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Abstract 9 

Methane (CH4) is the second major greenhouse gas after carbon dioxide (CO2) which has 10 
substantially increased during last decades in the atmosphere, raising serious sustainability and 11 
climate change issues. Here, we develop a data assimilation system for in situ and column averaged 12 
concentrations using Local ensemble transform Kalman filter (LETKF) to estimate surface emissions 13 

of CH4. The data assimilation performance is tested and optimized based on idealized settings using 14 
Observation System Simulation Experiments (OSSEs) where a known surface emission distribution 15 
(the truth) is retrieved from synthetic observations. We tested three covariance inflation methods to 16 

avoid covariance underestimation in the emission estimates, namely; fixed multiplicative (FM), 17 
relaxation to prior spread (RTPS) and adaptive multiplicative. First, we assimilate the synthetic 18 
observations at every grid point at the surface level. In such a case of dense observational data, the 19 
normalized Root Mean Square Error (RMSE) in the analyses over global land regions are smaller by 20 

10-15% in case of RTPS covariance inflation method compared to FM. We have shown that 21 

integrated estimated flux seasonal cycles over 15 regions using RTPS inflation are in reasonable 22 
agreement between true and estimated flux with 0.04 global normalized annual mean bias. We have 23 

then assimilated the column averaged CH4 concentration by sampling the model simulations at 24 
GOSAT observation locations and time for another OSSE experiment. Similar to the case of dense 25 
observational data, RTPS covariance inflation method performs better than FM for GOSAT synthetic 26 

observation in terms of normalized RMSE (2-3%) and integrated flux estimation comparison with the 27 

true flux. The annual mean averaged normalized RMSE (normalized mean bias) in LETKF CH4 flux 28 
estimation in case of RTPS and FM covariance inflation is found to be 0.59 (0.18) and 0.61 (0.23) 29 

respectively. The chi-square test performed for GOSAT synthetic observations assimilation suggests 30 

high underestimation of background error covariance in both RTPS and FM covariance inflation 31 
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methods, however, the underestimation is much higher (>100% always) for FM compared to RTPS 32 

covariance inflation method.    33 

1. Introduction 34 

Methane (CH4) is the second major greenhouse gas, after carbon dioxide (CO2), that has 35 
anthropogenic sources. According to the contemporary record of the global CH4 budget, the total of 36 

all CH4 sources ranges 538–593 Tg yr-1 during 2008–2017 (Saunois et al., 2020). The primary natural 37 
sources are from wetlands (~40%). The main anthropogenic CH4 emissions are from microbial 38 

emissions associated with ruminant (livestock and waste), rice cultivation, fugitive emissions (oil and 39 

gas production and use), and incomplete combustion of bio and fossil fuels. The major fraction of 40 
atmospheric CH4 sinks (range: 474 - 532 Tg yr-1) occurs in the troposphere by oxidation via reaction 41 

with hydroxyl (OH) radicals (Patra, et al., 2011; Saunois et al., 2020); other loss processes include 42 

oxidation by soil, and reactions with O1D and Cl. The lifetime of CH4 in the atmosphere is estimated 43 

to be 9.1 ± 0.9 years (Szopa et al. 2021). 44 

Regional CH4 emissions can be estimated from CH4 concentration fields and chemistry transport 45 
models using Bayesian synthesis approaches based on inverse modeling techniques (e.g., Enting, 46 

2002). In such approach, emissions are optimized on a coarse resolution (e.g., for a limited number of 47 
pre-defined regions) mostly using surface-based observations. CH4 concentrations are provided by the 48 

NOAA cooperative air sampling network sites (Dlugokencky et al., 2020) and other networks by the 49 
World Data Centre for Greenhouse Gases (WDCGG) website, hosted by the Japan Meteorological 50 
Agency. In the recent years, satellite measurements are made from the Greenhouse Gases Observing 51 

Satellite (GOSAT) or the TROPOspheric Monitoring Instrument (TROPOMI) (Lorente et al., 2021), 52 
covering the globe with fine spatio-temporal scales. GOSAT provide an extensive global observations 53 
of column CH4 concentrations since 2009 (Yoshida et al., 2013). Some of the inverse modeling 54 
studies utilize the satellite observations for CH4 flux estimation (Zhang et al., 2021; Maasakkers et al., 55 

2016), but, it requires enormous computational resources while dealing with more flux regions and 56 
more observations. 57 

Grid-based CH4 flux optimization is also performed using adjoint technique (4-D Var data 58 
assimilation) and Ensemble Kalman Filter (EnKF), but was limited to small sets of observations 59 
(Houweling et al., 1999; Meirink et al., 2008; Bruhwiler et al., 2014). Bruhwiler et al. (2014) followed 60 

the EnKF method of Peters et al. (2005) to estimate the CH4 surface fluxes that utilizes an off-line 61 

ACTM framework. Techniques such as 4-D Var and EnKF are important to estimate CH4 fluxes since 62 
they can assimilate a large number of observations, manage high-resolution fluxes. In the EnKF 63 

system, a flow-dependent forecast error covariance structure is provided by ensemble model forecasts, 64 
while it does not need an adjoint model that makes it simple but powerful tool for flux estimation. 65 
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One of the limitations in EnKF method is the dependence of the resolution of state vector on 66 

ensemble size, which can give spurious results if the number of ensemble members is much smaller 67 
than the rank of the error covariance matrix (Houtekamer and Zhang, 2016). 68 

LETKF is a type of square-root EnKF that performs analysis locally in space without perturbing the 69 
observations (Ott et al., 2002, 2004; Hunt et al., 2007). LETKF is computationally efficient since the 70 

observations are assimilated simultaneously not serially, it is simple to account for observation error 71 

correlation. Miyazaki et al. (2011) and Kang et al. (2012) demonstrated the implementation of 72 
LETKF data assimilation system by coupling an ACTM for carbon-cycle research using atmospheric 73 

CO2 observations. It is also extensively applied for the emission estimation of short-lived species 74 

using satellite data (Skachko et al., 2016; Miyazaki et al., 2019; Sekiya et al., 2021). In this work, we 75 
will estimate the CH4 fluxes using a LETKF data assimilation system. Assimilation windows ranging 76 

from 6 hours (Kang et al., 2012) to several months (Bruhwiler et al., 2014) have been used, depending 77 

on the desired time resolution of the estimated emissions, which is often limited by the observational 78 
data density. The time frame over which the system behaves linearly, and in what time frame the 79 

observations respond to the control variables such as, atmospheric transport, as well as observation 80 

abundance, must also be taken into consideration. Within an assimilation window, where and when 81 
the fluxes would be constrained by specific observations is to be ascertained by the correlation 82 

between ensemble prior fluxes and the ensemble CH4 concentrations simulation from a forward 83 
model (Liu et al., 2016).  84 

Main objective of this work is to develop an advanced 4-D data assimilation system based on LETKF 85 

that simultaneously estimates atmospheric distributions and surface fluxes of CH4. OSSEs are 86 
conducted to assess the performance of LETKF since it is important to test the system against the 87 
known emissions or the truth. The OSSE LETKF set-up of top-down CH4 flux estimation using online 88 

ACTM is an essential step before implementing on real in situ and satellite observation.   89 

2. Formulation of LETKF system 90 

We briefly describe the LETKF in the application of CH4 flux estimation, while detailed derivation of 91 
equations and code implementation are given elsewhere (Hunt et al., 2007; Miyazaki et al., 2011; 92 

Miyoshi et al., 2010). The notation used here for LETKF formulation is adopted from Kotsuki et al. 93 

(2017). In the LETKF, the background ensemble (columns of matrix x") in a local region evolved 94 

from a set of perturbed initial conditions. The background ensemble mean, x#", and its perturbation, 95 

X", are estimated from the ensemble forecast such as:   96 

x#" =
1
m
(x)"
*

)+,

;			X)" = 	 x)" − x#" 
  (1) 
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Where ‘m’ indicates the ensemble size. The background error covariance matrix P" in the m-97 

dimensional ensemble is defined as:  98 

P" =
1

m− 1
X"1X"2

3
   (2) 

The analysis ensemble mean x#4 is derived using background ensemble mean x#" and ensemble 99 

perturbations X" such as: 100 

x#4 = 	 x#" + X"P647Y"9
3
R;,7y= − Hx#"9 = 	x#" + X"w4  (3) 

where H, Y, R, and P64 denote the linear observation operator, ensemble perturbation matrix in the 101 

observation space (Y≡Hx), observation error covariance matrix, and analysis error covariance matrix 102 

in the ensemble space, respectively. The superscripts ‘o’, ‘b’ and ‘a’ denote the observations, 103 

background (prior), and analysis (posterior), respectively. w4 defines the analysis increment (or 104 
analysis weight) in observation space and is derived using the information about observational 105 

increment y= − Hx#". The analysis error covariance matrix (P64) in the m-dimensional ensemble space 106 

is spanned by ensemble perturbation (Hunt et al., 2007) and defined as: 107 

P64 = {(m − 1)I + 7HX"9
D
R;,HX"};, (4) 

Finally, the analysis ensemble perturbations X4 at the central grid point are derived such as: 108 

X4 = 	 X"	{(𝑚 − 1)P64}, G⁄  (5) 

Where, {(𝑚 − 1)P64}, G⁄  is a multiple of the symmetric square root of the local analysis error 109 

covariance matrix in ensemble space and could be computed by singular vector decomposition 110 
method. The LETKF solves the analysis update equations 3 and 5 at every model grid point 111 

independently by assimilating local observations within the localization cut-off radius. 112 

We have applied a gross error check as a quality control to exclude observations that are far from the 113 

first guess, the appropriate degrees of the gross error check are also examined. Figure 1 shows the 114 

schematic diagram of our LETKF set-up with two ensemble members for 3 consecutive assimilation 115 
cycles with 8 days assimilation window. The analysis is obtained at mid-point time of the assimilation 116 

window (Figure 1). The analyzed (updated) surface flux is used for next data assimilation cycle 117 

starting from the mid-point time of the previous data assimilation window. The state vector 118 
augmentation approach is used to estimate the atmospheric CH4 surface flux (Kang et al., 2012; 119 

Miyazaki et al., 2011).  120 
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Assimilation window size and ensemble members are chosen based on computational efficiency and 121 

estimation accuracy. A larger assimilation window means fluxes are constrained by more 122 
observations, however, it requires handling of large matrix optimization which is difficult in cases of 123 

dense observation and introduces sampling errors related to transport errors. In this study, few 124 

sensitivity experiments performed to demonstrate the choice of assimilation window length and 125 
ensemble size when GOSAT synthetic observation are assimilated in Section 4.2.  126 

 127 

Figure 1: Schematic represents the temporal evolution of LETKF cycle. In the first assimilation 128 
window (Cycle1), the dotted lines show the ensemble forecast of CH4 concentrations (with 2 129 

ensemble members), the solid line shows the linear combination of the forecasts, the filled circles 130 
show the observations of CH4 concentration. The data assimilation finds the linear combination of the 131 
ensemble forecast by estimating the weight (wa) that best fits the observations throughout the 132 

assimilation window. The analysis weight is applied to obtain optimal surface fluxes (F) and the 133 
concentration of CH4 at the intermediate time of the data assimilation window. The updated analyzed 134 
concentration ensembles are used as initial condition after relaxation (Xa, RLX) (Eq. 8) for the next 135 

ensemble forecast. The spread of the ensemble members represents the forecast error. The schematic 136 

is adapted from Kalnay and Yang (2010) and Miyazaki et al. (2011). 137 

2.1 Covariance inflation  138 

The LETKF data assimilation needs variance inflation to mitigate the under dispersive ensemble. We 139 

tested three methods; fixed multiplicative (FM), relaxation-to-prior spread (RTPS), and adaptive 140 

multiplicative covariance inflation. 141 
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The fixed multiplicative (FM) inflation method (Anderson and Anderson, 1999) inflates the prior 142 

ensemble by inflating the background error covariance matrix P" defined in equation (Eq. 2) such as: 143 

P)IJ
" = γPL*M"  (6) 

where PL*M"  represents the temporary background error covariance matrix which is inflated by a factor 144 

𝛾. 145 

The other inflation methods used to prevent the reduction of ensemble spread are relaxation-to-prior 146 
perturbation (RTPP) (Zhang et al., 2004) and relaxation-to-prior spread (RTPS) (Whitaker and 147 

Hamill, 2012). The RTPP methods relax the reduction of the ensemble spread after updating the 148 

ensemble perturbations which blends the background and analysis ensemble perturbations as: 149 

X)IJ
4 = αP3QQX" + (1 − αP3QQ)XL*M4  (7) 

where αP3QQ denotes the relaxation parameter of the RTPP. 150 

The RTPS inflation method relaxes the reduction of ensemble spread by relaxing the analysis spread 151 

to prior spread such as: 152 

XPRS4 = T
αP3QUσ" + (1 − αP3QU)σ4

σ4
W XL*M4  

(8) 

where 𝜎 and αP3QU  denote the ensemble spread, and relaxation parameter of the RTPS, respectively. 153 

The range of parameter αP3QU  is bounded by [0, 1]. This study focuses mainly on the FM and RTPS 154 
covariance inflation methods.  155 

In addition, Miyoshi (2011) applied adaptive inflation by determining the multiplicative inflation 156 
factors at every grid point at every analysis step using the observation-space statistics derived by 157 

Daley (1992) and Desroziers et al. (2005). 158 

< dd3 >	= HP)IJ
" H3 + R (9) 

Where the operator ‘<•>’ denotes the statistical expectation and d = y= − Hx#" (observation-minus-159 

first-guess), and R is the error observation covariance matrix. 160 

The impact of using the adaptive multiplication inflation method is discussed in the GOSAT synthetic 161 
observation assimilation experiments in Section 4.2. 162 

2.2 MIROC4-ACTM        163 

Model for Interdisciplinary Research on Climate, version 4.0 (MIROC4) based ACTM (hereafter 164 
referred to as MIROC4-ACTM) (Patra et al., 2018; Bisht et al., 2021) is used here for CH4 165 
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concentration simulations. The model simulations have been performed at horizontal grid resolution 166 

of approximately 2.8´2.8o latitude-longitude grid (T42 spectral truncations) and hybrid vertical 167 

coordinate of 67 levels (Earth’s surface to 0.0128 hPa, Watanabe et al., 2008). Bisht et al., 2021 168 

performed the multi-tracer analysis and demonstrated the importance of very well-resolved 169 

stratosphere in the MIROC4-ACTM that illustrates better extratropical stratospheric variabilities, and 170 
simulated tropospheric dynamical fields. The meteorological fields in MIROC4-ACTM are nudged to 171 

the JMA Re-analysis (JRA-55) data (Kobayashi et al., 2015).   172 

3. Experimental set-up 173 

3.1 Construction of known surface emissions (truth) 174 

Present OSSEs intend to develop basic tuning strategies before the actual data to be assimilated which 175 

is useful to accelerate the operational use of real observations. The OSSE has been discussed here by 176 
exploiting the known “truth”.  The synthetic observations to be assimilated in the OSSE are generated 177 
from nature runs which uses bottom-up surface emission (true) data to simulate global 3-D CH4 178 

concentrations. The true surface CH4 emissions are prepared on the monthly scale using 179 
anthropogenic and natural sectors, minus the surface sinks due to bacterial consumption in the soil 180 

(Chandra et al., 2021). The anthropogenic emissions were obtained from the Emission Database for 181 
Global Atmospheric Research, version 4.3.2 inventory (EDGARv4.3.2) (Maenhout et al., 2019) that 182 
includes the emissions from the major sectors such as; fugitive, enteric fermentation and manure 183 

management, solid waste and wastewater handling. The biomass burning emissions are taken from the 184 
Global Fire Database (GFEDv4s) (van der Werf et al., 2017) and Goddard Institute for Space Studies 185 

emissions (Fung et al., 1991). The wetland and rice emissions are taken from the process-based model 186 
of the terrestrial biogeochemical cycle, Vegetation Integrated Simulator of Trace gases (VISIT) (Ito, 187 

2019) that is based on Cao et al. (1996). The other natural emission such as, ocean, termites, mud 188 
volcano are taken from TransCom-CH4 inter-comparison experiment (Patra et al., 2011). The total 189 

emissions are taken as the truth for the OSSEs and the concentration simulated by MIROC4-ACTM 190 

will be referred to as synthetic observations. 191 

3.2 Prior flux preparation and LETKF setting 192 

Based on our understanding of CH4 inverse modelling, the uncertainty in regional flux estimation is 193 

found to be 30% or lower (Chandra et al., 2021). Therefore, we attempted to reproduce the true flux 194 
by starting with a prior flux that is lower by 30% of the true flux (prior flux has same seasonal cycles 195 
as true flux). The MIROC4-ACTM is initialized with the spin-up of 3 years (2007 – 2009) with prior 196 

flux distribution. The initial CH4 distribution on 01 January 2007 was taken from an earlier simulation 197 

of 27 years. An initial perturbation with standard deviation of approximately 6-8% spread is applied 198 
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to the a priori flux as the initial ensemble spread, whereas no ensemble perturbation was applied to the 199 

initial CH4 concentration. The sensitivity of the initial ensemble spread to CH4 flux estimation is 200 
discussed in Section 4.2. The uncertainty to perturb prior fluxes is generated based on random 201 

positive values with normal distribution. The monthly scale prior emission is linearly interpolated at 6 202 

hourly intervals to be used in the MIROC4-ACTM simulation for data assimilation. This study 203 
performs two LETKF data assimilation experiments. In these experiments, we provided initial 204 

perturbation on regional basis over land (53 different land regions; Chandra et al., 2021) and at every 205 

grid over ocean, no spatial error correlation between grid points is considered among ensemble 206 
members. However, in Section 4.2.5, we also discussed the sensitivity of CH4 data assimilation by 207 

providing initial ensemble spread at every grid by considering horizontal spatial error correlation 208 

between grid points among ensemble members, with a global mean correlation of 20%.  209 

3.3 Experiment 1: Synthetic dense observation formulation 210 

The OSSE setting with very accurate and dense observation surface data is an attempt to demonstrate 211 

that data assimilation system works reasonably in the estimation of the true surface flux. Errors in the 212 
estimated flux could arise due to the insufficient ensemble size and also the implemented inflation 213 
methods to overcome the under-sampling, along with simplified forecast process of emissions. In real 214 

data assimilation, there are additional sources of potential errors, such as, atmospheric transports, and 215 
inappropriate prior or observation uncertainties. In our OSSEs, CH4 fluxes as mentioned in Section 216 
3.2 are used as “true” fluxes in generating synthetic observations (CH4 concentrations). In the 217 

experiment 1, the simulated surface layer CH4 concentrations at each grid for the entire globe were 218 
used as synthetic assimilated observations. We added a constant measurement uncertainty of 5 ppb, 219 

which is typically achieved by the present-day measurement systems (e.g., Dlugokencky et. al, 2020). 220 

In this study, the CH4 observations are assimilated by applying the observation error covariance 221 
localization (Kotsuki et al., 2020) to reduce the spurious spatial correlation due to smaller ensemble 222 

size than the degrees of freedom of the system (R ← R × exp `− ,
G
{(da σa⁄ )G + (db σb⁄ )G}c). Where 223 

da and db denote the horizontal distance (km) and vertical difference (log[Pa]) between the analysis 224 

model grid point and observation location. The tunable parameters σa and σb are the horizontal 225 

localization scale (km) and vertical localization scale (log[Pa]), respectively. Using the spatial 226 
localization technique, we have estimated the CH4 flux for each grid by choosing the CH4 227 

observations that influence the grid point using optimal cutoff radius (≃ 3.65σa,b; Miyoshi et al., 228 

2007) with horizontal covariance localization (σa) of 2200 km and vertical covariance localization 229 

(σb) of 0.3 in the natural logarithmic pressure (log[Pa]) coordinate. The localization is performed to 230 
improve the signal to noise ratio of ensemble-based covariance. Numerous sensitivity experiments 231 

have been performed by varying the horizontal and vertical localization length in order to obtain the 232 

optimized CH4 flux that best compare with the truth. The LETKF assimilates the observations within 233 
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the specified radius to solve the analysis state at each grid point independently (Liu et al., 2016; 234 

Kotsuki et al., 2020). State vector of the analysis includes the atmospheric CH4 concentration, which 235 
is the prognostic variable of forecast model and the state vector is further augmented by surface CH4 236 

flux, which is not a model prognostic variable. This augmentation enables the LETKF to directly 237 

estimate the parameter through the background error covariance with observed variables (Baek et al., 238 
2006). The state vector augmentation is implemented similar to that used by Miyazaki et al. (2011). 239 

This approach analyses CH4 flux during the analysis step. The purpose of the simultaneous CH4 240 

emission and concentration optimization is to reduce the uncertainty of the initial CH4 concentrations 241 
on the CH4 evolution during the assimilation window and to maximize the observations potential 242 

(Tian et al., 2014). 243 

The atmospheric CH4 concentration is changed during both the analysis and forecast steps. A 244 

challenge of this scheme is that, the analysis increment is added to the model state at each analysis 245 

step, without considering the global total CH4 mass conservation in the model, but consistent with the 246 
observed local CH4 abundance.  247 

In this case, surface flux at every model grid point is analyzed with 8-days assimilation window 248 
during the year 2010 with the 100 ensemble members. The ensemble size and assimilation window 249 

are chosen based on the CH4 flux estimation accuracy calculated by performing sensitivity experiment 250 
for ensemble size (60, 80, and 100) and assimilation window (3-days and 8-days), respectively (not 251 
shown). 252 

3.4 Experiment2: synthetic satellite observation formulation  253 

One way to address the real-world CH4 flux estimation problem is to first make the OSSE dataset like 254 

real observations. In this OSSE experiment, we have assimilated synthetic column average CH4 255 
concentrations with a coverage mimicking GOSAT satellite observations. We prepared a model 256 
simulated column averaged CH4 concentrations (XCH4) dataset that is spatiotemporally sampled with 257 

GOSAT-observations as follows: 258 

XCHk = XCHk(4	Ml)=l)) +(ℎn
n

𝑎n(CHk(pq3r)	 − CHk(4	Ml)=l)))n (10) 

Where, XCH4 is the column-averaged model simulated CH4 concentration. XCHk(4	Ml)=l)) is a priori 259 

column-averaged concentration. CHk(pq3r) and CHk(4	Ml)=l)) are the CH4 profile from ACTM and a 260 

priori, respectively. ℎn is the pressure weighting function (j is the vertical layer index), and 𝑎n 261 

represents averaging kernel matrix for the column retrieval which is the sensitivity of the retrieved 262 
total column at the various (‘j’) atmospheric levels. In the next step, we added the same retrieval 263 
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(XCH4) error as GOSAT to the XCH4 (ACTM simulated) to make the OSSE more realistic and then 264 

attempt to estimate the true fluxes. 265 

In this case, the CH4 flux has been estimated for each grid by choosing the CH4 observation with 266 

cutoff radius (≃ 3.65	σa,b) with horizontal covariance localization (σa) of 5000 km and vertical 267 

covariance localization (σb) of 0.35 in the natural logarithmic pressure (log[Pa]) coordinate. The 268 

optimal horizontal and vertical covariance localization values are chosen based on trial and error 269 

method (those best fits to estimate CH4 flux when compared with truth). A long cutoff radius has been 270 
chosen due to sparse observational coverage of GOSAT. Covariance localization is necessary to 271 

remove long-range erroneous correlations and for mitigating sampling errors in the ensemble-based 272 

error covariance with a limited ensemble size (Miyoshi et al., 2007; Greybush et al., 2011; Kotsuki et 273 
al., 2020). The surface flux is analyzed at every model grid point with 8-days assimilation window 274 

and 100 ensemble members those are chosen based on sensitivity experiments discussed in Section 275 

4.2. 276 

4. Results and Discussion 277 

4.1 Experiment with dense OSSE 278 

The time series of normalized RMSE (s∑ (𝑥vw − 𝑥vx)Gy
v+, 𝑛⁄ 𝑥{x| ;	𝑥vw and 𝑥vx  is the analysis and true 279 

state at ith model grid point, n is the total number of grid points, and 𝑥{x represents the mean of true 280 

flux) in the analyses over global landmass region is shown in Figure 2. The normalized global RMSE 281 
is calculated using FM and RTPS inflation methods (Fig. 2) after assimilating synthetic observation at 282 
every grid (Section 3.4). Noteworthy is that the experiment with FM inflation method shows 10-15% 283 

larger error in estimating the atmospheric surface CH4 flux compared to RTPS inflation method. One 284 
of the reasons of better RMSE using RTPS inflation method is due to the more degrees of freedom 285 

provided by relaxation (αP3QU) in ensemble spread (Eq. 8) that could nudge the ensemble of CH4 286 

concentrations towards observations. The initial flux analysis spread using RTPS and FM is shown in 287 
supporting information (Fig. S1) which shows larger initial analysis flux spread over Brazil, tropical 288 

America, and Asia in RTPS inflation compared to FM inflation method. We performed numerous 289 

sensitivity test with RTPS inflation method and found that uniform relaxation is not substantial, for 290 

some of the regions. Figure 2 shows the RMSE for FM, fixed RTPS (αP3QU = 0.4,	applied globally, 291 

the optimized value is obtained by manual fine tuning) and conditional RTPS ( αP3QU= 0.3-0.7 292 

applied different αP3QU  regionally by manual fine tuning). In case of conditional RTPS, the optimal 293 

values of αP3QU , i.e., 0.6, 0.3, and 0.7 for the regions south of 20oS, 20oS-20oN, and north of 20oN, 294 

respectively, were obtained from data assimilation sensitivity calculations with varying αP3QU  for the 295 

three regions separately to best match the true states. We find that the conditional RTPS method 296 
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improves the accuracy by ~5% compared to fixed RTPS and 10-15% compared to FM. In the 297 

following, we discuss the results obtained using the conditional RTPS and FM inflation methods. 298 

We have also shown RMSE (not normalized) of surface flux in supplementary information (Fig. S2). 299 

Flux RMSE has been estimated globally for both the inflation methods, and also for south of 20oN (by 300 
considering only those land grids which fall into south of 20oN; Fig. S2) for comparative purposes. It 301 

could be noticed that (supporting information Fig. S2), above north of 20oN, the flux estimation error 302 

is higher, specifically during spring-summer when CH4 emissions peak over most of the northern 303 
hemispheric regions (Fig. 3). The high uncertainty during spring-summer (Fig. S2) in the flux 304 

estimation over these regions could appear due to the attenuation of surface observations as a result of 305 

active vertical mixing. The RMSE during autumn (Fig. S2) is comparable in case of global and south 306 
of 20oN, which indicates RMSE arising from southern hemispheric regions, likely over Brazil as it 307 

peaks during autumn (Fig. 3).  308 

 309 

Figure 2. Time series of normalized RMSE of surface CH4 flux analysis, for 1 year of data 310 

assimilation using FM, fixed RTPS, and conditional RTPS inflation methods over global landmass 311 

region.  312 

Figure 3 shows regional total flux seasonal cycles comparison of the estimated fluxes for 15 terrestrial 313 

regions with those of the prior and true fluxes. The estimated flux retrieved using RTPS inflation 314 
method over different regions agrees well with that of true flux. We intend to show the capability of 315 

LETKF estimated fluxes over these regions using surface observations to mimic the true fluxes in our 316 

understanding of terrestrial biosphere CH4 cycle. These results are consistent with Figure 2 with 317 

annual global normalized mean bias (∑ (𝑥vw − 𝑥vx)y
v+, ∑ 7𝑥vx9y

v+,|  )  of -0.04. It could also be noticed 318 

from Figure 3 that estimated fluxes converge to true fluxes over most of the regions after about 2-3 319 

months. 320 
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 321 

Figure 3. The 1-year CH4 total flux seasonal cycles of true (black), prior (blue), and estimated from 322 

the LETKF (orange) conditional RTPS inflation method in 15 regions after assimilating dense 323 
synthetic surface CH4 observations. 324 

To see the degree of similarity in the flux distribution between the estimated and true fluxes, we show 325 
monthly mean spatial flux distribution for June, and November in Figure 4 and 5, respectively, along 326 
with the bias in prior and estimated flux. As shown in Figures 4 and 5, the general spatial patterns of 327 

the true flux are estimated well. These results suggest that, our LETKF system is capable of 328 
reproducing continental spatial flux patterns by using such an idealized dense surface observational 329 
data. However, some clear differences in flux estimation could be noticed from FM and RTPS 330 
inflation method (Figs. 4 and 5), for e.g., over Eurasian and American continent, analysis with RTPS 331 

shows clear improvement compared to FM covariance inflation method. We calculated the global 332 
mean normalized bias with RTPS and FM covariance inflation method which is found to be -0.04 and 333 
-0.11, respectively over land regions that shows RTPS significantly improved the flux estimation 334 

compared to FM covariance inflation method.  335 
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 336 

Figure 4. Spatial distribution of surface CH4 fluxes (true; top left panel, FM analysis; middle left 337 
panel, RTPS analysis; bottom left panel) and the associated bias in prior (prior-true; top right panel) 338 

and estimated (FM-true; middle right panel, RTPS-true; bottom right panel) fluxes during June, 2010. 339 
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 340 

Figure 5. Same as Figure 4 but for November, 2010.  341 

4.2 Experiment by mimicking the real satellite observational data set 342 

In this section we discuss the LETKF flux estimation by assimilation of GOSAT synthetic CH4 343 
concentration observations. Figure 6 shows the model simulated mean XCH4 concentration sampled 344 

spatiotemporally with GOSAT observations during January and July for the year 2010 (sampling 345 
method discussed in Section 3.4). In this case we have shown different LETKF sensitivity 346 
experiments such as; LETKF sensitivity to (1) FM, RTPS, adaptive multiplicative inflation (2) 347 

assimilation window (3) ensemble size, (4) chi-square test, (5) prior ensemble spread. In the LETKF 348 

sensitivity experiments from 1-4, the initial ensemble spread provided similar way as Experiment 1 349 
and conditional RTPS inflation method is used. Conditional RTPS method is also used in Section 350 

4.2.6 for CH4 flux estimation. 351 

4.2.1 LETKF sensitivity to FM, RTPS, and adaptive multiplicative inflation 352 
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This study mainly emphasizes on FM and RTPS inflation methods used in CH4 LETKF data 353 

assimilation. The annual average normalized RMSE (absolute bias) with RTPS and FM covariance 354 
inflation is found to be 0.59 (0.18) and 0.64 (0.22), respectively. The RTPS inflation method performs 355 

better than the FM inflation method overall. In addition to RTPS inflation, sensitivity test is also 356 

performed using adaptive multiplicative inflation methods.  357 

In the adaptive inflation, we need to provide an initial multiplicative inflation factor at the beginning 358 

of data assimilation cycle (Cycle 1 in Fig. 1). Following the method of Miyoshi (2011), the 359 
multiplication inflation factor information calculated in previous cycle (i.e. Cycle1 in Fig. 1) is used 360 

for next data assimilation cycle at every grid point (Cycle 2 in Fig. 1). We perform two sensitivity 361 

experiments. In the first (second) case we provided 50% (40%) initial inflation in the beginning of 362 
Cycle 1 (Fig. 1). The normalized RMSE in the both the adaptive inflation sensitivity experiments are 363 

comparable (0.65, Supporting information Fig. S3a) till July, but from the beginning of August, 364 

RMSE increases exponentially in the first experiment. However, in terms of chi-square distribution 365 
CH4 flux estimation with first sensitivity adaptive multiplicative inflation experiment (50% initial 366 

inflation case) is better than second sensitivity experiment (Supporting information Fig. S3b; chi-367 

square test described in Section 4.2.4). To identify the regions of high estimated CH4 flux error, we 368 
have shown the background error spread in CH4 flux estimation over 15 regions (Supporting 369 

information Fig. S3c) and found that spread over west and south east Asia rises exponentially post 370 
July that indicates the rise of estimated CH4 flux error over these regions in the first sensitivity 371 
adaptive multiplicative inflation experiment. Our analysis suggests that CH4 flux estimation is 372 

depending on the initial inflation factor provided in the beginning of data assimilation cycle (Cycle 1, 373 
Fig. 1) in adaptive multiplication method. Also, we need to be very careful to monitor the background 374 
error spread evolution with time to estimate the CH4 flux with adaptive inflation, chi-square 375 
distribution analysis is not sufficient.  376 

In case of RTPP inflation, we found the parameter αP3QQ is very difficult to fine-tuned due to its very 377 

high sensitivity to estimate the CH4 flux. We fail to obtain an optimized αP3QQ value to estimate the 378 

CH4 flux. Whitaker and Hamill (2012), also demonstrated the better accuracy in LETKF 379 
meteorological data assimilation with RTPS compared to RTPP covariance inflation method. They 380 

found RTPP method produces very large errors if the inflation parameter exceeds the optimal value.   381 

4.2.2 Assimilation window 382 

The LETKF data assimilation window length determines the time span of the observations assimilated 383 
in each assimilation cycle. We have shown the sensitivity of two assimilation window size 384 

configurations; 3 days and 8 days in supporting information Figure S4. Our sensitivity experiments 385 

with window size configurations show that 8 days long assimilation window estimates the CH4 flux 386 
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with better accuracy (~10%) compared to 3 days assimilation window, because more observational 387 

information is incorporated into the system with 8 days long assimilation window. This study uses 8 388 
days assimilation window for CH4 LETKF data assimilation. 389 

 390 

Figure 6. Monthly mean ACTM simulated XCH4 (ppb) sampled with GOSAT observations to be 391 

assimilated (valid during the year 2010). The actual retrieval errors are added in the synthetic GOSAT 392 
observations. Data are shown for two representative months, depicting the southern and northern 393 
hemisphere differences in data coverage.  394 

4.2.3 Ensemble size  395 

Figure 7a shows the RMSE using different ensemble members. The RMSE stabilizes gradually as the 396 

ensemble size increases from 60 to 80 to 100 ensemble members. The ensemble size dependency of 397 
flux estimation suggests the further scope of the improvement in flux estimation by increasing the 398 
ensemble members. In this study we stick to 100 ensemble members due to high computational cost 399 

while solving large covariance matrices. The larger error in flux estimation in case of column 400 
averaged synthetic GOSAT CH4 observations assimilation compared to dense observations (Fig. 2) is 401 
likely due to the weaker constraint on surface fluxes provided by satellite observations and sparse 402 

observations. 403 
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 404 

Figure 7: (a) Flux estimation RMSE using different ensemble size with RTPS covariance inflation. 405 

(b) Chi-square distribution using FM and RTPS covariance inflation methods with the ensemble size 406 

of 100. 407 

4.2.4 Chi-square test  408 

We have carried out chi-square test for the evaluation of background error covariance matrix 409 

(Miyazaki et al., 2012). For the 𝜒G test, the innovation statistics are diagnosed from the observation 410 

minus forecast 7y= − Hx"9, the estimated error covariance in the observation space (HP"H3 + R), 411 

and the number of observations k, such as: 412 

Y = 	
1
√𝑘

7HP"H3 + R9
;, G⁄ 7y= − Hx"9 (11) 

Using this statistic, the 𝜒G is defined as follow: 413 

𝜒G = traceYY3 (12) 

The performance of background error covariance matrix determined based on the high and lower 414 

value of chi-square. Chi-square value should converge to 1, a value higher (lower) than 1 indicates 415 
underestimation (overestimation) of the background error covariance matrices. Our results suggest 416 

that, background error covariance matrix is highly underestimated in both RTPS and FM covariance 417 

inflation methods (Fig. 7b). However, the chi-square values convergence towards 1 is better in the 418 
case of RTPS compared to FM covariance inflation method which indicates the improved 419 

representation of background errors and then more appropriate data assimilation corrections in the 420 

case of the RTPS inflation method. The chi-square distribution starts saturating after the month of 421 
March. Post March analysis shows the background error covariance matrix underestimation is much 422 

higher (>100%) in case of FM compared to RTPS covariance inflation method.  423 

4.2.5 CH4 LETKF sensitivity to initial ensemble spread  424 
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A test case for CH4 LETKF data assimilation has been performed where the initial spread is provided 425 

by considering the initial perturbation on each model grid with spatial error correlation between grid 426 
points among ensemble members, with global mean correlation of 20%. In this case, we found that 427 

the analysis fluxes are extremely sensitive to the initial ensemble spread if prior fluxes perturbed with 428 

more than 5% prior uncertainty. Therefore, we used initial ensemble perturbation with only 2% prior 429 
uncertainty. Reducing the initial ensemble spread reduces the CH4 flux estimation sensitivity (>60%). 430 

However, it also poses a challenge to mitigate the under-dispersive background error covariance 431 

matrix. We performed LETKF data assimilations in this case with RTPS covariance inflation method 432 

(αP3QU  = 0.9 optimized value is used here uniformly) with 8-days long assimilation window and 100 433 

ensemble members and calculated the normalized RMSE between analysis and true fluxes 434 

(Supporting information Fig. S5). Noteworthy that, the estimated error between analysis and true 435 
fluxes (Fig. S5) with this setting (grid-wise initial ensemble spread) is still larger (25%) than the case 436 

when region-wise initial ensemble spread provided (Fig. 7a; 100 ensemble size). It suggests that, 437 

initial ensemble spreads among ensemble members needs to be carefully provided that best represents 438 
CH4 variability among ensembles to estimate the CH4 flux.  439 

Note that, the OSSEs used in this study did not consider the effects of model errors other than CH4 440 
fluxes, such as model transport errors. In real situations, model errors can have a substantial impact on 441 
flux estimates (Locatelli et al., 2013), which needs to be taken into account in background 442 

covariances. Therefore, the optimal data assimilation setting can differ between the OSSEs presented 443 
in this study and real observation cases. Further efforts, e.g., by conducting a more comprehensive 444 

OSSE that accounts for various model errors and by performing various sensitivity calculations in real 445 
cases, would provide an improved understanding of the optimal inflation settings to improve CH4 flux 446 
estimates in following study.  447 

4.2.6 Estimated CH4 flux analysis 448 

Figure 8 shows the regional fluxes seasonal cycle comparison for the estimated fluxes over 15 449 

terrestrial regions with those of the prior and true fluxes. We have also shown assimilation results in 450 
case of FM inflation method in supporting information (Fig. S6), which shows the flux estimation 451 

disagreement over more regions compared to RTPS inflation method; e.g., for Tropical and North 452 

America, whole African continent, Australia-New Zealand.  453 

We have shown the GOSAT observations in Figure 6 and supporting information Figure S7. We 454 

found very marginal flux estimation improvement over Central Africa after May (Fig. 8), that could 455 
be associated with the less GOSAT coverage over this region (Fig. 6). On the other hand, over 456 
Northern Africa, no improvement in flux estimation is found. In case of dense OSSE too (Fig. 3), we 457 

didn’t find satisfactory flux estimation over Northern Africa which is most probably related to the 458 
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insufficient initial spread among ensemble members over this region (we have used same initial 459 

ensemble spread in both OSSE cases). Over Europe, GOSAT observations are remarkably less, 460 
specifically for first few months (January-April; supporting information Fig. S7). Therefore, the flux 461 

update over Europe would be influenced by the observations from neighboring regions falling under 462 

the chosen cutoff radius that are mainly in Northern Africa where the flux estimation itself not 463 
satisfactory. It could also be noticed that the retrieval error added in this OSSE case are high over 464 

Europe (September-October; supporting information Fig. S7),) and its adjacent Sea (Mediterranean 465 

Sea; June-August) which could also affect the surface CH4 flux estimation.  466 

 467 

Figure 8. Same as Figure3 but after assimilating synthetic GOSAT observations. 468 

Figure 9 and 10 show spatial patterns of the true and estimated fluxes by assimilating the column 469 
averaged CH4 concentrations during June and November (Fig. 6). It may be noticed that RTPS 470 

covariance inflation method better able to estimate the true flux pattern compared to FM covariance 471 
inflation method. The spatial pattern shown using RTPS inflation method emphasizes the positive and 472 
negative bias in the estimated flux (Figs. 9 and 10), but generally agrees with the flux seasonal cycle 473 

plots shown in Figure 8. 474 

Our LETKF CH4 data assimilation experiment by assimilating GOSAT synthetic observation with the 475 

implementation of the advanced RTPS covariance inflation method better estimate the time-evolving 476 

surface CH4 fluxes compared to FM covariance inflation method. The difficulty to estimate the 477 
surface CH4 flux over a few regions may be overcome by applying additional methodologies, such as 478 

the assimilation of surface observations simultaneously, and the use of information about the CH4 479 

fluxes climatology. A correction factor derived based on empirical formulation that could use CH4 480 
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flux climatology information is needed to apply to maintain the CH4 mass conservation. This could be 481 

implemented by the checking the simulated CH4 burden gain between years in comparison with the 482 
observed CH4 growth rates.   483 

 484 

Figure 9. Monthly mean true (true; top left panel) and estimated (FM analysis; middle left panel, 485 
RTPS analysis; bottom left panel) CH4 flux after assimilating column averaged synthetic CH4 486 

concentrations (Fig. 6) during June using FM and RTPS inflation methods. The associated bias with 487 

prior and estimated fluxes is also shown (prior-true; top right panel; FM-true; middle right panel, 488 
RTPS-true; bottom right panel). 489 

 490 
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 491 

Figure 10. Same as Figure 9 but for November. 492 

5. Summary 493 

In this study, we have introduced 4D-LETKF data assimilation system that utilizes MIROC4-ACTM 494 

as a forward model for CH4 flux estimation. This study has extensively tested both FM and RTPS 495 

inflation methods for the LETKF CH4 flux estimation. We have conducted two experiments to 496 
demonstrate the ability of LETKF system to estimate the CH4 surface flux globally. In Experiment1, 497 
we have assimilated the synthetic dense surface CH4 observations. While in Experiment2, synthetic 498 

GOSAT CH4 observations are assimilated. Based on the results of the sensitivity tests using FM and 499 
RTPS inflation methods in Experiment1, we have found that RTPS inflation produces significantly 500 
less normalized RMSE (10-15%) compared to FM inflation method. In Experiment2, we discussed, 501 

LETKF parameters such as, different inflation techniques, ensemble size, assimilation window, initial 502 

ensemble spread sensitivity, and chi-square test.  The ensemble size (this study uses maximum 100 503 
ensemble members) sensitivity test suggests that more ensemble members could help to accurately 504 

represent the covariance matrix with more degrees of freedom. The assimilation window sensitivity 505 
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test exhibits that 8 days assimilation window reduces the normalized flux RMSE by about 10% 506 

compared to 3 days assimilation window in case of GOSAT synthetic observations assimilation. 507 

Our approach of assimilation with RTPS inflation could provide more degrees of freedom to fit the 508 

ensemble of CH4 concentrations to the observed ones, resulting the improved analyzed fluxes. The 509 
RTPS inflation method is capable of obtaining reasonable flux estimates with normalized annual 510 

mean bias of 0.04, and 0.61 in case of dense surface synthetic observations and GOSAT synthetic 511 

observations, respectively. We demonstrated in our sensitivity OSSE experiment with synthetic 512 
GOSAT observations that, over American and African continents and also over Australia - New 513 

Zealand, the LETKF data assimilation with FM inflation method does not show much improvement in 514 

the true flux estimation, but RTPS inflation method reasonably estimate the true flux over most of 515 
these regions. One of the reasons for better flux estimates from RTPS inflation method is the 516 

prevention of analysis spread drastically. In the CH4 LETKF flux estimation, surface CH4 flux is not a 517 

prognostic state vector in the ACTM, which results in the decay of spread continuously in analysis 518 
steps. RTPS inflation method could mitigate such under disperse spread problem. This study finds 519 

that spatially homogeneous relaxation is not sufficient. It needs to be fine-tuned and applied 520 

conditionally. 521 

The sensitivity of LETKF CH4 flux estimation to initial ensemble spread needed to be carefully dealt 522 
with when applied to real data assimilation system. A future OSSE with additive covariance inflation 523 
technique could be interesting while applied with RTPS inflation method for CH4 LETKF data 524 

assimilation since in additive covariance inflation initial estimated flux error cannot propagate. The 525 
state vector augmentation technique used here updates the flux after each data assimilation cycle but it 526 

doesn’t conserve the total atmospheric CH4 amount which is one of the limitations of this work. A 527 
correction factor needs to be implemented to conserve the total atmospheric CH4 amount after 528 

completion of a few data assimilation cycles. We have not accounted for the transport error due to 529 
meteorological fields in this work (Patra et al., 2011b), in case of real observations data assimilation a 530 
week-long window may introduce transport errors in CH4 analysis because of nonlinear growth of 531 

ensemble perturbations. 532 

Code and data availability. The LETKF source codes can be accessed from 533 

https://doi.org/10.5281/zenodo.7127658. All the scripts for running the LETKF data assimilation 534 

software, input and output results data files are available at https://doi.org/10.5281/zenodo.7098323. 535 
CH4 ACTM simulation module coupled with MIROC4-AGCM can be accessed from 536 

https://doi.org/10.5281/zenodo.7118365. The source code of MIROC4-AGCM is archived at 537 

https://doi.org/10.5281/zenodo.7274240 with restriction because of the copyright policy of the 538 
MIROC developer community, and no contribution of this work to the MIROC4 source code 539 

development. 540 
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