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Abstract. Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time-series of non-

homogenised observational data. However, like other long-term series from observations, they are prone to inhomogeneities

that can influence and even change trends if not taken into account. In order to assess the relevance of homogenisation for

time-series analysis of daily snow depths, we investigated the effects of adjusting inhomogeneities in the extensive network of

Swiss snow depth observations for trends and changes in extreme values of commonly used snow indices, such as snow days,5

seasonal averages or maximum snow depth in the period 1961-2021. Three homogenisation methods were compared for this

task: Climatol and HOMER, which apply median based adjustments, and the quantile based interpQM. All three were run using

the same input data with identical breakpoints. We found that they agree well on trends of seasonal average snow depth, while

differences are detectable for seasonal maximums and the corresponding extreme values. Differences between homogenised

and non-homogenised series result mainly from the approach for generating reference series. The comparison of homogenised10

and original values for the 50-year return level of seasonal maximum snow depth showed that the quantile-based method had

the smallest number of stations outside the 95 % confidence interval. Using a multiple criteria approach as e.g. thresholds for

series correlation (> 0.7) as well as for vertical (< 300 m) and horizontal (< 100 km) distances proved to be better suited than

using correlation or distances alone. Overall, the homogenisation of snow depth series changed all positive trends for derived

series of snow days to either no trend or negative trends and amplifying the negative mean trend, especially for stations > 150015

m. The number of stations with a significant negative trend increased between 7 - 21 % depending on the method, with the

strongest changes occurring at high snow depths. The reduction in the 95 % confidence intervals of the absolute maximum

snow depth of each station indicates a decrease in variation and an increase in confidence in the results.

Homogenisation, Alps, extreme values, manual measurements, snow, snow depth, Switzerland, trends20
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1 Introduction

During winter in the northern hemisphere, more than 50 % of the earth‘s surface can be covered with snow (Armstrong and

Brun, 2008). The thickness and duration of a snow cover play an important role for many animal and plant species (Johnston

et al., 2019), but also have an important socio-economic dimension: For example, the timing and amount of snow melt are

important for hydropower companies, the number of days with a certain minimum snow depth (e.g. 30 cm) is a metric widely25

used for the profitability of ski resorts (Abegg et al., 2020). Accurate and reliable measurements of solid precipitation, e.g. total

height of fallen snow (snow depth) or the amount of freshly fallen snow (depth of snowfall), are difficult to obtain but important

(Nitu et al., 2018) as they are used for various purposes, e.g. as ground evidence for large-scale grid-based forecasts of snow

depth (Olefs et al., 2013) or the operational assessment of snow models used for avalanche hazard forecasting (Morin et al.,

2020). Long-term measurements are key to climate monitoring and related analyses. They are not only used for climatological30

analyses (Matiu et al., 2021; Pulliainen et al., 2020), but also for creating bias-corrected models (Maraun et al., 2017) and

gridded datasets (Cornes et al., 2018; Hiebl and Frei, 2018; Hersbach et al., 2020; Li et al., 2022).

All climate time series comprise a climate signal, a station signal and white noise (Caussinus and Mestre, 2004). The station

signal includes the characteristics of the environment, observers and instruments of each station. If the station signal changes35

over time, it can alter the climate signal, e.g. by amplifying or weakening trends. It should therefore be adjusted before further

analysis are done. According to the approach of relative homogeneity testing and adjusting this is possible as long as neigh-

bouring stations follow an identical climatic signal (variability and trend). The longer the time series, the higher the probability

of large changes causing breaks/breakpoints in it. There are many reasons for this, such as changes in instruments, observers,

the station environment, or a combination of the above factors (Auer et al., 2007; Venema et al., 2020). Alexandersson and40

Moberg (1997) even found that multi-decadal time series without breaks are rare. Breaks can significantly alter derived trends

(Begert et al., 2005; Gubler et al., 2017; Resch et al., 2022) and extreme values (Kuglitsch et al., 2009). Therefore, to address

this problem, climate time series should be homogenised, which does not always happen or is possible, usually by a two-step

procedure: First, immanent breakpoints are identified. Relative homogeneity tests used for breakpoint identification mostly

assess significant changes of ratios or differences between the station to be homogenised (candidate series) and neighbour-45

ing stations (reference series). Reference series are selected on the basis of several criteria, mostly correlation and horizontal

as well as vertical distance. In a second step, the candidate series is homogenised to the present state, thus compensating for

previous non-climatic deviations, e.g. changes in observation procedures, sensors or measurement technique, in the time series.

Today, this is a standard procedure for climate data like temperature and precipitation (Venema et al., 2020), but has only50

recently been adopted for snow depth time series: First steps towards detecting and adjusting breaks were made by Marcolini

et al. (2017). Schöner et al. (2019) used the HOMOP tool (Nemec et al., 2013) to homogenise seasonal depth time series

and for calculating trends and identifying snow regions in Austria and Switzerland. Marcolini et al. (2019) compared the per-

formance of two homogenisation methods (HOMOP and SNHT (Alexandersson, 1986; Alexandersson and Moberg, 1997))
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and their effects on trends in seasonal mean snow depth. Their results showed the need for improving adjustment methods in55

order to (i) enable the application to data with higher temporal resolution (e.g. daily data) and (ii) to improve the adjustment

of extreme values. Taking up these needs, an adjustment method using quantile matching was introduced by Resch et al. (2022).

Widespread used metrics to describe the snow cover include average and maximum snow depths and days with a snow

depth above a certain threshold, referred to here as snow days. This commonly used index is defined as the number of days60

within a certain time period (e.g. season) with a certain snow depth, usually between 1 - 50 cm. (Abegg et al., 2020; Schmucki

et al., 2017). Snow days are relevant for ecology (Stone et al., 2002; Jonas et al., 2008), climatology (Scherrer et al., 2004;

Marty, 2008) or the ski tourism industry (Abegg et al., 2020), whereas the average and maximum snow depths are particularly

applicable to climatology and engineering applications. Trend and extreme value analyses of snow indices (Scherrer et al.,

2013; Matiu et al., 2021) are common methods in climate monitoring (Bocchiola et al., 2008; Marty and Blanchet, 2012;65

Buchmann et al., 2021a) and model verification (Brown et al., 2003; Essery et al., 2013), while extreme value analyses are

important for defining snow loads and limits for building-codes (Croce et al., 2021; Schellander et al., 2021; Al-Rubaye et al.,

2022).

We use the breakpoints recently identified by Buchmann et al. (2022) for manual Swiss snow series with a joint application

of three widely used breakpoint-detection and homogenisation methods: ACMANT (Domonkos, 2011), Climatol (Guijarro,70

2018) and HOMER (Mestre et al., 2013) for three homogenisation methods to calculate and apply adjustments: Climatol,

HOMER, and interpQM (Resch et al., 2022). ACMANT, which is fully automatic, does not allow manual breakpoint input and

was therefore not used for our analyses. The first two methods apply median based adjustments, the latter uses a quantile-based

approach. All three methods are then applied to the network of Swiss snow depth time series. This allows us to assess the

impact of homogenisation (dependent on the method used) on the trends in seasonal mean and maximum snow depths, days75

with snow on the ground and extreme values of maximum snow depths. Our research questions are the following:

1. How do the homogenised series compare across the three methods used?

2. What influence does homogenisation have on the decadal trends in average and maximum snow depth?

3. How do the three homogenisation methods affect widely used snow indices?

4. To what extent are the maximum snow depths with a 50-year return period (as an example for snow metrics used by80

practitioners) affected by the different homogenisation methods?

The article is structured as follows: Section 2 describes the data and Section 3 introduces the various methods used. Results are

shown in Section 4 and discussed in Section 5. Conclusions are drawn in Section 6.
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Table 1. Summary of autocorrelations for lag (year) 1 for all stations (n = 40)

Minimum Maximum IQR Mean Median

HSmean -0.34 0.36 0.22 0.1 0.1

HSmax -0.25 0.42 0.24 0.03 0

dHS5 -0.1 0.48 0.14 0.18 0.21

dHS30 -0.29 0.36 0.15 0.06 0.06

dHS50 -0.3 0.26 0.16 0.03 0.06

2 Data

Daily manual snow depth measurements (HS) from 184 Swiss stations serve as the basis for quantifying the benefit of data85

homogenisation for snow depth series. Seasonal (November to April) and monthly average (HSavg), maximum snow depths

(HSmax), and the number of snow days >= 5 cm (dHS5) are calculated from the daily snow depths measured at 07:00 o’clock

each day. For obvious reasions, daily snow depth time series inherit a strong autocorrelation. We used seasonal indicators of

snow depth, which imply no to low autocorrelation with exception of cases when the snowcover did not completely melt over

the summer. However, this is neither the case for any of the selected stations nor for any of the seasons analysed. This is shown90

in Table 1 for lag 1 - 10 years autocorrelation, with strongest correlation for lag 1. The results showed that autocorrelation is

very low (mean 0.03 - 0.18, interquartile range 0.14 - 0.24). Consequently, a Trend-Free-prewhitening of snow depth series

(Yue et al., 2002) or the application of a modified MK-test was not necessary.

Figure 1 shows the station distribution of the 184 Swiss stations used. They are maintained either by the Federal Office of

Meteorology and Climatology (MeteoSwiss) or the WSL Institute for Snow and Avalanche Research (SLF), covering the95

period from 1931 to 2021 and span from 200 to 2500 m a.s.l. (shown in the right panel of Figure 1). Only stations with

complete data coverage between November and April for each year and at least 30 years of data are considered. A detailed

description of the dataset can be found in Buchmann et al. (2022).

2.1 The set of pre-identified breakpoints

We use the set of 45 breakpoints (found in 40 snow depth series) identified by Buchmann et al. (2022) for our analyses.100

Two series (stations Bernina Hospiz and Gütsch) were removed from the original 42-station-subset due to insufficient data

quality between 1961 and 2021. Breakpoints were detected using ACMANT (Domonkos, 2011), Climatol (Guijarro, 2018),

and HOMER (Mestre et al., 2013), with breakpoints accepted as valid if detected within two years by at least 2 of 3 methods.

For details, e.g. on the differences between methods in the detected breaks and motivation for the criteria of break acceptance,

see Buchmann et al. (2022). Breakpoints are identified based on seasonal series. Where appropriate, available metadata has105

been used for verification. However, as our metadata is neither perfect nor complete, it is only used as an additional source

of information and not as stand-alone evidence. To improve the station density near the Swiss eastern border, three Austrian
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Figure 1. Left panel: Map of Switzerland with all 184 Swiss stations used in this study. The 40 identified inhomogeneous stations with

valid breakpoints are highlighted in pink triangles. The green circles are series that are considered homogeneous. Right panel: Elevation

distribution of the homogeneous stations and those with detected breaks.

stations were added to the data base. Figure 1 shows the location of all 184 Swiss series in the left panel, stations with detected

breaks are marked with pink triangles. The right panel shows the elevation distribution of the stations.
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3 Methods110

Each breakpoint of a candidate series is adjusted by a multiplicative approach to the most recent status of the snow station. This

is in agreement for all three adjustment methods applied. Adjustment factors are based on statistical measures of the candidate

and reference series, respectively, and applied to the monthly (Climatol, HOMER) or daily (interpQM) values. These statistical

measures (e.g. median, quantiles) applied for adjustment are different for the three methods and are described below. Important

to know, the reference series used for adjustment by the three methods are not identical and selected on different criteria. For115

interpQM and HOMER, they are known to the user.

All methods compared use the same dataset to select suitable reference stations for the calculation of the adjustment factors

based on the pre-determined breakpoints, which in our case are provided by Buchmann et al. (2022) and used by each method

via importing a file containing the breakpoints. Although it is possible to manually select suitable reference stations for each

series and use only these for each method, we have chosen to let the methods themselves select their reference stations based120

on their internal criteria.

3.1 Adjustment methods

Climatol (Guijarro, 2018) is a fully-automatic homogenisation method based on SNHT (Alexandersson, 1986) for break de-

tection and a linear regression approach after Easterling and Peterson (1995) for the adjustments. It uses composite reference

series that are constructed as a weighted average, using the horizontal and vertical distance between suitable reference and the125

candidate series as weight. We used the default settings, i.e. 100 km, where the horizontal distance weight is set to 0.5 and

the vertical distance scaling to 0.1. As for all adjustment methods, candidate series are adjusted back in time starting from

the most recent homogeneous sub-period. Doing so, each detected break (sub-period between breaks) is adjusted applying an

adjustment factor derived from annual values (see Guijarro (2018) for details). Which is calculated for Climatol as follows:

The adjustment factor of a time series z is calculated as follows:130

Climatol =
σQz̄b + Q̄

σQz̄a + Q̄
(1)

Where z̄b and z̄a are the mean snow depth between the beginning of the measurements of z and the breakpoint (before) and

from the breakpoint to the end (after), respectively. σQ and Q̄ are the standard deviation and mean of the non-standardized

ratio time series Q=Reference/Candidate (Alexandersson and Moberg, 1997).

HOMER (Mestre et al., 2013) is an interactive semi-automatic toolbox that provides various methods for detection and135

adjustment of breaks, such as pairwise comparison (Caussinus and Mestre, 2004), a fully automatic detection and correction

joint-segmentation (Picard et al., 2011) and ACMANT-detection (Domonkos, 2011). For our purposes, the pairwise comparison

was chosen, as it accepts the use of independently derived breakpoint metadata-files, like Climatol and interpQM. The series

are adjusted with a single annual factor for the entire period before a breakpoint. The adjustment factor is derived from variance

analysis ANOVA (Caussinus and Mestre, 2004) based on the selected reference stations. These are defined either on the basis140
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of the horizontal distance or the first-difference correlations. Due to the large vertical distances between stations, even for short

horizontal distances, the latter was chosen with a minimum Spearman ρ of > 0.8.

HOMER=Oij − v̂C∗
jh(i,j) + v̂C∗

j,kj+1 (2)

Where Oij is the matrix of original time series j with time index i, v̂C∗
jh(i,j) the estimation of the correction for a set of breaks

per candidate station Cj in a homogeneous subperiod hi,j and v̂C∗
j,kj+1 the estimation of the adjusted station signal with the145

number of breakpoints of a a station kj .

InterpQM (Resch et al., 2022) is an extension of INTERP (Vincent et al., 2002), that uses quantile matching to improve

the adjustments, taking into account the frequency distribution of the daily values to be adjusted. It provides homogenised

data on a daily basis, which then allows the analysis of the subsequently derived snow indicators. For this purpose, the daily

measurements of the candidate and reference series are split into two interquantile subsets (IQS), which are then compared.150

An adjustment factor

interpQM =

(
C̃a

R̃a

)
(

C̃b)

R̃b)

) (3)

is calculated for each IQS and then linearly interpolated between neighbouring IQSs to avoid artificial jumps in the data. C̃

and R̃ are the median of the daily time series of the candidate/reference station before (b) or after (a) the detected breakpoint to

be adjusted. The reference series can either be selected manually or be a composite series calculated from a weighted average155

of selected stations (< 100 km horizontal and < 300 m vertical distance, > 0.7 correlation, no detected breaks), which was

chosen here. The selection can be manually refined and optimised, using local knowledge and experience. The distribution of

weights between these stations can either be exponential or linear. To reduce the strong influence of individual highly correlated

stations on the result, a linear distribution of the weighting was chosen. Breakpoints are derived from a pre-defined breakpoint

file.160

3.2 Detection of trends and changes in snow depth series

The use of homogenisation techniques that adjust daily values allows the analysis of the impact on derived indicators that

require daily data for their calculation, e.g. snow days. Only the original data and interpQM are compared here, as HOMER

only provides monthly or seasonal data and Climatol kept crashing when using the full daily dataset. Since we did not want to

pre-select stations as this would influence the results, we decided not to use it for this purpose.165

InterpQM does not add new days with snow (HS > 0). To avoid a possible negative bias and because almost no changes

were expected for the homogenised series of days with HS > 1 cm, the threshold values of 5, 30 and 50 cm, are clearly more
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meaningful. Snow days are accumulated based on a temporal reference between November and April each year (hydrological

year). Trends are determined using the standard non-parametric Mann-Kendall trend test (Mann, 1945; Kendall, 1975) and are170

considered significant if they are above the 95 % level.

Theil-Sen slopes (Theil, 1950; Sen, 1968) are used to estimate the strength of the trends. The decadal trends are expressed

as change in [cm/decade] or [days/decade]. For the comparison of the homogenised subsets of 40 stations, we focus on the

period from 1961 to 2021, as most stations have data for this period. The trends for all available decades are provided in the

supplement (Figure A2).175

To investigate the effects of homogenisation on extreme snow depths, return levels for the seasonal maximum snow depth

(HSmax) (Marty and Blanchet, 2012) are calculated for a fixed return period of 50 years (Buchmann et al., 2021a; Marty and

Blanchet, 2012) based on original and homogenised data (R50HSmax). This approach was chosen because the international

standards for maximum snow load on buildings are based on R50HSmax (see e.g. Schellander et al. (2021)). The calculations

were performed with the R package extRemes (Gilleland and Katz, 2016) in default settings (GEV, estimation method MLE,180

and 95 % confidence intervals). In order to determine to what extent homogenised and original time series differ in their

distribution and to assess the differences between the results of the applied adjustment methods, a two-sample Kolmogorov-

Smirnov (in the following referred to KS-test) and the non-parametric two-sample Wilcoxon test (in the following referred to

as W-test) were performed with seasonal data for all derived indices.

3.3 Intercomparison experiment of adjustment methods185

We use the subset of 40 stations with identified breaks as input and adjust them with the three methods. While Climatol and

HOMER use monthly values as input and thus only provide monthly HSavg and HSmax values, interpQM works with daily

snow depth values. From these the analysed seasonal HSavg and HSmax are then derived after the successful adjustment.

Decadal trends are calculated for seasonal dHS (snow days) of several thresholds, HSavg aggregated from either monthly

HSavg (HOMER and Climatol) or daily HS (interpQM). The largest HSmax value per station, calculated over the entire period,190

(absolute maximum snow depth, maxHSmax) is compared for homogenised and original values. The return levels for seasonal

HSmax with a 50-year return period (R50HSmax) are determined either from daily homogenised HS aggregated to seasonal

HSmax (interpQM) or from monthly homogenised HSmax (HOMER and Climatol). All calculated trends and R50HSmax of

the different methods are then compared.

Climatol automatically fills eventually existing missing dates and interpolates their corresponding values, resulting in an195

artificially increased length of these series. It also automatically adjusts outliers in the homogeneous period in the default

settings.
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4 Results

In the following section, we compare the results of different adjustment methods on the one hand and the homogenised data

with the non-homogenised data on the other. In this way we can show both the effect of homogenisation and the dependence200

of the results on the method used. In chapter 4.1 we show this as an example for the number of snow days and in particular for

the effects on the trend (for interpQM only). Similarly, this is also shown for the maximum snow depth in chapter 4.2 Finally,

in chapter 4.3 a particular example is given for the magnitude and frequency of extreme snow depth.

4.1 Trends of snow days

Table 2. Statistics for snow days (dHS) for the period 1961 to 2021 on a seasonal basis with thresholds of 5 (dHS5), 30 (dHS30) and 50

(dHS50) cm for both original (Orig) and interpQM-homogenised data (iQM).

dHS5 dHS30 dHS50

<1500 m >1500 m <1500 m >1500 m <1500 m >1500 m

Orig iQM Orig iQM Orig iQM Orig iQM Orig iQM Orig iQM

Median trend [days/decade] -4.8 -6 -2.4 -2.8 -5.7 -5.5 -3.3 -3.7 -3.2 -2.5 -4 -5.5

Mean trend [days/decade] -5.6 -5.9 -3.3 -3.4 -5.7 -4.9 -4.3 -4.7 -4.7 -3.5 -5.4 -5.8

Positive [%] 0 0 0 0 4 0 14 0 4 0 7 0

No trend [%] 0 0 7 7 19 19 0 0 42 35 0 0

Negative [%] 100 100 93 93 77 81 86 100 54 65 93 100

Significant Positive* [%] 0 0 0 0 0 0 0 0 0 0 0 0

Significant Negative* [%] 81 85 69 77 70 67 33 43 86 53 31 50

Positive to no trend [%] - 0 - 0 - 0 - 0 - 0 - 0

Positive to Negative [%] - 0 - 0 - 7 - 14 - 7 - 7

Negative to no trend [%] - 0 - 0 - 0 - 4 - 0 - 0

Negative to Positive [%] - 0 - 0 - 0 - 0 - 0 - 0

Significant to not significant [%] - 4 - 0 - 12 - 0 - 15 - 0

Not significant to significant [%] - 8 - 7 - 15 - 7 - 12 - 21

Percentages for significant negative and significant positive, indicated with an asterisk, are calculated based on the total number of negative/positive values respectively.
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Figure 2. Difference in snow day trends between original and interpQM adjusted series for thresholds 5, 30 and 50 cm (dHS5, dHS30 and

dHS50). Purple squares indicate stations with a result of < -1, green diamonds of > 1 day/decade. Black dots indicate a significant difference.

Positive values indicate a stronger negative trend by homogenisation.
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The number of snow days per season was examined for two subgroups of stations, below (n = 26) and above (n = 14) 1500205

m a.s.l., referred to in this chapter as "low elevation" and "high elevation" stations. This threshold was also used by e.g. Auer

et al. (2007). Additionally, a strong decrease in snow depth between 1500 to 2500 m was determined for the coming decades

(Marke et al., 2015; Marty et al., 2017). This makes this elevation range interesting for analyses of changes that have already

taken place. We analysed thresholds of 5, 30 and 50 cm (dHS5, dHS30, dHS50) for the original and homogenised data.

The adjustments made had the strongest effect on dHS30 and dHS50 at stations above 1000 m, as can be seen in Figure 2.210

The percentage of significant negative time series has increased for all indices above 1500 m and dHS5 below 1500 m while it

was reduced by 3 % for stations below 1500 m for dHS30 and by 33 % (from 86 to 53 %) for dHS50. The difference between

the trend strength of the original and homogenised time series was more than one day/decade at six out of 40 stations for dHS5,

at 21 for dHS30 and at 26 for dHS50. Negative trends were strengthened at 5 stations for dHS5, 9 for dHS30 and 11 stations,

while they were weakened at 1 station for dHS5, 12 for dHS30 and 15 for dHS50. To detect significant differences between215

the original and homogenised time series, the non-parametric Wilcoxon test was applied. As can be seen in Figure 2, this was

only the case at the Adelboden station for dHS50.

The number of snow days per season is declining for the vast majority of stations for all analysed thresholds and elevation

levels, as shown in Table 2. In the original dataset, none of the stations investigated has a positive trend for dHS5, three show a

slightly positive trend for dHS30 (Unterwasser-Iltios at 1340 m with +0.9, Mürren at 1650 m with +0.3 and St.Moritz at 1850220

m with +1.7 days/decade) and two for dHS50 (Unterwasser-Iltios with +1.2 and St.Moritz with +1.1 days/decade).

Overall, the homogenisation removed all positive trends and, depending on the threshold for snow depth and elevation subset,

either did not change or reduced the number of stations without trends: E.g. 86 % of the high elevation stations had a negative

trend for dHS30 before, and 100 % after the homogenisation. The percentage of low elevation stations with no trend for dHS50

changed from 42 % to 35 % after the homogenisation, while the percentage of stations with a negative trends was raised from225

54 % to 65 %.

In general, the adjustments changed the median and mean trends of both subsets for dHS5 and the higher elevation subsets

for dHS30 and dHS50 to more negative, the lower elevation subsets of dHS30 and dHS50 to less negative. The mean trends

of the lower elevations changed from -5.6 to -5.9 days/decade for dHS5, from -5.7 to -4.9 for dHS30 and from -3.7 to -3.5 for

dHS50. For higher elevations they changed from -3.3 to -3.4 for dHS5, from -4.3 to -4.7 for dHS30 and from -5.4 to -5.8 for230

dHS50.

The percentage of low-elevation stations with no trend is different for the larger thresholds than for dHS5, where it increases

from 0 to 7 % with increasing altitude, but decreases for both dHS30 (from 19 to 0 %) and dHS50 (from 42 to 0 %). Ho-

mogenisation changed these figures only for dHS50, where instead, where instead of 42 % only 35 % of the lower elevation

stations don’t show a trend. The number of stations with a negative trend decreased for both dHS5 (from 100 to 93 %) and235

the lower stations for dHS30 (from 77 to 81 %). However, the numbers increased at the higher elevations for dHS30 (from 86

% to 100 %) and at all elevations for dHS50 (from 54 to 65 % for the lower and from 93 to 100 % for the higher elevations).

A similar pattern is seen in the significant negative trends: An increase at all higher elevation stations (between 8 and 19 %),

but a decrease at lower elevations for dHS30 (3 %) and dHS50 (33 %). Overall, interpQM weakened the dHS5-trends for 35
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Figure 3. Comparison of original and homogenised seasonal mean (HSavg) and maximum (HSmax) snowdepth for the SLF-station in Davos.

Panel (a) shows original and adjusted seasonal time series (thin lines) and Gaussian filtered with an 30 y window (thick lines). The vertical

dashed line indicates the identified break in 1972.

% of all stations, strengthened them for 30 % and did not change them for 35 %. For dHS30, 38 % of all stations had weaker240

trends after the adjustments, 40 % had stronger trends and for 22 % it did not change. For dHS50, the trend weakened for 30

%, strengthened for 38 % and remained unchanged for 32 % of all stations. The adjustments changed the trend of one station to

non-significant for dHS5 and of 12 to significant. Six stations for dHS30 were changed to non significant and 10 to significant.

For dHS50, the trends of 10 stations were changed to non significant and of 12 to significant.

The KS-test did not reveal significant differences between the original and the interpQM-adjusted time series in the distri-245

bution of the dHS5-, dHS30- or dHS50-time series for any of the stations analysed. A comparison with the W-test also showed

no significant differences for dHS5 and dHS30, but at one station (Adelboden) for dHS50.

4.2 Trends of mean and maximum snow depth

The effect of homogenisation on the mean (HSavg) and maximum snow depths (HSmax) is illustrated using the example of

Davos in Figure 3. The adjustments made increased the seasonal mean snow depth before the break in 1972 between 2 - 11 cm250

with interpQM, 3 - 17 cm with Climatol and 3 - 18 cm with HOMER. The impact on the seasonal maximum snow depth range

from 2 - 19 cm with Climatol, 7 - 23 cm with interpQM and 7 - 26 cm with HOMER.
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To assess the impact of homogenisation on trends of HSavg and HSmax, decadal trends are calculated for each homogeni-

sation method and the original data respectively. Figure 4 shows the trends for HSavg in the left and for HSmax in the right255

panel. Trends are expressed as cm/decade for the period from 1961 to 2021 for each method and station of the nonhomoge-

neous subset, black dots indicate significant trends. For HSavg, we found an overall similar pattern across the methods. Figure

A3 shows the trends as differences between original and homogenised values for Climatol, HOMER, and interpQM for both

HSavg and HSmax, separately. Two of the original series (St. Moritz and Unterwasser-Iltios) show positive trends, whereas

HOMER displays positive trends for Simplon and Glarus. No trends are positive with interpQM or Climatol. Except Glarus260

(HOMER), none of the positive trends are significant. Homogenisation made the HSavg trends of 17 (HOMER) and 18 (Clima-

tol, interpQM) of the 40 stations either negative or more negative, and of 21 (interpQM), 22 (Climatol) or 23 (HOMER), less

negative, respectively. Table 3 describes the mean and median trends across all stations, as well as the change from positive to

negative and significant to not significant and vice-versa for both HSavg and HSmax. The mean trends of HSavg for Climatol

and HOMER appear to be weaker than for the original and interpQM homogenised.265

Figure 4 further reveals that the homogenised trends for HSavg mimic the pattern of the original trends, which shows almost

zero trends for stations below 500 m, strong negative and significant trends for the group between 1000 and 1500 m, followed

by mostly not significant trends for stations between 1500 and 1600 m a.s.l. This suggests that the various intrinsic ways of

building reference series and sub-networks of the underlying homogenisation methods do not have a significant impact on

decadal trends of HSavg.270

The vast majority of trends for HSmax, 37 of the original series and 39 for all homogenisation methods, show a negative

trend, as shown in the right side of Table 3 for details. The number of significant trends is about 20 % lower than for HSavg,

with interpQM showing the largest and HOMER the lowest number of significant trends. The most striking difference between

the patterns of HSavg and HSmax in Fig. 4 is the area without significant trends. This is between 1500 and 1600 m a.s.l. for

HSavg for all homogenisation methods, and below 1000 m a.s.l. for HSmax with the exception of time series adjusted by275

interpQM. There seems be no particular altitudinal pattern, except that the trends below 1000 m a.s.l. are weak for all methods

and increase in strength between 1200 and 1400 m a.s.l. This suggests that the trends for HSmax, in contrast to HSavg, appear

to be more sensitive to the underlying homogenisation methods.

The performed KS-test for revealing noticable differences between the original and adjusted HSavg time series showed sig-

nificant differences for four stations for HOMER (Meien, Klosters, Sils-Maria, Stans), two for Climatol (Meien, Sils-Maria)280

and interpQM (Klosters, Stans). The W-test showed similar results with six stations for HOMER (Meien, Klosters, St.Moritz,

Glarus, Sils-Maria and Stans), five for Climatol (Meien, Klosters, St.Moritz, Glarus, Sils-Maria and Stans) and one for in-

terpQM (Klosters). For a comparison of the results of the adjustment methods, the homogenised time series were compared

against each other with the KS- and W-test. With the KS-test, significant differences were found for all methods for two sta-

tions (Glarus and Stans). The W-test-results were significant between HOMER and Climatol also for two stations (Luzern and285

Stans). For HSmax, the KS-test showed significant differences between the original and adjusted time series for three stations

for HOMER and interpQM (Klosters, St.Moritz and Elm) and two stations for Climatol (Klosters and St.Moritz). The W-test

was significant for four stations with HOMER and interpQM (Klosters, St.Moritz, Elm, Sils-Maria) and three with Climatol
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Figure 4. Comparison of trends calculated with original and homogenised data (Climatol, HOMER, and interpQM) for the period 1961-2021

for HSavg (left side) and HSmax (right side). Stations are ordered according to elevation. Black dots indicate statistical significance with

p-values below 0.05.

(Klosters, St.Moritz, Sils-Maria). The adjustment methods were significantly different only with the W-test for three stations

(La Comballaz, Saanenmöser, Samedan) between HOMER and Climatol.290
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Table 3. Statistics for trends of HSavg and HSmax for the period 1961 to 2021.

HSavg HSmax

Original Climatol HOMER interpQM Original Climatol HOMER interpQM

Median trend [cm/decade] -2.4 -2.5 -2.3 -2.7 -4.3 -4.9 -3.8 -4.5

Mean trend [cm/decade] -3.7 -2.8 -2.6 -3.2 -5.8 -5.6 -4.6 -5.4

Positive [%] 5 0 5 0 8 3 3 3

Negative [%] 95 100 95 100 98 98 98 98

Significant [%] 55 55 43 60 38 35 23 45

Significant negative* [%] 58 55 42 60 41 36 23 46

Significant positive* [%] 0 0 50 0 0 0 0 0

Positive to Negative [%] - 5 8 5 - 5 5 5

Negative to Positive [%] - 0 5 0 - 0 5 0

Significant to not significant [%] - 23 33 15 - 15 25 20

Not significant to significant [%] - 23 20 20 - 13 13 28

Percentages for significant negative and significant positive, indicated with an asterisk, are calculated based on the total number of negative/positive values respectively.
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4.3 Impact on extreme snow depths

To investigate a possible influence of the homogenisation on the magnitude and frequency of extreme snow depths, the absolute

maximum snow depths (maxHSmax) recorded at each station over the entire period, the year with the absolute maximum

snow depth and the difference between original and homogenised maxHSmax are plotted for each station and homogenisation

method. Figure 5 shows the results. Here we found that for the majority of series, the differences are 0. The differences are295

generally left-skewed, except for the largest differences observed with Climatol (Panel (d) of Figure 5). This again suggests

that, in contrast to the trends for HSavg, the differences between methods are more apparent for HSmax. Furthermore, Panel

(c) of Figure 5 clearly highlights the four known snow-rich winters of 1951, 1968, 1975, and 1999.

The return levels for 50-year return periods of maximum snow depth (R50HSmax) are calculated from homogenised data and

compared with the values obtained from the original data including the 95 % confidence intervals. Figure 6 shows the original300

values in grey with the associated 95 % confidence intervals and the homogenised values in colour. A pattern was found to

occur in all methods for the majority of stations. For Climatol, seven stations are above the 95 % confidence intervals of the

original values for R50HSmax and six below, for HOMER there are four above and seven below, while for interpQM there

are three above and three below, see Table 4 for details. This again suggests that the differences between the homogenisation

methods are more pronounced for R50HSmax than for trends of HSavg, with interpQM performing slightly better than Climatol305

or HOMER. An additional analysis (not shown here) of the change in the 95 % confidence intervals shows that the 95 %

confidence intervals of the homogenised values are smaller than the original ones. The mean values of R50HSmax across all

40 stations range from 89 cm for the original to 75 cm (HOMER), with Climatol (87 cm) and interpQM (83 cm) in between.
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Figure 5. Maximum values of HSmax recorded for each station and method over the entire period (1961-2021). Panel (a) shows the year for

which the absolute maximum snow depth is recorded. Panel (b) displays the differences between original and homogenised values. Panel (c)

and (d) are the corresponding histograms.
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Figure 6. HSmax with 50-year return periods and 95 % confidence intervals for both original (grey) and homogenised data using Climatol

(orange), HOMER (blue), and interpQM (yellow). The whiskers represent the 95 % confidence interval for the original values. Stations are

ordered according to elevation.
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Table 4. Statistics for R50HSmax: Number and percentage of stations that are outside the origininal’s 95 % confidence intervals for each

homogenisation method.

R50HSmax

Climatol HOMER interpQM

Outside 95 % conf interv 13 (32.5 %) 11 (27.5 %) 6 (15 %)

Above 7 (17.5 %) 4 (10 %) 3 (7.5 %)

Below 6 (15 %) 7 (17.5 %) 3 (7.5 %)
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5 Discussion

The three methods agreed in decreasing the snow depth in the time prior to the breaks for 19 (48 %) of the 40 stations, while310

increasing it for 17 (43 %). For 4 (9 %) stations, the methods had different signs for the adjustments. The differences between

the homogenisation methods were more pronounced for R50HSmax and HSmax than for HSavg.

In contrast to the larger thresholds of the snow day analysis, dHS5 shows almost no differences between the original and the

homogenised series, confirming the stability of this metric as described by Buchmann et al. (2021b). The elevation-dependent315

pattern with the strongest adjustment effects for dHS30 and dHS50 between 1000 - 1700 m can be explained by the fact that,

firstly, at stations below 1000 m a.s.l. there are few days with a snow depth of 30 cm or more due to the generally warmer

temperature and lower snowfall amount and, secondly, that above 1700 m winter temperatures are low enough and therefore

less sensitive to warming in winter so that the trends are smaller. A similar pattern can be seen in the absolute values (Appendix

A1). Those high-elevation stations that show large differences in the trends before and after the homogenisation in Fig. 2 (Sils-320

Maria, Samedan, San Bernardino, Zernez, Simplon Dorf, and Splügen) are all located at sites strongly influenced by southerly

flows. In particular, the Engadine in the southeast, a high elevation inner alpine valley with a dry and cold climate, is often not

associated with large snow depths or many days with dHS30 or dHS50.

All but two of the trends for HSavg (in both the original and homogenised data) are negative, which is consistent with the325

findings from previous snow studies (Laternser and Schneebeli, 2003; Marty, 2008; Scherrer et al., 2013; Fontrodona Bach

et al., 2018; Matiu et al., 2021). Marcolini et al. (2019) report an increase in series showing significant trends for HSavg

after homogenisation (40 to 44 %). The same effect is observed here for interpQM, but not for Climatol (no change) and

HOMER. Both show a decrease in significant negative trends after homogenisation (Table 3). The same increase in the number

of significant negative trends is observed for snow days and HSmax. The adjustments decreased the snow depth prior to a break330

at 55 % and increased it at 45 % of the stations.

For most stations, the R50HSmax of the homogenised data are still within the 95 % confidence intervals of the original

values. However, depending on the homogenisation method, between three to seven of the investigated 40 stations (see Table

4) have R50HSmax that exceed the original values beyond the 95 % confidence intervals, with potential implications for

engineering applications and building codes. Values that are significantly above the 95 % intervals are predominantly from335

Climatol. The reference networks in Climatol are created using the Euclidean distances between candidate and reference

series, with an optional scaling-factor for the vertical component. We set this threshold to wz = 100 to avoid the selection of

stations that are close together horizontally but far apart vertically, e.g. the stations Davos (1570 m a.s.l.) and Weissfluhjoch

(2535 m a.s.l.), which are only 4 km apart horizontally. However, it may also be that this threshold is simply not low enough

to prevent further station combinations with a similarly large gradient. Unfortunately, the user cannot see in Climatol which340

series were used as reference for a particular station. The reduction of the 95 % confidence intervals for all methods after
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homogenisation indicates a decrease in variation and an increase in confidence in the results for very large snowdepths, as

shown with the absolute maximum snowdepth.

The observed differences between the three methods compared can be explained by the respective methods used to con-

struct the reference series sub-networks and the adjustments. HOMER adjusts the entire period before an identified breakpoint345

using a single factor, while Climatol uses multiple factors dependent on the reference series constructed using homogenised

sub-periods. InterpQM, on the other hand, uses multiple adjustment factors based on quantile matching for the entire inhomo-

geneous period, similar to HOMER. The range of the applied adjustments for interpQM is shown in Appendix A4.

The selection of suitable reference series is the crucial part of the homogenisation procedure, both for the detection of breaks

and for the adjustment step. HOMER can be run either in correlation or distance mode, i.e. the sub-networks are compiled350

based on thresholds for either correlation or horizontal distances. In Climatol, the sub-networks are formed based on the

Euclidean distance between series with a scaling parameter for the vertical component. In InterpQM, the user can choose

correlation and horizontal as well as vertical distance thresholds. For a height-dependent variable such as snow depth, the

ability to select the sub-networks by setting thresholds for vertical and horizontal distances separately proves invaluable. It is

possible, albeit cumbersome, to define the sub-networks manually and use them as input for HOMER. The ability in HOMER to355

visually inspect the set of reference series used for each candidate station can provide a useful indication of how accurately the

reference series reflect local climatic or topographic characteristics; for example does a majority of the reference series come

from a completely different micro-climate? This is particularly important for a study area with complex alpine topography,

where neighbouring valleys may have completely different climates: North/South, inner-Alpine, or pre-Alpine. Furthermore,

these lists of reference series can also be used to identify stations with suspicious reference series that are probably not suitable360

for homogenisation.

The analysis of the sub-networks for HOMER and interpQM shows that due to the distance restriction in interpQM, reference

series are drawn from a more similar region, whereas in HOMER distant stations with high correlations are frequently included.

To avoid selecting close-by, but unsuitable reference series due to local climatic variations, the correlation criterion in interpQM

works well.365

Both Marcolini et al. (2019) and Buchmann, M. et al. (2022) found that relocations where responsible for by far the most

detected breakpoints in snow depth time series. The metadata of many stations are sparse and therefore often do not provide

enough information to give a sufficient answer to the question, why a relocation caused a break. A change in elevation within

+/- 150 m is not necessarily a cause of a break, but moving a station either below or above the typical height of a site’s inversion

is highly likely. Significant changes in the station environment are also very likely to cause a break, e.g. moving a station to an370

area with fewer buildings or fewer and smaller trees and vice versa.

6 Conclusions

This study is the first in-depth comparison of different homogenisation methods applied to a large network of snow depth

series between 500 and 2500 m. The focus is on their influence on the decadal trends of the number of snow days, i.e. days
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with a snow depth above a certain threshold (5, 30 and 50 cm), the seasonal mean and maximum snow depths (HSavg,375

HSmax) and extreme snow depths. The results underpin the relevance of homogenising long term snow depth series for trend

and extreme values analysis. Due to the impact of homogenisation on derived trends, this is especially true for conclusions

drawn from individual series. In our analyses, for the long-term trends of HSavg and dHS5, the overall picture does not

change through homogenisation of original data by median/mean based adjustment methods. However, the picture becomes

different when a quantile-based homogenisation approach (interpQM) is applied, which in the case of Swiss snow depth series,380

shows the strongest effect with only negative trends for HSavg and a slight increase in the number of significant trends.

The differences between the methods increase when looking at seasonal maximum values: The trends for HSmax, where

trends of low elevation stations were significant only with interpQM, absolute maximum snow depths and extreme values.

The homogenisation performed with interpQM increases the confidence in the derived extreme values based on the 95 %

confidence interval, which is particularly relevant for engineering applications. As far as snow days are concerned, the quantile385

based adjustments had the strongest impact on the larger snow depth thresholds.

Our results support a homogenisation approach that separates the breakpoint detection from the adjustment procedure, e.g. to

use the robust combined detection approach described in Buchmann et al. (2022) in combination with the adjustment procedure

from Resch et al. (2022). However, the ability to manually adjust the automatic selection of the reference (sub-network) stations

used for homogenisation is crucial for optimising the results. A combination of criteria such as correlation, horizontal and390

vertical distances as well as manual interventions seems to be more advantageous (given the complex topography in mountain

regions like the Alps) for snow depth than the use of a single selection criterion.

So far, the homogenised snow depth time series show no evidence of a bias in the methods towards increasing or decreasing

snow depths due to the adjustments made, neither in Austria nor in Switzerland. In this study, depending on the homogenisation

method, the mean snow depth before a break was increased at about 52 - 57 % of the stations and decreased at between 42 -395

45 %. 95 % of the 40 inhomogeneous stations show a negative trend for seasonal mean snow depth in the original data, which

is significant for 58 %. These figures are lower for the 144 homogeneous stations in the dataset, where 78 % show a negative

trend that is significant for 50 %.

As pointed out, break detection for snow depth is preferably done using the described two-out-of-three method. From our

experience, there there is no incentive or advantage to use automatic homogenisation methods such as HOMER and Climatol.400

On the contrary, automatic methods open the door to unintended automatic outlier corrections or adjustments based on the

selection of reference series that are sufficiently correlated but cannot be assigned in a climatologically meaningful way. To

achieve reasonable results, these methods require a certain degree of user intervention, e.g. the use of a predefined selection

of reference stations, thresholds for correlation, horizontal and vertical distances. Therefore, it seems promising to separate

the detection and adjustment of breaks using the the described two-out-of-three method for detection and interpQM for the405

adjustment, as it provides reliable results especially for larger snow depths and yields daily data.
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Figure A1. Absolute trends for days with snow depth of at least 5, 30 and 50 cm per season. Significant trends are marked by a black border.
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Figure A2. Trends for HSavg: Shown are all methods and all decades. Original (a), HOMER (b), Climatol (c), and interpQM (d).
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