Dansgaard-Oeschger events in climate models: Review and baseline MIS3 protocol

Irene Malmierca-Vallet¹, Louise C. Sime¹, and the D-O community members*¹

¹British Antarctic Survey, Cambridge, U.K.
*¹A full list of authors appears at the end of the paper

Correspondence: Irene Malmierca-Vallet (irealm37@bas.ac.uk)

Abstract.

Dansgaard-Oeschger (D-O) events, millennial-scale climate oscillations between stadial and interstadial conditions (of up to 10-15°C in amplitude at high northern latitudes), occurred throughout the Marine Isotope Stage 3 (MIS3; 27.8 – 59.4 ka) period. The climate modelling community up to now has not been able to answer the question: Are our climate models too stable to simulate D-O events? To address this, this manuscript lays the ground-work for a MIS3 D-O protocol for general circulation models which are used in the International Panel for Climate Change (IPCC) assessments. We review: D-O terminology, community progress on simulating D-O events in these IPCC-class models (processes and published examples), and evidence about the boundary conditions under which D-O events occur. We find that no model exhibits D-O like behaviour under pre-industrial conditions. Some, but not all, models exhibit D-O like oscillations under MIS3 and/or full glacial conditions.

Greenhouse gases and ice-sheet configurations are crucial. However most models have not run simulations of long enough duration to be sure which models show D-O like behaviour, under either MIS3 or full glacial states. We propose a MIS3 baseline protocol at 38 ky (38 to 32 ky) period, which (1) shows a regular sequence of D-O events, and (2) features the intermediate ice-sheet configuration and medium-to-low MIS3 greenhouse gas values which our review suggests are most conducive to D-O like behaviour in models. We also provide a protocol for a second “kicked Heinrich meltwater” experiment, since previous work suggests that this variant may be helpful in preconditioning a state in models which is conducive to D-O events. This review and protocol is intended to provide modelling groups investigating MIS3 D-O oscillations with a common framework. We propose a MIS3 baseline protocol at 34 ka, which features low obliquity values, medium-to-low MIS3 greenhouse gas values and the intermediate ice-sheet configuration which our review suggests are most conducive to D-O like behaviour in models. We also provide a protocol for a second freshwater (Heinrich-Event preconditioned) experiment, since previous work suggests that this variant may be helpful in preconditioning a state in models which is conducive to D-O events. This review provides modelling groups investigating MIS3 D-O oscillations with a common framework, which is aimed at 1) maximising the chance of the occurrence of D-O like events in the simulations; 2) allowing more precise model-data evaluation and; 3) providing an adequate central point for modellers to explore model stability.
1 Introduction

During a Dansgaard-Oeschger (D-O) event, Greenland transitions between cold stadial (GS) and warmer Greenland Interstadial (GI) conditions. The warming can occur within a decade (Kindler et al., 2014; Huber et al., 2006), whilst cooling occurs over a much longer period that is typically several centuries in length. During a warming phase, surface air temperatures over Greenland increase by 10-15°C (Andersen et al., 2006; Kindler et al., 2014; Huber et al., 2006). D-O events are best documented during Marine Isotope Stage 3 (MIS3; between 27.8 – 59.4 thousand of years BP, hereafter ka Goni and Harrison, 2010), including being recorded in several ice cores from Greenland (Fig. 1 Johnsen et al., 2001). Whilst the D-O event recorded in these cores are renowned, the events are global in nature (Voelker et al., 2002; Sanchez Goñi and Harrison, 2010; Sánchez Goñi et al., 2017), with known climate signatures including imprints in surface temperature and the hydrological cycle at high northern latitudes (Andersen et al., 2004; Thomas et al., 2009; Seierstad et al., 2014), in the tropics (Deplazes et al., 2013; Baumgartner et al., 2014; Adolphi et al., 2018), in Eurasia (Genty et al., 2003; Wang et al., 2008; Jacobel et al., 2017; Rousseau et al., 2017), and in North and South America (Wang et al., 2004; Wagner et al., 2010; Asmerom et al., 2010; Deplazes et al., 2013; Vanneste et al., 2015). While there are no Greenland ice core records of the previous glacial (MIS6 around 140-190 ka), speleothems and Antarctic ice cores indicate that it is extremely likely that D-O events also occurred during MIS6 and earlier glacial periods (Lang et al., 1999; Uriarte, 2019; Landais et al., 2004; Turner and Marshall, 2011; Barker et al., 2011; Lambert et al., 2012). This observational evidence shows that D-O events do not occur under interglacial or full Last Glacial Maximum conditions (Galaasen et al., 2014; Tzedakis et al., 2018; Galaasen et al., 2020).

In 2011, Valdes (2011) argued that climate models used in the assessments of the Intergovernmental Panel on Climate Change (IPCC) have not proved their ability to simulate D-O events. This has several implications for the delivery of accurate projections of climate change, within the context of tipping points and abrupt climate change (Brovkin et al., 2021). Whilst in the intervening years a number of models have captured key features of D-O events through AMOC hysteresis behaviour and/or produced D-O type millennial-scale variability under a range of forcings (Brown and Galbraith, 2016; Galbraith and de Lavergne, 2019; Klockmann et al., 2018; Peltier et al., 2020; Armstrong et al., 2021; Zhang et al., 2021; Vettoretti et al., 2022), we still do not know if climate models are too stable because too few models have run and published an appropriate simulation. This deficiency is related to both the computational expense which prevents models from being run for the longer time periods needed for investigating D-O events and to the lack of an agreed appropriate experimental set-up. The limited knowledge of pre-Last Glacial Maximum (LGM) boundary conditions, in particular in the case of the ice sheet height and distribution, makes it challenging to generate an appropriate MIS3 experimental set-up.

An important question is if model stability is caused by the model parameters and MIS3 conditions are such that the models are in a mono-stable state, in an oscillatory state or if the models exhibits bi-modality where noise-induced transitions are not induced due to too low model variability (Ditlevsen and Johnsen, 2010). Previous studies have questioned the significance of the periodic occurrence of DO events in MIS3 (∼ 1470) (Ditlevsen et al., 2007). If the full glacial period is included, the distribution of waiting time between DO-events is consistent with a random process (Ditlevsen et al., 2005). Durations of
stadials vs. interstadials indicate correlations with global ice volume and orbital parameters (Lohmann and Ditlevsen, 2018), thus underpinning the decision to focus on MIS3 boundary configurations.

Whether models can simulate abrupt changes is a crucial research question: if the current IPCC-class models are too stable to simulate D-O events, their ability to predict future abrupt transitions, and their use in identifying tipping points is doubtful. For example, a tipping point may have been recently reached in the Arctic’s Barents Sea (Barton et al., 2018; Tesi et al., 2021); sea ice loss in the area is linked with enhanced heat transport via an intensified throughflow, or “Atlantification” (Årthun et al., 2012; Polyakov et al., 2017). In addition, future enhanced precipitation, decline in Arctic sea ice and melting of glaciers and ice sheets could intensify the supply of freshwater to the North Atlantic and Arctic which could lead to the reorganization of the Atlantic circulation and tip the energy distribution between South and North in a similar way as occurred during D-O events (Lenton et al., 2008). If climate models do not reliably simulate past tipping events, it suggests that simulations of the coming century may be giving us a false sense of security.

Coupled Model Intercomparison Project (CMIP) coordinates and designs climate model protocols for the past, present and future climates, and has become an indispensable tool to facilitate our understanding of climate change (IPCC, 2013; Eyring et al., 2016). The Paleoclimate Model Intercomparison Project 4 (PMIP4) is one of the individual Model Intercomparison Projects which took part in CMIP6 (Kageyama et al., 2018). The design of a common MIS3 experimental protocol would allow the modelling community to address the questions posed above.

This manuscript compiles current information about unforced D-O like oscillations in IPCC-class CMIP5/CMIP6 models and discusses the boundary conditions and mechanisms responsible for these oscillations. Given the nomenclature on D-O events varies throughout the literature. Firstly, Table 1 and Figure 1 provide a framework for a more consistent terminology. Secondly, we review the literature to ascertain whether models reproduce D-O like events under MIS3, or other, climate conditions. We then use this information to develop a protocol for the simulations of D-O events. This protocol focuses on Marine Isotope Stage 3 (MIS3) partly because of the excellent records of D-O events and boundary conditions during this period (Schulz et al., 1999) but also because, as our synthesis shows, MIS3 conditions are also conducive to promoting D-O like events in some IPCC-class models. Given that D-O events did not occur under full glacial conditions in the last glacial period, the proposed modelling protocol is an important improvement on the use of an LGM PMIP protocol. It will undoubtedly help to shed light on the mechanism and processes involved in millennial-scale oscillations during MIS3. The common MIS3 climate modelling protocol is aimed at: 1) maximising the chance of the occurrence of D-O like events in the simulations; 2) improving model-data evaluation and; 3) providing an adequate central point for modellers to also explore model stability. In addition to the protocol for a baseline simulation, we also outline a protocol for a Heinrich event (Bond cycle event one type: Table 1) preconditioned variant. These protocols provide a common framework for model experiments to explore cold-period instabilities using commonly specified greenhouse gas (GHG), ice sheet, insolation, and freshwater-related forcings.
Figure 1. MIS3 ice core records and nomenclature. Stable water isotope and CO₂ measurements from Antarctic and Greenland ice cores (Bauska et al., 2021; NGRIP Project Members, 2004; Kindler et al., 2014). See also Table 1 for D-O nomenclature. The "cnt" red box indicates the 38 to 32 ka period proposed for the MIS3 baseline experiment.
Table 1: **D-O event nomenclature**

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Abrupt climate change</strong></td>
<td>A large-scale change in the climate system that takes place over a few decades or less, persists (or is anticipated to persist) for at least a few decades, and causes substantial disruptions in natural systems (Pörtner et al., 2019). We follow the IPCC Assessment Report 4 (IPCC AR4) definition of abrupt event/change (Meehl et al., 2007; Meehl et al., 2021). This term refers to a large-scale change, which is much faster than the change in the pertinent forcing (e.g. rising atmospheric CO₂ concentrations).</td>
</tr>
<tr>
<td><strong>Tipping element</strong></td>
<td>Large-scale components (subcontinental length scale, around 1,000 km) in the Earth system that can go through a tipping point. Examples of tipping elements in the Earth system include: Greenland and West Antarctic ice sheet and the Atlantic meridional overturning circulation (AMOC) (Lenton et al., 2008). This term refers to a critical threshold at which a small perturbation can qualitatively modify the development or state of a system (Lenton et al., 2008).</td>
</tr>
<tr>
<td><strong>Tipping point</strong></td>
<td>A level of change in system properties beyond which a system reorganises, often in a nonlinear manner, and does not return to the initial state even if the drivers of the change are abated. For the climate system, the term refers to a critical threshold when global or regional climate changes from one stable state to another stable state (Pörtner et al., 2019). This term describes large-scale components of the Earth system that could pass a tipping point (Lenton et al., 2008). Earth system components are the ocean, atmosphere, cryosphere, anthroposphere, and biosphere, which have further important sub-components e.g. the meridional ocean circulation, the monsoon systems, sea ice, and various ecosystems (Bryk et al., 2021).</td>
</tr>
<tr>
<td><strong>Oscillation</strong></td>
<td>The earth’s climate undergoes regular cyclical changes. Those related to changes in the orbit of the earth around the sun have a periodicity of tens to hundreds of thousands of years. Those related to the seasons have an annual pattern. Superimposed on these are a number of less regular oscillations. It is not clear that series of D-O events are oscillations in the strict sense. During the Last Glacial period, a series of dramatic climatic fluctuations occurred in the North Atlantic. These are known as D-O events, during which atmospheric and oceanic conditions alternated between relatively mild (interstadial) and full glacial (stadial) conditions (Dansgaard et al., 1982; Dansgaard et al., 1992). Around 25 abrupt transitions (each completed within a decade) from stadial to interstadial conditions occurred during the Last Glacial period and their amplitude vary from 5 to 16°C (Landais et al., 2004; Landais et al., 2006; Landais et al., 2014). The duration of interstadials varies from approximately a century to many millennia (Rasmussen et al., 2014).</td>
</tr>
<tr>
<td><strong>Stadial-Interstadial</strong></td>
<td>The North Atlantic climate of MIS3 is separated into warm interstadials and cold stadial periods which generally last several centuries to millennia. The warm and cold stages are described as Greenland Interstadial (GI) and Greenland Stadials (GS). For the purpose of this MIS3 DO protocol, the term of D-O type oscillation refers to D-O scale climate variability reproduced by climate models, comparable to the D-O events observed in the Greenland ice core record.</td>
</tr>
<tr>
<td><strong>D-O events</strong></td>
<td>May refer to the abrupt warming or the whole interstadial, sometimes including the transitions back into stadial condition. D-O events should be sub-classed as D-O warming and D-O cooling events depending on whether they mark the GS to GI transition or vice versa. We follow the INTIMATE (Integration of Ice core, Marine and Terrestrial records of the North Atlantic) definition of stadial/interstadial terms (Rasmussen et al., 2014). The Greenland Interstadials (GI) and Greenland Stadials (GS) periods terms are the Greenland expressions of the D-O events and represent warm and cold phases of the NA area, respectively.</td>
</tr>
</tbody>
</table>
## Heinrich or H events

Large iceberg calving events, marked by Heinrich layers of ice rafted debris (IRD) across large regions of the North Atlantic (Heinrich, 1988). H events occur during GS between around 40–50°N (Hemming, 2004). They are huge (iceberg) freshwater releases into the North Atlantic and have a role in D–O oscillations (Flückiger et al., 2006). Interestingly, the Greenland ice core inferred temperature record shows little or no impact from H events (Rhodes et al., 2015), and ice core records can exhibit a methane signature at the onset of an H event before a stadial has begun. Thus, H events do not necessarily cause D–O events (Capron et al., 2021). These are defined by the presence of layers of ice-rafted debris (IRD) of primarily (not exclusively) Laurentide origin in North Atlantic sediment cores (e.g. Heinrich, 1988; 2004). Heinrich events have been observed during some of the longer stadials, but likely do not cover the entire period of these longer stadials (Roche et al., 2004; Roche et al., 2011).

## Heinrich Stadial

If a GS is punctuated by a Heinrich (H) event, then it can be referred to as a Heinrich Stadial (HS), where the slowdown in the AMOC happens before ice rafted debris deposition (Henry et al., 2016). A cold phase may be termed a stadial (or GS) until an H event occurs, then could be classed as a Heinrich Stadial. Indeed, stadials that also contain an H event were referred to as “Heinrich Stadial” for a few years (Barker et al., 2009; Sanchez Goñi and Harrison, 2010; Stanford et al., 2011). However Andrews and Voelker (2018) suggest this nomenclature should be neglected in favour of the GS and GI terminology. A further issue arises as to whether an Heinrich event has a Laurentide or a Fennoscandian origin (Griem et al., 2019). However, the general H event terminology is currently not sub-classed. This term refers to a stadial containing a specific Heinrich Event. Rasmussen et al. (2014) indicates that the term of HS can refer to the complete stadial period, or to part of a stadial only, characterized by changes shown in proxies of IRD, AMOC or SST (Barker et al., 2009).

## Bond cycle

In the 1990s, a connection was made between H events and D–O events with the concept of the Bond Cycle: a train of D–O events, with a duration of around 10–15 kyr and decreasing in amplitude, following a H event (Agosta and Compagnucci, 2016). Indeed, D–O events frequently appear grouped in Bond cycles, groups of up to four D–O warming then cooling events with a longer GI event followed by up to three shorter GIs, alternated with GSs (Bond et al., 1993; Lehman, 1993; Bond and Lotti, 1995). Bond cycles finish with a cold event, during which a H event takes place (Hemming, 2004). During MIS3, the individual D–O oscillations are seen in particularly clear Bond cycle clusters following H events. H5 and H1 (Bond et al., 1997; Sakai and Peltier, 1996). D–O events tend to follow a pattern of diminishing amplitude (or a general cooling trend of the GSs) following each HE (Bond et al., 1992; Bond et al., 1998; Bond et al., 1999; Bond et al., 2007; Bond et al., 2022). These cycles of HE grouped D–O events were named Bond cycles by Broecker (1994) and Alley (1998). The average gap between HEs is around 7 ka, so this is the average length of a Bond Cycle (Clark et al., 2007).

## Review of spontaneous D–O type quasi-oscillations in coupled climate models

We compile published evidence of long unforced quasi-oscillations (in the Atlantic Meridional Circulation; AMOC) in IPCC-class models under all climate states in Table A1, alongside glacial boundary condition simulations which do not shown these which do not show D–O type oscillations (Table A3). This permits us to explore the questions of: what proportion of models
exhibit D-O like behaviour; which boundary conditions are most conducive to this; and what mechanisms are common to the modelled D-O behaviours. A number of model simulations exhibit long unforced quasi-oscillations in the AMOC (Table A1) though those that occur under pre-industrial conditions do not appear to be D-O like events. We deal with these first. A number of PI/present-day model simulations exhibit spontaneous centennial-length cold events (Table A1), however, they do not appear to be D-O like events. We deal with these first.

Under pre-industrial greenhouse gas (GHG) forcing and present-day ice sheets, spontaneous centennial-length cold events that last around 100-200 years occur in four IPCC-class models (Table A1). EC-Earth and Community Climate System Model version 4 (CCSM4) show high atmospheric blocking over the eastern subtropical gyre that causes a cold event under pre-industrial boundary conditions (Drijfhout et al., 2013; Kleppin et al., 2015, Table A1). ECHAM6-FESOM also produces cooling events under pre-industrial conditions due to sudden reductions of deep water convection and increase of sea ice cover in the Labrador Sea (Sidorenko et al., 2015). Changes in convection also occur in the Kiel Climate Model (KCM; Martin et al., 2015), however here centennial-scale variability of the AMOC is linked to variability in Southern Ocean convection. Unlike the CCSM4 and the EC-Earth models, the KCM and ECHAM6-FESOM studies do not indicate an active role of the atmosphere. Although these four models all show abrupt spontaneous cooling events under pre-industrial boundary conditions, these events do not have the typical saw-tooth characteristics, or longer timescales, of D-O type events.

Regular cycles of D-O type quasi-oscillations are found in UofT CCSM4 under LGM boundary conditions (Peltier and Vettoretti, 2014). The initiation of the abrupt D-O type warming events is associated with the opening of a large polynya over the Irminger Sea (Vettoretti and Peltier, 2016) (Table A1). During the first thousand years of the simulation as the model is spun up and the ocean cools to reach a state consistent with glacial boundary conditions, there are two thermal thresholds during which the strength of the AMOC rapidly reduces (see Figure 2 in Peltier et al., 2020). These abrupt transitions in the AMOC coincide with abrupt reductions in surface temperatures in the North Atlantic and abrupt expansions of sea ice coverages. During the second of these events the AMOC is reduced to approximately 12 Sv, about half its strength in the pre-industrial control (Peltier et al., 2020). This event may resemble the impact of a Heinrich event like "kick" to the AMOC though no freshwater perturbation was imposed (Peltier et al., 2020). After this, the AMOC - The AMOC spontaneously exhibits D-O like quasi-oscillations (Peltier et al., 2020). The Peltier et al. (2020) salt oscillator is maintained by the salinity gradient between the subtropical gyre and the Northern North Atlantic, similar to that identified by Brown and Galbraith (2016) in a simulation with LGM CO2 but pre-industrial ice sheets. Although UofT CCSM4 is the only model to show long unforced quasi-oscillations in the AMOC under full glacial conditions, most of the other PMIP4 LGM simulations (Kageyama et al., 2021a) have not been run long enough to be sure that such oscillations would not arise if they were run for longer (see Table B1). Having said that, ideally models should not show oscillatory D-O type behaviour when configured under a full glacial climate state, given that in reality D-O events do not occur under full glacial conditions (Huber et al., 2006; Galaasen et al., 2014; Kindler et al., 2014; Tzedakis et al., 2018).

D-O type quasi-oscillations are also found in MIROC4m under mid-glacial conditions (Kuniyoshi et al., 2022). Some aspects of the D-O warming mechanism observed in the UofT-CCSM4, in particular the spatial location of the opening of a big polynya
in the Irminger Sea, determining the stadial-interstadial transition, is also identified in MIROC4m (Kuniyoshi et al., 2022) (Table A1).

Under late glacial conditions, at 30 ka, a quasi-oscillating AMOC is produced by the HadCM3 model (Armstrong et al., 2021) and results from a North Atlantic salt oscillator mechanism similar to that in UofT CCSM4 (Peltier and Vettoretti, 2014; Vettoretti and Peltier, 2016; Peltier et al., 2020). The HadCM3 model also shows millennial-scale climate oscillations triggered by deglacial meltwater discharge in LGM simulations (Romé et al., 2022). Under intermediate glacial conditions (MIS3: 40-32 ka), the COSMOS model shows spontaneous millennial-scale climate oscillations triggered solely by orbitally driven insolation changes (Zhang et al., 2021). Variations in either obliquity or eccentricity-modulated precession lead to climate variations over the tropical and subpolar North Atlantic which exert opposite effects on AMOC strength, and hence result in an oscillatory climate regime (Zhang et al., 2021). The CM2Mc model also produces somewhat smoothed quasi-oscillating AMOC under intermediate MIS3-like boundary conditions, with a present-day ice sheet distribution in combination with a CO₂ concentration of 180 ppm and low obliquity (22°) (Brown and Galbraith, 2016; Galbraith and de Lavergne, 2019) (Table A1). The MPI-ESM model exhibits more abrupt D-O like quasi-oscillations with a present-day ice sheet distribution in combination with CO₂ concentrations ranging between 190-217 ppm (Table A1; Klockmann et al., 2018, 2020).

In contrast to the above, neither NorESM nor CCSM3 produce D-O type events or quasi-oscillations under MIS3 conditions (38 ka) (Table A3; Guo et al. (2019b); Zhang and Prange (2020)). The NorESM MIS3 simulation is in a stable regime with strong convection in the Norwegian and Labrador seas and the model state appears to be far from a possible threshold (Guo et al., 2019b). The NorESM - with a reasonably simulated AMOC and Arctic sea ice distribution in the PI and historical simulations (as documented by Guo et al. (2019a)) - simulates a MIS3 climate that is in a stable regime with relatively strong convections in the Norwegian and Labrador seas. Indeed, NorESM sensitivity experiments including large reductions in atmospheric CO₂ levels and Laurentide Ice Sheet heights, aimed at perturbing the system into a cold stadial-like climate, indicate that the model state appears to be far from a possible threshold (Guo et al., 2019b). Zhang and Prange (2020) use the LGM ICE-5G ice sheet configuration (Peltier, 2004), with a high Laurentide Ice Sheet (at just over 4000 m) which may have contributed to a strong AMOC in the CCSM3 simulation, alongside its particular background climate.

In summary, IPCC-class models set up with pre-industrial or present-day conditions do not exhibit D-O type warming events, but can feature shorter centennial length cooling and warming events. This model behaviour is consistent with observations, since millennial timescale D-O events do not occur under interglacial conditions but periods of centennial-scale AMOC variability are present throughout several interglacials (Galaasen et al., 2014; Tzedakis et al., 2018; Galaasen et al., 2020). Some models which are set up with more MIS3 like conditions exhibit D-O type warming events, but some do not. Under full LGM conditions only one model (UoT-CCSM4) out of ten (PMIP4 LGM simulations: Kageyama et al. (2021a)) show spontaneous D-O type oscillations (Tables A1 and B1; Kageyama et al., 2021a; Peltier and Vettoretti, 2014).

Since it can take some time for D-O type oscillations to evolve, it is unclear if some models would develop such oscillations if they were run for longer (at least for 2000 model years). Of the thirty-eight LGM/MIS3-like simulations (Table B1; Kageyama et al., 2021a; Armstrong et al., 2021; Klockmann et al., 2018), sixteen simulations have been run for less than 2000 years (Table B1), which makes it difficult to tell whether any of these simulations are
capable of, or likely to, exhibit D-O like behaviour under specific boundary conditions. In addition the duration of LGM/MIS3 simulations is currently inadequate, we note that the majority of CMIP6 models appear not to have performed any form of glacial period simulation (Table C1). Thus, it is difficult to ascertain what proportion, or indeed which, models are capable of capturing D-O like behaviour, under any form of glacial period state (Table C1).

2.1 The role of ocean and sea-ice feedbacks

Changes in the AMOC are crucial to the correct simulation of D-O events (Broecker and Peteet, 1985). The AMOC features stabilising positive feedbacks: a strong AMOC transports warm and salty water into the subpolar North Atlantic, thus weakening the stratification and also keeping the sea ice cover reduced (e.g. Rahmstorf, 2002; Clark et al., 2002). As a consequence, there is a large transport of heat northward across the hemispheres (e.g. Feulner et al., 2013; Buckley and Marshall, 2016), strong heat loss in the North Atlantic and Arctic, and active deep convection that sustains the strong AMOC. A weak AMOC, on the other hand, is associated with a weaker northward transport of salt and heat. This increases the stratification in the subpolar North Atlantic and thus favors the expansion of sea ice. The weak northward heat transport and the insulating effect of the sea ice keep the density gain due to heat loss small and the AMOC in a weak state (e.g. Klockmann et al., 2018). This weak AMOC state is stable when Antarctic Bottom Water becomes dense and salty enough to replace North Atlantic Deep Water (NADW) in the deep North Atlantic.

Sea ice can act as both a slow and fast positive feedback on AMOC-induced changes in climate. Extensive stadial sea ice cover during a weak AMOC state cools Greenland and suppresses atmosphere-ocean exchange of heat and oceanic convection in the North Atlantic (Li et al., 2005, 2010). This also leads to a slow build up of heat in the North Atlantic subsurface. Foraminifera from marine sediment cores offer evidence to back-up that this sub-surface warming occurred before the onset of fast D-O warming events (Rasmussen and Thomsen, 2004; Singh et al., 2014; Dokken et al., 2013). This heat build-up sets up the conditions for subsequent fast losses of GS sea ice.

Wind-driven, AMOC, and sea-ice linked salinity changes also play a crucial role in D-O positive and negative feedbacks. Indeed the net freshwater transport in the Atlantic basin by the AMOC can be used to assess the stability regime of the AMOC (Rahmstorf, 1995; Huisman et al., 2010). The interaction of subpolar and tropical salinity anomalies at the surface and in the subsurface (Jackson and Vellinga, 2013), and possible roles of the intertropical convergence zone and freshwater export through the Fram Strait, are also important in D-O related salinity feedbacks. Klockmann et al. (2018) note that if the subtropical gyre shifts northward and the sub polar gyre contracts: an inflow of salty water extends over the entire Atlantic basin east of the Mid-Atlantic Ridge. This inflow can supply salty water to the deep-convection sites in the Iceland Basin and Irminger Sea, and help maintain continuous deep convection and a strong AMOC even at low CO\textsubscript{2} concentrations (Brown and Galbraith, 2016; Klockmann et al., 2018; Guo et al., 2019b; Muglia and Schmittner, 2015; Sherriff-Tadano et al., 2018), thus preventing the initiation of GS-like conditions. Where the AMOC does enter a weak state for a prolonged period, and the climate enters a GS, a build-up of heat in subsurface waters and salt in the tropical Atlantic can enable the very rapid resumption of the AMOC (Lynch-Stieglitz, 2017), with the upward mixing of heat from the subsurface and importation of salt from the tropic Atlantic via gyre mechanisms (Peltier and Vettoretti, 2014).
Figure 2. Schematic depicting the transition from GS to GI conditions i.e. a D-O warming event.
Figure 3. Schematic depicting the transition from GI to GS conditions i.e. a D-O cooling event.
The importance of vertical (diapycnal) mixing in the ocean for these long timescale, D-O type, instabilities has long been recognised (Welander, 1982). However, we note that the different ocean- and climate-models (Table A1) parameterise diapycnal mixing in very different ways (e.g. Nilsson et al., 2003; de Lavergne et al., 2019). The lack of a single consistent parameterisation and differences in the strength of diapycnal mixing across climate models means it is to be expected that some models will produce D-O like oscillations “out of the box” under MIS3 boundary conditions, but others may require changes, or tuning, to their diapycnal mixing parameters. Even within the same model, a large range of diapycnal diffusivities may yield steady states that satisfy common plausibility constraints such as AMOC transport and sea ice distribution (see e.g. Holden et al., 2010). This is partly because wind-driven Southern Ocean upwelling plays a complementary role to diapycnal mixing in setting the steady state overturning (Samelson, 2004), and partly because surface buoyancy forcing controls the relative strength of the upper (Atlantic) and lower (Antarctic) overturning cells (Oliver and Edwards, 2008). A realistic AMOC transport may be obtained due to compensating biases in these processes, which has serious implications for whether AMOC feedbacks (necessary for capturing D-O behaviour) are represented in an adequate manner within these models.

Figure 2 and 3 show some of the key states, processes, and ocean sea-ice feedbacks that enable D-O events. Following Lohmann and Ditlevsen (2019), D-O events can be broken down into four periods: (1) cold stadial state (Fig. 2a), (2) rapid warming phase governed by very fast-time-scale mechanisms (Fig. 2b), (3) warm interstadial state (Fig. 2c and Fig. 3a) and, (4) gradual cooling phase (Fig. 3b) followed by a faster abrupt transition into a cold stadial phase (Fig. 3c). For some of the D-O events, the magnitude of the warming transitions are on the order of ten degrees in a decade, while the slow cooling in the interstadials is on the order of a few degrees in a millennium (the sawtooth shape) (Lohmann and Ditlevsen, 2019). This picture of rapid retreat of North Atlantic sea ice (Spolaor et al., 2016; Dokken et al., 2013) associated with the resumption of convection and the AMOC, alongside an upwards mixing of salt and heat, followed by a slower cooling phase back into stadial conditions matches accumulation, temperature, and water isotopes retrieved from Greenland ice core records of D-O warming events (Li et al., 2005, 2010; Sime et al., 2019).

2.2 The role of Northern Hemisphere Ice Sheets

Section 2 and Table A1 suggest that large Northern Hemisphere Ice Sheets and the wind regime associated with these can contribute to a strong AMOC which stabilises the North Atlantic and prevents D-O events. Thus ice sheets have a critical role to play in setting up the conditions for D-O events (Zhang et al., 2014; Klockmann et al., 2018; Brown and Galbraith, 2016; Muglia and Schmittner, 2015; Sherriff-Tadano et al., 2018). Figure 4 and 5 show some of the key mechanisms and feedbacks that are behind a state of reduced likelihood for D-O events and a potentially D-O type oscillating state, respectively.

The Northern Hemisphere Eurasian ice sheet was most probably limited to mountainous areas during mid-MIS3 (Helmens, 2014; Hughes et al., 2016), and its impact on D-O dynamics was probably relatively small. However, the size and presence (or absence) of the Laurentide ice sheet (LIS), which has elevations reaching a maximum of approximately 3000 m (Abe-Ouchi et al., 2015) at the LGM, does appear to cause important and robust (across multiple models) changes to Northern Hemisphere
atmospheric circulation and resultant wind forcing of the ocean. LIS-dependent wind changes influence the subpolar gyre and the stability of the atmosphere-ice-ocean coupled system (Li and Born, 2019; Zhang et al., 2014).

A larger LIS (especially its height) causes stronger Northern Hemisphere winds (Li and Battisti, 2008; Pausata et al., 2011; Hofer et al., 2012; Ullman et al., 2014; Löfverström et al., 2014; Merz et al., 2015); an amplified stationary wave over North America (Manabe and Broccoli, 1985; Cook and Held, 1988); the North Atlantic glacial jet to be more stable due to differences in wave-mean flow feedbacks (Riviere et al., 2010); and alters variability of the large-scale atmospheric circulation, especially in the North Atlantic (Justino and Peltier, 2005; Pausata et al., 2009; Riviere et al., 2010). In addition, LIS height could control the sea-ice coverage and gyre circulation by shifting the westerlies over the North Atlantic region Zhang et al. (2014).

LIS altered winds that have wide implications for D-O relevant tipping elements (Seager and Battisti, 2007; Wunsch, 2006). Li and Born (2019) note that, first, the presence of a large LGM-type LIS is linked to a strong, more zonal and equatorward-shifted North Atlantic jet which weakens atmospheric heat transport into the North Atlantic (van der Schrier et al., 2010) and favours episodes of Greenland blocking (Madonna et al., 2017). Both could trigger the atmosphere-ice-ocean feedbacks that cause abrupt climate change in this area. Second, a steadier and stronger North Atlantic jet strengthens the wind-driven component of the subpolar gyre (Li and Born, 2019). Given that at latitudes north of about 45N, the subpolar gyre, which is
essentially wind-driven, plays a crucial role in the northward transport of heat and salt, and is strongly linked to the AMOC (e.g. Jungclaus et al., 2013), wind-driven changes in this gyre have a strong impact on the density gain in the North Atlantic.

In many simulations with a large LIS (LGM-like ice sheets), the subtropical gyre can shift northward and cause an inflow of salty subtropical water over deep-convection sites, contributing to continuous deep convection and a strong AMOC even at low CO$_2$ concentrations (Brown and Galbraith, 2016; Klockmann et al., 2018; Guo et al., 2019b; Muglia and Schmittner, 2015; Sherriff-Tadano et al., 2018; Zhang et al., 2014). Similarly, Zhang et al. (2014) note that a higher LIS can promote less South Labrador Sea sea ice export to northeastern North Atlantic (which reduces sea ice concentration) to permit deep convection and shift the core of westerlies northwards, strengthening subtropical gyre for heat and salt transport (Zhang et al., 2014).

For these reasons, large LGM-type ice sheets, particular a large LIS, tend to lead to a density gain over the North Atlantic and the northward salt transport is enhanced with respect to the PI ice sheet case. For many, but not all models, this tends to lead to more active convection in the North Atlantic and a strong AMOC (across a wide range of CO$_2$ concentrations). That said, the AMOC in many LGM simulations is likely too strong (Klockmann et al., 2018; Kageyama et al., 2021b). Thus the AMOC is far away from a tipping point with LGM-size ice sheets for many models (Zhang et al., 2014; Klockmann et al., 2018; Guo et al., 2019b).
In some simulations with reduced ice sheets, the jet stream shifts northwards, leading to regional cooling and a rise in seasonal sea ice concentration over the subpolar gyre region (Armstrong et al., 2021). This freshens the area and lowers deep-water formation, which weakens the subpolar gyre and as a result the simulations are more prone to enter a weak convection, weak AMOC mode which is conducive to D-O type oscillations (Klockmann et al., 2018; Armstrong et al., 2021). Thus, with intermediate MIS3 LIS, i.e. reduced in its height compared to the LGM, multiple AMOC states are more likely (Zhang et al., 2014; Kawamura et al., 2017; Zhang and Prange, 2020; Armstrong et al., 2021; Klockmann et al., 2018).

3 Contours of a baseline MIS3 experiment protocol

Although the choice of a time within MIS3 for a D-O baseline experiment should be unimportant, given that in reality D-O events occurred during the whole of the MIS3, our analysis of existing simulations, boundary conditions and mechanisms above suggests that there are periods which may be particularly conducive to D-O events occurring in models. Furthermore, if this baseline experiment is to serve as a starting point for further sensitivity simulations, the boundary conditions in terms of CO$_2$, orbital forcing, and ice sheet forcing should be from a central value for MIS3. Oscillatory D-O type behaviour appears to be more likely, but not guaranteed (Guo et al., 2019b; Zhang and Prange, 2020), when models are run with intermediate or low MIS3 CO$_2$ values and ice-sheets, i.e. reduced in size compared to the LGM (Brown and Galbraith, 2016; Kawamura et al., 2017; Klockmann et al., 2018; Zhang and Prange, 2020; Galbraith and de Lavergne, 2019; Zhang et al., 2014; Vettoretti et al., 2022), and particularly without a high LIS. The impact of orbital parameters has been investigated in less detail than the role of GHGs and ice sheets. Only a small number of studies have explored the potential importance of orbital configuration changes on triggering millennial-scale climate variability under intermediate glacial conditions (Rial and Yang, 2007; Mitsui and Crucifix, 2017) – whilst Zhang et al. (2021) demonstrate that abrupt transitions from interstadial to stadial states can be sensitive to obliquity-driven reduction in high latitude mean annual insolation and/or precession-driven rise in low-latitude boreal summer insolation, the ubiquity of D-O events throughout MIS3 suggest that insolation forcing should not be a primary driver of D-O events.

The impact of orbital parameters has been investigated in less detail than the role of GHGs and ice sheets. Using the model COSMOS, Zhang et al. (2021) demonstrated that under intermediate glacial conditions, obliquity appears to play a significant role in the occurrence of D-O type behaviour. In particular, the orbital parameters at 40 ka do not produce D-O type behaviour, whilst at 34 ka lower obliquity (22.6°) leads to D-O type behaviour (see Figure 2 from Zhang et al. (2021)).

Additionally, the MIROC4m model produces D-O-type oscillations (under mid-glacial conditions) and low obliquity (22.9°) (Kuniyoshi et al., 2022). From these COSMOS and MIROC4m results, we deduce that low obliquity seems conducive to D-O behaviour in models.

These considerations suggest that the interval starting at 38 ka to 32 ka is a good choice for the proposed baseline experiment: it is characterised by (1) a rather regular sequence of D-O events (Fig. 1), (2) no evident changes in ice volume and atmospheric CO$_2$, and (3) has the ideal central-to-low GHG conditions and intermediate MIS3 ice-sheet configuration conducive to generating D-O type quasi-oscillations (Section 2). In addition, Zhang et al. (2021) report, for the interval around 36-32 ka, unforced AMOC oscillations for a transient simulation performed with only varying orbital parameters from 40 to 32 ka. These considerations
suggest that the interval starting at 38 ka to 32 ka is a good choice for the proposed baseline experiment: it is characterised by (1) a rather regular sequence of D-O events (Fig. 1), and (2) has the ideal intermediate MIS3 ice-sheet configuration conducive
to generating D-O-type quasi-oscillations (Section 2).

A baseline simulation needs to be run for a sufficient duration to allow the strong positive feedbacks, together with long
time-scale negative feedbacks, that enable D-O type oscillations. The analysis of existing simulations (Section 2) suggests this
should be a minimum of 5000 years (Peltier and Vettoretti, 2014; Kleppin et al., 2015; Sidorenko et al., 2015; Brown and
Galbraith, 2016; Klockmann et al., 2018, 2020). However, given computational constraints, a minimum duration of around
2000 years, with a spin-up period of 1000 years, may be a more practical minimum requirement for most modeling groups.
It would, however, be important to examine and document key metrics for model drift (such as top-of-atmosphere radiation
imbalance, deep ocean or global mean ocean temperature) during the initial spin-up. The exact length of spin-up is thus subject
to discretion of each modelling group based on these key metrics.

There are two obvious possibilities for spinning up the MIS3 control experiment (MIS3-cnt). The baseline experiment could
be initialised from either the end of a well spun-up LGM or PI experiment. Other possibilities could be to spin up from
a linear combination of LGM and PI states (as done in Klockmann et al., 2016, 2018) or spinning up from present day’s
observations (as done in Guo et al., 2019b). Modelling groups are encouraged to choose whichever option is more feasible/convenient for them. In case that several spin-up options are available, short spin-ups with diagnosed top-of-atmosphere
(TOA) imbalance or global mean ocean temperature could help distinguish the faster spin-up option. It is worth noting that
initial ocean state (i.e., Atlantic salinity stratification) does play a role in abrupt AMOC change and associated feedbacks
(Zhang et al., 2013; Zhang et al., 2021), of which impacts shall be considered and evaluated in the future.

We suggest to perform a MIS3-cnt experiment using boundary conditions following Guo et al. (2019b), i.e., GHG and orbital
conditions for 38 ky (Fig. 6); and ice sheet configurations as outlined below. We suggest performing a MIS3-cnt experiment
centered at 34 ka, using GHG and orbital conditions for 34 ka (Fig. 6); and ice sheet configuration as outlined below (sections
3.1 and 3.2).

We acknowledge that some models might not oscillate under the proposed 34 ka baseline scenario. Indeed, this is expected
for NorESM, which under 38 ka conditions, is in a stable regime and the model state seems to be far from a possible tipping
point. In spite of that, standardised MIS3 simulations which do not show D-O like behaviour are still highly valuable, for
exactly the same reasons that LGM simulations are relevant to the wider modelling community. These standardised MIS3
simulations could contribute to progress on the overarching CMIP6 questions 1 and 2 (Eyring et al., 2016): “How does the
Earth System respond to forcing?”, and “What are the origins and consequences of systematic model biases?” With a larger
number of standardised MIS3 simulations, we would be able to answer questions such as:

- Are state-of-the-art climate models capable of representing D-O events under more realistic MIS3 conditions? Benchmarking
  these simulations will deliver a measure of how well models simulate abrupt changes, and tipping events.

- Standardized MIS3 simulations can help explore the existence of a theoretical sweet spot for millennial activity in
current climate models (Barker and Knorr, 2021). As close to or within the sweet spot, the AMOC is characterized by
Figure 6. Monthly zonal-mean MIS3 (38ka-34ka) - PI anomalies of the top-of-atmosphere short-wave incoming radiation (W m$^{-2}$).

High sensitivity to transient and/or noisy climatic forcing (Zhang et al., 2014; Zhang et al., 2018) or by self-oscillating behaviors (Zhang et al., 2021).

- If models are too stable to simulate abrupt transitions, what are the processes that contribute to relative levels of model stability?

- In addition, a larger number of standardised MIS3 simulations could encourage the creation of new data sets, improving model-data evaluation.

3.1 Atmospheric trace gases

MIS3 atmospheric CO$_2$ values varied between a maximum of $\sim$ 233 ppm to a minimum of $\sim$ 187.5 ppm (Table 2; Figure 1; Bauska et al., 2021). Interestingly, increases of around 5 ppm happened during the abrupt warming of most D-O events and increases of up to 10 ppm happened within some Heinrich stadials (Bauska et al., 2021). GHG forcing is critical to model stability. Low (LGM-like) to intermediate (MIS3) CO$_2$ concentrations tend to be associated with abrupt D-O type AMOC transitions in models (Section 2 and Klockmann et al., 2018; Zhang et al., 2017, 2014; Brown and Galbraith, 2016; Vettoretti et al., 2022). We thus suggest to perform the MIS3-cnt experiment using the GHGs values specified in Table 2 and keep these values fixed for the whole duration of the simulation including the spin-up.
3.2 Northern Hemisphere Ice Sheets

Constraining MIS3 ice-sheet boundary conditions is a challenge. Scarcity and fragmentation of evidence (Kleman et al., 2010; Batchelor et al., 2019) is an issue. In particular, it is difficult to determine the size and shape of the ice sheets during MIS3 because subsequent larger LGM configurations have overridden and destroyed evidence of the position of the margins of these smaller ice sheets.

Global sea level fluctuations during the mid-MIS3 were driven nearly exclusively by the LIS (Gowan et al., 2021). Global average sea level remained above −55 m for the period between 30-55 ka. From glacial isostatic modelling and geological constraints, a global mean sea level between −30 m and −50 m is inferred (Dalton et al., 2022). For much of MIS3, since the Eurasian ice sheets and the Cordilleran Ice Sheet were likely restricted to mountain-based caps (Helmens, 2014; Hughes et al., 2016; Clague and Ward, 2011), the primary control on ice volume is assumed to be from the LIS. Recent work in the area of the Hudson Bay (Dalton et al., 2016, 2019; McMartin et al., 2019; Dalton et al., 2022) suggests ice-free conditions may have occurred during mid-MIS3. This implies climatic conditions in this region similar to present (Dalton et al., 2017), and a LIS margin removed from the southern Hudson Bay. Similarly Tarasov et al. (2012) show a considerably lower and less extensive LIS compared to ICE-5G and ICE-6G (Peltier, 2004; Peltier et al., 2015) LGM ice sheet reconstructions. Pico et al. (2017) sea-level curves are consistent with the estimated MIS3 ice-sheet volumes from Batchelor et al. (2019). Using Glacio Isostatic Adjustment modeling, Pico et al. (2017) also show that a small LIS can explain high MIS3 sea-level estimates alongside the eastern coast of the United States. Batchelor et al. (2019)’s synthesis of numerical modelling results and empirical data provides additional support for a considerable reduction in the MIS3 LIS extent and very minimal European ice sheet.

The recent MIS3 ice sheet reconstruction, PaleoMIST 1.0 (Paleo Margins, Ice Sheets, and Topography), was developed independently of far-field sea-level records and indirect proxy records by Gowan et al. (2021). This reconstruction is based on trying to fit the evolution of ice flow indicators, as well as chronological constraints of ice-free conditions.

Gowan et al. (2021) provide a maximum and minimal MIS3 reconstruction. However the maximum scenario is the more consistent with recently discovered eastward oriented, pre-LGM ice flow direction indicators found in southeastern Manitoba (Gauthier and Hodder, 2020). The 37.5 ka time slice is representative of conditions prior to Heinrich Event 4 (Andrews and Voelker, 2018) and therefore the ice thickness in Hudson Bay may be somewhat larger than ideal for the post H4 D-O events. The ice margin elsewhere for the Laurentide Ice Sheet is based on chronological constraints, most that are documented in the compilation by Dalton et al. (2019). The Cordillera Ice Sheet extent is based on evidence of relatively restricted ice cover during MIS 3 (Clague and Ward, 2011). The Greenland Ice Sheet margin is set to be intermediate of the LGM and present day extent. The Eurasian ice cover is taken to be intermediate of the DATED-1 minimum and maximum extent margins for their 35-38 ka time slice (Hughes et al., 2016). For East Antarctica, the margin is set to be the same as present, while West Antarctica, the margin is between present day and LGM extent. Gowan et al. (2021) provide a maximum and minimal MIS3 reconstruction, specifically for the Laurentide Ice Sheet. The maximum scenario is more consistent with recently discovered eastward oriented, pre-LGM ice flow direction indicators found in southeastern Manitoba (Gauthier and Hodder, 2020), so we currently consider it to be
more likely. However, at 35 ka, the difference between the two scenarios is minor. The difference is primarily with the thickness (and therefore also topography) of the ice sheet, rather than extent, but it amounts to less than 1 m of sea level equivalent. The 35 ka time slice represents conditions after Heinrich Event 4 (Andrews and Voelker, 2018), and the ice margin in Hudson Strait is retreated about 350 km from the edge of the continental shelf. The ice margin elsewhere for the Laurentide Ice Sheet is based on chronological constraints, most that are documented in the compilation by Dalton et al. (2019). The Cordillera Ice Sheet extent is based on evidence of relatively restricted ice cover during MIS 3 (Clague and Ward, 2011). The Greenland Ice Sheet margin is set to be intermediate of the LGM and present day extent. The Eurasian ice extent at 35 ka includes an advance of ice into the Baltic Sea, which happened after Heinrich Event 4 (Hughes et al., 2016). For East Antarctica, the margin is set to be the same as present. In West Antarctica, the margin at 35 ka is close to the shelf edge, as the maximum extent may have been achieved by 30 ka (Larter et al., 2014).

Given its strong evidence basis, we thus suggest the use of the maximum 37.5 ka Gowan et al. (2021) PaleoMIST ice sheet configuration. We note the LIS is considerably reduced in size, compared to the ICE-6G LGM reconstruction in the southeastern margin (Fig. 7a,d); the EIS is also significantly smaller (Fig. 7a,d).

Given its strong evidence basis, we thus suggest the use of the maximum 35 ka Gowan et al. (2021) PaleoMIST ice sheet configuration. We note the LIS is considerably reduced in size, compared to the ICE-6G LGM reconstruction in the southeastern margin (Fig. 7a,d); the EIS is also significantly smaller (Fig. 7a,d).

An alternative data-constrained ice sheet model for 38 ka is shown in Fig. 7c,f. This consists of North American (Tarasov et al., 2012), Eurasian (Lev Tarasov, personal communication), Greenland (Tarasov and Richard Peltier, 2002), and Antarctic (Briggs et al., 2014) ice sheets. This particular ice sheet configuration has been previously used by Guo et al. (2019b). This reconstruction is also smaller than ICE-6G (Fig. 7a,d), with a southeastern LIS margin further north. Similarly, it has a smaller EIS, although Fennoscandia is covered by land ice (Fig. 7e,f). The Cordilleran Ice Sheet is merged with the LIS and the Barents Sea is kept free of land ice. There is a significant amount of land ice over the Canadian Archipelago, blocking the transport of water between Baffin Bay and the Arctic (Fig. 7e). In Antarctica, grounded ice cover the Weddell and Ross rather than floating ice shelves as present day (Fig. 7e).

Whilst the implementation of the ice sheets will differ between models, the steps of Kageyama et al. (2017) describe how to implement a glacial state ice sheet in the IPSL climate model. For consistency, we likewise recommend the same steps should be followed as far as possible. Since a reduced sea-level can modify river courses, Kageyama et al. (2017) recommend that as a minimum, rivers should reach the oceans. Also, the ocean should be initialized with a salinity 0.6 psu higher than the PI experiment, to account for the sea-level difference between MIS3 and PI experiment (freshwater stored as ice on land) (Guo et al., 2019b).

The single ice sheet reconstruction MIS3 set-up summarized above contrasts with the PMIP4 LGM protocol, which provides three different possible ice sheet configurations (PMIP3, ICE6G-C and GLAC-1D) for the tier 1 LGM experiment (Kageyama et al., 2017). This partially reflects the more limited knowledge of ice sheet in pre-LGM periods. Exploration of the effect of MIS3 ice sheet reconstructions uncertainties on climate models, particularly on model stability, would be valuable. For this purpose, further additional 34 ky / MIS3 ice sheet reconstructions would be very valuable.
Figure 7. MIS3 ice sheet reconstruction from (a, b) Gowan et al. (2021) and (c, d) Guo et al. (2019b). Also shown for comparison is the (b, c) LGM ICE-6G ice sheet reconstruction from Peltier et al. (2015). Third row shows the differences between the MIS3 ice sheet reconstruction and the LGM ICE-6G reconstruction.
3.3 An additional kicked Heinrich Event preconditioned option (Heinrich-Event preconditioned option)

The term “kick” Heinrich event-like was initially introduced by Peltier and Vettoretti (2014) to invoke a 'kicked' salt oscillator hypothesis (pseudo Heinrich type behaviour), to induce D-O type oscillations in an LGM simulation performed with the UoT CCSM4. During the first thousand years of the simulation as the model is spun up and the ocean cools to reach a state consistent with glacial boundary conditions, there are two thermal thresholds during which the strength of the AMOC rapidly reduces (see Figure 2 in Peltier et al., 2020). These abrupt transitions in the AMOC coincide with abrupt reductions in surface temperatures in the North Atlantic and abrupt expansions of sea ice coverage. During the second of these events the AMOC is reduced to approximately 12 Sv, about half its strength in the pre-industrial control (Peltier et al., 2020). This event may resemble the impact of a Heinrich event-like "kick" to the AMOC though no freshwater perturbation was imposed (Peltier et al., 2020).

After this, the AMOC spontaneously exhibits D-O like quasi oscillations (Peltier et al., 2020).

In a more recent study, Pedro et al. (2022) examine the CCSM4 simulations that shows unforced D-O type oscillations (Peltier and Vettoretti, 2014; Vettoretti and Peltier., 2018), but with the addition of a (freshwater) H-like event. The freshwater flux (0.05 Sv injected into the NA for 500 years) leads to (1) a 5 Sv weaker AMOC compared to the one seen in the unforced model stadial and, (2) a stronger warming transition into the interstadial phase once the H event finalises (Pedro et al., 2022).

The term “kick” Heinrich event-like was initially introduced by Peltier and Vettoretti (2014) to invoke a 'kicked' salt oscillator hypothesis (pseudo-Heinrich type behaviour), to induce D-O type oscillations in an LGM simulation performed with the UoT CCSM4. During the first thousand years of the simulation as the model is spun up and the ocean cools to reach a state consistent with glacial boundary conditions, there are two thermal thresholds during which the strength of the AMOC rapidly reduces (see Figure 2 in Peltier et al., 2020). These abrupt transitions in the AMOC coincide with abrupt reductions in surface temperatures in the North Atlantic and abrupt expansions of sea ice coverage. During the second of these events, the AMOC is reduced to approximately 12 Sv, about half its strength in the pre-industrial control (Peltier et al., 2020). This event may resemble the impact of a Heinrich event-like "kick" to the AMOC though no freshwater perturbation was imposed (Peltier et al., 2020).

Following the studies mentioned above, we suggest that some models may require a freshwater (H-like) event as a precursor to the unforced (D-O type) oscillatory behaviour. Freshwater perturbations could trigger abrupt reductions in the AMOC strength and in NA surface temperatures and sea ice coverage, which could be important in preconditioning a state in models more conducive to unforced (D-O type) oscillations. In a more recent study, Pedro et al. (2022) examine the CCSM4 simulations that shows unforced D-O type oscillations (Peltier and Vettoretti, 2014; Peltier and Vettoretti, 2018), but with the addition of a (freshwater) H-like event. (Pedro et al., 2022). The freshwater flux (0.05 Sv injected into the NA for 500 years) leads to (1) a 5 Sv weaker AMOC compared to the one seen in the unforced model stadial and, (2) a stronger D-O warming transition into the interstadial phase (Pedro et al., 2022). Thus this type of H-E preconditioning can trigger abrupt reductions in the AMOC strength and in NA surface temperatures and sea ice coverage – and it may also help induce a stadial state in other models which is more conducive to unforced (D-O type) oscillations (Pedro et al., 2022).

The MIS3 D-O events are mostly grouped in Bond cycles (Bond et al., 1993; Lehman, 1993; Bond and Lotti, 1995), where cycles begin and finish with a H event. The Given the importance of HEs to starting Bond Cycles of D-O events, an additional
experiment to investigate how HE meltwater preconditioning impacts the simulation of D-O like oscillations under MIS3 boundary conditions would be valuable. HE freshwater preconditioning may, as in reality, be more conducive to a (Bon Cycle-like) sequence of spontaneous D-O type oscillations (see Table 1).

The freshwater delivered during Heinrich event iceberg discharge extends GS duration and suppresses the AMOC, leading to accumulation of heat in the Southern Hemisphere, and in the North Atlantic subsurface waters (e.g. Stocker and Johnsen, 2003). Estimates of the meltwater input into the North Atlantic during Heinrich events range between 2 m and 15 m of sea level equivalent ice volume (Hemming, 2004; Chappell, 2002; Rohling et al., 2004; Roche et al., 2004; Roberts et al., 2014b; Siddall et al., 2008; Grant et al., 2014). It is logical to presume that these freshwater events are important in preconditioning the climate system with respect to D-O behaviour and indeed Peltier et al. (2020) have suggested that some models require an Heinrich event as a precursor to the D-O type quasi-oscillatory behaviour (Peltier and Vettoretti, 2014; Peltier et al., 2020; Pedro et al., 2022). Freshwater perturbations can trigger changes between AMOC states (e.g. Ganopolski and Rahmstorf, 2001; Timmermann et al., 2003; Stouffer et al., 2006; Hu et al., 2008; Kageyama et al., 2012; Roberts et al., 2014a; Sime et al., 2019) and a relatively small freshwater flux applied over convection areas can lead to a shutdown of the AMOC (e.g. Roche et al., 2010). Studies have shown similarities between observed global features of abrupt D-O changes and the behaviour seen in freshwater forcing experiments (Liu et al., 2009; Menviel et al., 2014). However, the sensitivity of the AMOC to a wide range of freshwater inputs varies according to model, where the meltwater is added, and the background climate state (Ganopolski and Rahmstorf, 2001; Timmermann et al., 2003; Stouffer et al., 2006; Hu et al., 2008; Kageyama et al., 2012; Roberts et al., 2014a; Zhang et al., 2014). Given these various uncertainties, we suggest that it would be useful to run an additional experiment to investigate how preconditioning through a kicked H-event impacts the simulation of D-O like oscillations under MIS3 boundary conditions. Given these various uncertainties, we suggest that it would be useful to run an additional experiment to investigate how preconditioning through a H-like (freshwater) event impacts the simulation of D-O like oscillations under MIS3 boundary conditions.

The range of H-event volumes calculated using ice sheet models varies from 24.2 to 125 x 10^4 km^3 (MacAyeal, 1993; Dowdeswell et al., 1995; Marshall and Clarke, 1997; Hulbe, 1997), whilst isotope based estimates and a precipitation balance approach have yielded 86, 649, and 946 x 10^4 km^3 of ice volume (Hemming, 2004; Roche et al., 2004; Levine and Bigg, 2008). Roberts et al. (2014b), and using a sediment modelling approach estimated a discharge of 30 to 120 x 10^4 km^3 of ice volume. Some of the spread in these estimates could be because the relationship between the oxygen isotope record, sea level, and meltwater volume is not constant when ice is lost from marine basins, such that the use of oxygen isotopes for calculating H-event volumes may produce unrealistically high values (Gasson et al., 2016; Hemming, 2004; Roberts et al., 2014b). There is also some uncertainty about the duration of the H-events, with some previous studies suggesting they could be as short as 250 years (Hemming, 2004) and others suggesting a duration of 500 yr is more typical (Roberts et al., 2014b). These considerations suggest that it is possible to justify the use of anywhere between 0.02 - 0.6 Sv freshwater flux over 500 years; or 0.04 - 1.2 Sv over 250 years. More recent estimates of H-event magnitudes tend to favour the lower end of this range. If all forcings are set to MIS3-cnt values and the H-event freshwater flux is distributed across the North Atlantic this could yield a range of stadial
A subsequent switch-off of the freshwater forcing after this 250-500 year H-kick would be a useful addition to the MIS3-cnt. After 250-500 years this freshwater forcing should be switched off.

Table 2. Summary of the boundary conditions (BC) and forcings for the MIS3-cnt experiment.

<table>
<thead>
<tr>
<th>BC/Forcing</th>
<th>Suggested value MIS3-cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Atmospheric trace gases</strong></td>
<td></td>
</tr>
<tr>
<td>$CO_2$:</td>
<td>219 ppm - 208 ppm (Bauska et al., 2021)</td>
</tr>
<tr>
<td>$CH_4$:</td>
<td>526 ppb - 420 ppb (Loulergue et al., 2008)</td>
</tr>
<tr>
<td>$N_2O$:</td>
<td>250 ppb - 204 ppb (Schilt et al., 2010)</td>
</tr>
<tr>
<td><strong>Insolation</strong></td>
<td></td>
</tr>
<tr>
<td>Eccentricity: $e = 0.013676$</td>
<td>Berger (1978)</td>
</tr>
<tr>
<td>Obliquity: $\Omega = 23.268^\circ$</td>
<td>Berger (1978)</td>
</tr>
<tr>
<td>Perihelion: $\omega = 180^\circ$</td>
<td>Berger (1978)</td>
</tr>
<tr>
<td>Precession: $\nu = -0.016$</td>
<td>Berger et al. (1998)</td>
</tr>
<tr>
<td><strong>Solar constant</strong></td>
<td>Same as PI control</td>
</tr>
<tr>
<td><strong>Ice sheets</strong></td>
<td>38ka-35ka ice sheet reconstruction (Guo et al., 2019b) 37.5ka ice sheet reconstruction (Gowan et al., 2021); mean global salinity increased by 0.6PSU to account for ice volume</td>
</tr>
<tr>
<td><strong>Global freshwater budget</strong></td>
<td>Closed to avoid drifts; Snow should not accumulate over ice sheets and rivers should flow into the ocean. Models need to consider lakes when closing the global freshwater budget</td>
</tr>
<tr>
<td><strong>Vegetation</strong></td>
<td>Dynamic or fixed as in PI. If fixed vegetation: tundra in land-new-new land points</td>
</tr>
<tr>
<td><strong>Dust</strong></td>
<td>As in PI control</td>
</tr>
<tr>
<td><strong>H-kicked variant</strong></td>
<td>initial 0.04 - 1 Sv over 250-500 years followed by standard MIS3-cnt simulation</td>
</tr>
</tbody>
</table>

4 Conclusions

D-O events are abrupt, large climate changes that punctuated the last glacial period. There is uncertainty whether current IPCC-class models can effectively represent the processes that cause D-O events. We have shown that reduced ice sheets relative to LGM, low obliquity values and low-to-medium MIS3 $CO_2$ values are more likely to lead to unforced quasi-oscillatory D-O type behaviour. However, the simulations need to be run long enough to allow the strong positive AMOC feedbacks, along with negative feedbacks on long time-scales, which can then lead to D-O type oscillations. Around 42% of the simulations set-up with full LGM or more MIS3-like conditions, have a run length of less than 2000 model years, which makes it difficult to tell whether any of these simulations are capable of, or likely to, exhibit D-O like behaviour. In addition, the vast
majority of PMIP4/CMIP6 models have not run LGM or MIS3-like simulations long enough to be sure which models have the capability to oscillate.

We have provided boundary conditions for a baseline MIS3-cnt simulation, and a H-event-like H-event preconditioned variant (freshwater forced experiment). The MIS3-cnt experiment covers the interval from 38 to 32 ka because: (1) it features a rather regular sequence of D-O events, (2) it is characterized by no evident changes in ice volume and atmospheric CO₂, and (3) it is centered at 34 ka because it yields the ideal combination of intermediate ice sheets (smaller in size compared to LGM), low obliquity values and medium-to-low GHG values conducive to oscillatory D-O type behaviour in models. Ideally, the MIS3 baseline experiment should be run for 5000 years, however, given computational constraints a minimum duration of 2000 years together with a spin-up of at least 1000 years is a more practical minimum requirement. This baseline MIS3-cnt protocol provides a common framework to explore cold-period instabilities using particular GHG-, insolation-, freshwater-, and NH ice sheet-related forcings, together with diapycnal mixing. These simulations will allow us to answer questions such as: Is there a difference between how different classes of climate models represent D-O-like behaviour? How important are atmospheric dynamics, or are ocean-sea ice interactions dominant? What controls the time scales and amplitudes of the oscillations? And finally, are climate models too stable? More model simulations run under the here proposed MIS3 DO protocol together with analyses across models, could provide better insights, along the lines of atmospheric-ice-ocean feedbacks behind DO events. These simulations will allow us to answer questions such as: Are current climate models able to reproduce DO-type behaviour under more realistic MIS3 conditions? How well models simulate tipping events, abrupt changes? What are the mechanisms that lead to relative levels of model stability? Moreover, a large number of standardised MIS3 simulations could encourage the creation of new data sets, improving model-data evaluation.

Team list. Ayako Abe-Ouchi; Andreas Born; Nathaëlle Bouttes; Peter Ditlevsen; Michael P. Erb; Georg Feulner; Evan J. Gowan; Lauren Greig; Chuncheng Guo; Sandy P. Harrison; Heather Andres; Masa Kageyama; Marlene Klockmann; Fabrice Lambert; Allegra N. LeGrande; Ute Merkel; Larissa S. Nazarenko; Kerim H. Nisancioglu; Kevin Oliver; Bette Otto-Bliesner; William R. Peltier; Matthias Prange; Kira Rehfeld; Alexander Robinson; Lev Tarasov, Paul. J Valdes; Guido Vettoretti; Nils Weitzel; Qiong Zhang; Xu Zhang

Author contributions. I.M. compiled all tables. L.C.S. and I.M. wrote the first draft of this manuscript. L.C.S and I.M. produced all figures. All authors contributed to the final draft.

Competing interests. No competing interests are present

Acknowledgements. This project is TiPES contribution #123: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 820970. KR and NW acknowledge funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation), project no. 395588486 and the PalMod project (www.palmod.de), subproject no. 01LP1926C. CG acknowledges funding from the Research Council of Norway under grant no. 325222-325333 (ABRUPT).
References

Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-Bliesner, B. L., Peltier, W., Tarasov, L., Peter-

et al.: Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchronicity of Dansgaard–Oeschger events, Climate of the Past, 14, 2018.

Agosta, E. A. and Compagnucci, R. H.: Abrupt climate changes during the marine isotope stage 3 (MIS 3), in: Marine Isotope Stage 3 in


Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer,

Armstrong, E., Izumi, K., and Valdes, P.: Identifying the Mechanisms of DO-scale Oscillations in a Gcm: a Salt Oscillator Triggered by the
Laurentide Ice Sheet, 2021.

Årthun, M., Eldevik, T., Smedsrud, L., Skagseth, Ø., and Ingvaldsen, R.: Quantifying the influence of Atlantic heat on Barents Sea ice

Asmerom, Y., Polyak, V. J., and Burns, S. J.: Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts,

Barker, S. and Knorr, G.: Millennial scale feedbacks determine the shape and rapidity of glacial termination, Nature Communications, 12,
1–12, 2021.


Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter

configuration of Northern Hemisphere ice sheets through the Quaternary, Nature communications, 10, 1–10, 2019.


Chappell, J.: Sea level changes forced ice breakouts in the Last Glacial cycle: new results from coral terraces, Quaternary Science Reviews, 21, 1229–1240, 2002.


Heinrich, H.: Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quaternary research, 29, 142–152, 1988.

Helmens, K. F.: The Last Interglacial–Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe, Quaternary Science Reviews, 86, 115–143, 2014.


Levine, R. C. and Bigg, G. R.: Sensitivity of the glacial ocean to Heinrich events from different iceberg sources, as modeled by a coupled atmosphere-iceberg-ocean model, Paleoceanography, 23, 2008.


745 Li, C. and Born, A.: Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events, Quaternary Science Reviews, 203, 1–20, 2019.


Table A1: Models that exhibit spontaneous oscillations.

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Period</th>
<th>GHG</th>
<th>Ice sheet</th>
<th>Insolation</th>
<th>FWF</th>
<th>Run Length</th>
<th>Main findings</th>
<th>Mechanisms for D-O cooling event</th>
<th>Mechanisms for D-O warming event</th>
<th>Similar Mechanism to schematic in Fig. 2 or 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drijfhout et al. (2013)</td>
<td>EC-Earth model</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>1123 yrs</td>
<td>An anomalous high atmospheric blocking over the eastern subpolar gyre causes the cold event. Ocean currents transport sea ice southwards and there is a shutdown of deep water convection in the Labrador Sea.</td>
<td>No warming event reported.</td>
<td>No. Stochastic atmospheric blocking-sea-ice-ocean feedback identified as a main cause behind the cold event.</td>
<td></td>
</tr>
<tr>
<td>Kleppin et al. (2015)</td>
<td>CCSM4</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
<td>1000 yrs</td>
<td>The cooling event has a duration of 200 years and is linked to a weakened state of the SPG and deep water convection in the Labrador Sea.</td>
<td>The warming event is triggered by a stronger Icelandic low and therefore deep water convection recovers and SPG circulation resumes.</td>
<td>No. Stochastic atmospheric forcing identified as a potential cause for sea ice variations.</td>
<td></td>
</tr>
<tr>
<td>Sidorenko et al. (2015)</td>
<td>ECHAM6-FESOM</td>
<td>Present</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>350 yrs</td>
<td>An anomalous inflow of warm and saline water into the deep Labrador Sea causes a weakening of the subpolar gyre and modifies the upper freshwater budget over the Labrador Sea.</td>
<td>No warming event reported.</td>
<td>No. The strong surface winds over the subtropical NA alter the Gibraltar Strait outflow path into the NA and are identified as the main cause behind the saline and warm anomalies in the deep NA</td>
<td></td>
</tr>
<tr>
<td>Martin et al. (2015)</td>
<td>KCM</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>1000 yrs</td>
<td>As the NA Current accelerates, deep convection in the Weddell Sea enables a positive heat content anomaly to propagate northwards in the upper Atlantic Ocean. Eventually, the heat anomaly reaches the northern NA resulting in a reduction in deep water formation.</td>
<td>The retreat of Antarctic Bottom Water (AABW) leads to enhanced meridional density gradient that results in an increased North Atlantic Deep Water (NADW) cell.</td>
<td>No. Interhemispheric teleconnection. Variability in the Southern Ocean deep water convection identified as the main cause behind AMOC oscillations.</td>
<td></td>
</tr>
<tr>
<td>Peltier and Vettoretti (2014); Vettoretti and Peltier (2016, 2018)</td>
<td>UofT CCSM4</td>
<td>LGM</td>
<td>LGM-21ka</td>
<td>LGM - ICE-6G (VM5a)</td>
<td>LGM -21ka</td>
<td>None</td>
<td>3000 yrs</td>
<td>The continuous flux of sea ice from the Arctic basin into the NA subpolar gyre area across the East Greenland Current, favours melting of sea ice as it moves over the warm-ocean surface. This freshwater input restabilizes the high-latitude NA and results in a considerable decrease in the rate of NA Deep Water formation.</td>
<td>The initiation of the abrupt warming events is associated with the opening of a large polynya over the Irminger Sea. The stability of the water column is key and depends on transport of salt to the subpolar gyre along the Irminger Current and Denmark Strait in the decades preceding the warming event.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Vettoretti et al. (2022)</td>
<td>CCSM4</td>
<td>Glacial simulations</td>
<td>CO₂ levels from 190 to 225 ppm</td>
<td>LGM - ICE-6G (VM5a)</td>
<td>LGM</td>
<td>None</td>
<td>8000-10000 yrs</td>
<td>Old sea ice from the Arctic is exported to the NA, sea-ice growth is favoured through ice-albedo feedback, high-latitude convection is reduced through sea-ice melt, and consequently Antarctica and Greenland cool. The interstadial-to-stadial transition happens with fast NA sea-ice expansion and NADW production.</td>
<td>During a stadial, a sea-ice thin in the Southern Ocean and Antarctica warms. There are increases in salt convergence in the NA, NADW fluctuations are amplified via salt advection feedback, and the volume of NADW increases, allowed by late-stadial decreases in AABW formation. Late-stadial sea-ice expansion experiences thermohaline instability and the Nordic and Irminger Seas are destabilised, triggering rapid sea-ice loss in the NA and the transition from stadial to interstadial states.</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table A1 – continued from previous page

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Period</th>
<th>GHG</th>
<th>Ice sheet</th>
<th>FWF</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong et al. (2021)</td>
<td>HadCM3B</td>
<td>MIS3 30ka</td>
<td>30ka</td>
<td>30ka</td>
<td>None</td>
<td>4000 yrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIS3 30ka</td>
<td>30ka</td>
<td>30ka</td>
<td>None</td>
<td>D-O type oscillations reflect a salt oscillator mechanism in the NA.</td>
</tr>
<tr>
<td>Zhang et al. (2021)</td>
<td>COSMOS</td>
<td>MIS3 40ka</td>
<td>40ka</td>
<td>40ka</td>
<td>None</td>
<td>8000 yrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIS3 30ka</td>
<td>30ka</td>
<td>30ka</td>
<td>None</td>
<td>D-O type oscillations reflect a salt oscillator mechanism in the NA.</td>
</tr>
<tr>
<td>Brown and Galbraith (2016)</td>
<td>CM2Mc</td>
<td>Mixed forcing</td>
<td></td>
<td>C$\text{O}_2 = 180$ ppm</td>
<td>None</td>
<td>8000 yrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D-O type oscillations reflect a salt oscillator mechanism in the NA.</td>
</tr>
<tr>
<td>Klochenn et al. (2021)</td>
<td>MI-ESM</td>
<td>Mixed forcing</td>
<td></td>
<td>C$\text{O}_2 = 355$ ppm; CH$_4 = 946$ ppb; $N_2O = 299$ ppm</td>
<td>None</td>
<td>8000 yrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D-O type oscillations reflect a salt oscillator mechanism in the NA.</td>
</tr>
<tr>
<td>Kunze et al. (2018)</td>
<td>MIROC-4m</td>
<td>Mixed forcing</td>
<td></td>
<td>C$\text{O}_2 = 230$ ppm; CH$_4 = 878$ ppm; $N_2O = 270$ ppm</td>
<td>LGM - 21 ka</td>
<td>8000 yrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D-O type oscillations reflect a salt oscillator mechanism in the NA.</td>
</tr>
</tbody>
</table>
Table A2: List of simulations run under MIS3/mid-glacial conditions.

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Period</th>
<th>GHG</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo et al. (2019b)</td>
<td>NorESM1-F</td>
<td>MIS3 – 38 ka</td>
<td>$CO_2 = 215$ ppm; $CH_4 = 550$ ppb; $N_2O = 260$ ppb</td>
<td>The equilibrium MIS3 simulation does not show spontaneous D-O type oscillations. Attempts at perturbing the system into a cold stadial state, by modifying the height of the LIS and atmospheric CO2 levels, show that the modelled MIS3 interstadial state is rather stable, and thus questioning the occurrence of spontaneous D-O type oscillations in the lack of interactive ice sheet-meltwater dynamics.</td>
</tr>
<tr>
<td>Zhang and Prange (2020)</td>
<td>CCSM3</td>
<td>MIS3 – 38 ka</td>
<td>$CO_2 = 215$ ppm; $CH_4 = 501$ ppb; $N_2O = 234$ ppb</td>
<td>AMOC is more sensitive to meltwater fluxes under MIS3 conditions than under LGM conditions. The lower AMOC stability under MIS3 conditions proposes that D-O type oscillations could have been triggered by small perturbations in the ocean surface meltwater forcing e.g. linked to ice-sheet processes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run Length</th>
<th>FWF</th>
<th>Insolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 yrs (recently extended to 6600 years)</td>
<td>None</td>
<td>Data-constrained 38 ka</td>
</tr>
<tr>
<td>2170 yrs</td>
<td>12 housing/extraction experiments with freshwater fluxes from $\pm 0.005$ Sv to $\pm 0.2$ Sv, injected in the Nordic Seas for 500 years</td>
<td>ICE-5G ice-sheet configuration (Peltier, 2004).</td>
</tr>
<tr>
<td>Study</td>
<td>Model</td>
<td>Period</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Kawamura et al. (2017)</td>
<td>MIROC-4m</td>
<td>Mid-glacial state</td>
</tr>
<tr>
<td>Vettoretti et al. (2022)</td>
<td>CCSM4</td>
<td>Glacial run</td>
</tr>
<tr>
<td>Study</td>
<td>Model</td>
<td>Period</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Zhang et al. (2014, 2017)</td>
<td>COSMOS (ECHAM5-JSBACH-MPIOM)</td>
<td>Mixed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
### Table A2 – continued from previous page

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Period</th>
<th>GHG</th>
<th>Ice sheet</th>
<th>Insolation</th>
<th>FWF</th>
<th>Run Length</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al. (2014, 2017)</td>
<td>COSMOS (ECHAM5-JSBACH-MPIOM)</td>
<td>Mixed</td>
<td>$CO_2$ levels increased from 185 to 205 ppm during 500 years.</td>
<td>40% of LGM ice-sheet configuration</td>
<td>LGM</td>
<td>None</td>
<td>500 yrs</td>
<td>For a moderate ice volume, 0.25-0.45 times the LGM, two stable AMOC modes are identified. A variation of 15 ppm in atmospheric $CO_2$ concentration – equivalent to changes during D-O cycles containing HE – is enough to trigger oscillations between a weak stadial state to a strong interstadial circulation state.</td>
</tr>
<tr>
<td>Zhang et al. (2014, 2017)</td>
<td>COSMOS (ECHAM5-JSBACH-MPIOM)</td>
<td>Mixed</td>
<td>$CO_2$ levels increased from 185 to 239 ppm at a rate of 0.02 ppm per year.</td>
<td>Intermediate ice sheet configuration - ice volume equivalent to approximately a sea-level drop of 40m</td>
<td>LGM</td>
<td>None</td>
<td>600 yrs</td>
<td></td>
</tr>
<tr>
<td>Zhang et al. (2014, 2017)</td>
<td>COSMOS (ECHAM5-JSBACH-MPIOM)</td>
<td>Mixed</td>
<td>$CO_2$ levels increased from 185 ppm and 245 ppm at a rate of 0.05 ppm per year.</td>
<td>LGM ice volume</td>
<td>LGM</td>
<td>Persistent freshwater flux of 0.15 Sv</td>
<td>600 yrs</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Model</td>
<td>Period</td>
<td>GHG</td>
<td>Ice sheet</td>
<td>Insolation</td>
<td>FWF</td>
<td>Run Length</td>
<td>Main findings</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Brugger et al. (2019)</td>
<td>CLIMBER 3α</td>
<td>415 and 380 Ma</td>
<td>$CO_2 = 1500$ ppm. Few runs with 500 ppm, 800 ppm, 2000 ppm</td>
<td>None</td>
<td>S0=1315 W/m$^2$ (415 Ma), 1319 W/m$^2$ (380 Ma), various obliquity values, eccentricities, precession angles</td>
<td>None</td>
<td>5000 yrs</td>
<td>Decadal to centennial temperature fluctuations at high northern latitudes.</td>
</tr>
<tr>
<td>Rind et al. (2018)</td>
<td>GISS E2-R (TCADI)</td>
<td>Future warming simulation (experiment &quot;abrupt 4x CO2&quot; in Rind et al. (2018))</td>
<td>$4 \times \text{PI } CO_2$</td>
<td>PD</td>
<td>PD</td>
<td>None</td>
<td>2500 yrs</td>
<td>Multi-centennial cessation with restoration and rapid overshooting in NADW formation</td>
</tr>
<tr>
<td>Study</td>
<td>Model</td>
<td>Period</td>
<td>GHG</td>
<td>Ice sheet</td>
<td>Insolation</td>
<td>FWF</td>
<td>Run Length</td>
<td>Main findings</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------------------------------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
<td>------------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td><strong>Rind et al. (2018)</strong></td>
<td>GISS E2-R (TCADI)</td>
<td>Future warming simulation (experiment &quot;1 pct CO2&quot; in Rind et al. (2018))</td>
<td>$CO_2$ rises at 1% per year until 4 x $CO_2$ (after 140 years) and then held constant.</td>
<td>PD</td>
<td>PD</td>
<td>None</td>
<td>2500 yrs</td>
<td>Multi-centennial cessation with restoration and rapid overshooting in NADW formation</td>
</tr>
<tr>
<td><strong>Rind et al. (2018)</strong></td>
<td>GISS E2-R (TCADI)</td>
<td>Future warming simulation (experiment &quot;rcp85&quot; in Rind et al. (2018))</td>
<td>rcp85 emissions</td>
<td>PD</td>
<td>PD</td>
<td>None</td>
<td>4300 yrs</td>
<td>Multi-centennial cessation with restoration and rapid overshooting in NADW formation</td>
</tr>
</tbody>
</table>
Appendix B

Table B1. Summary of LGM/MIS3-like simulations discussed in the text. Highlighted in red the models that reproduce D-O type oscillations.

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Period</th>
<th>N° of simulations</th>
<th>Run length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peltier and Vettoretti (2014)</td>
<td>UofT CCSM4</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td>Lohmann et al. (2020)</td>
<td>AWI-ESM1-1-LR</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>1300</td>
</tr>
<tr>
<td>Sidorenko et al. (2019)</td>
<td>AWI-ESM-2-1-LR</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>Tierney et al. (2020)</td>
<td>CESM1.2</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>1800</td>
</tr>
<tr>
<td>Valdes et al. (2017)</td>
<td>HadCM3B-M2.1aD</td>
<td>PMIP4 LGM</td>
<td>3</td>
<td>400-2900</td>
</tr>
<tr>
<td>Lhardy et al. (2021)</td>
<td>iLOVECLIM1.1.4</td>
<td>PMIP4 LGM</td>
<td>2</td>
<td>5000</td>
</tr>
<tr>
<td>Volodin et al. (2018)</td>
<td>INM-CM4-8</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Sepulchre et al. (2020)</td>
<td>IPSLCM5A2</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>1200</td>
</tr>
<tr>
<td>Ohgaito et al. (2021)</td>
<td>MIROC-ES2L</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>8960</td>
</tr>
<tr>
<td>Mauritsen et al. (2019)</td>
<td>MPI-ESM1.2</td>
<td>PMIP4 LGM</td>
<td>1</td>
<td>3850</td>
</tr>
<tr>
<td>Armstrong et al. (2021)</td>
<td>HadCM3B-M2.1aD</td>
<td>MIS3 (30 ka)</td>
<td>1</td>
<td>6000</td>
</tr>
<tr>
<td>Zhang et al. (2021)</td>
<td>COSMOS</td>
<td>MIS3 (40-32 ka)</td>
<td>2</td>
<td>5000</td>
</tr>
<tr>
<td>Guo et al. (2019b)</td>
<td>NorESM</td>
<td>MIS3 (38 ka)</td>
<td>1</td>
<td>+6000</td>
</tr>
<tr>
<td>Zhang and Prange (2020)</td>
<td>CCSM3</td>
<td>MIS3 (38 ka)</td>
<td>1</td>
<td>2170</td>
</tr>
<tr>
<td>Kawamura et al. (2017)</td>
<td>MIROC4m</td>
<td>Mid-glacial</td>
<td>1</td>
<td>+2000</td>
</tr>
<tr>
<td>Kuniyoshi et al. (2022)</td>
<td>MIROC4m</td>
<td>Mid-glacial</td>
<td>2</td>
<td>6000</td>
</tr>
<tr>
<td>Vettoretti et al. (2022)</td>
<td>CCSM4</td>
<td>Glacial conditions</td>
<td>4$^b$</td>
<td>8000</td>
</tr>
<tr>
<td>Brown and Galbraith (2016)</td>
<td>CM2Mc</td>
<td>Mixed forcing</td>
<td>1</td>
<td>+8000</td>
</tr>
<tr>
<td>Klockmann et al. (2018)</td>
<td>MPI-ESM</td>
<td>Mixed forcing</td>
<td>3</td>
<td>+8000</td>
</tr>
<tr>
<td>Zhang et al. (2014)</td>
<td>COSMOS</td>
<td>Mixed forcing</td>
<td>11$^c$</td>
<td>300-4000$^d$</td>
</tr>
</tbody>
</table>

$^a$ Only one simulation run longer than 2000 model years

$^b$ Four simulations run with $CO_2$ levels: 200, 210, 220, 225 ppm

$^c$ We do not consider FWF runs nor transient simulations forced with varying $CO_2$ and/or NH ice sheet height

$^d$ Only two simulations with a duration of +2000 model years
Table C1. Contributing members to PMIP4/CMIP6 that have run simulations under LGM or MIS3 conditions.

<table>
<thead>
<tr>
<th>Model</th>
<th>Period</th>
<th>Run length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS-ESM1-5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AWI-ESM-1-1-LR</td>
<td>LGM</td>
<td>1300</td>
</tr>
<tr>
<td>CESM2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CNRM-CM6-1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EC-Earth3-LR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FGOALS-f3-L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FGOALS-g3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GISS-E2-1-G</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HadGEM3-GC31-LL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INM-CM4-8</td>
<td>LGM</td>
<td>50</td>
</tr>
<tr>
<td>IPSL-CM6A-LR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MIROC-ES2L</td>
<td>LGM</td>
<td>+8000</td>
</tr>
<tr>
<td>MPI-ESM1-2</td>
<td>LGM</td>
<td>3850</td>
</tr>
<tr>
<td>MRI-ESM2-0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NESM3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NorESM1-F</td>
<td>MIS3</td>
<td>6000</td>
</tr>
<tr>
<td>NorESM2-LM</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>