

1 **Stable isotopic evidence for the excess leaching of unprocessed atmospheric**
2 **nitrate from forested catchments under high nitrogen saturation**

Weitian Ding¹, Urumu Tsunogai¹, Fumiko Nakagawa¹, Takashi Sambuichi¹, Masaaki
Chiwa², Tamao Kasahara³, Ken'ichi Shinozuka⁴

¹Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku,
Nagoya 464-8601, Japan

²Kyushu University Forest, Kyushu University

³Faculty of Agriculture, Kyushu University

⁴River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan

Corresponding author: Weitian Ding

Email: ding.weitian.v2@s.mail.nagoya-u.ac.jp

3 **Abstract**

4 Owing to the elevated loading of nitrogen through atmospheric deposition, some
5 forested ecosystems become nitrogen saturated, from which elevated levels of nitrate
6 are exported. The average concentration of stream nitrate eluted from upstream and
7 downstream of the Kasuya Research FK forested catchments (FK1 and FK2 catchments)
8 in Japan were more than 90 μM , implying that these forested catchments were under
9 nitrogen saturation. To verify that these forested catchments were under the nitrogen
10 saturation, we determined the export flux of unprocessed atmospheric nitrate relative to
11 the entire deposition flux ($M_{\text{atm}}/D_{\text{atm}}$ ratio) in these catchments, because the $M_{\text{atm}}/D_{\text{atm}}$
12 ratio has recently been proposed as a reliable index to evaluate nitrogen saturation in
13 forested catchments. Specifically, we determined the temporal variation in the
14 concentrations and stable isotopic compositions, including $\Delta^{17}\text{O}$, of stream nitrate in
15 the FK catchments for more than 2 years. In addition, for comparison, the same
16 parameters were also monitored in the Shiiba Research MY-forested catchment (MY
17 catchment) in Japan during the same period, where the average stream nitrate
18 concentration was low, less than 10 μM . While showing the average nitrate
19 concentrations of 109.5, 90.994.2, and 7.1 μM in FK1, FK2, and MY, respectively, the
20 catchments showed average $\Delta^{17}\text{O}$ values of +2.6, +1.57, and +0.6 ‰ in FK1, FK2, and
21 MY, respectively. Thus, the average concentration of unprocessed atmospheric nitrate
22 ($[\text{NO}_3^-_{\text{atm}}]$) was estimated to be 10.8, 5.16.1, and 0.2 μM in FK1, FK2, and MY,
23 respectively, and the $M_{\text{atm}}/D_{\text{atm}}$ ratio was estimated to be 14.113.9, 6.67.9, and 1.32 %

24 in FK1, FK2, and MY, respectively. The estimated M_{atm}/D_{atm} ratio in FK1 ([14.1](#)[13.9](#) %)
25 was the highest ever reported from temperate forested catchments monitored for more
26 than 1 year. Thus, we concluded that nitrogen saturation was responsible for the
27 enrichment of stream nitrate in the FK catchments, together with the elevated $NO_3^-_{atm}$
28 leaching from the catchments. While the stream nitrate concentration ($[NO_3^-]$) can be
29 affected by the amount of precipitation, the M_{atm}/D_{atm} ratio is independent of the amount
30 of precipitation; thus, the M_{atm}/D_{atm} ratio can be used as a robust index for evaluating
31 nitrogen saturation in forested catchments.

32

33 **1 Introduction**

34 Nitrate is important as a nitrogenous nutrient in the biosphere. Traditionally, forested
35 ecosystems have been considered as nitrogen limited (Vitousek and Howarth, 1991).
36 However, owing to the elevated loading of nitrogen through atmospheric deposition,
37 some forested ecosystems become nitrogen saturated (Aber et al., 1989), from which
38 elevated levels of nitrate are exported (Mitchell et al., 1997; Peterjohn et al., 1996).
39 Such excessive leaching of nitrate from forested catchments degrades water quality and
40 causes eutrophication in downstream areas (Galloway et al., 2003; Paerl and Huisman,
41 2009). Thus, evaluating the stage of nitrogen saturation in each forested catchment
42 including its temporal variation, is critical for sustainable forest management,
43 especially for forested ecosystems under high nitrogen deposition.

44 Both concentration and seasonal variation of stream nitrate have been used as indexes

45 to evaluate the nitrogen saturation of each forested catchment in past studies (Aber,
46 1992; Rose et al., 2015; Stoddard, 1994). A forested stream eluted from Fernow
47 Experimental Forest USA, for instance, showed an elevated average nitrate
48 concentration of 60 μ M, along with the absence of a seasonal variation in the stream
49 nitrate concentration, so the forest was classified into stage 3, the highest stage of
50 nitrogen saturation (Rose et al., 2015).

51 However, using both the concentration level (high or low) and seasonal variation
52 (clear or absent) of stream nitrate as indexes to evaluate nitrogen saturation has
53 limitations, including the following (1) seasonal variation of soilstream nitrate can be
54 buffered by groundwater with in forests long residence time under humid, temperate
55 climates such as Japan, so the, so that the seasonal variation in stream nitrate
56 concentrations is unclear in stream nitrate concentration in Japan, even in normal forests
57 under the nitrogen saturation stage of 0-(Mitchell et al., 1997); and (2) the stream nitrate
58 concentration can be enriched or diluted depending on the volume of rainfall, so the
59 concentration level can be high in low precipitation area irrespective of the stage of
60 nitrogen saturation.

61 Nakagawa et al. (2018) lately proposed that the M_{atm}/D_{atm} ratio, the export flux of
62 unprocessed atmospheric nitrate (M_{atm}) relative to the deposition flux of $NO_3^-_{atm}$ (D_{atm}),
63 can be an alternative, more robust index for evaluating nitrogen saturation in each
64 forested catchment, because the M_{atm}/D_{atm} ratio directly reflects the demand for
65 atmospheric nitrate deposited onto each forested catchments as a whole, and thus reflect

66 the nitrogen saturation in each forested catchment. That is, we can expect high
67 M_{atm}/D_{atm} ratios in forested catchments under nitrogen saturation and low M_{atm}/D_{atm}
68 ratios in forested catchments with nitrogen deficiency.

69 To estimate the M_{atm}/D_{atm} ratio accurately and precisely in each forested catchment,
70 the fraction of unprocessed atmospheric nitrate ($NO_3^-_{atm}$) in the stream needs to be
71 estimated accurately and precisely. In recent, triple oxygen isotopic compositions of
72 nitrate ($\Delta^{17}O$) have recently been used as a conservative tracer of $NO_3^-_{atm}$ deposited
73 onto each forested catchment (Inoue et al., 2021; Michalski et al., 2004; Nakagawa et
74 al., 2018; Tsunogai et al., 2014; Ding et al., 2022), showing distinctively different $\Delta^{17}O$
75 from that of remineralized nitrate ($NO_3^-_{re}$), derived from organic nitrogen through
76 general chemical reactions, including microbial N mineralization and microbial
77 nitrification. While $NO_3^-_{re}$, the oxygen atoms of which are derived from either
78 terrestrial O_2 or H_2O through microbial processing (i.e., nitrification), always shows the
79 relation close to the “mass-dependent” relative relation between $^{17}O/^{16}O$ ratios and
80 $^{18}O/^{16}O$ ratios; $NO_3^-_{atm}$ displays an anomalous enrichment in ^{17}O reflecting
81 oxygen atom transfers from atmospheric ozone (O_3) during the conversion of NO_x to
82 $NO_3^-_{atm}$ (Alexander et al., 2009; Michalski et al., 2003; Morin et al., 2011; Nelson et
83 al., 2018). As a result, the $\Delta^{17}O$ signature defined by the following equation (Kaiser et
84 al., 2007) enables us to distinguish $NO_3^-_{atm}$ ($\Delta^{17}O > 0$) from $NO_3^-_{re}$ ($\Delta^{17}O = 0$):

$$85 \Delta^{17}O = \frac{1 + \delta^{17}O}{(1 + \delta^{18}O)^\beta} - 1 \quad (1)$$

86 where the constant β is 0.5279 (Kaiser et al., 2007), $\delta^{18}O = R_{sample}/R_{standard} - 1$ and R is

87 the $^{18}\text{O}/^{16}\text{O}$ ratio (or the $^{17}\text{O}/^{16}\text{O}$ ratio in the case of $\delta^{17}\text{O}$ or the $^{15}\text{N}/^{14}\text{N}$ ratio in the case
88 of $\delta^{15}\text{N}$) of the sample and each standard reference material. In addition, $\Delta^{17}\text{O}$ is almost
89 stable during “mass-dependent” isotope fractionation processes within terrestrial
90 ecosystems. Therefore, while the $\delta^{15}\text{N}$ or $\delta^{18}\text{O}$ signature of $\text{NO}_3^-_{\text{atm}}$ can be overprinted
91 by the biological processes subsequent to deposition, $\Delta^{17}\text{O}$ can be used as a robust tracer
92 of unprocessed $\text{NO}_3^-_{\text{atm}}$ to reflect its accurate mole fraction within total NO_3^- ,
93 regardless of the progress of the partial metabolism (partial removal of nitrate through
94 denitrification and assimilation) subsequent to deposition (Michalski et al., 2004;
95 Nakagawa et al., 2013, 2018; Tsunogai et al., 2011, 2014, 2018).

96 Past studies reported that the maximum concentration of stream nitrate was 58.4 μM
97 in the KJ forested catchment in Japan, with the maximum value of the $\text{M}_{\text{atm}}/\text{D}_{\text{atm}}$ ratio
98 was 9.4 % (Nakagawa et al., 2018; Sase et al., 2022). Whether the index of the $\text{M}_{\text{atm}}/\text{D}_{\text{atm}}$
99 ratio can be applied to forested catchments, where the leaching of stream nitrate is much
100 higher than the KJ forested catchment, remained unclarified. Besides, the advantages
101 of the $\text{M}_{\text{atm}}/\text{D}_{\text{atm}}$ ratio within the past indexes of nitrogen saturation have not been
102 discussed.

103 In recent, Chiwa (2021) has recently reported the enrichment of nitrate of more than
104 90 μM on the annual average in forested streams eluted from the FK catchments (FK1
105 and FK2) in Kasuya Research Forest, Kyushu University, Japan (Figs. 1a and 1b). The
106 observed enrichment of stream nitrate implied that these forested catchments were
107 under nitrogen saturation. Thus, in this study, we determined the $\text{M}_{\text{atm}}/\text{D}_{\text{atm}}$ ratio in the

108 FK1 and FK2 forested catchments by monitoring both the concentration and $\Delta^{17}\text{O}$ of
109 stream nitrate for more than 2 years to verify that these forested catchments were under
110 nitrogen saturation. For comparison, the MY forested catchment in Shiiba Research
111 Forest, Kyushu University, Japan (Figs. 1a and 1c), was also monitored during the same
112 period, where the average stream nitrate concentration was low (less than 10 μM).
113 Furthermore, the $M_{\text{atm}}/D_{\text{atm}}$ ratios in these forested catchments were compared with
114 those reported in past studies to verify the reliability of the $M_{\text{atm}}/D_{\text{atm}}$ ratio as an index
115 of nitrogen saturation.

116

117 **2 Methods**

118 2.1 Study sites

119 The FK forested catchments ($33^{\circ}38'\text{N}$, $130^{\circ}31'\text{E}$) are located in a suburban area,
120 about 15 km west of the Fukuoka metropolitan area (the fourth largest metropolitan
121 area in Japan). The main plantation in these catchments was Japanese cedar/cypress
122 (Table 1). The MY forested catchment ($32^{\circ}22'\text{N}$, $131^{\circ}09'\text{E}$) is located in a rural area at
123 the village of Shiiba in southern Japan's Central Kyushu Mountain range. This
124 catchment is a mixed forest consisting of coniferous trees such as *Abies firma Sieb. et*
125 *Zucc.*, and *Tsuga sieboldii Carr.*, and deciduous broadleaved trees such as *Quercus*
126 *crispula Blume*, *Fagus crenata Blume*, and *Acer sieboldianum Miq.* ~~The annual average~~
127 ~~precipitation was 1769 mm and 3837 mm at FK and MY forested catchment,~~
128 ~~respectively, and the annual average temperature was 15.9 °C and 10.8 °C at FK and~~

129 **MY forested catchment, respectively.** Details on the studied forested catchments have

130 been described in the past studies (Chiwa, 2020, 2021).

132 **2.2 Sampling**

133 The stream water eluted from the FK1 (14 ha), FK2 (62 ha), and MY (43 ha)

134 forested catchments were collected about once every month in principle from 2019/11

135 to 2021/12 (Fig. 1). At the FK catchments, stream water was collected at upstream

136 (**FK1station A**) and downstream (**FK2station B**) locations (Fig. 1b). **At the MY**

137 **catchment, stream water was collected at station C (Fig. 1c).** Samples of stream water

138 to determine the concentration and stable isotopic compositions ($\delta^{15}\text{N}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$)

139 of stream nitrate were collected manually in bottles washed with deionized water before

140 sampling and then rinsed at least twice with the sample before sampling at each

141 sampling site.

142

143 **2.3 Analysis**

144 All the stream water samples were passed through a membrane filter (pore size 0.45

145 μm) within two days after sampling and stored in a refrigerator (4 °C) until

146 analysis. The concentrations of nitrate were measured by ion chromatography

147 (Prominence HIC-SP, Shimadzu, Japan). To determine the stable isotopic compositions

148 of nitrate in the stream water samples, nitrate in each sample was chemically converted

149 to N_2O using a method originally developed to determine the $^{15}\text{N}/^{14}\text{N}$ and $^{18}\text{O}/^{16}\text{O}$ ratios

150 of seawater and freshwater nitrate (McIlvin and Altabet, 2005) that was later modified
151 (Konno et al., 2010; Tsunogai et al., 2011; Yamazaki et al., 2011). In brief, 11 mL of
152 each sample solution was pipetted into a vial with a septum cap. Then, 0.5 g of spongy
153 cadmium was added, followed by 150 μ L of a 1 M NaHCO₃ solution. The sample was
154 then shaken for 18-24 h at a rate of 2 cycles s⁻¹. Then, the sample solution (10 mL) was
155 decanted into a different vial with a septum cap. After purging the solution using high-
156 purity helium, 0.4 mL of an azide-acetic acid buffer, which had also been purged using
157 high-purity helium, was added. After 45 min, the solution was alkalinized by adding
158 0.2 mL of 6 M NaOH. Then, the stable isotopic compositions ($\delta^{15}\text{N}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$) of
159 the N₂O in each vial were determined using the continuous-flow isotope ratio mass
160 spectrometry (CF-IRMS) system at Nagoya University. The analytical procedures
161 performed using the CF-IRMS system were the same as those detailed in previous
162 studies (Hirota et al., 2010; Komatsu et al., 2008a). The obtained values of $\delta^{15}\text{N}$, $\delta^{18}\text{O}$,
163 and $\Delta^{17}\text{O}$ for the N₂O derived from the nitrate in each sample were compared with those
164 derived from our local laboratory nitrate standards to calibrate the values of the sample
165 nitrate to an international scale and to correct for both isotope fractionation during the
166 chemical conversion to N₂O and the progress of oxygen isotope exchange between the
167 nitrate derived reaction intermediate and water (ca. 20 %). ~~The local laboratory nitrate~~
168 ~~standards used for the calibration had been calibrated using the internationally~~
169 ~~distributed isotope reference materials (USGS 34 and USGS 35)~~. In this study, we
170 adopted the internal standard method to calibrate the stable isotopic compositions of

171 sample nitrate (Ding et al., 2022; Nakagawa et al., 2013, 2018; Tsunogai et al., 2014).
172

172 Specifically, three kinds of the local laboratory nitrate standards were used in this study,
173 which were named to be GG01 ($\delta^{15}\text{N} = -3.07 \text{ ‰}$, $\delta^{18}\text{O} = +1.10 \text{ ‰}$, and $\Delta^{17}\text{O} = 0 \text{ ‰}$),
174 HDLW02 ($\delta^{15}\text{N} = +8.94 \text{ ‰}$, $\delta^{18}\text{O} = +24.07 \text{ ‰}$), and NF ($\Delta^{17}\text{O} = +19.16 \text{ ‰}$), which the
175 GG01 and the HDLW02 were used to determine the $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ of stream nitrate,
176 and the GG01 and the NF was used to determine the $\Delta^{17}\text{O}$ of stream nitrate. The GG01,
177 HDLW02, and NF had been calibrated using the internationally distributed isotope
178 reference materials (USGS 34 and USGS 35). The oxygen exchange rate between
179 nitrate and water during the chemical conversion was calculated through Eq. (2):

180 Oxygen exchange rate (%) = $\Delta^{17}\text{O}(\text{N}_2\text{O})_{\text{NF}} / \Delta^{17}\text{O}(\text{NO}_3^-)_{\text{NF}}$ (2)

181 where the $\Delta^{17}\text{O}(\text{N}_2\text{O})_{\text{NF}}$ denote the $\Delta^{17}\text{O}$ value of N_2O that convert from the NF
182 nitrate, the $\Delta^{17}\text{O}(\text{NO}_3^-)_{\text{NF}}$ denote the $\Delta^{17}\text{O}$ value of NF nitrate ($\Delta^{17}\text{O} = +19.16 \text{ ‰}$)
183 (Tsunogai et al., 2016; Nakagawa et al., 2013, 2018; Ding et al., 2022).

184 The $\delta^2\text{H}$ and $\delta^{18}\text{O}$ values of H_2O of the stream water samples were analyzed using
185 the cavity ring-down spectroscopy method by employing an L2120-i instrument
186 (Picarro Inc., Santa Clara, CA, USA) equipped with an A0211 vaporizer and
187 autosampler. The errors (standard errors of the mean) in this method were $\pm 0.5\text{ ‰}$ for
188 $\delta^2\text{H}$ and $\pm 0.1\text{ ‰}$ for $\delta^{18}\text{O}$. Both the VSMOW and standard light Antarctic precipitation
189 (SLAP) were used to calibrate the values to the international scale. The $\delta^{18}\text{O}$ values of
190 H_2O were used to calibrate the differences in $\delta^{18}\text{O}$ of H_2O between the samples and
191 those our local laboratory nitrate standard samples (Tsunogai et al., 2010, 2011, 2014).

192 To determine whether the conversion rate from nitrate to N₂O was sufficient, the
193 concentration of nitrate in the samples was determined each time we analyzed the
194 isotopic composition using CF-IRMS based on the N₂O⁺ or O₂⁺ outputs. We adopted
195 the δ¹⁵N, δ¹⁸O, and Δ¹⁷O values only when the concentration measured via CF-IRMS
196 correlated with the concentration measured via ion chromatography prior to isotope
197 analysis within a difference of 10 %. We repeated the analysis of δ¹⁵N, δ¹⁸O, and Δ¹⁷O
198 values for each sample at least three times to attain high precision. All samples had a
199 nitrate concentration of greater than 3.5 μM, which corresponded to a nitrate quantity
200 greater than 35 nmol in a 10 mL sample. Thus, all isotope values presented in this study
201 have an error (standard error of the mean) better than ±0.2 ‰ for δ¹⁵N, ±0.3 ‰ for δ¹⁸O,
202 and ±0.1 ‰ for Δ¹⁷O.

203 Nitrite (NO₂[−]) in the samples interferes with the final N₂O produced from nitrate
204 because the chemical method also converts NO₂[−] to N₂O (McIlvin and Altabet, 2005).
205 Therefore, it is sometimes necessary to remove NO₂[−] prior to converting nitrate to N₂O.
206 In this study, however, we skipped the processes for removing NO₂[−] because all the
207 stream samples analyzed for stable isotopic composition had NO₂[−] concentrations lower
208 than the detection limit (0.05 μM).

209
210 2.4 Deposition rate of atmospheric nitrate

211 The annual deposition rate of atmospheric nitrate (D_{atm}; total dry and wet deposition
212 rate of atmospheric nitrate) in each catchment was estimated using the annual “bulk”

213 deposition rate of atmospheric nitrate (D_{bulk}) calculated in Chiwa (2020) at each
214 catchment by multiplying the volume-weighted mean concentration of nitrate in the
215 bulk deposition samples collected every 2 weeks at each catchment for 10 years (from
216 2009/1 to 2018/12) by the annual amount of precipitation. The bulk deposition samples
217 were ~~samples those~~ accumulated in a plastic bucket installed in an open site of each
218 catchment 55 cm above the ground. ~~The concentrations of nitrate in these samples were~~
219 ~~measured by ion chromatography. The distances between the monitoring sites of bulk~~
220 ~~deposition in the FK1, FK2, and MY forested catchments and the stations of stream~~
221 ~~water sampling (stations A, B, and C) were 3.9, 2.9, and 4.5 km, respectively. The~~
222 ~~concentrations of nitrate in the bulk deposition samples were measured by ion~~
223 ~~chromatography.~~

224 The D_{bulk} determined through this method, however, is less than D_{atm} (Aikawa et al.,
225 2003) because the dry deposition velocities of gases and particles on the water surface
226 of the plastic bucket are smaller than those on the forest (Matsuda, 2008). Thus, we
227 corrected the differences by using Eq. (32) to estimate D_{atm} from D_{bulk} :

$$D_{atm} = D_{bulk} - D_{dry}(W) + D_{dry}(F) \quad (32)$$

228 where $D_{dry}(W)$ and $D_{dry}(F)$ denote the annual dry deposition rates onto water and forest,
229 respectively.

230 The $D_{dry}(W)$ and $D_{dry}(F)$ at each catchment were determined using an inferential
231 method (Endo et al., 2011) through Eqs. (43) and (54), respectively:

$$D_{dry}(W) = [NO_3^-]_{atm} \times V_{gas}(W) + [NO_3^-]_p \times V_p(W) \quad (43)$$

234 $D_{dry}(F) = [NO_3^-]_{atm, gas} \times V_{gas}(F) + [NO_3^-]_p \times V_p(F)$ (54)

235 where $[NO_3^-]_{atm, gas}$ denotes the concentration of gaseous nitrate in air; $[NO_3^-]_p$
236 denotes the concentration of particle nitrate in air; $V_{gas}(W)$ and $V_{gas}(F)$ denote the
237 deposition velocities of gaseous nitrate on the water surface and forest, respectively;
238 and $V_p(W)$ and $V_p(F)$ denote the deposition velocities of particulate nitrate on the water
239 surface and forest, respectively. Those determined by Chiwa (2010) using the annular
240 denuder method from 2006/5 to 2007/4 were used for the $[NO_3^-]_{gas}$ and $[NO_3^-]_p$ in the
241 FK catchments. Those determined by the National Institute for Environmental Studies
242 (Environmental Laboratories Association of Japan, 2017) using the filter-pack method
243 at Miyazaki (31°83'N, 131°42'E) from 2011 to 2017 were used for the $[NO_3^-]_{gas}$ and
244 $[NO_3^-]_p$ in the MY catchment. The $V_{gas}(F)$, $V_{gas}(W)$, $V_p(F)$, and $V_p(W)$ of each
245 catchment were determined by applying the estimation file for dry deposition (Matsuda,
246 2008;

247 http://www.hro.or.jp/list/environmental/research/ies/katsudo/acid_rain/kanseichinchaku
248 u/kanseichinchaku.html), where V_{gas} and V_p were calculated using the meteorological
249 data of wind speed, temperature, humidity, radiation, and cloud amount and land use.

250 The meteorological data monitored by Japan Meteorological Agency at the nearest
251 Fukuoka station (33°34'N, 130°22'E) and Miyazaki station (31°56'N, 131°24'E) from
252 2009 to 2021¹⁸ were used for the FK and MY catchments, respectively. The forested
253 land use of 100 % was chosen for each area.

254

255 2.5 Flux of stream water

256 The flux of stream water (F_{stream}) in each catchment was not measured directly fully
257 in this study. Instead, the water balance in each catchment was used to estimate F_{stream} ,
258 assuming that the outflux of water from the study catchments to deep groundwater was
259 negligible:

260 $F_{\text{stream}} = P - E$ (65)

261 where P denotes the annual average precipitation and E denotes the annual
262 evapotranspiration flux of water in each catchment. In this paper, the equation obtained
263 by Komatsu et al. (2008) was used to estimate the E of the FK and MY catchments.

264 Details on this equation are shown below.

265 Komatsu et al. (2008) compiled the annual flux of evapotranspiration determined in
266 43 forested catchments in Japan and found that E shows a positive correlation with the
267 average temperature (T_{avg}) of each catchment. Thus, they proposed the modeled relation
268 of E (mm) = $31.4T_{\text{avg}}$ ($^{\circ}\text{C}$) + 376 to estimate E in each forested catchment in Japan,
269 where the standard error of 162.3 mm was included in the estimated evapotranspiration
270 flux (E).

271

272 2.6 Concentration of unprocessed $\text{NO}_3^-_{\text{atm}}$ in each water sample

273 The $\Delta^{17}\text{O}$ data of nitrate in each sample was used to estimate the concentration of
274 $\text{NO}_3^-_{\text{atm}}$ ($[\text{NO}_3^-_{\text{atm}}]$) in each water sample by applying Eq. (76):

275 $[\text{NO}_3^-_{\text{atm}}]/[\text{NO}_3^-] = \Delta^{17}\text{O}/\Delta^{17}\text{O}_{\text{atm}}$ (76)

276 where $[\text{NO}_3^-_{\text{atm}}]$ and $[\text{NO}_3^-]$ denote the concentrations of $\text{NO}_3^-_{\text{atm}}$ and nitrate (total) in
277 each water sample, respectively, and $\Delta^{17}\text{O}_{\text{atm}}$ and $\Delta^{17}\text{O}$ denote the $\Delta^{17}\text{O}$ values of
278 $\text{NO}_3^-_{\text{atm}}$ and nitrate (total) in the stream water sample, respectively. In this study, we
279 used the annual average $\Delta^{17}\text{O}$ value of $\text{NO}_3^-_{\text{atm}}$ determined at the Sado-Seki monitoring
280 station in Japan (Sado Island; Fig. 1a) from April 2009 to March 2012 ($\Delta^{17}\text{O}_{\text{atm}} =$
281 $+26.3\text{ ‰}$; Tsunogai et al., 2016) for $\Delta^{17}\text{O}_{\text{atm}}$ in Eq. (72) to estimate $[\text{NO}_3^-_{\text{atm}}]$ in the
282 stream. We allow for an error range of 3 ‰ in $\Delta^{17}\text{O}_{\text{atm}}$, where the factor changes in
283 $\Delta^{17}\text{O}_{\text{atm}}$ from $+26.3\text{ ‰}$ caused by both areal and seasonal variations in the $\Delta^{17}\text{O}$ values
284 of $\text{NO}_3^-_{\text{atm}}$ have been considered (Nakagawa et al., 2018; Tsunogai et al., 2016; Ding et
285 al., 2022).

286 The annual export flux of unprocessed $\text{NO}_3^-_{\text{atm}}$ per unit area of the catchment (M_{atm})
287 was determined by applying Eq. (87):

$$288 M_{\text{atm}} = [\text{NO}_3^-_{\text{atm}}]_{\text{avg}} \times F_{\text{stream}} \quad (87)$$

289 where $[\text{NO}_3^-_{\text{atm}}]_{\text{avg}}$ denotes the annual average $[\text{NO}_3^-_{\text{atm}}]$ in each stream. The index of
290 nitrogen saturation ($M_{\text{atm}}/D_{\text{atm}}$ ratio) was calculated by dividing M_{atm} with D_{atm} in each
291 catchment.

292
293 2.7 Concentration and isotopic compositions of stream nitrate eluted only from the FK2
294 catchment

295 The concentration and isotopic compositions ($\delta^{15}\text{N}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$) of stream nitrate
296 determined at the station B were the mixture of those eluted from FK1 and FK2

297 catchments (Fig. 1b). Assuming that the stream nitrate eluted from FK1 catchment was
298 stable during the flow path from station A to station B. The concentration of stream
299 nitrate eluted from the FK2 catchment was determined by applying Eq. (9):

300
$$[\text{NO}_3^-]_{\text{FK2}} = ([\text{NO}_3^-]_{\text{FK1+FK2}} * F_{\text{FK1+FK2}} - [\text{NO}_3^-]_{\text{FK1}} * F_{\text{FK1}}) / F_{\text{FK2}} \quad (9)$$

301 where F_{FK1} , F_{FK2} , and $F_{\text{FK1+FK2}}$ denote the flux of stream water eluted from the FK1,
302 FK2 (only), and FK1+FK2 catchment, respectively. $[\text{NO}_3^-]_{\text{FK1}}$, $[\text{NO}_3^-]_{\text{FK2}}$, and
303 $[\text{NO}_3^-]_{\text{FK1+FK2}}$ denote the concentration of stream nitrate eluted from the FK1, FK2
304 (only), and FK1+FK2 catchment, respectively. In this study, the flow rates measured at

305 stations A and B on 2021/01/15 by using the salt dilution method (Sappa et al., 2015)

306 was used for F_{FK1} (0.85 L/s) and $F_{\text{FK1+FK2}}$ (4.75 L/s), respectively, and the measured

307 $[\text{NO}_3^-]$ at stations A and B was used for $[\text{NO}_3^-]_{\text{FK1}}$ and $[\text{NO}_3^-]_{\text{FK1+FK2}}$, respectively.

308 Because the relation between the measured flow rates was comparable with the relation

309 between the catchment area of FK1 (14 ha) and that of FK1+FK2 (76 ha), we concluded

310 that the measured flow rates of 0.85 L/s and 4.75 L/s were reasonable as for those

311 representing the F_{FK1} and $F_{\text{FK1+FK2}}$, respectively. According to the mass balance of water,

312 we can estimate the F_{FK2} eluted from the FK2 catchment only to be 3.90 L/s.

313 Assuming that the stream nitrate eluted from FK1 catchment was stable during the

314 flow path from station A to station B, the $\delta^{15}\text{N}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$ values of stream nitrate

315 eluted from the FK2 catchment only were determined by applying Eq. (10):

316
$$\delta_{\text{FK2}} = (\delta_{\text{FK1+FK2}} * [\text{NO}_3^-]_{\text{FK1+FK2}} * F_{\text{FK1+FK2}} - \delta_{\text{FK1}} * [\text{NO}_3^-]_{\text{FK1}} * F_{\text{FK1}}) / ([\text{NO}_3^-]_{\text{FK2}} * \quad (10)$$

317 $F_{\text{FK2}})$

318 where δ_{FK1} , δ_{FK2} , and $\delta_{FK1+FK2}$ denote the $\delta^{15}\text{N}$ (or $\delta^{18}\text{O}$ or $\Delta^{17}\text{O}$) of stream nitrate eluted
319 from the FK1, FK2, and FK1+FK2 catchment, respectively. The $\delta^{15}\text{N}$ (or $\delta^{18}\text{O}$ or $\Delta^{17}\text{O}$)
320 values of stream nitrate measured at stations A and B were used for δ_{FK1} and $\delta_{FK1+FK2}$,
321 respectively.

322

323 3 Results

324 3.1 Deposition rate of atmospheric nitrate

325 The mean annual precipitation (P) from 2009 to 2021 was 1777 mm and 3981 mm
326 for FK and MY catchments, respectively (Chiwa, 2020; Chiwa, personal
327 communication, September 21, 2022). The mean annual temperature (T_{avg}) was
328 reported to be 15.9 °C and 10.8 °C for FK and MY catchments, respectively (Chiwa,
329 2020). Chiwa (2020) estimated the mean annual precipitation (P) and mean annual
330 temperature (T_{avg}) to be 1769 mm and 15.9 °C, respectively, at FK catchments, and
331 3837 mm and 10.8 °C, respectively, at MY catchment. Based on these data, the annual
332 flux of stream water (F_{stream}) was estimated to be 902.0893.7 \pm 162.3 mm at FK
333 catchments and 3266.13121.9 \pm 162.3 mm at MY catchment, respectively, using Eq.
334 (65), corresponding to $1.25 \times 10^5 \text{ m}^3/\text{year}$ in FK1, $5.54 \times 10^5 \text{ m}^3/\text{year}$ in FK2, and 1.34
335 $\times 10^6 \text{ m}^3/\text{year}$ in MY.

336 Chiwa (2020) also reported the annual bulk deposition rates of atmospheric nitrate
337 (D_{bulk}) to be 34.0 $\text{mmol m}^{-2} \text{ year}^{-1}$ at FK catchments and 24.2 $\text{mmol m}^{-2} \text{ year}^{-1}$ at MY
338 catchment. On the other hand, the annual dry deposition rate of atmospheric nitrate

339 (D_{dry}) deposited ~~on~~in the forest ($D_{dry}(F)$) and on the water surface ($D_{dry}(W)$) were
340 estimated to be 39.98 mmol m⁻² year⁻¹ and 4.1 mmol m⁻² year⁻¹, respectively, at FK
341 catchments, and 18.4 mmol m⁻² year⁻¹ and 2.4 mmol m⁻² year⁻¹, respectively, at MY
342 catchment. As a result, D_{atm} was estimated to be 69.3 mmol m⁻² year⁻¹ at FK catchments
343 and 40.1 mmol m⁻² year⁻¹ at MY catchments, using Eq. (32).

344

345 3.2 Concentration and isotopic composition of stream nitrate

346 The concentrations of stream nitrate ~~at eluted from~~ the FK1, FK2 (only), and MY
347 catchments ranged from 97.5 μ M to 121.3 μ M, from 73.9~~65.7~~ μ M to 148.5~~142.6~~ μ M,
348 and from 3.5 μ M to 15.3 μ M, respectively, with the average concentrations of 109.5
349 μ M, 90.9~~94.2~~ μ M, and 7.3 μ M, respectively, and the standard deviations (SD) of 6.3
350 μ M, 18.5 μ M, and 3.0 μ M, respectively, which corresponds to the coefficients of
351 variation (CV) of 5.7 %, 20.4 %, and 40.7 %, respectively (Fig. 2a). All catchments
352 showed ~~no clear~~little seasonal variation during the observation periods. The variation
353 ranges and the average concentrations of stream nitrate ~~in eluted from~~ the three
354 catchments agreed well with the past observations performed in the same catchments
355 (Chiwa, 2021).—

356 The stable isotopic compositions of stream nitrate ~~at eluted from~~ the FK1, FK2 (only),
357 and MY catchments ranged from -0.9 ‰ to +1.5 ‰, from -1.4~~2~~ ‰ to +5.8~~4.5~~ ‰, and
358 from -0.8 ‰ to +2.4 ‰, respectively, for $\delta^{15}\text{N}$ (Fig. 2b), from +3.9 ‰ to +8.5 ‰, from
359 -0.7~~2.2~~ ‰ to +2.8~~3.6~~ ‰, and from -5.6 ‰ to +1.7 ‰, respectively, for $\delta^{18}\text{O}$ (Fig. 2c),

360 and from +2.0 ‰ to +3.3 ‰, from +0.68 ‰ to +2.24 ‰, and from +0.2 ‰ to +1.0 ‰,
361 respectively, for $\Delta^{17}\text{O}$ (Fig. 2d), with ~~little~~ ~~no~~ ~~clear~~ seasonal variation during the
362 observation periods. The concentration-weighted averages for the $\delta^{15}\text{N}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$
363 values of stream nitrate were +0.2 ‰, +6.4 ‰, and +2.6 ‰, respectively, at FK1,
364 +1.00.9 ‰, +0.51.7 ‰, and +1.51.7 ‰, respectively, at FK2, +0.7 ‰, -2.5 ‰, and
365 +0.6 ‰, respectively, at MY. ~~These values were typical for stream nitrate eluted from~~
366 ~~forested catchments (Hattori et al., 2019; Huang et al., 2020; Nakagawa et al., 2013,~~
367 ~~2018; Riha et al., 2014; Sabo et al., 2016; Tsunogai et al., 2014, 2016).~~

368

369 3.3 Concentration of unprocessed atmospheric nitrate and the $\text{M}_{\text{atm}}/\text{D}_{\text{atm}}$ ratio in each
370 catchment

371 The concentration of unprocessed atmospheric nitrate ($[\text{NO}_3^-]_{\text{atm}}$) in the streams ~~of~~
372 ~~eluted from~~ the FK1, FK2 ~~(only)~~, and MY catchments ranged from 8.64 to 14.30 μM ,
373 from 3.88~~2.27~~ to 11.16~~10.71~~ μM , and from 0.03 to 0.46 μM with the average
374 concentration of 10.80 ± 1.65 , ~~6.09~~5.06 \pm ~~1.05~~0.92, and $0.16 \pm 0.05 \mu\text{M}$, respectively,
375 even though these ~~studied~~ catchments showed little seasonal variations during the
376 observation periods (Fig. 2e). The annual export flux of nitrate (M_{total}), the annual
377 export flux of NO_3^- (M_{atm}), and the $\text{M}_{\text{atm}}/\text{D}_{\text{atm}}$ ratio were ~~98.8~~97.9 \pm 17.8 mmol m^{-2}
378 year^{-1} , $9.7 \pm 2.3 \text{ mmol m}^{-2} \text{ year}^{-1}$, and ~~14.1~~13.9 \pm 4.43 % at FK1 catchment,
379 respectively, ~~84.2~~82.0 \pm ~~15.3~~14.8 $\text{mmol m}^{-2} \text{ year}^{-1}$, ~~5.4~~4.6 \pm 1.24 $\text{mmol m}^{-2} \text{ year}^{-1}$, and
380 ~~6.6~~7.9 \pm 2.15 % at FK2 catchment, respectively, ~~23.7~~22.6 \pm 1.2 $\text{mmol m}^{-2} \text{ year}^{-1}$, $0.5 \pm$

381 0.24 mmol m⁻² year⁻¹, and 1.32 ± 0.54 % at MY catchment, respectively (Table 2).

382

383 **4 Discussion**

384 **4.1 Deposition rate of atmospheric nitrate at the study catchments**

385 Based on the air monitoring data determined at the stations of Fukuoka (33°51'N,

386 130°50'E) and Miyazaki (31°83'N, 131°42'E) from 2011 to 2017, the Environmental

387 Laboratories Association of Japan (2017) reported D_{atm} to be 57.8 mmol m⁻² year⁻¹ at

388 Fukuoka and 49.1 mmol m⁻² year⁻¹ at Miyazaki. Those values are consistent with the

389 D_{atm} estimated in this study (69.3 and 40.1 mmol m⁻² year⁻¹ at the FK and MY

390 catchments, respectively), within a difference of approximately 20 %. Thus, we

391 concluded that the D_{atm} estimated in this study was reliable within the error margin of

392 20 % (Table 2). Because the D_{atm} determined at the FK catchments was the highest

393 among the forested catchments in Table 3, we further compared the D_{atm} of the FK

394 catchments with those from the other air monitoring stations in Japan reported in past

395 studies, along with that of the MY catchment (Table S1). While the D_{atm} of the MY

396 catchment corresponded to the average level among the sites compiled in Table S1, the

397 D_{atm} of the FK catchments exceeded the average level significantly. In addition, the D_{atm}

398 of the FK catchments corresponded to one of the highest among the Japanese forested

399 areas (Table S1). While a All the catchments in Japan this study can be suffered from the

400 long-range transport of air pollutants derived from megacities in East Asian region

401 (Chiwa, 2021; Chiwa et al., 2012 and 2013). In addition, the shorter transport distance

402 from the Fukuoka metropolitan area (total population: 1.62 million people; population
403 density: 4715 people/km²) may be mainly responsible for the D_{atm} higher in FK than in
404 MY, because the FK catchments are only 15 km west of the Fukuoka metropolitan area.
405 ~~As a result, the local emission in the Fukuoka metropolitan area should be responsible~~
406 ~~for the high D_{atm} at the FK catchments.~~

407

408 4.2 Excess leaching of unprocessed atmospheric nitrate from FK catchments

409 The isotopic compositions ($\delta^{15}\text{N}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$) of stream nitrate eluted from the
410 FK and MY catchments were typical for those eluted from forested catchments (Hattori
411 et al., 2019; Huang et al., 2020; Nakagawa et al., 2013, 2018; Riha et al., 2014; Sabo et
412 al., 2016; Tsunogai et al., 2014, 2016). The striking features found in the FK catchments
413 were that, in addition to the high [NO₃⁻] and high M_{total} that had been clarified prior to
414 this in a past study (Chiwa, 2021), both [NO₃⁻_{atm}] and M_{atm} in FK were higher than those
415 in eluted from MY (Table 2). Especially, the average [NO₃⁻_{atm}] in the stream eluted in
416 the from the FK1 stream catchment was the highest ever reported in forested streams
417 determined through continuous monitoring for more than 1 year (Bostic et al., 2021;
418 Bourgeois et al., 2018b, 2018a; Hattori et al., 2019; Huang et al., 2020; Nakagawa et
419 al., 2018; Rose et al., 2015; Sabo et al., 2016; Tsunogai et al., 2014, 2016).

420 The observed high [NO₃⁻_{atm}] in the FK1 stream eluted from the FK1 catchment could
421 be caused just by the high [NO₃⁻_{atm}] in deposition in the catchment D_{atm}. Thus, we
422 compiled all past data ever reported in forested streams through continuous monitoring

423 in Table 3, where the data of average $[\text{NO}_3^-]$, average $[\text{NO}_3^-_{\text{atm}}]$, M_{atm} , M_{total} , D_{atm} , and
424 $M_{\text{atm}}/D_{\text{atm}}$ ratio were included for comparison.~~5 and t~~The result showed that the FK
425 ~~catchment has the highest~~ $M_{\text{atm}}/D_{\text{atm}}$ ratio, along with~~M~~ M_{atm} , ~~was the highest as well in~~
426 ~~the FK1 catchment~~ among the forested catchments (Table 3).

427 Elevated loading of nitrogen through atmospheric deposition was responsible for the
428 occurrence of nitrogen saturation in forest ecosystems, from which elevated levels of
429 nitrate are exported (Aber et al., 1989). Nakagawa et al. (2018) proposed that the
430 $M_{\text{atm}}/D_{\text{atm}}$ ratio can be an index for evaluating the nitrogen saturation in each forested
431 catchment, because the $M_{\text{atm}}/D_{\text{atm}}$ ratio directly reflects the present demand for
432 atmospheric nitrate deposited in each forested catchment, and thus reflects the nitrogen
433 saturation in each forested catchment. The high $M_{\text{atm}}/D_{\text{atm}}$ ratios observed in the FK
434 catchments implied that ~~the demand for atmospheric nitrate was low in the FK~~
435 ~~catchments and~~ ~~the~~ stages of nitrogen saturation at the FK catchments were
436 higher than those at other forested catchments.~~5 and thus~~That is, the nitrogen saturation
437 at the FK catchments was responsible for the observed higher ~~observed~~ $[\text{NO}_3^-]$ and high
438 M_{total} at the FK catchments than at MY and any other catchment ever studied (Table 3).

439 The stand age of forests can affect the retention or loss of N (Fukushima et al., 2011;
440 Ohrui and Mitchell, 1997). Fukushima et al. (2011) evaluated N uptake rates of
441 Japanese cedars at different ages (5-89 years old) and demonstrated that the N uptake
442 rates of Japanese cedars were higher in younger stands ($53 \text{ kg N ha}^{-1} \text{ year}^{-1}$ in 16 years
443 old) than in older stands ($29 \text{ kg N ha}^{-1} \text{ year}^{-1}$ in 31 years old; $24 \text{ kg N ha}^{-1} \text{ year}^{-1}$ in 42

444 years old; $34 \text{ kg N ha}^{-1} \text{ year}^{-1}$ in 89 years old). In addition, Yang and Chiwa (2021)
445 found that the nitrate concentration in the soil water taken beneath the rooting zone of
446 matured artificial Japanese cedar plantations ($607 \pm 59 \mu\text{M}$; 64-69 years old) was
447 significantly higher than that of normal Japanese oak plantations ($8.7 \pm 8.1 \mu\text{M}$; 24
448 years old). Moreover, by adding ammonium nitrate ($50 \text{ kg N ha}^{-1} \text{ year}^{-1}$) to the forest
449 floor directly, Yang and Chiwa (2021) found that the nitrate concentration in the soil
450 water of the matured artificial Japanese cedar plantations increased significantly faster
451 than that of the normal Japanese oak plantations, probably because of the lower N
452 uptake rates in the matured artificial Japanese cedar plantations. Because most of the
453 artificial Japanese cedar/cypress plantations in the FK and MY catchments have reached
454 their maturity (> 50 years; Yang and Chiwa, 2021), the higher proportion of matured
455 artificial Japanese cedar/cypress plantations in the FK1 catchment (Table 1) was highly
456 responsible for the observed elevated leaching of nitrate, caused by the reduction in N
457 uptake rates.

458 As a result, we concluded that the FK forested catchments were under the high
459 nitrogen saturation stage, FK1 catchment especially, and the [high](#)-nitrogen saturation
460 [stage-of-in](#) the FK1 catchments was responsible for the elevated M_{total} , M_{atm} , $[\text{NO}_3^-]$,
461 $[\text{NO}_3^-]_{\text{atm}}$ found in the stream eluted from the catchment (Figs. 3a, 3b, and 3c).

462
463 4.3 The $M_{\text{atm}}/D_{\text{atm}}$ ratio as an index of nitrogen saturation
464 Past studies have used the concentration of stream nitrate as one of the important

465 indexes to evaluate the stage of nitrogen saturation in each forest (Aber, 1992; Huang
466 et al., 2020; Rose et al., 2015; Stoddard, 1994). The strong linear relationship ($R^2 =$
467 0.7681; $P < 0.0001$) between the stream nitrate concentration and the M_{atm}/D_{atm} ratio,
468 except for the Qingyuan forested catchment (Fig. 3d), further supported that the
469 M_{atm}/D_{atm} ratio can be used as an alternative index of nitrogen saturation, as pointed out
470 in Nakagawa et al. (2018).

471 The differences in the number of storm and/or snowmelt events could affect the
472 M_{atm}/D_{atm} ratio as well, because $NO_3^-_{atm}$ could be injected into the stream water directly,
473 along with the storm / snowmelt water (Tsunogai et al., 2014; Ding et al., 2022; Inamdar
474 and Mitchell, 2006). In recent study, however, we found that the storm events have little
475 impacts on the M_{atm}/D_{atm} ratio, based on monitoring temporal variation of $[NO_3^-_{atm}]$ in
476 a stream water during storm events (Ding et al., 2022). In addition, the low M_{atm}/D_{atm}
477 ratio found in Uryu forested catchment (0.7 %; Table 3) implied that the snowmelt has
478 little impacts on the M_{atm}/D_{atm} ratio as well, because 30% of the annual mean
479 precipitation was snow in Uryu forested catchment (Tsunogai et al., 2014).

480 The differences in the amount of precipitation, temperature, and the flux of stream
481 water could affect the M_{atm}/D_{atm} ratio as well. As a result, the annual amount of
482 precipitation, mean temperature, and the annual mean flux of stream water (F_{stream}) in
483 the forested catchments were compiled in Table S2. While the stream nitrate
484 concentration showed the strong linear relationship ($R^2 = 0.76$; $P < 0.0001$) with the
485 M_{atm}/D_{atm} ratio (Fig. 3d), the precipitation, temperature, and F_{stream} did not show

486 significant relationship with the M_{atm}/D_{atm} ratio ($P > 0.14$; Fig. 4). As a result, we
487 concluded that the M_{atm}/D_{atm} ratio was mainly controlled by the progress of nitrogen
488 saturation, rather than the differences in the number of storm and/or snowmelt events,
489 the amount of precipitation, temperature, and the flux of stream water.

490 Moreover, ~~t~~The M_{atm}/D_{atm} ratio is a more reliable and robust index than the stream
491 nitrate concentration, as explained below. The Qingyuan forested catchment can be
492 classified into the highest nitrogen saturation stage based only on the highest stream
493 nitrate concentration of 150 μM (Table 3). However, based on the leaching flux of
494 nitrogen via stream water monitored by Huang et al. (2020) for 4 years in the Qingyuan
495 forested catchment, along with the deposition flux of nitrogen, we can obtain the
496 M_{atm}/D_{atm} ratio in the catchment to be a medium level of $5.8 \pm 1.3 \%$, implying that the
497 nitrogen saturation stage was not ~~so very~~ high (Table 3). Huang et al. (2020) also
498 concluded that the input of nitrogen exceeded the output in the catchment, and thus, the
499 catchment was at stage 2 of nitrogen saturation. The M_{atm}/D_{atm} ratio in the Qingyuan
500 forested catchment with a medium level among all forested catchments (Fig. 3d) should
501 be a more reliable index of nitrogen saturation.

502 Compared with those in the other forested catchments in Table 3, the annual amount
503 of precipitation (P) has the lowest value of 709 mm in the Qingyuan forested catchment.
504 The flux of stream water (F_{stream}) has the lowest value of 309 mm as well. Thus, we
505 concluded that nitrate was relatively concentrated in the catchment because of the small
506 precipitation, resulting in relative enrichment in the concentrations of both nitrate (150

507 μM) and unprocessed atmospheric nitrate (8.9 μM) in the stream.

508 While the concentration of stream nitrate, as an index of nitrogen saturation
509 traditionally, can be influenced by the amount of precipitation, as demonstrated in the
510 Qingyuan forested catchment, the $M_{\text{atm}}/D_{\text{atm}}$ ratio is independent of the amount of
511 precipitation (Fig. 4). Therefore, ~~we concluded that~~ the $M_{\text{atm}}/D_{\text{atm}}$ ratio can be used as
512 a more robust index for evaluating nitrogen saturation in each forested catchment.

513 The only concern on using the $M_{\text{atm}}/D_{\text{atm}}$ ratio as the index of nitrogen saturation is
514 the impact of the differences in the residence time of water in each catchment. The
515 residence time of water varies from 1 month to more than 1 year in forested catchments
516 (Asano et al., 2002; Farrick and Branfireun, 2015; Kabeya et al., 2008; Rodgers et al.,
517 2005; Soulsby et al., 2006; Tetzlaff et al., 2007). The $M_{\text{atm}}/D_{\text{atm}}$ ratio could be lower in
518 catchments with longer residence time of water. We would like to clarify this in future
519 studies by adding much more data of stream nitrate eluted from various forested
520 catchments.

521

522 **5 Conclusions**

523 Both the concentrations and $\Delta^{17}\text{O}$ of stream nitrate were determined for more than 2
524 years in the forested catchments of FK (FK1 and FK2) and MY to determine the
525 $M_{\text{atm}}/D_{\text{atm}}$ ratio for each catchment. The FK catchments exhibited higher $M_{\text{atm}}/D_{\text{atm}}$ ratio
526 than the MY catchment and other forested catchments reported in past studies, implying
527 that the progress of nitrogen saturation in the FK catchments was severe. Both age and

528 proportion of artificial plantation in the FK catchments were responsible for the
529 progress of nitrogen saturation. In addition, although past studies have commonly used
530 the concentration of stream nitrate as an index to evaluate the progress of nitrogen
531 saturation in forested catchments, it can be influenced by the amount of precipitation.

532 As a result, we concluded that the M_{atm}/D_{atm} ratio should be used as a more reliable
533 index for evaluating the progress of nitrogen saturation because the M_{atm}/D_{atm} ratio is
534 independent from the amount of precipitation.

535

536 *Data availability.* All the primary data are presented in the Supplement. The other data
537 are available upon request to the corresponding author (Weitian Ding).

538

539 *Author contributions.* UT, FN, KS, and MC designed the study. MC and TK performed
540 the field observations. WD, UT, and FN determined the concentrations and isotopic
541 compositions of the samples. WD, TS, FN, and UT performed data analysis, and WD
542 and UT wrote the paper with input from MC, TK, and KS.

543

544 *Competing interests.* The authors declare that they have no conflict of interest.

545

546 *Acknowledgements.*

547 We thank anonymous referees for valuable remarks on an earlier version of this
548 paper. We also thank the Daisuke Nanki, Takuma Nakamura, and Yuko Muramatsu for

549 their long-term water sampling. Additionally, we are grateful to the members of the
550 Biogeochemistry Group, Graduate School of Environmental Studies, Nagoya
551 University, for their valuable support throughout this study. This work was supported
552 by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
553 Sports, Science, and Technology of Japan under grant numbers 22H00561, and
554 17H00780, the Yanmar Environmental Sustainability Support Association, and the
555 River fund of the river foundation, Japan. Weitian Ding would like to take this
556 opportunity to thank the “Nagoya University Interdisciplinary Frontier Fellowship”
557 supported by Nagoya University and JST, the establishment of university fellowships
558 towards the creation of science technology innovation, Grant Number
559 JPMJFS2120.~~would like to take this opportunity to thank the ‘Nagoya University~~
560 ~~Interdisciplinary Frontier Fellowship’ supported by JST and Nagoya University.~~

561

562 **Reference**

563 Aber, J. D.: Nitrogen cycling and nitrogen saturation in temperate forest ecosystems,
564 Trends Ecol. Evol., 7(7), 220–224, doi:10.1016/0169-5347(92)90048-G, 1992.
565 Aber, J. D., Nadelhoffer, K. J., Steudler, P. and Melillo, J. M.: Nitrogen Saturation in
566 Northern Forest Ecosystems, Bioscience, 39(6), 378–386, doi:10.2307/1311067,
567 1989.
568 Aikawa, M., Hiraki, T., Tamaki, M. and Shoga, M.: Difference between filtering-type
569 bulk and wet-only data sets based on site classification, Atmos. Environ., 37(19),

570 2597–2603, doi:10.1016/S1352-2310(03)00214-0, 2003.

571 Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A. and

572 Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a

573 global model of the oxygen isotopic composition ($\delta^{17}\text{O}$) of atmospheric nitrate,

574 *Atmos. Chem. Phys.*, 9(14), 5043–5056, doi:10.5194/acp-9-5043-2009, 2009.

575 [Asano, Y., Uchida, T. and Ohte, N.: Residence times and flow paths of water in steep](#)

576 [unchannelled catchments, Tanakami, Japan, J. Hydrol., 261\(1–4\), 173–192,](#)

577 [doi:10.1016/S0022-1694\(02\)00005-7, 2002.](#)

578 Environmental Laboratories Association of Japan: Acid Rain National Survey Report

579 2017, https://tenbou.nies.go.jp/envgis_explain/acid_rain/content.html.

580 Bostic, J. T., Nelson, D. M., Sabo, R. D. and Eshleman, K. N.: Terrestrial Nitrogen

581 Inputs Affect the Export of Unprocessed Atmospheric Nitrate to Surface Waters:

582 Insights from Triple Oxygen Isotopes of Nitrate, *Ecosystems*, doi:10.1007/s10021-

583 021-00722-9, 2021.

584 Bourgeois, I., Savarino, J., Némery, J., Caillon, N., Albertin, S., Delbart, F., Voisin,

585 D. and Clément, J. C.: Atmospheric nitrate export in streams along a montane to

586 urban gradient, *Sci. Total Environ.*, 633, 329–340,

587 doi:10.1016/j.scitotenv.2018.03.141, 2018a.

588 Bourgeois, I., Savarino, J., Caillon, N., Angot, H., Barbero, A., Delbart, F., Voisin, D.

589 and Clément, J. C.: Tracing the Fate of Atmospheric Nitrate in a Subalpine Watershed

590 Using $\Delta^{17}\text{O}$, *Environ. Sci. Technol.*, 52(10), 5561–5570, doi:10.1021/acs.est.7b02395,

591 2018b.

592 Chiwa, M.: Ten-year determination of atmospheric phosphorus deposition at three
593 forested sites in Japan, *Atmos. Environ.*, 223(May 2019), 1–7,
594 doi:10.1016/j.atmosenv.2019.117247, 2020.

595 Chiwa, M.: Long-term changes in atmospheric nitrogen deposition and stream water
596 nitrate leaching from forested watersheds in western Japan, *Environ. Pollut.*,
597 287(November 2020), 117634, doi:10.1016/j.envpol.2021.117634, 2021.

598 Chiwa, M., Enoki, T., Higashi, N., Kumagai, T. and Otsuki, K.: The Increased
599 Contribution of Atmospheric Nitrogen Deposition to Nitrogen Cycling in a Rural
600 Forested Area of Kyushu, Japan, *Water, Air, Soil Pollut.*, 224(11), 1763,
601 doi:10.1007/s11270-013-1763-2, 2013.

602 Chiwa, M., Onikura, N., Ide, J. and Kume, A.: Impact of N-Saturated Upland Forests
603 on Downstream N Pollution in the Tatara River Basin, Japan, *Ecosystems*, 15(2),
604 230–241, doi:10.1007/s10021-011-9505-z, 2012.

605 Chiwa, M.: Characteristics of atmospheric nitrogen and sulfur containing compounds
606 in an inland suburban-forested site in northern Kyushu, western Japan, *Atmos. Res.*,
607 96(4), 531–543, doi:10.1016/j.atmosres.2010.01.001, 2010.

608 Ding, W., Tsunogai, U., Nakagawa, F., Sambuichi, T., Sase, H., Morohashi, M., and
609 Yotsuyanagi, H.: Tracing the source of nitrate in a forested stream showing elevated
610 concentrations during storm events, *Biogeosciences*, 19, 3247–3261,
611 <https://doi.org/10.5194/bg-19-3247-2022>, 2022.

- 612 Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I. and Sawada, K.:
613 Regional characteristics of dry deposition of sulfur and nitrogen compounds at
614 EANET sites in Japan from 2003 to 2008, *Atmos. Environ.*, 45(6), 1259–1267,
615 doi:10.1016/j.atmosenv.2010.12.003, 2011.
- 616 [Farrick, K. K. and Branfireun, B. A.: Flowpaths, source water contributions and water](#)
617 [residence times in a Mexican tropical dry forest catchment, *J. Hydrol.*, 529, 854–865,](#)
618 [doi:10.1016/j.jhydrol.2015.08.059, 2015.](#)
- 619 [Kabeya, N., Shimizu, A., Nobuhiro, T. and Tamai, K.: Preliminary study of flow](#)
620 [regimes and stream water residence times in multi-scale forested watersheds of central](#)
621 [Cambodia, *Paddy Water Environ.*, 6\(1\), 25–35, doi:10.1007/s10333-008-0104-3,](#)
622 [2008.](#)
- 623 Fukushima, K., Tateno, R. and Tokuchi, N.: Soil nitrogen dynamics during stand
624 development after clear-cutting of Japanese cedar (*Cryptomeria japonica*) plantations,
625 *J. For. Res.*, 16(5), 394–404, doi:10.1007/s10310-011-0286-1, 2011.
- 626 Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W.,
627 Cowling, E. B. and Cosby, B. J.: The nitrogen cascade, *Bioscience*, 53(4), 341–356,
628 doi:10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2, 2003.
- 629 Hattori, S., Nuñez Palma, Y., Itoh, Y., Kawasaki, M., Fujihara, Y., Takase, K. and
630 Yoshida, N.: Isotopic evidence for seasonality of microbial internal nitrogen cycles in
631 a temperate forested catchment with heavy snowfall, *Sci. Total Environ.*, 690, 290–
632 299, doi:10.1016/j.scitotenv.2019.06.507, 2019.

633 Hirota, A., Tsunogai, U., Komatsu, D. D. and Nakagawa, F.: Simultaneous
634 determination of $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ of N_2O and $\delta^{13}\text{C}$ of CH_4 in nanomolar quantities from
635 a single water sample, *Rapid Commun. Mass Spectrom.*, 24, 1085–1092,
636 doi:10.1002/rcm.4483, 2010.

637 Huang, S., Wang, F., Elliott, E. M., Zhu, F., Zhu, W., Koba, K., Yu, Z., Hobbie, E.
638 A., Michalski, G., Kang, R., Wang, A., Zhu, J., Fu, S. and Fang, Y.: Multiyear
639 Measurements on $\Delta^{17}\text{O}$ of Stream Nitrate Indicate High Nitrate Production in a
640 Temperate Forest, *Environ. Sci. Technol.*, 54(7), 4231–4239,
641 doi:10.1021/acs.est.9b07839, 2020.

642 Inoue, T., Nakagawa, F., Shibata, H. and Tsunogai, U.: Vertical Changes in the Flux
643 of Atmospheric Nitrate From a Forest Canopy to the Surface Soil Based on $\Delta^{17}\text{O}$
644 Values, *J. Geophys. Res. Biogeosciences*, 126(4), 1–18, doi:10.1029/2020JG005876,
645 2021.

646 Inamdar, S. P. and Mitchell, M. J.: Hydrologic and topographic controls on storm-
647 event exports of dissolved organic carbon (BOC) and nitrate across catchment scales,
648 Water Resour. Res., 42(3), 1–16, doi:10.1029/2005WR004212, 2006.

649 Kaiser, J., Hastings, M. G., Houlton, B. Z., Röckmann, T. and Sigman, D. M.: Triple
650 oxygen isotope analysis of nitrate using the denitrifier method and thermal
651 decomposition of N_2O , *Anal. Chem.*, 79(2), 599–607, doi:10.1021/ac061022s, 2007.

652 Komatsu, D. D., Ishimura, T., Nakagawa, F. and Tsunogai, U.: Determination of the
653 $^{15}\text{N}/^{14}\text{N}$, $^{17}\text{O}/^{16}\text{O}$, and $^{18}\text{O}/^{16}\text{O}$ ratios of nitrous oxide by using continuous-flow

654 isotope-ratio mass spectrometry Daisuke, Rapid Commun. Mass Spectrom., 22, 1587–
655 1596, doi:10.1002/rcm.3493, 2008a.

656 Komatsu, H., Maita, E. and Otsuki, K.: A model to estimate annual forest
657 evapotranspiration in Japan from mean annual temperature, , 330–340,
658 doi:10.1016/j.jhydrol.2007.10.006, 2008b.

659 Konno, U., Tsunogai, U., Komatsu, D. D., Daita, S., Nakagawa, F., Tsuda, A.,
660 Matsui, T., Eum, Y. J. and Suzuki, K.: Determination of total N₂ fixation rates in the
661 ocean taking into account both the particulate and filtrate fractions, Biogeosciences,
662 7(8), 2369–2377, doi:10.5194/bg-7-2369-2010, 2010.

663 Matsuda, K.: Estimation of dry deposition for sulfur and nitrogen compounds in the
664 atmosphere : Updated parameterization of deposition velocity, J. Japan Soc. Atmos.
665 Environ., 43(6), 332–339, doi:10.11298/taiki1995.43.332, 2008.

666 McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and nitrite to
667 nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater,
668 Anal. Chem., 77(17), 5589–5595, doi:10.1021/ac050528s, 2005.

669 Michalski, G., Scott, Z., Kabiling, M. and Thiemens, M. H.: First measurements and
670 modeling of $\Delta^{17}\text{O}$ in atmospheric nitrate, Geophys. Res. Lett., 30(16), 3–6,
671 doi:10.1029/2003GL017015, 2003.

672 Michalski, G., Meixner, T., Fenn, M., Hernandez, L., Sirulnik, A., Allen, E. and
673 Thiemens, M.: Tracing Atmospheric Nitrate Deposition in a Complex Semiarid
674 Ecosystem Using $\Delta^{17}\text{O}$, Environ. Sci. Technol., 38(7), 2175–2181,

675 doi:10.1021/es034980+, 2004.

676 Mitchell, M. J., Iwatsubo, G., Ohru, K. and Nakagawa, Y.: Nitrogen saturation in
677 Japanese forests: An evaluation, *For. Ecol. Manage.*, 97(1), 39–51,

678 doi:10.1016/S0378-1127(97)00047-9, 1997.

679 Morin, S., Sander, R. and Savarino, J.: Simulation of the diurnal variations of the
680 oxygen isotope anomaly ($\Delta^{17}\text{O}$) of reactive atmospheric species, *Atmos. Chem. Phys.*,
681 11(8), 3653–3671, doi:10.5194/acp-11-3653-2011, 2011.

682 Nakagawa, F., Suzuki, A., Daita, S., Ohyama, T., Komatsu, D. D. and Tsunogai, U.:
683 Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: Evaluation
684 based on bottled drinking water, *Biogeosciences*, 10(6), 3547–3558, doi:10.5194/bg-
685 10-3547-2013, 2013.

686 Nakagawa, F., Tsunogai, U., Obata, Y., Ando, K., Yamashita, N., Saito, T.,
687 Uchiyama, S., Morohashi, M. and Sase, H.: Export flux of unprocessed atmospheric
688 nitrate from temperate forested catchments: A possible new index for nitrogen
689 saturation, *Biogeosciences*, 15(22), 7025–7042, doi:10.5194/bg-15-7025-2018, 2018.

690 Nelson, D. M., Tsunogai, U., Ding, D., Ohyama, T., Komatsu, D. D., Nakagawa, F.,
691 Noguchi, I. and Yamaguchi, T.: Triple oxygen isotopes indicate urbanization affects
692 sources of nitrate in wet and dry atmospheric deposition, *Atmos. Chem. Phys.*, 18(9),
693 6381–6392, doi:10.5194/acp-18-6381-2018, 2018.

694 Ohru, K. and Mitchell, M. J.: Nitrogen Saturation in Japanese Forested Watersheds
695 Author (s): Kiyokazu Ohru and Myron J . Mitchell Published by : Wiley Stable

696 URL : <http://www.jstor.org/stable/2269507> Accessed : 05-07-2016 04 : 51 UTC Your
697 use of the JSTOR archive indicates your ac, , 7(2), 391–401, 1997.

698 Paerl, H. W. and Huisman, J.: Climate change: A catalyst for global expansion of
699 harmful cyanobacterial blooms, *Environ. Microbiol. Rep.*, 1(1), 27–37,
700 doi:10.1111/j.1758-2229.2008.00004.x, 2009.

701 Peterjohn, W. T., Adams, M. B. and Gilliam, F. S.: Symptoms of nitrogen saturation
702 in two central Appalachian hardwood forest ecosystems, *Biogeochemistry*, 35(3),
703 507–522, doi:10.1007/BF02183038, 1996.

704 Riha, K. M., Michalski, G., Gallo, E. L., Lohse, K. A., Brooks, P. D. and Meixner, T.:
705 High Atmospheric Nitrate Inputs and Nitrogen Turnover in Semi-arid Urban
706 Catchments, *Ecosystems*, 17(8), 1309–1325, doi:10.1007/s10021-014-9797-x, 2014.

707 Rodgers, P., Soulsby, C., Waldron, S. and Tetzlaff, D.: Using stable isotope tracers to
708 identify hydrological flow paths, residence times and landscape controls in a
709 mesoscale catchment, *Hydrol. Earth Syst. Sci. Discuss.*, 9, 139–155, 2005.

710 Rose, L. A., Elliott, E. M. and Adams, M. B.: Triple Nitrate Isotopes Indicate
711 Differing Nitrate Source Contributions to Streams Across a Nitrogen Saturation
712 Gradient, *Ecosystems*, 18(7), 1209–1223, doi:10.1007/s10021-015-9891-8, 2015.

713 Sabo, R. D., Nelson, D. M. and Eshleman, K. N.: Episodic, seasonal, and annual
714 export of atmospheric and microbial nitrate from a temperate forest, *Geophys. Res.*
715 Lett.

716 , 43(2), 683–691, doi:10.1002/2015GL066758, 2016.
Sappa, G., Ferranti, F. and Pecchia, G. M.: Validation Of Salt Dilution Method For

717 [Discharge Measurements In The Upper Valley Of Aniene River \(Central Italy\), Recent](#)
718 [Adv. Environ. Ecosyst. Dev., \(October 2015\), 42–48, 2015.](#)
719 [Soulsby, C., Tetzlaff, D., Rodgers, P., Dunn, S. and Waldron, S.: Runoff processes,](#)
720 [stream water residence times and controlling landscape characteristics in a mesoscale](#)
721 [catchment: An initial evaluation, J. Hydrol., 325\(1–4\), 197–221,](#)
722 [doi:10.1016/j.jhydrol.2005.10.024, 2006.](#)

723 Stoddard, J. L.: Long-Term Changes in Watershed Retention of Nitrogen, , 223–284,
724 doi:10.1021/ba-1994-0237.ch008, 1994.

725 [Tetzlaff, D., Malcolm, I. A. and Soulsby, C.: Influence of forestry, environmental](#)
726 [change and climatic variability on the hydrology, hydrochemistry and residence times](#)
727 [of upland catchments, J. Hydrol., 346\(3–4\), 93–111,](#)
728 [doi:10.1016/j.jhydrol.2007.08.016, 2007.](#)

729 Tsunogai, U., Komatsu, D. D., Daita, S., Kazemi, G. A., Nakagawa, F., Noguchi, I.
730 and Zhang, J.: Tracing the fate of atmospheric nitrate deposited onto a forest
731 ecosystem in Eastern Asia using $\Delta^{17}\text{O}$, Atmos. Chem. Phys., 10(4), 1809–1820,
732 doi:10.5194/acp-10-1809-2010, 2010.

733 Tsunogai, U., Daita, S., Komatsu, D. D., Nakagawa, F. and Tanaka, A.: Quantifying
734 nitrate dynamics in an oligotrophic lake using $\Delta^{17}\text{O}$, Biogeosciences, 8(3), 687–702,
735 doi:10.5194/bg-8-687-2011, 2011.

736 Tsunogai, U., Komatsu, D. D., Ohyama, T., Suzuki, A., Nakagawa, F., Noguchi, I.,
737 Takagi, K. and Nomura, M.: Quantifying the effects of clear-cutting and strip-cutting

738 on nitrate dynamics in a forested watershed using triple oxygen isotopes as tracers, ,
739 (1), 5411–5424, doi:10.5194/bg-11-5411-2014, 2014.

740 Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Nakagawa, F., Obata, Y.,
741 Sato, K. and Ohizumi, T.: Accurate and precise quantification of atmospheric nitrate
742 in streams draining land of various uses by using triple oxygen isotopes as tracers,
743 Biogeosciences, 13(11), 3441–3459, doi:10.5194/bg-13-3441-2016, 2016.

744 Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Ito, M. and Nakagawa, F.:
745 Quantifying nitrate dynamics in a mesotrophic lake using triple oxygen isotopes as
746 tracers, Limnol. Oceanogr., 63, S458–S476, doi:10.1002/lno.10775, 2018.

747 Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea: How
748 can it occur?, Biogeochemistry, 13(2), 87–115, doi:10.1007/BF00002772, 1991.

749 Watanabe, M., Miura, S., Hasegawa, S., Koshikawa, M. K., Takamatsu, T., Kohzu,
750 A., Imai, A. and Hayashi, S.: Coniferous coverage as well as catchment steepness
751 influences local stream nitrate concentrations within a nitrogen-saturated forest in
752 central Japan, Sci. Total Environ., 636, 539–546, doi:10.1016/j.scitotenv.2018.04.307,
753 2018.

754 Yamazaki, A., Watanabe, T. and Tsunogai, U.: Nitrogen isotopes of organic nitrogen
755 in reef coral skeletons as a proxy of tropical nutrient dynamics, Geophys. Res. Lett.,
756 38(19), 1–5, doi:10.1029/2011GL049053, 2011.

757 Yang, R. and Chiwa, M.: Low nitrogen retention in a Japanese cedar plantation in a
758 suburban area, western Japan, Sci. Rep., 11(1), 1–7, doi:10.1038/s41598-021-84753-

759 1, 2021.

760 **Table 1.** Plant information for each forested catchment (Chiwa, 2021).

Overstory vegetation (%)	FK1	FK2	MY
Artificial Japanese cedar/cypress plantation	74	40	16
Other artificial coniferous plantations	<1	<1	7
Natural trees	10	54	75
Others	16	5	2

761

762

763

764 **Table 2.** Average concentrations of stream nitrate ($[\text{NO}_3^-]_{\text{avg}}$), the average
765 concentrations of unprocessed $\text{NO}_3^-_{\text{atm}}$ in streams ($[\text{NO}_3^-_{\text{atm}}]_{\text{avg}}$), the annual export flux
766 of NO_3^- per unit area of catchments (M_{total}), the annual export flux of $\text{NO}_3^-_{\text{atm}}$ per unit
767 area of catchments (M_{atm}), the deposition flux of $\text{NO}_3^-_{\text{atm}}$ per unit area of catchment
768 (D_{atm}), and the $M_{\text{atm}}/D_{\text{atm}}$ ratios in the study catchments.

	FK1	FK2	MY
$[\text{NO}_3^-]_{\text{avg}}$ (μM)	109.5	<u>90.9</u> <u>94.2</u>	7.3
$[\text{NO}_3^-_{\text{atm}}]_{\text{avg}}$ (μM)	10.80 ± 1.65	<u>6.09</u> <u>5.06</u> \pm <u>0.92</u> <u>1.05</u>	0.16 ± 0.05
M_{total} ($\text{mmol m}^{-2} \text{yr}^{-1}$)	<u>98.8</u> <u>97.9</u> \pm 17.8	<u>82.0</u> <u>84.2</u> \pm <u>14.8</u> <u>15.3</u>	<u>23.7</u> <u>22.6</u> \pm 1.2
M_{atm} ($\text{mmol m}^{-2} \text{yr}^{-1}$)	9.7 ± 2.3	<u>4.6</u> <u>5.4</u> \pm <u>1.2</u> <u>1.4</u>	0.5 ± 0.2 <u>1</u>
D_{atm} ($\text{mmol m}^{-2} \text{yr}^{-1}$)	69.3 ± 13.9	69.3 ± 13.9	40.1 ± 8.0
$M_{\text{atm}}/D_{\text{atm}}$ (%)	<u>14.1</u> <u>13.9</u> \pm <u>4.4</u> <u>3</u>	<u>6.6</u> <u>7.9</u> \pm <u>2.1</u> <u>2.5</u>	<u>1.3</u> <u>2</u> \pm <u>0.5</u> <u>4</u>

769

770

771

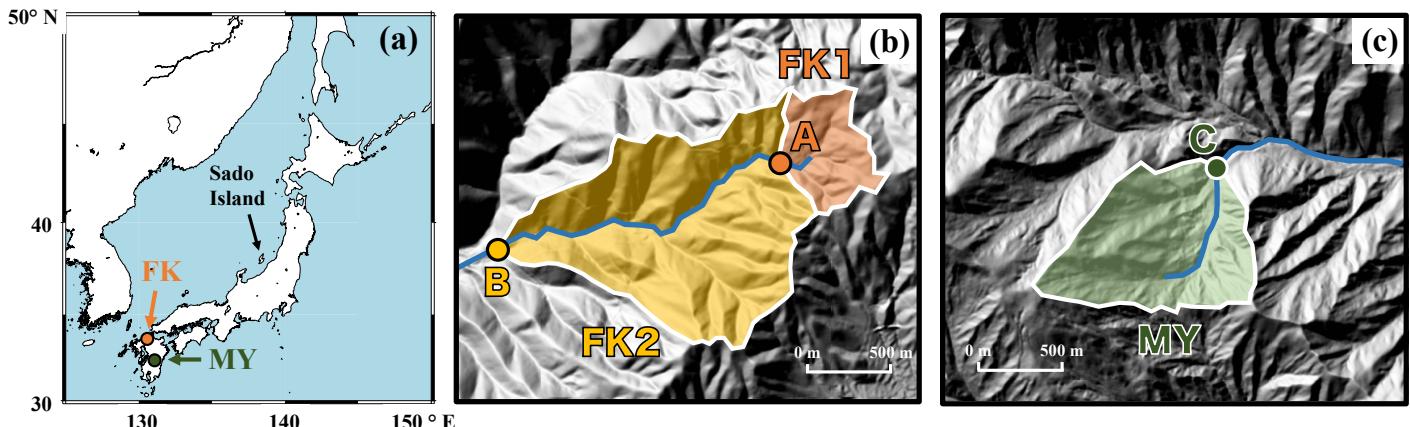
772

773 **Table 3.** The annual amount of precipitation (P), the average concentration of stream
 774 nitrate ($[\text{NO}_3^-]_{\text{avg}}$), the nitrogen saturation stage, the average concentration of
 775 unprocessed $\text{NO}_3^-_{\text{atm}}$ in streams ($[\text{NO}_3^-_{\text{atm}}]_{\text{avg}}$), the annual export flux of NO_3^- per unit
 776 area of catchment (M_{total}), the annual export flux of $\text{NO}_3^-_{\text{atm}}$ per unit area of catchment
 777 (M_{atm}), the deposition flux of $\text{NO}_3^-_{\text{atm}}$ per unit area of catchment (D_{atm}), and the
 778 $M_{\text{atm}}/D_{\text{atm}}$ ratio in the FK1, FK2, and MY, along with those in the catchments studied in
 779 past studies using $\Delta^{17}\text{O}$ of nitrate as a tracer.

	P mm	$[\text{NO}_3^-]_{\text{avg}}$ μM	N stage [*]	$[\text{NO}_3^-_{\text{atm}}]_{\text{avg}}$ μM	M_{atm} $\text{mmol m}^{-2} \text{yr}^{-1}$	M_{total} $\text{mmol m}^{-2} \text{yr}^{-1}$	D_{atm}	$M_{\text{atm}}/D_{\text{atm}}$ %
FK1 ^a	1777 ¹⁷⁶⁹	109.5	-	10.8	9.7	98.8 ^{97.9}	69.3	14.1 ^{13.9}
FK2 ^a	1777 ¹⁷⁶⁹	90.9 ^{94.2}	-	5.06 ^{6.1}	4.6 ^{5.4}	82.0 ^{84.2}	69.3	6.6 ^{7.9}
MY ^a	3981 ³⁸³⁷	7.3	-	0.2	0.5	23.7 ^{22.6}	40.1	1.3 ²
KJ ^b	2500	58.4	-	3.3	4.3	76.4	45.6	9.4
IJ1 ^b	3300	24.4	2	1.4	2.9	50.1	44.5	6.5
IJ2 ^b	3300	17.1	-	0.6	1.2	35.1	44.5	2.6
Fernow1 ^c	1450	17.9	1	1.6	0.8	9.3	23.4	3.6
Fernow2 ^c	1450	34.3	2	3.4	1.5	14.8	23.4	6.3
Fernow3 ^c	1450	60.0	3	4.2	2.4	34.5	23.4	10.3
Uryu ^d	1170	0.7	-	0.1	0.1	1.0	18.6	0.7
Qingyuan ^e	709	150.0	2	8.9	2.9	49.3	50.0	5.8

780 a: This study

781 b: Nakagawa et al., 2018; Nakahara et al., 2010


782 c: Rose et al., 2015

783 d: Tsunogai et al., 2014

784 e: Huang et al., 2020

785 *: N saturation stage estimated in past studies

786 -: No data

787 **Figure 1.** A map showing the locations of the study [catchments](#)[watersheds](#) (FK and
 788 MY) in Japan (a), and the maps of FK1, FK2 (b) and MY catchments (c), [shown by](#)
 789 [orange, yellow, and green areas, respectively](#), together with the sampling [point](#)[station](#)
 790 [A, B, and C, respectively](#), shown by orange, yellow, and green circles, respectively.

791

792

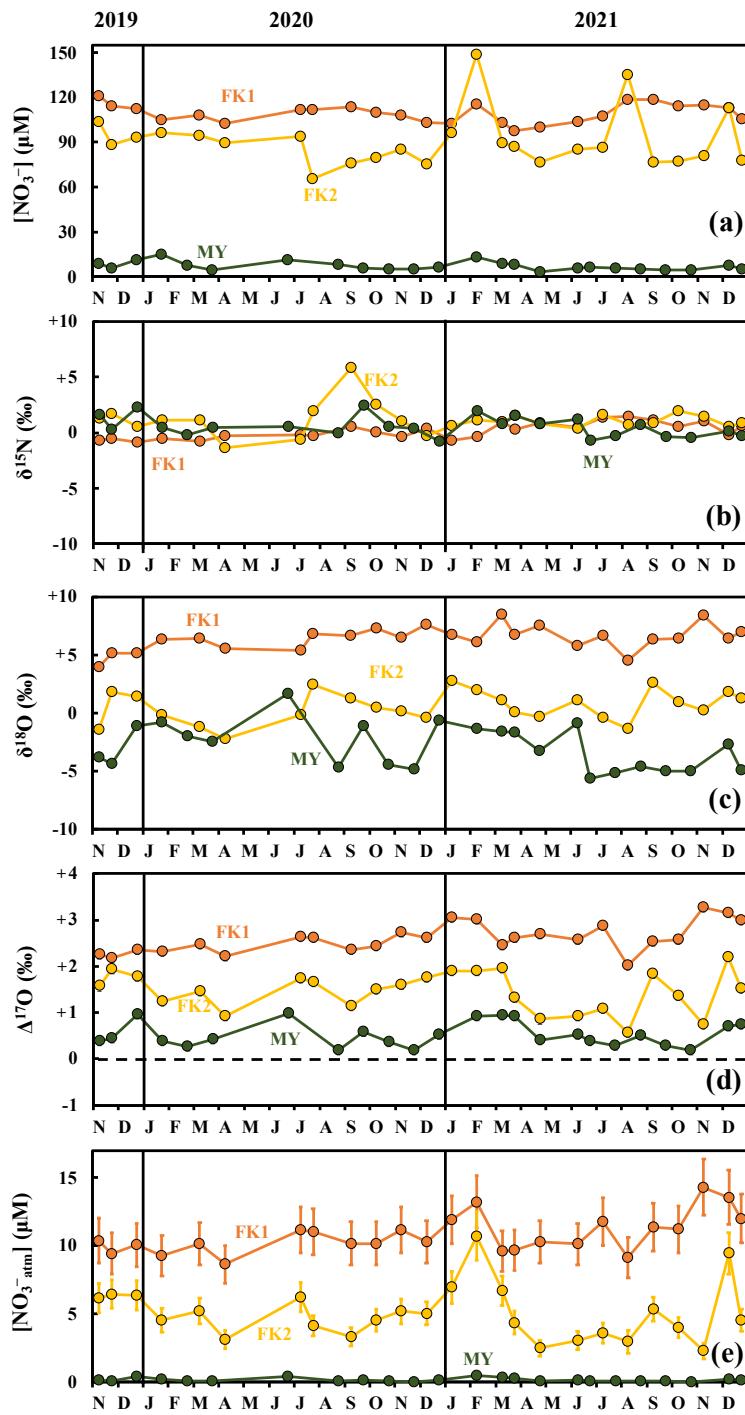
793

794

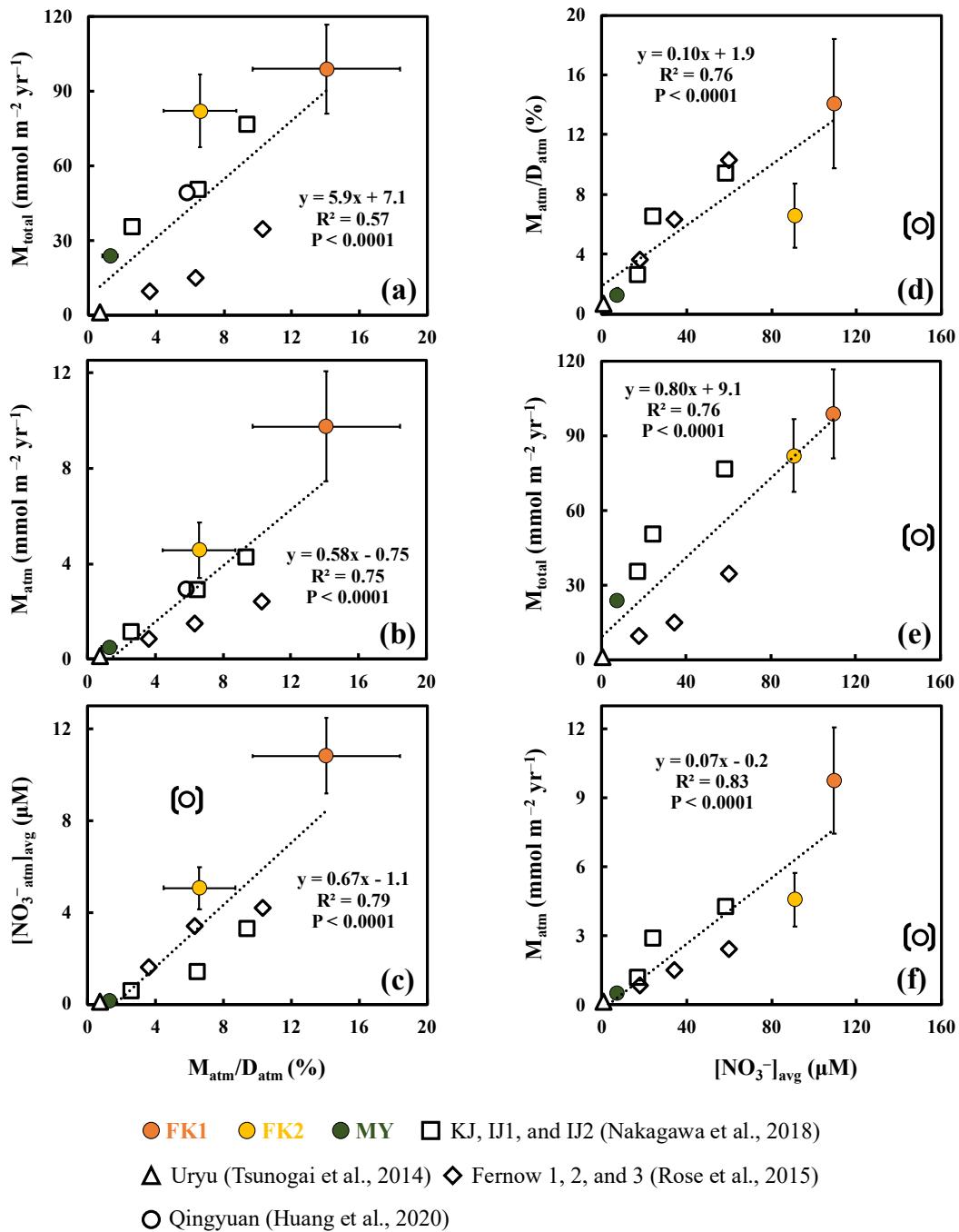
795

796

797


798

799


800

801

802

803 **Figure 2.** Temporal variations in concentrations of stream nitrate (FK1: orange circles;
804 FK2: yellow circles; MY: green circles) (a), together with those in $\delta^{15}\text{N}$ (b), $\delta^{18}\text{O}$ (c),
805 and $\Delta^{17}\text{O}$ (d) of nitrate, and the concentration of unprocessed $\text{NO}_3^-_{\text{atm}}$ ($[\text{NO}_3^-_{\text{atm}}]$) (e) in
806 the stream water of the FK1, FK2, and MY forested catchments. Error bars smaller than
807 the sizes of the symbols are not presented.

808 **Figure 3.** Annual export flux of nitrate per unit area (M_{total}) plotted as a function of the
809 $M_{\text{atm}}/\text{D}_{\text{atm}}$ ratio in each forested catchment (a); the annual export flux of unprocessed
810 atmospheric nitrate per unit area (M_{atm}) plotted as a function of the $M_{\text{atm}}/\text{D}_{\text{atm}}$ ratio (b);
811 the average concentration of $\text{NO}_3^-_{\text{atm}}$ ($[\text{NO}_3^-_{\text{atm}}]_{\text{avg}}$) plotted as a function of the
812 $M_{\text{atm}}/\text{D}_{\text{atm}}$ ratio (c); the $M_{\text{atm}}/\text{D}_{\text{atm}}$ ratio plotted as a function of the average concentration

813 of nitrate ($[\text{NO}_3^-]_{\text{avg}}$) (d); the M_{total} plotted as a function of $[\text{NO}_3^-]_{\text{avg}}$ (e); the M_{atm}
814 plotted as a function of $[\text{NO}_3^-]_{\text{avg}}$ (f) (FK1: orange circles; FK2: yellow circles; MY:
815 green circles). Those determined for the forested catchments in past studies are plotted
816 as well (Qingyuan: white circle (Huang et al., 2020); KJ, IJ1, and IJ2: white squares
817 (Nakagawa et al., 2018); Fernow 1, 2, and 3: white diamonds (Lucy et al., 2015); Uryu:
818 white triangle (Tsunogai., 2014)). The data obtained in the Qingyuan forested
819 catchment are shown in parentheses and excluded from the calculation to estimate
820 correlation coefficients (see text for the reason).

821

822

823

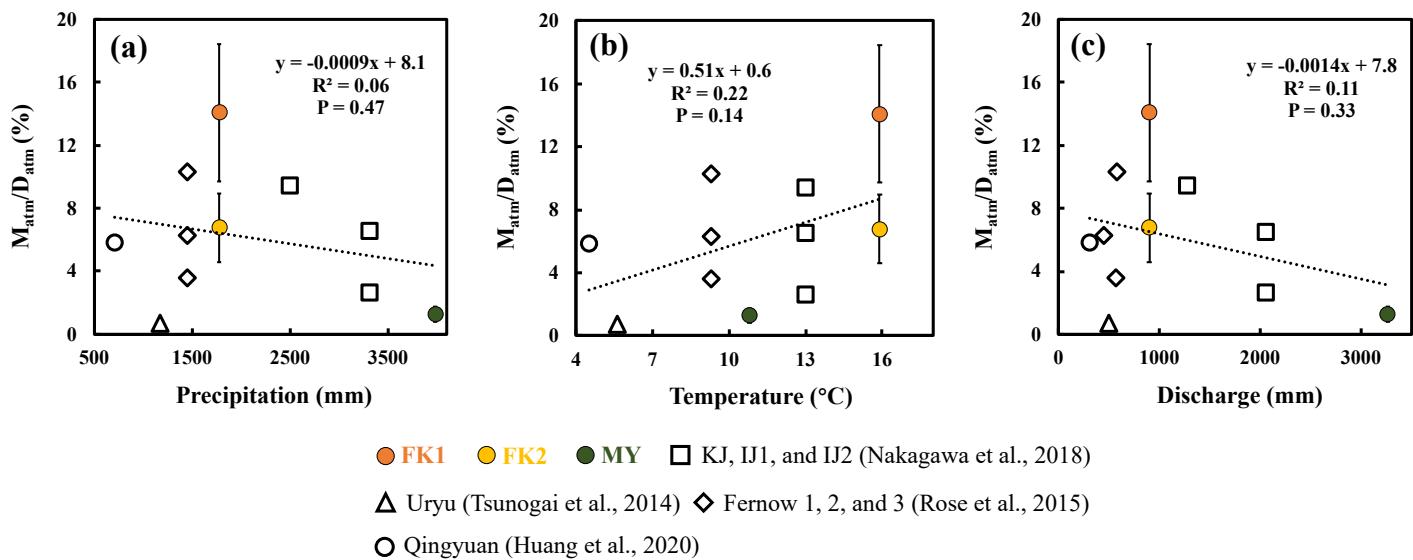
824

825

826

827

828

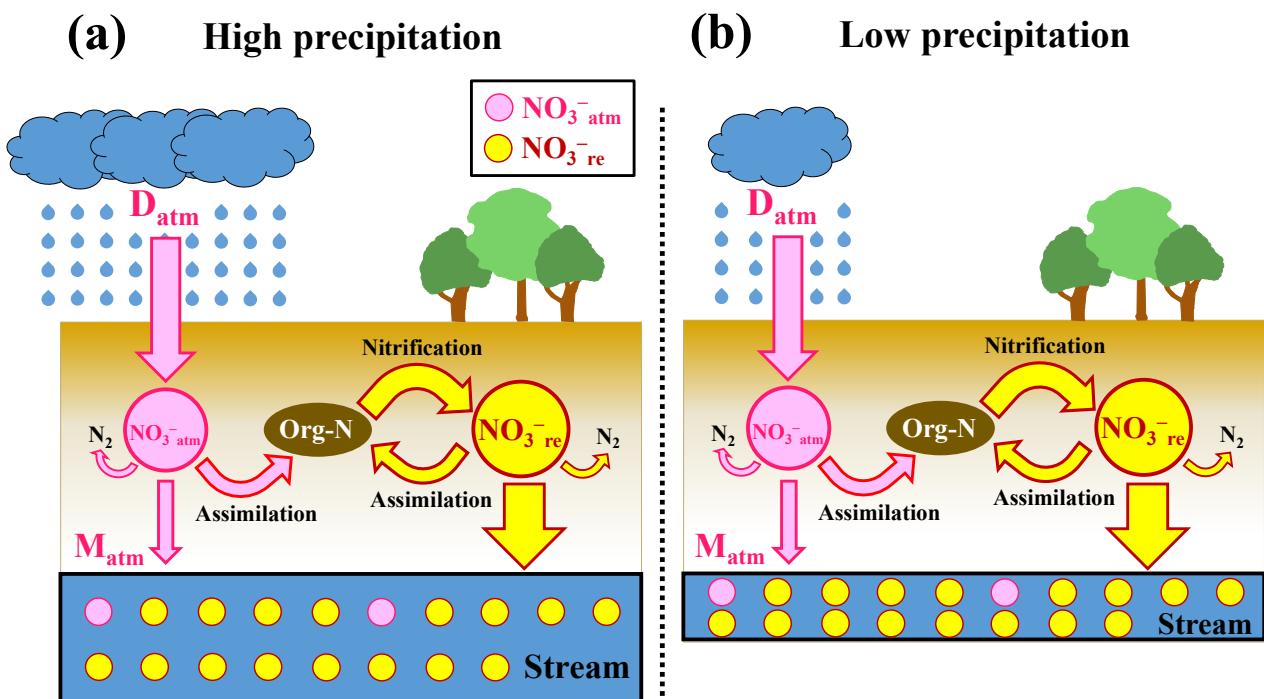

829

830

831

832

833



834 **Figure 4.** the M_{atm}/D_{atm} ratio plotted as a function of the amount of precipitation (a),
835 the M_{atm}/D_{atm} ratio plotted as a function of the temperature (b), and the M_{atm}/D_{atm} ratio
836 plotted as a function of flux of stream water (c) (FK1: orange circles; FK2: yellow
837 circles; MY: green circles). Those determined for the forested catchments in past studies
838 are plotted as well.

839

840

841

842 **Figure 54.** Schematic diagram showing the biogeochemical processing of nitrate in
 843 forested catchments under high precipitation (a) and low precipitation (b), where
 844 $\text{NO}_3^-_{\text{atm}}$ (unprocessed atmospheric nitrate) is represented by pink circles, $\text{NO}_3^-_{\text{re}}$ by
 845 yellow circles, the flows of $\text{NO}_3^-_{\text{atm}}$ by pink arrows, and those of $\text{NO}_3^-_{\text{re}}$ (remineralized
 846 nitrate) by yellow arrows (modified after Nakagawa., 2018). Although the deposition
 847 rates of $\text{NO}_3^-_{\text{atm}}$ (D_{atm}) and the biogeochemical reaction rates between (a) and (b) are
 848 the same, we can expect high $[\text{NO}_3^-]$ in (b). On the other hand, the $M_{\text{atm}}/D_{\text{atm}}$ ratio
 849 between (a) and (b) are the same.