thus, every observation with dimension (3x4096) is represented by a 2-dimensional

10
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feature vector (1x2). After some initial testing, we selected two features that had a high discriminative power between the dust

and no dust observations.

1. The standard deviation The mean standard deviation is calculated over the 3 antenna channels, each with 4096 time

stepstime-steps. The standard deviation is apprepriate-an appropriate feature since normalized dust signals typically have

a lower mean standard deviation than normalized no dust signals.

2. The convolution ratio The log;, value of the convolution ratio (|conv|max/|coONV|median) is calculated, where lconvl is
the absolute values of the convolution of the antenna signals with a normalized Gaussian of width 0.5 ms. |conv|max i8

the maximum value of |conv

, while |conv|median is the median. The convolution ratio was selected as a feature since
the dust signals typically have a larger convolution ratio than the no dust signals. The Gaussian width of 0.5 ms was

experimentally found to give high correlations with dust impact signals.
3.4.2 Training the Support Vector Machine

The 2 features (standard deviation and convolution ratio) were extracted from all observations in the training data. The decision
hyperplane, in this 2-dimensional case a decision line, is defined by a polynomial of degree 2 that is optimized by minimizing
the non-separable SVM cost function, see e.g. Theodoridis and Koutroumbas (2009) for details. The SVM classifier was trained
with a slack variable factor of 1 and equal weighting between the dust and no dust observations. The 2-dimensional SVM is

computationally inexpensive to optimize with a training time of ~1 second on a modern laptop. Figure 4 illustrates the training
of the SVM classifier.

3.4.3 Testing the Support Vector Machine

The performance of the trained SVM classifier is evaluated using the independent testing data, i.e. the remaining manually
labeled data (20 %) that was not used for training the classifier. Figure 5 presents the SVM classification performance on the

testing data.

Overall, the SVM classifier achieves a classification accuracy of 94% on the testing data using the 2-dimensional feature
vectors. Note that the inclusion of mere-extracted-features-eould-additional extracted features can possibly enhance the SVM
performance. Several additional features eeuld-can be considered, such as; the mean amplitude of the signal, the range between

the signal maximum and minimum values and the cross-correlation length (the time lag to the first zero crossing).
3.4.4 Explainability of the Support Vector Machine

Ideally, we want to develop a machine learning classifier that not only has a high accuracy, but also make-makes decisions that

are understandable for a-human-expert-human experts (Holzinger et al., 2019). In other words, we want to be able to explain

11



265

270

a) Training data 4 b) SVM Decision Line

4
s 4 No Dust s 4 No Dust
® Dust e Dust
S ) — Decision Line
3.5 1 385F .
L]
3 4 3 L e ‘. 4
A
L)
225 4 25 a B
T 3
o a
c rd
S (4
k= 2 1 21 o b
= ™
g o N
) s e
O1.5 b 15 a b
a A®
. : 4 “ a
1 b 1r ‘e 4 N
A
A
EN d
0.5 1 05f el
0 | | | | 0 | | | |
0 01 02 03 04 0 01 02 03 04
Standard Deviation Standard Deviation

Figure 4. a) The (1x2) feature vectors extracted from all (2400) observations in the training data, the associated labels are indicated in

green (dust) and red (no dust). b) The SVM decision line -the-eptimal-second-orderis defined as a second-order polynomial, obtained by

minimizing the non-separable SVM cost function. The optimized SVM decision line appears to be reasonable, and most observations are

separable in the training data.

why the machine learning classifier selected the predicted class for a given observation. In machine learning, this is often re-
ferred to as the explainability of the trained classifier. Figure 5 presents the testing data in the 2—D feature vector space, but this
plot gives no clear indications of how different signal shapes are distributed and which signatures are confused by the SVM
classifier. In order to better understand the decisions made by the SVM classifier, the signal examples in Figure 1 are studied

in detail. The analysis is presented in Figure 6.

It should be noted that the signal examples in Figure 6 are not representative for the general distribution of observations
in the 2-D feature vector space, since most observations are clustered in distinct dust and no dust regions, as can be seen in
Figure 5. Figure 6 focuses mostly on signal examples that are challenging to classify. Still, Figure 6 indicates that the SVM
classifier provides mostly comprehensible outputs, but might have difficulties classifying signals-weak dust impact signals and
signals with important signatures located at the edge of the snapshot frame.
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Figure 5. a) The (1x2) feature vectors extracted from the testing data (600 observations with hidden labels). b) The testing data is classified
using the trained SVM decision line, where all observation within the polynomial line is classified as dust while all observations outside
are classified as no dust. ¢c) The “true” labels (from the manual labeling) are revealed. It is clear that some observations are confused,
predominantly near the decision line. Still, the SVM classifier achieves an overall classification accuracy of 94%, calculated by comparing

the outputs from the SVM classification (Sub-figure b) to the “true” labels (Sub-figure c).

3.5 The Convolutional Neural Network (CNN)

Convolutional Neural Networks are algorithms designed for processing grid-like data and have achieved premium performance
on a number of different tasks in the recent decade, such as image (He et al., 2016; Kvammen et al., 2020), video (Karpathy

et al., 2014), and time series (Wang et al., 2017; Wickstrgm et al., 2021) classification.
3.5.1 Feature Extraction

Unlike the SVM, the CNN de-does not require pre-defined feature extraction routines. Instead, the CNN extracts the features
based on a chain of convolution operations and automatically optimizes the convolution filters based on the training data and

the associated labels.
For this work, we employed the 3-layer fully convolutional network architecture presented in Wang et al. (2017) and sug-

gested for time series classification after extensive testing (Wickstrgm et al., 2022; Fawaz et al., 2020; Karim et al., 2019). The

Rectified Linear Unit (ReLU) function (Glorot et al., 2011) was used as the activation function and Batch Normalization (BN)
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Figure 6. The signal examples are presented in Sub-figures (a-i), the manual labels are indicated along the y-axis and the predicted fabellabels,
classified by the SVM decision line, are presented in the sub-plot titles. Stb-Figtire-Sub-figure j) presents the associated signal examples in
the 2-D feature vector space along with the SVM decision line. The dust signals are illustrated in green, the ambiguous signals are marked
in yellow and the no dust signals are indicated in red. The SVM classifier provides mostly explainable outputs. The clear dust signals (a-b)
are located well within the SVM decision line, the ambiguous signals (e-f) are located near the decision line while the no dust signals (g-i)
are clearly located outside. However, dust signal c) is erroneously located just outside the decision line, this can possibly be explained &by
the weak signal-to-noise ratio. In addition, signal d) is located well within the decision line, although this signal is labeled ambiguous-no

dust due to the signal framing, this indicates that the SVM might have difficulties classifying signatures located at the edge of the snapshot
frame. Note that the signals are zoomed to 15 ms intervals around the interesting features, similar to the examples in Figure 1.
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(Ioffe and Szegedy, 2015) was used at each convolutional layer in order to regularize the network and accelerate the training

process. Figure 7 presents the employed CNN architecture.

Input Layer 1 Layer 2 Layer 3 Output /\
\ Pdust

o_ 7 I I B @ N,

aEE- %’ S22 %’ $EL % EL 5

Figure 7. The 3-layer fully convolutional network used for the dust impact classification task. The input to the network is the (3x4096) wave-

form. The funeti ¢ S i avef abel: or-nro-dust feature extraction process is defined by 3 convolutional
layers, consisting of 128, 256 and 128 independent filters with kernel lengths of 8, 5 and 3 weights, respectively. Batch normalization (BN)
is used at each convolutional layer to regularize the the-inputs and the Rectified Linear Unit (ReLU) function was used as the activation
function. Finally, the output of the convolutional layers (with dimension 128x4096) is averaged in the global pooling layer to a feature vector
with dimension (128x1). The class score is then determined in a Fully Connected (FC) network layer and the output label probabilities (P,

Pyo aust) are calculated using the softmax function. The Figufefigg&is adopted from Wickstrgm et al. (2021).

3.5.2 Training the Convolutional Neural Network

The 3-layer fully convolutional network consists of 267010 free parameters (weights and biases) that need to be optimized to
solve the dust impact classification task. The free parameters are randomly initialized and thereafter optimized using the ADAM

gradient descent optimizer (Kingma and Ba, 2014). The CNN was trained for 225 epochs with a cross-entropy loss function

using the 2400 labeled observations in the training data. CNNs are computationally expensive to optimize, as compared to the

SVM classifier, and a training time of ~20 minutes was required using TensorFlow on a MacBook Pro with a 32-core M1 Max
GPU chip. For more details on neural network training and optimization, see for example (Montavon et al., 2012).

3.5.3 Testing the Convolutional Neural Network

In order to visualize the features extracted by the CNN, we employ the t-distributed Stochastic Neighbor Embedding (t-SNE)
method (Van der Maaten and Hinton, 2008). The t-SNE method is used for visualizing high-dimension-high-dimensional data
by assigning each observation a location in a 2-D space such that similar observations are modeled by nearby points while
dissimilar observations are modeled by distant points with high probability. The (128x1) testing feature vectors, extracted in
the global pooling layer, are presented in a 2-D t-SNE map in Figure 8, along with a visualization of the CNN classification

performance.

Overall, the CNN obtains a high (2 95%) classification accuracy and might therefore be suitable for automatic processing

of electric field signals observed by the RPW instrument on board the Solar Orbiter.
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Figure 8. a) The testing data (600 observations with hidden labels) is visualized by a dimension-reduced t-SNE map where similar feature
vectors are modeled by nearby points while dissimilar observations are modeled by distant points with high probability. b) The testing data
classified by the trained CNN. c¢) The “true” manual labels are presented. Only a few observations, predominantly in the transition region

between the dust and no dust observations are confused. An overall classification accuracy of 96% is calculated by comparing the labels

predicted by the CNN to the manual labels. Note that the presented testing data is the same data set that was used to test the SVM classifier,
illustrated in Figure 5.

3.5.4 Explainability of the Convolutional Neural Network

Neural networks have traditionally been regarded as black boxes (Shwartz-Ziv and Tishby, 2017; Alain and Bengio, 2016),
where the network carries out the desired task, but the network decisions are difficult to interpret. However, progress have-has
been made in recent years for making the neural network decisions more accessible and easier to interpret (i.e. explainable) for
human users (Samek et al., 2021). In this section, we analyze the CNN decisions by employing Class Activation Maps and the

previously described t-SNE method.

Class Activation Maps (CAMs) (Zhou et al., 2016) highlights the regions of the data that are important for a considered
label (c) by analyzing the features extracted in the global pooling layer and the weights in the FC layer that are associated with
label (c), see e.g. (Wang et al., 2017) for a detailed description. The outcome of the CAM analysis is that we can visualize
the sections of the signal that are influential for the CNN classification decision. Figure 9 presents the CAM analysis of the
signal examples in Figure 1 along with an illustration of the signal features in a dimension-reduced t-SNE space. Note that the

t-SNE mapping in Figure 9 is different from the t-SNE mapping in Figure 8, since Figure 9 considers a different CNN where
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the signal examples are specifically excluded from the training data.

The CAM vatues-analysis in Figure 9 iHustrate-illustrates that the CNN make-makes classification decisions that are com-
prehensible (in most cases). It is however interesting to note that signal c¢), manually labeled as dust, is erroneously classified
as no dust by the CNN, and that this decision is largely based on the tail (the relaxation period) of the impact signal. It should
however be noted that it is more difficult to explain the no dust predictions than the dust predictions since the no dust CNN
decisions are based on the lack of a signature (dust impact), rather than on the presence of a signature. In addition, signal
d), manually labeled as ambiguous-no dust, is classified as dust by the CNN, and this decision is based on a wide region of
the signal with emphasis on the tail of the (ambiguous) dust impact signal, this section might not have been highlighted as

particularly important by a human expert.

In general however, the CNN achieves a high accuracy (>2, 95%) and make-makes decisions that are mostly in-line with
human interpretation. It is therefore reasonable to infer that the CNN will have a performance comparable to the agreement
level between human experts, where disagreement predominantly occurs for ambiguous and noisy signals, while clear dust and

clear no dust signals are classified correctly.

4 Results and Discussions
4.1 TheAverage-Analysis of the Classification PerformanceMetries

The average classification performance is obtained by training and testing the machine learning classifiers er-over 10 runs,
each run with different training and testing sets. The classifiers are initialized from scratch and the testing-and-training-training
and testing sets are selected independently 10 times by randomization and splitting of the manually labeled data, as indicated
by the gray circles in Figure 3. The average class-wise performance of the on-board TDS classifier and the machine learning
SVM and CNN classifiers are summarized as confusion matrices in Figure 10. Overall, the CNN has the highest performance
for both dust and no dust classification. In addition, both the SVM and the CNN ebtain-stable-performaneeclassifiers obtain
stable performances with only small variations for each run.

The classification performance is further evaluated by the accuracy, precision, recall and F1 score. The definitions for the
performance metrics are included in Appendix B. The average performance metrics, calculated over 10 runs, are summarized
in Table 1. Again, the CNN has the highest performance across all metrics. Furthermeore;—the-The CNN obtain a significant
improvement in the classification performance with a statistical significance at a level of 0.01, computed using a t-test. The
t-test was computed in a pairwise manner between both the CNN and the SVM scores, and the CNN and the TDS scores. In

all cases, the enhanced performance of the CNN classifier was significant.
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Figure 9. The signal examples and the CAM analysis are presented in Sub-figures (a-i), the manual labels are indicated along the y-axis
and the predicted label, classified by the CNN, is presented in the sub-plot titles. The highlighted green color indicates the CAM values

associated with the dust class, the green regions therefore emphasize the regions that are considered important by the CNN for detecting dust

impact signatures. Similarly, the red color indicates the regions that are influential for the no dust class. Note that the signals are zoomed

to_15 ms intervals around the interesting features, similar to Figure 1 and Figure 6. Sub-figure j) presents the associated signal examples in

the t-SNE space along with the training data signals as transparent points. The dust signals are illustrated by the green dots, the ambiguous
signal examples are marked in yellow and the no dust signals are indicated in red. The CAM-analysis-show-thatthe- CNN-emphasise-the-dust
3 . 3 1 —eimile man o < ahi 1 H 1 1oc alaes—Also-the#od ¢ qu‘"l]‘]ef
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{dust impaet);rather-than-on-the-presence-of signature-—The-t-SNE map show-shows thal

a green (dust) region whereas the clear no dust signal 1) is distinctly located in a red (no dust) region. The remaining signals are located in

t the clear dust signals (a-b) are distinctly located in

more mixed regions. It should however be noted that the observations are represented by a +28-dimensional-128-dimensional feature vector

in the CNN and that the (2-D) t-SNE representation presented in Sub-figure j) diminishes a lot of information, meaning that even the signals
located in a mixed region of the t-SNE plot might be separable in the +28-dimenstonat-128-dimensional feature vector space.
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Figure 10. a) The confusion matrix entries are described by the true (correctly classified) and false (erroneously classified) values, as

compared to the manual labels (Lab), positive indicate dust predictions (Pred) and negative indicate no dust predictions. b) The TDS classifier

confuses dust and no dust observations, where a targe-significant proportion (> 0.20) of dust predictions are manually labeled as no dust. c)
The SVM classifier predicts both dust and no dust observations with a high (> 0.90) accuracy. d) The CNN classifier predicts a very large

(> 0.95) proportion of both dust and no dust observations correctly.

Table 1. The TDS, SVM and CNN classification performance metrics: accuracy, precision, recall and F1-score. The SVM and CNN scores
and error values are the mean and the standard deviation across_10 training runs. The bold numbers indicate statistically enhanced perfor-

mance with a significance level of 0.01, computed using a t-test.

Classifier Accuracy Precision Recall F1 Score

TDS 0.850 0.746 0.944 0.833
SVM 0.936 £ 0.012 0.903 £0.027 0941 £0.017 0.921 £ 0.015
CNN 0.964 £ 0.006 0.939 +0.020 0.972 £ 0.008  0.955 £ 0.008
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The results from both the confusion matrices and the performance metrics strongly suggest that the SVM and CNN clas-
sifiers provide binary classification results with a-higher reliability than the TDS classifier, and further that the CNN is the
most reliable classifier overall. We therefore propose that the CNN classifier (or similar tools) should be considered for post-

processing of the TDS data product in statistical studies of dust impacts observed by the Solar Orbiter RPW instrument.Finally

355
In addition, it should be noted that 134 signals (i.e. 4.5%), out of 3000 manually labeled waveforms, were marked as am-
biguous, illustrated by the yellow cylinder in Figure 3, and did not clearly fit into either the dust or no dust label, see Figure 1
for label examples. It is therefore improbable to achieve a classification accuracy exceeding ~98% for the considered data set,
and an accuracy approaching ~99% should be considered suspicious and can be an indication of over-fitting.
360

Both the trained SVM and CNN classifiers are computationally inexpensive to run. 1000 observations are classified in
3 seconds using the SVM model while the CNN classifier requires 30 seconds on a modern laptop, including the needed time
for pre-processing and feature extraction. The proposed machine learning classifiers are therefore suitable for processing large
data sets with thousands of new observations acquired every month as the Solar Orbiter continues its operation.

365 4.2 The Dust Impact Rate

The-trained-elassifiers—ean-be-used-In_this section, we use the trained classifiers to automatically process large-data-—sets—a

large data set, consisting of 104 032 observations. This data set contains all TSWE observations acquired over a 25-month
370
Figure 11 presents the TDS, SVM and CNN daily impact rates ;-caleunlated-by-classifying-all{~82-000)-menepole-triggered

TDS-RPW duty cycle. The number of dust particles detected by the Solar Orbiter on each day can be modeled as a Poisson
375 Kociscak et al., 2022), where the variance in the dail

count is equal to the daily count number, resulting in the

standard deviation errorbars presented in Figure 11. The impact rate function eurve-is-curves are obtained by fitting the dust
flux model from Zaslavsky et al. (2021) (Equation10)-with an included offset:

ad
— 7\ "2 Vimpact Yimpact
R = FiauScol < 1AU) vg (Vimpact (IAU) ) e ’

Where Fiay is the unknown cumulative flux of particles above the detection threshold at 1 AU and S¢o; = 8m? is the Solar
380 Orbiter collection area, as defined in Zaslavsky et al. (2021). Furthermore, r is the radial distance from the sun, Vimpact is the
relative velocity between the spacecraft and the dust particles, assuming a constant radial and azimuthal velocity vector for the
dust particles: vz = [50 km/s, 0 km/s], and the product o = 1.3, as suggested in Zaslavsky et al. (2021). The assumed constant

radial velocity is a good approximation for dust in hyperbolic orbits originating near the Sun that are-is deflected outward
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by the radiation pressure force. Finally, we included a constant impact rate offset: C, in order to obtain an improved fit. The
385 description of the dust flux in Equation 7 is based on the assumption that the dust— and spacecraft orbits are in the same orbital

plane.

Figure 11 shows that the machine learning classifiers detected significantly more dust particles than the TDS classifier. The
SVMs obtained a dust impact detection enhancement of+4 16% =+ 1% while the CNNs had a-+6an 18% +7 8% increase. Both
390 the SVM and the CNN classifiers obtain impact rates that are notably higher around the aphelion and distinctly lower in the

vicinity of the perihelion, as-compared-to-the-dynamierange-inthe TDS-dustimpactratesresulting in a lower dynamic range
of the impact rates than observed in the TDS data product.

Furthermore, Figure 11 illustrates that the fitted SVM and CNN impact rate function cures are in very good agreement.

395 It is promising that two entirely different machine learning approaches provide comparable impact rates after classifying a
large data set (consisting of~82-060- 104 032 observations) when trained— and tested on a limited data set consisting of 3000
observations. This suggestsuggests that both the SVM and CNN classifiers have obtained stable performances and can be used

to classify observations outside the domain of the training and testing data.

400 Still, the shape of the dust impact signal is dependent on the local plasma environment, where influential parameters are: the
electron plasma density, the mean electron velocity and the electron temperature (Zaslavsky, 2015; Babic et al., 2022). These
parameters will vary throughout the spacecraft orbit. It should therefore be noted that the machine learning classifiers were
trained and tested on waveforms acquired over a one-and-a-half-year period, spanning between June 15, 2020, to December 16, 2021
During this period, the Solar Orbiter sampled the interplanetary medium at solar distances ranging from ~0.5 AU to ~1.0 AU.

405  The spacecraft will however reach a minimum solar distance of 0.28 AU, and the performance of the machine learning
classifiers might suffer if the observed dust impact shapes in the vicinity of ~0.3 AU are significantly different from the
dust impact shapes at ~0.5 AU to ~1.0 AU.

Finally, we note that a dip in the SVM and CNN dust impact rates can be observed in Figure 11. roughly 0.5 - 1 month
410 before perihelia 1 and 2 (no data for perihelion 3). This dip is possibly due to a change in the relative velocity between the
spacecraft and the interstellar dust particles, which is upstream at 2597 in the Ecliptic coordinate system. Still, there is a large
natural (Poisson) variation in the dust impact rates at perihelion that make visual analysis difficult with the presented data set.
In addition, complicating effects will have an enhanced influence on the daily dust count number towards the sun, such as an
enhancement in false detections due to increased variability in the ambient plasma and validity degradation of the dust flux

415 model assumptions in Equation 7 close to the formation region of the hyperbolic dust particles.

5 Conclusions
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Figure 11. a) The daily dust impact rates according to the TDS classifier. The full vertical lines indicate times where-when the Solar Orbiter
is at aphelion while the dashed lines indicate times at perihelion. b) The median of the daily impact rates classified by 10 trained SVM
classifiers. ¢) The median of the daily impact rates from the 10 CNN classifiers. The impact rate function curves are obtained by fitting the
dust flux model from Zaslavsky et al. (2021), Equation 7. d) The impact rate function cures are compared. The SVM and CNN dust impact
rates are very similar, whereas the TDS previde-provides notably smaller impact rates at aphelion and higher impact rates at perihelion. The

probabitityforeach-day—The-accumulated dust impact eeunt-detections for the TDS classification algorithm and the the-mean and standard
deviation of the aceumutated-dust impact eount-detections for the 10 CNN and SVM classifiers are presented in the sub-plot titles. Note

that the large data gap around April 2022 (perihelion 3) is due to a different observational setup for the Solar Orbiter RPW-TDS system,
where the sampling frequency was doubled. This data was excluded since it can not be reliably classified by the SVM/CNN methods without

additional data processing and/or training. ”
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5.1 Summary and Scientific Implications

We have presented a machine learning-based framework for fully automated detection of dust impacts observed by the Solar
Orbiter — Radio and Plasma Waves (RPW) instrument. Two different supervised machine learning approaches were consid-
ered: the Support Vector Machine (SVM) and the Convolutional Neural Network (CNN). The CNN classifier obtained the
highest performance across all evaluation metrics and achieved 96% =+ 1% overall classification accuracy and 94% =+ 2% dust
detection precision, a significant improvement to the currently used on-board TDS classification algorithm with 85% over-
all classification accuracy and 75% dust detection precision. We therefore conclude that the CNN classifier (or similar tools)
should be considered for post-processing of the TDS data product for statistical studies of dust impacts observed by the Solar
Orbiter.

The labeled-data-and-the-trained-SVM and CNN classifiers

analyze 104
032 observations acquired over a ene-and-a-half-yeartwo-year period, spanning between June 15, 2020, to December16;2021-

July 14, 2022. On average, the machine learning classifiers detected more dust particles than the currently used TDS algorithm,
the SVMs had at4 16% =+ 1% detection enhancement and the CNNs had a-+6an 18% =+7 8% increase. Furthermore, the SVM
and CNN classifiers were in very good agreement and both classifiers obtained a notably higher dust impact rate in the vicinity
of aphelion and a distinctly lower impact rate at perihelion, as compared to the dynamic range of the TDS impact rates. This
indieates-might indicate a higher ambient dust distribution and/er-a-higherradial-dust-veloeity-than previously observed. This

result is significant since it implies-the-presence-of-other-dust-pepulations-suggests the presence dust populations other than the
hyperbolic dust particles in the data. Possible other populations are interstellar dust and interplanetary dust in bound orbits.

5.2 Outleek

‘Fhepresented-The labeled data and the trained SVM and CNN classifiers are available online with included user instructions.

The proposed method and the presented classifiers can thus provide the interplanetary dust community with thoroughly tested
and more reliable data products than those currently in use. The daily dust count numbers from the CNN classification were

vvvvv

2022) to infer meaningful physical properties of the dust population by modeling the number

of dust detections within a day as a Poisson-distributed random variable. KocCis¢ak et al. (2022) further demonstrated that the

same procedure did not provide dust parameters that were in-line with prior knowledge when using the daily dust detections
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from the TDS classification. This result is independent of the manually labeled testing data, which might be prone to biases
and further suggests that the CNN approach provides more reliable data products than the currently used TDS algorithm.

The presented machine learning classifiers may be considered for on-board processing of the observed electric field signals.
However, the trained SVM and CNN classifiers presented in this article are trained on Triggered Snapshot WaveForms (TSWF)

data, and should not be used for processing ‘untriggered” signals without additional training and testing on ‘untriggered” data.

Additional training can also be used to further enhance the performance of the machine learning classifiers. In particular.
adding labeled data acquired near the sun (~0.3 AU) and during periods of strong solar activity will likely improve the overall
accuracy and make the machine learning classifiers more robust to challenging conditions.

It should also be noted that the classifiers presented in this work are trained and tested on data labeled by one scientist, al-
though with consultations with other experts. Labeled data from several experts eould-can provide machine learning classifiers
that are more in-line with the labeling consensus in the steHar-interplanetary dust community. Additional labeling can also be

use-to-extended-the-machine-leaning-used to extend the machine learning classifiers to include automatic detection of other
characteristic signatures, such as: ion-acoustic, Langmuir and solitary waves —(Soucek et al., 2021).

Finally, we would like to highlight that a machine learning-based framework can be developed for automatic post-processing
of data acquired by radio and plasma waves instruments on-board other spacecrafts, such as: the Solar Terrestrial Relations
Observatory (STEREQ) (Zaslavsky et al., 2012), Wind (Malaspina et al., 2014), and the Parker Solar Probe (Szalay et al., 2020).
Automatic and reliable detection of dust impact signals observed by multiple instruments at several locations and over several
years will likely facilitate statistical studies that will enhance our understanding of the role of dust in the inner solar system,
beyond what is attainable with the data products that are currently in use.

Code and data availability. The code used for this work, the trained classifiers and the training and testing data sets are available at: https:
//github.com/AndreasKvammen/ML_dust_detection. The Triggered Snapshot WaveForms (TSWF) data files can be downloaded at: https:
/lrpw.lesia.obspm.fr/roc/data/pub/solo/rpw/data/L2/tds_wf_e/

Appendix A: Graphical User Interface for Manual Labeling

Figure A1 presents the Graphical User Interface (GUI) that was used to manually label all considered (3000) signals into either
dust or no dust. In addition, efforts were made to use a similar setup (with the same monitor and figure resolution) throughout

the manual labeling in order to reduce bias effects.
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Figure A1. The manual labeling user interface showing a signal observed Beeember—+9July 28,2626 2021, The left column displays the
full snapshot (from O to ~63 ms) at all antennas. An area of interest is selected by adjusting the red vertical lines. The right column displays
the signal within the area of interest. The signal can be labeled as dust by pressing the [d] key on the keyboard and no dust by pressing the
[r] key. The signal is indicated to be ambiguous if the waveform de-does not fit clearly into either of the two labels, note however that signals
indicated to be ambiguous were also labeled into either dust or no dust using the [a] and [w] keys. There is also an option to correct [c] the

previously labeled signal (in case of an error), repeat [t] the area of interest selection and quit [q] the manual labeling user interface.
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Appendix B: The Classification Performance Metrics

The classification performance metrics are calculated using the True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) values, defined by comparing the predicted classes and the manually labeled classes, illustrated in

Figure 10.

The overall accuracy of the classifier is the proportion of observations that were correctly predicted by the classifier. The
accuracy is mathematically defined as:

TP +TN
TP +TN+FP +FN

Accuracy = (B1)

Precision (in this case) is defined as the proportion of data points predicted by the classifier as dust, whose “true” label is
indeed dust. Precision is therefore calculated as:

TP

P .. _ -
recision TP + FP

(B2)

Recall (in this case) is the proportion of observations manually labeled as dust, that were correctly predicted as dust by the

classifier. Recall is defined as:

TP

l=———
Reca TP+ FN

(B3)

The F1 score acts as a weighted average of precision and recall and is calculated as:

Precision - Recall
F1=2 B4
(Precision + Recall> (B4)
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