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Abstract.

Dansgaard-Oeschger (D-O) events, millennial-scale climate oscillations between stadial and interstadial conditions (of up to
10-15°C in amplitude at high northern latitudes), occurred throughout the Marine Isotope Stage 3 (MIS3; 27.8 — 59.4 ka) period.
The climate modelling community up to now has not been able to answer the question: Are our climate models too stable to
simulate D-O events? To address this, this manuscript lays the ground-work for a MIS3 D-O protocol for general circulation
models which are used in the International Panel for Climate Change (IPCC) assessments. We review: D-O terminology,
community progress on simulating D-O events in these IPCC-class models (processes and published examples), and evidence
about the boundary conditions under which D-O events occur. We find that no model exhibits D-O like behaviour under

pre-industrial conditions. Some, but not all, models exhibit D-O like oscillations under MIS3 and/or full glacial conditions.

Greenhouse gases and ice-sheet configurations are crucial. However most models have not run simulations of long enough
duration to be sure which models show D-O like behaviour, under either MIS3 or full glacial states. We-propese-aMIS3

eommon-framework:-We propose a MIS3 baseline protocol at 34 ka, which features low obliquity values, medium-to-low MIS3
greenhouse gas values and the intermediate ice-sheet configuration which our review suggests are most conducive to D-O like
behaviour in models. We also provide a protocol for a second freshwater (Heinrich-Event preconditioned) experiment, since
previous work suggests that this variant may be helpful in preconditioning a state in models which is conducive to D-O events.

This review provides modelling egroups investigating MIS3 D-O oscillations with a common framework, which is aimed at 1

maximising the chance of the occurrence of D-O like events in the simulations; 2) allowing more precise model-data evaluation

and; 3) providing an adequate central point for modellers to explore model stability.
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1 Introduction

During a Dansgaard-Oeschger (D-O) event, Greenland transitions between cold stadial (GS) and warmer Greenland Interstadial
(GI) conditions. The warming can occur within a decade (Kindler et al., 2014; Huber et al., 2006), whilst cooling occurs
over a much longer period that is typically several centuries in length. During a warming phase, surface air temperatures
over Greenland increase by 10-15°C (Andersen et al., 2006; Kindler et al., 2014; Huber et al., 2006). D-O events are best
documented during Marine Isotope Stage 3 (MIS3; between 27.8 — 59.4 thousand of years BP, hereafter ka Goni and Harrison,
2010), including being recorded in several ice cores from Greenland (Fig. 1 Johnsen et al., 2001). Whilst the D-O event
recorded in these cores are renowned, the events are global in nature (Voelker et al., 2002; Sanchez Gofii and Harrison, 2010;
Sénchez Goili et al., 2017), with known climate signatures including imprints in surface temperature and the hydrological
cycle at high northern latitudes (Andersen et al., 2004; Thomas et al., 2009; Seierstad et al., 2014), in the tropics (Deplazes
et al., 2013; Baumgartner et al., 2014; Adolphi et al., 2018), in Eurasia (Genty et al., 2003; Wang et al., 2008; Jacobel et al.,
2017; Rousseau et al., 2017), and in North and South America (Wang et al., 2004; Wagner et al., 2010; Asmerom et al., 2010;
Deplazes et al., 2013; Vanneste et al., 2015). While there are no Greenland ice core records of the previous glacial (MIS6
around 140-190 ka), speleothems and Antarctic ice cores indicate that it is extremely likely that D-O events also occurred
during MIS6 and earlier glacial periods (Lang et al., 1999; Uriarte, 2019; Landais et al., 2004; Turner and Marshall, 2011;
Barker et al., 2011; Lambert et al., 2012). This observational evidence shows that D-O millennial-timeseale BD-O-events do not
occur under interglacial or full Last Glacial Maximum conditions (Galaasen et al., 2014; Tzedakis et al., 2018; Galaasen et al.,
2020).

In 2011, Valdes (2011) argued that climate models used in the assessments of the Intergovernmental Panel on Climate
Change (IPCC) have not proved their ability to simulate D-O events. This has several implications for the delivery of accurate
projections of climate change, within the context of tipping points and abrupt climate change (Brovkin et al., 2021). Whilst
in the intervening years a number of models have captured key features of D-O events through AMOC hysteresis behaviour
and/or produced D-O type millennial-scale variability under a range of forcings (Brown and Galbraith, 2016; Galbraith and
de Lavergne, 2019; Klockmann et al., 2018; Peltier et al., 2020; Armstrong et al., 2021; Zhang et al., 2021; Vettoretti et al.,
2022), we still do not know if climate models are too stable because too few models have run and published an appropriate
simulation. This deficiency is related to both the computational expense which prevents models from being run for the longer
time periods needed for investigating D-O events and to the lack of an agreed appropriate experimental set-up. The limited
knowledge of pre-Last Glacial Maximum (LGM) boundary conditions, in particular in the case of the ice sheet height and

distribution, makes it challenging to generate an appropriate MIS3 experimental set-up.

An important question is if model stability is caused by the model parameters and MIS3 conditions are such that the models
are in a mono-stable state, in an oscillatory state or if the models exhibits bi-modality where noise-induced transitions are
not induced due to too low model variability (Ditlevsen and Johnsen, 2010). Previous studies have questioned the significance
of the periodic occurrence of DO events in MIS3 (- 1470) (Ditlevsen et al., 2007). If the full glacial period is included, the

distribution of waiting time between DO-events is consistent with a random process (Ditlevsen et al., 2005). Durations of
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stadials vs. interstadials indicate correlations with global ice volume and orbital parameters (Lohmann and Ditlevsen, 2018)

thus underpinning the decision to focus on MIS3 boundary configurations.
Whether models can simulate abrupt changes is a crucial research question: if the current IPCC-class models are too stable

to simulate D-O events, their ability to predict future abrupt transitions, and their use in identifying tipping points is doubtful.
For example, a tipping point may have been recently reached in the Arctic’s Barents Sea (Barton et al., 2018; Tesi et al., 2021);
sea ice loss in the area is linked with enhanced heat transport via an intensified throughflow, or “Atlantification” (Arthun etal.,
2012; Polyakov et al., 2017). In addition, future enhanced precipitation, decline in Arctic sea ice and melting of glaciers and ice
sheets could intensify the supply of freshwater to the North Atlantic and Arctic which could lead to the reorganization of the
Atlantic circulation and tip the energy distribution between South and North in a similar way as occurred during D-O events
(Lenton et al., 2008). If climate models do not reliably simulate past tipping events, it suggests that simulations of the coming
century may be giving us a false sense of security.

Coupled Model Intercomparison Project (CMIP) coordinates and designs climate model protocols for the past, present and
future climates, and has become an indispensable tool to facilitate our understanding of climate change (IPCC, 2013; Eyring
et al., 2016). The Paleoclimate Model Intercomparison Project 4 (PMIP4) is one of the individual Model Intercomparison
Projects which took part in CMIP6 (Kageyama et al., 2018). The design of a common MIS3 experimental protocol would
allow the modelling community to address the questions posed above.

This manuscript compiles current information about unforced D-O like oscillations in FPEC-elass-CMIP5/CMIP6 mod-
els and discusses the boundary conditions and mechanisms responsible for these oscillations. Given the nomenclature on D-O
:
Table 1 and Figure 1 provide a framework for a more consistent terminology for use within this proposed MIS3 DO protocol.
Secondly, we review the literature to ascertain whether models reproduce D-O like events under MIS3, or other, climate con-

events varies throughout the literature. Fi

ditions. We then use this information to develop a protocol for the simulations of D-O events. This protocol focuses on Marine
Isotope Stage 3 (MIS3) partly because of the excellent records of D-O events and-boundary-eendition-during this period (Schulz

et al., 1999) but also because, as our synthesis shows, MIS3 conditions are also conducive to promoting D-O like events in

some HPCC-elass-models—models. Given that D-O events did not occur under full glacial conditions in the last glacial period
the proposed modelling protocol is an important improvement on the use of an LGM PMIP protocol. It will undoubted]

help to shed light on the mechanism and processes involved in millennial-scale oscillations during MIS3. The common MIS3

climate modelling protocol is aimed at: 1) maximising the chance of the occurrence of D-O like events in the simulations; 2

improving model-data evaluation and; 3) providing an adequate central point for modellers to also explore model stability. In
addition to the protocol for a baseline simulation, we also outline a protocol for a Heinrich-event(Bond-eyele-eventone-type;
Table)-preconditioned—variantHeinrich-Event preconditioned (freshwater) experiment. These protocols provide a common

framework for model experiments to explore cold-period instabilities using commonly specified greenhouse gas (GHG), ice

sheet, insolation, and freshwater-related forcings.
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Figure 1. MIS3 ice core records and nomenclature. Stable water isotope and CO2 measurements from Antarctic and Greenland ice cores
(Bauska et al., 2021; NGRIP Project Members, 2004; Kindler et al., 2014). See also Table 1 for D-O nomenclature. The "cnt" red box

indicates the 38 to 32 ka period proposed for the MIS3 baseline experiment,



Table 1: B-O-eventnomenelatureTerminology

Term

Description

Abrupt-elimate-echangeAbrupt change

Portneret-al;20499We follow the IPCC Assessment Report 4 (IPCC AR4) definition of abrupt event/change
Meehl et al., 2007; Meehl et al., 2021). This term refers to a large-scale change, which is much faster than the

change in the pertinent forcing (e.g. rising atmospheric CO2 concentrations).

to a critical threshold at which a small perturbation can qualitatively modify the development or state of a

Fipping pointTipping element

system (Lenton et al., 2008).

another—stable—state—(Portneret-al20649)-This term describes large-scale components of the Earth system
that could pass a tipping point (Lenton et al., 2008). Earth system components are the ocean, atmosphere

cryosphere, anthroposphere and biosphere, which have further important sub-components e.g. the meridional

ocean circulation, the monsoon systems, sea ice, and various ecosystems (Brovkin et al., 2021).

OseillationD-O event

that—series—ofD-O—events—are—oseillations—in—the—striet—sense—During the Last Glacial period, a series of
dramatic climatic fluctuations occurred in the North Atlantic. These are known as D-O events, during which
atmospheric and oceanic conditions alternated between relatively mild (interstadial) and full glacial (stadial

conditions (Dansgaard et al., 1982; Dansgaard et al., 1992). Around 25 abrupt transitions (each completed

within a decade) from stadial to interstadial conditions occurred during the Last Glacial period and their
amplitude vary from 5 to 16°C (Landais et al., 2004; Landais et al., 2006; Landais et al., 2014). The duration

Stadial-InterstadialD-O type oscillations

{Gh-and-Greenland-Stadials{GS)—For the purpose of this MIS3 DO protocol, the term of D-O type oscillation
refers to D-O scale climate variability reproduced by climate models, comparable to the D-O events observed

B-O-eventsGreenland Stadial - Interstadial

D-O events and represent warm and cold phases of the NA area, respectively.
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Heinrieh-or- H-eventsHeinrich events

{Capronetal52021H-These are defined by the presence of layers of ice-rafted debris (IRD) of primarily (not

exclusively) Laurentide origin in North Atlantic sediment cores (e.g. Heinrich, 1988; , 2004). Heinrich events

have been observed during some of the longer stadials, but likely do not cover the entire period of these longer
stadials (Roche e al., 2004; Roche et al,, 2011).

Heinrieh-StadialHeinrich Stadial (HS)

to the complete stadial period, or to part of a stadial only, characterized by changes shown in proxies of IRD,

—D:Q events tend to follow
a pattern of diminishing amplitude (or a general cooling trend of the GSs) following each HE

Bond et al., 1992; Bond et al., 1998; Bond et al., 1999; Bond et al., 2007; Bond et al., 2022). These cycles of

HE grouped D-O events were named Bond cycles by Broecker (1994) and Alley (1998). The average ga
between HEs is around 7 Ka, so this is the average length of a Bond Cycle (Clark et al., 2007).

2 Review of spontaneous D-O type quasi-oscillations in coupled climate models

We compile published evidence of long unforced quasi-oscillations (in the Atlantic Meridional Circulation; AMOC) in IPCC-

class models under all climate states in Table A1, alongside glacial boundary condition simulations which-do-netshewn-these

which do not show D-O type oscillations (Table A3). This permits us to explore the questions of: what proportion of models
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exhibit D-O like behaviour; which boundary conditions are most conducive to this; and what mechanisms are common to the

modelled D-O behaviours. A-numbe

of PI/present-day model simulations exhibit spontaneous centennial-length cold events (Table A1), however, they do not appear

Under pre-industrial greenhouse gas (GHG) forcing and present-day ice sheets, spontaneous centennial-length cold events
that last around 100-200 years occur in four IPCC-class models (Table A1). EC-Earth and Community Climate System Model
version 4 (CCSM4) show high atmospheric blocking over the eastern subpolar gyre that causes a cold event under pre-industrial
boundary conditions (Drijfhout et al., 2013; Kleppin et al., 2015, Table A1). ECHAM6-FESOM also produces cooling events
under pre-industrial conditions due to sudden reductions of deep water convection and increase of sea ice cover in the Labrador
Sea (Sidorenko et al., 2015). Changes in convection also occur in the Kiel Climate Model (KCM; Martin et al., 2015), however
here centennial-scale variability of the AMOC is linked to variability in Southern Ocean convection. Unlike the CCSM4 and
the EC-Earth models, the KCM and ECHAM6-FESOM studies do not indicate an active role of the atmosphere. Although
these four models all show abrupt spontaneous cooling events under pre-industrial boundary conditions, these events do not
have the typical saw-tooth characteristics, or longer timescales, of D-O type events.

Regular cycles of D-O type quasi-oscillations are found in UofT CCSM4 under LGM boundary conditions (Peltier and

Vettoretti, 2014). The initiation of the abrupt D-O type warming events is associated with the opening of a large polynya over

the Irminger Sea (Vettoretti and Peltier, 2016) (Table Al). Puring-thefirst-thousand-years-of-the-simulation-as-the-medelis
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quasi-oscillations (Peltier et al., 2020). The Peltier et al. (2020) salt oscillator is maintained by the salinity gradient between the
subtropical gyre and the Northern North Atlantic;-simi i i i

EGM-COsbutpre-industrial-iee-sheets. Although UofT CCSM4 is the only model to show long unforced quasi-oscillations in
the AMOC under full glacial conditions, most of the other PMIP4 LGM simulations (Kageyama et al., 2021a) have not been

run long enough to be sure that such oscillations would not arise if they were run for longer (see Table B1). Having said that,
ideally models should not show oscillatory D-O type behaviour when configured under a full glacial climate state, given that
in reality D-O events do not occur under full glacial conditions (Huber et al., 2006; Galaasen et al., 2014; Kindler et al., 2014;
Tzedakis et al., 2018).

D-O type quasi-oscillations are also found in MIROC4m under mid-glacial conditions (Kuniyoshi et al., 2022). Some aspects
of the D-O warming mechanism observed in the UofT-CCSM4, in particular the spatial location of the opening of a big polynya
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in the Irminger Sea, determining the stadial-interstadial transition, is also identified in MIROC4m (Kuniyoshi et al., 2022

Table Al).
Under late glacial conditions, at 30 ka, a quasi-oscillating AMOC is produced by the HadCM3 model (Armstrong et al.,

2021) and results from a North Atlantic salt oscillator mechanism similar to that in UofT CCSM4 (Peltier and Vettoretti, 2014,

Vettoretti and Peltier, 2016; Peltier et al., 2020). The HadCM23 model also shows millennial-scale climate oscillations triggered
by deglacial meltwater discharge in LGM simulations (Romé et al., 2022). Under intermediate glacial conditions (MIS3: 40-32

ka), the COSMOS model shows spontaneous millennial-scale climate oscillations triggered solely by orbitally driven insolation
changes (Zhang et al., 2021). Variations in either obliquity or eccentricity-modulated precession lead to climate variations over
the tropical and subpolar North Atlantic which exert opposite effects on AMOC strength, and hence result in an oscillatory
climate regime (Zhang et al., 2021). The CM2Mc model also produces somewhat smoothed quasi-oscillating AMOC under
intermediate MIS3-like boundary conditions, with a present-day ice sheet distribution in combination with a COy concentration
of 180 ppm and low obliquity (22°) (Brown and Galbraith, 2016; Galbraith and de Lavergne, 2019) (Table A1). The MPI-ESM
model exhibits more abrupt D-O like quasi-oscillations with a present-day ice sheet distribution in combination with COq
concentrations ranging between 190-217 ppm (Table Al; Klockmann et al., 2018, 2020).

In contrast to the above, neither NorESM nor CCSM3 produce D-O type events or quasi-oscillations under MIS3 con-
ditions (38 ka) (Table A3; Guo et al. (2019b); Zhang and Prange (2020)). The NerESM-MIS3—simulation—is—in—astable

and historical simulations (as documented by Guo et al. (2019a)) - simulates a MIS3 climate that is in a stable regime with
relatively strong convections in the Norwegian and Labrador seas. Indeed, NorESM sensitivity experiments including large

climate, indicate that the model state appears to be far from a possible threshold (Guo et al., 2019b). Zhang and Prange (2020)
use the LGM ICE-5G ice sheet configuration (Peltier, 2004), with a high Laurentide Ice Sheet (at just over 4000 m) which may

have contributed to a strong AMOC in the CCSM3 simulation, alongside its particular background climate.

In summary, IPCC-class models set up with pre-industrial or present-day conditions do not exhibit D-O type warming events,
but can feature shorter centennial length cooling and warming events. This model behaviour is consistent with observations,
since millennial timescale D-O events do not occur under interglacial conditions but periods of centennial-scale AMOC vari-
ability are present throughout several interglacials (Galaasen et al., 2014; Tzedakis et al., 2018; Galaasen et al., 2020). Some
models which are set up with more MIS3 like conditions exhibit D-O type warming events, but some do not. Under full LGM
conditions only one model (UoT-CCSM4) out of ten (PMIP4 LGM simulations: Kageyama et al. (2021a)) show spontaneous
D-O type oscillations (Tables Al and B1; Kageyama et al., 2021a; Peltier and Vettoretti, 2014).

Since it can take some time for D-O type oscillations to evolve, it is unclear if some models would develop such oscilla-
tions if they were run for longer (at least for 2000 model years). Of-the-thirty-eight LGM/MIS3-like-simulations-Of the forty
LGM/MIS3-like simulations (Table B1; Kageyama et al., 2021a; Armstrong et al., 2021; Klockmann et al., 2018), sixteen sim-

ulations have been run for less than 2000 years (Table B1), which makes it difficult to tell whether any of these simulations are
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capable of, or likely to, exhibit D-O like behaviour under specific boundary conditions. In addition the duration of LGM/MIS3
simulations is currently inadequate, we note that the majority of CMIP6 models appear not to have performed any form of
glacial period simulation (Table C1). Thus, it is difficult to ascertain what proportion, or indeed which, models are capable of
capturing D-O like behaviour, under any form of glacial period state (Table C1).

2.1 The role of ocean and sea-ice feedbacks

Changes in the AMOC are crucial to the correct simulation of D-O events (Broecker and Peteet, 1985). The AMOC features
stabilising positive feedbacks: a strong AMOC transports warm and salty water into the subpolar North Atlantic, thus weaken-
ing the stratification and also keeping the sea ice cover reduced (e.g. Rahmstorf, 2002; Clark et al., 2002). As a consequence,
there is a large transport of heat northward across the hemispheres (e.g. Feulner et al., 2013; Buckley and Marshall, 2016),
strong heat loss in the North Atlantic and Arctic, and active deep convection that sustains the strong AMOC. A weak AMOC,
on the other hand, is associated with a weaker northward transport of salt and heat. This increases the stratification in the
subpolar North Atlantic and thus favors the expansion of sea ice. The weak northward heat transport and the insulating effect
of the sea ice keep the density gain due to heat loss small and the AMOC in a weak state (e.g. Klockmann et al., 2018). This
weak AMOC state is stable when Antarctic Bottom Water becomes dense and salty enough to replace North Atlantic Deep
Water (NADW) in the deep North Atlantic.

Sea ice can act as both a slow and fast positive feedback on AMOC-induced changes in climate. Extensive stadial sea ice
cover during a weak AMOC state cools Greenland and suppresses atmosphere-ocean exchange of heat and oceanic convection
in the North Atlantic (Li et al., 2005, 2010). This also leads to a slow build up of heat in the North Atlantic subsurface.
Foraminifera from marine sediment cores offer evidence to back-up that this sub-surface warming occurred before the onset of
fast D-O warming events (Rasmussen and Thomsen, 2004; Singh et al., 2014; Dokken et al., 2013). This heat build-up sets up
the conditions for subsequent fast losses of GS sea ice.

Wind-driven, AMOC, and sea-ice linked salinity changes also play a crucial role in D-O positive and negative feedbacks.
Indeed the net freshwater transport in the Atlantic basin by the AMOC can be used to assess the stability regime of the AMOC
(Rahmstorf, 1995; Huisman et al., 2010). The interaction of subpolar and tropical salinity anomalies at the surface and in the
subsurface (Jackson and Vellinga, 2013), and possible roles of the intertropical convergence zone and freshwater export through
the Fram Strait, are also important in D-O related salinity feedbacks. Klockmann et al. (2018) note that if the subtropical gyre
shifts northward and the-sub-petar-gyre-contracts:-an-inflow-of salty-the sub polar gyre contracts, an inflow of salty subtropical
water extends over the entire Atlantic basin east of the Mid-Atlantic Ridge. This inflow can supply salty water to the deep-
convection sites in the Iceland Basin and Irminger Sea, and help maintain continuous deep convection and a strong AMOC even
at low COs concentrations (Brown and Galbraith, 2016; Klockmann et al., 2018; Guo et al., 2019b; Muglia and Schmittner,
2015; Sherriff-Tadano et al., 2018), thus preventing the initiation of GS-like conditions. Where the AMOC does enter a weak
state for a prolonged period, and the climate enters a GS, a build-up of heat in subsurface waters and salt in the tropical
Atlantic can enable the very rapid resumption of the AMOC (Lynch-Stieglitz, 2017), with the upward mixing of heat from the

subsurface and importation of salt from the tropic Atlantic via gyre mechanisms (Peltier and Vettoretti, 2014).
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Figure 2. Schematic depicting the transition from GS to GI conditions i.e. a D-O warming event.
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The importance of vertical (diapycnal) mixing in the ocean for these long timescale, D-O type, instabilities has long been
recognised (Welander, 1982). However, we note that the different ocean- and climate-models (Table Al) parameterise di-
apycnal mixing in very different ways (e.g. Nilsson et al., 2003; de Lavergne et al., 2019). The lack of a single consistent
paramaterisation and differences in the strength of diapycnal mixing across climate models means it is to be expected that
some models will produce D-O like oscillations “out of the box” under MIS3 boundary conditions, but others may require
changes, or tuning, to their diapycnal mixing parameters. Even within the same model, a large range of diapycnal diffusivities
may yield steady states that satisfy common plausibility constraints such as AMOC transport and sea ice distribution (see e.g.
Holden et al., 2010). This is partly because wind-driven Southern Ocean upwelling plays a complementary role to diapycnal
mixing in setting the steady state overturning (Samelson, 2004), and partly because surface buoyancy forcing controls the rel-
ative strength of the upper (Atlantic) and lower (Antarctic) overturning cells (Oliver and Edwards, 2008). A realistic AMOC
transport may be obtained due to compensating biases in these processes, which has serious implications for whether AMOC
feedbacks (necessary for capturing D-O behaviour) are represented in an adequate manner within these models.

Figure 2 and 3 show some of the key states, processes, and ocean sea-ice feedbacks that enable D-O events. Following
Lohmann and Ditlevsen (2019), D-O events can be broken down into four periods: (1) cold stadial state (Fig. 2a), (2) rapid
warming phase governed by very fast-time-scale mechanisms (Fig. 2b), (3) warm interstadial state (Fig. 2c and Fig. 3a) and,
(4) gradual cooling phase (Fig. 3b) followed by a faster abrupt transition into a cold stadial phase (Fig. 3c). For some of the
D-O events, the magnitude of the warming transitions are on the order of ten degrees in a decade, while the slow cooling in
the interstadials is on the order of a few degrees in a millennium (the sawtooth shape) (Lohmann and Ditlevsen, 2019). This
picture of rapid retreat of North Atlantic sea ice (Spolaor et al., 2016; Dokken et al., 2013) associated with the resumption of
convection and the AMOC, alongside an upwards mixing of salt and heat, followed by a slower cooling phase back into stadial
conditions matches accumulation, temperature, and water isotopes retrieved from Greenland ice core records of D-O warming

events (Li et al., 2005, 2010; Sime et al., 2019).
2.2 The role of Northern Hemisphere Ice Sheets

Section 2 and Table Al suggest that large Northern Hemisphere Ice Sheets and the wind regime associated with these can
contribute to a strong AMOC which stabilises the North Atlantic and prevents D-O events. Thus ice sheets have a critical role
to play in setting up the conditions for D-O events (Zhang et al., 2014; Klockmann et al., 2018; Brown and Galbraith, 2016;
Muglia and Schmittner, 2015; Sherriff-Tadano et al., 2018). Figure 4 and 5 show some of the key mechanisms and feedbacks
that are behind a state of reduced likelihood for D-O events and a potentially D-O type oscillating state, respectively.

The Northern Hemisphere Eurasian ice sheet was most probably limited to mountainous areas during mid-MIS3 (Helmens,
2014; Hughes et al., 2016), and its impact on D-O dynamics was probably relatively small. However, the size and presence (or
absence) of the Laurentide ice sheet (LIS), which has elevations reaching a maximum of approximately 3000 m (Abe-Ouchi

et al., 2015) at the LGM, does appear to cause important and robust (across multiple models) changes to Northern Hemisphere

12
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Figure 4. Schematic showing a state of reduced likelihood for D-O events.

atmospheric circulation and resultant wind forcing of the ocean. LIS-dependent wind changes influence the subpolar gyre and
the stability of the atmosphere-ice-ocean coupled system (Li and Born, 2019; Zhang et al., 2014).

A larger LIS (especially its height) causes stronger Northern Hemisphere winds (Li and Battisti, 2008; Pausata et al., 2011;
Hofer et al., 2012; Ullman et al., 2014; Lofverstrom et al., 2014; Merz et al., 2015); an amplified stationary wave over North
America (Manabe and Broccoli, 1985; Cook and Held, 1988); the North Atlantic glacial jet to be more stable due to differences
in wave-mean flow feedbacks (Riviere et al., 2010); and alters variability of the large-scale atmospheric circulation, especially
in the North Atlantic (Justino and Peltier, 2005; Pausata et al., 2009; Riviere et al., 2010). In addition, LIS height could control
the sea-ice coverage and gyre circulation by shifting the westerlies over the North Atlantic region Zhang et al. (2014).

LIS altered winds that have wide implications for D-O relevant tipping elements (Seager and Battisti, 2007; Wunsch, 2006).
Li and Born (2019) note that, first, the presence of a large LGM-type LIS is linked to a strong, more zonal and equatorward-
shifted North Atlantic jet which weakens atmospheric heat transport into the North Atlantic (van der Schrier et al., 2010)
and favours episodes of Greenland blocking (Madonna et al., 2017). Both could trigger the atmosphere-ice-ocean feedbacks
that cause abrupt climate change in this area. Second, a steadier and stronger North Atlantic jet strengthens the wind-driven

component of the subpolar gyre (Li and Born, 2019). Given that at latitudes north of about 45N, the subpolar gyre, which is
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Figure 5. Schematic of a potentially D-O type oscillating state.

essentially wind-driven, plays a crucial role in the northward transport of heat and salt, and is strongly linked to the AMOC
(e.g. Jungclaus et al., 2013), wind-driven changes in this gyre have a strong impact on the density gain in the North Atlantic.

In many simulations with a large LIS (LGM-like ice sheets), the subtropical gyre can shift northward and cause an inflow of
salty subtropical water over deep-convection sites, contributing to continuous deep convection and a strong AMOC even at low
COs concentrations (Brown and Galbraith, 2016; Klockmann et al., 2018; Guo et al., 2019b; Muglia and Schmittner, 2015;
Sherriff-Tadano et al., 2018; Zhang et al., 2014). Similarly, Zhang et al. (2014) note that a higher LIS can promote less South
Labrador Sea sea ice export to northeastern North Atlantic (which reduces sea ice concentration) to permit deep convection
and shift the core of westerlies northwards, strengthening subtropical gyre for heat and salt transport (Zhang et al., 2014).

For these reasons, large LGM-type ice sheets, particular a large LIS, tend to lead to a density gain over the North Atlantic
and the northward salt transport is enhanced with respect to the PI ice sheet case. For many, but not all models, this tends to
lead to more active convection in the North Atlantic and a strong AMOC (across a wide range of CO4 concentrations). That
said, the AMOC in many LGM simulations is likely too strong (Klockmann et al., 2018; Kageyama et al., 2021b). Thus the
AMOC is far away from a tipping point with LGM-size ice sheets for many models (Zhang et al., 2014; Klockmann et al.,
2018; Guo et al., 2019b).
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In some simulations with reduced ice sheets, the jet stream shifts northwards, leading to regional cooling and a rise in
seasonal sea ice concentration over the subpolar gyre region (Armstrong et al., 2021). This freshens the area and lowers deep-
water formation, which weakens the subpolar gyre and as a result the simulations are more prone to enter a weak convection,
weak AMOC mode which is conducive to D-O type oscillations (Klockmann et al., 2018; Armstrong et al., 2021). Thus, with
intermediate MIS3 LIS, i.e. reduced in its height compared to the LGM, multiple AMOC states are more likely (Zhang et al.,
2014; Kawamura et al., 2017; Zhang and Prange, 2020; Armstrong et al., 2021; Klockmann et al., 2018).

3 Contours of a baseline MIS3 experiment protocol

Although the choice of a time within MIS3 for a D-O baseline experiment should be unimportant, given that in reality D-O
events occurred during the whole of the MIS3, our analysis of existing simulations, boundary conditions and mechanisms

above suggests that there are periods which may be particularly conducive to D-O events occurring in models. Farthermore;if

—Oscillatory D-O type behaviour appears
to be more likely, but not guaranteed (Guo et al., 2019b; Zhang and Prange, 2020), when models are run with intermediate or
low MIS3 COs, values and ice-sheets, i.e. reduced in size compared to the LGM (Brown and Galbraith, 2016; Kawamura et al.,
2017; Klockmann et al., 2018; Zhang and Prange, 2020; Galbraith and de Lavergne, 2019; Zhang et al., 2014; Vettoretti et al.,
2022), and particularly without a high LIS. Fhe-impact-of-orbital parameters-has-beeninvestigated-inless-detail-than-the role-o

model COSMOS, Zhang et al. (2021) demonstrated that under intermediate glacial conditions, obliquity appears to play a
significant role in the occurrence of D-O type behaviour. In particular, the orbital parameters at 40 ka do not produce D-O

Additionally, the MIROC4m model produces D-O-type oscillations (under mid-glacial conditions) and low obliquity (22.9°

Kuniyoshi et al., 2022). From these COSMOS and MIROC4m results, we deduce that low obliquity seems conducive to D-O

behaviour in models.
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suggest that the interval starting at 38 ka to 32 ka is a good choice for the proposed baseline experiment: it is characterised b
1) a rather regular sequence of D-O events (Fig. 1), and (2) has the ideal intermediate MIS3 ice-sheet configuration conducive

295 to generating D-O-type quasi-oscillations (Section 2).

A baseline simulation needs to be run for a sufficient duration to allow the strong positive feedbacks, together with long
time-scale negative feedbacks, that enable D-O type oscillations. The analysis of existing simulations (Section 2) suggests this
should be a minimum of 5000 years (Peltier and Vettoretti, 2014; Kleppin et al., 2015; Sidorenko et al., 2015; Brown and
Galbraith, 2016; Klockmann et al., 2018, 2020). However, given computational constraints, a minimum duration of around

300 2000 years, with a spin-up period of 1000 years, may be a more practical minimum requirement for most modeling groups.
It would, however, be important to examine and document key metrics for model drift (such as top-of-atmosphere radiation
imbalance, deep ocean or global mean ocean temperature) during the initial spin-up. The exact length of spin-up is thus subject
to discretion of each modelling group based on these key metrics.

There are two obvious possibilities for spinning up the MIS3 control experiment (MIS3-cnt). The baseline experiment could

305 be initialised from either the end of a well spun-up LGM or PI experiment. Other possibilities could be to spin up from
a linear combination of LGM and PI states (as done in Klockmann et al., 2016, 2018) or spinning up from present day’s
observations (as done in Guo et al., 2019b). Modelling groups are encouraged to choose whichever option is more feasi-
ble/convenient for them. In case that several spin-up options are available, short spin-ups with diagnosed top-of-atmosphere
(TOA) imbalance or global mean ocean temperature could help distinguish the faster spin-up option. It is worth noting that

310 stratification) does play a role in abrupt AMOC change and associated feedbacks

initial ocean state (i.e. Atlantic salinit

Zhang et al., 2013; Zhang et al., 2021), of which impacts shall be considered and evaluated in the future.

centered at 34 ka, using GHG and orbital conditions for 34 ka (Fig. 6); and ice sheet configuration as outlined below (sections
315 3.1and32).

We acknowledge that some models might not oscillate under the proposed 34 ka baseline scenario. Indeed, this is expected
for NorESM, which under 38 ka conditions, is in a stable regime and the model state seems to be far from a possible tipping
point. In spite of that, standardised MIS3 simulations which do not show D-O like behaviour are still highly valuable, for
exactly the same reasons that LGM simulations are relevant to the wider modelling community. These standardised MIS3

320 simulations could contribute to progress on the overarching CMIP6 questions | and 2 (Eyring et al., 2016): “How does the
Earth System respond to forcing?”, and “What are the origins and consequences of systematic model biases?” With a larger
number of standardised MIS3 simulations, we would be able to answer guestions such as:

— Are state-of-the-art climate models capable of representing D-O events under more realistic MIS3 conditions? Benchmarkin
these simulations will deliver a measure of how well models simulate abrupt changes, and tipping events.

325 — Standardized MIS3 simulations can help explore the existence of a theoretical sweet spot for millennial activity in
current climate models (Barker and Knorr, 2021). As close to or within the sweet spot, the AMOC is characterized b
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Figure 6. Monthly zonal-mean MIS3 (38ka34ka) - PI anomalies of the top-of-atmosphere short-wave incoming radiation (W m~2).

high sensitivity to transient and/or noisy climatic forcing (Zhang et al., 2014; Zhang et al., 2018) or b

self-oscillatin
behaviors (Zhang et al., 2021).

If models are too stable to simulate abrupt transitions, what are the processes that contribute to relative levels of model
stability?

330

— In addition, a larger number of standardised MIS3 simulations could encourage the creation of new data sets, improvin

model-data evaluation.

3.1 Atmospheric trace gases

MIS3 atmospheric CO; values varied between a maximum of ~ 233 ppm to a minimum of ~ 187.5 ppm (Table 2; Figure 1;
335 Bauska et al., 2021). Interestingly, increases of around 5 ppm happened during the abrupt warming of most D-O events and
increases of up to 10 ppm happened within some Heinrich stadials (Bauska et al., 2021). GHG forcing is critical to model
stability. Low (LGM-like) to intermediate (MIS3) CO, concentrations tend to be associated with abrupt D-O type AMOC
transitions in models (Section 2 and Klockmann et al., 2018; Zhang et al., 2017, 2014; Brown and Galbraith, 2016; Vettoretti

et al., 2022). We thus suggest to perform the MIS3-cnt experiment using the GHGs values specified in Table 2 and keep these
340 values fixed for the whole duration of the simulation including the spin-up.
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3.2 Northern Hemisphere Ice Sheets

Constraining MIS3 ice-sheet boundary conditions is a challenge. Scarcity and fragmentation of evidence (Kleman et al., 2010;

Batchelor et al., 2019) is an issue. In particular, it is difficult to determine the size and shape of the ice sheets during MIS3

because subsequent larger LGM configurations have overridden and destroyed evidence of the position of the margins of these
345 smaller ice sheets.

Global sea level fluctuations during the mid-MIS3 were driven nearly exclusively by the LIS (Gowan et al., 2021). Global
average sea level remained above —55 m for the period between 30-55 ka. From glacial isostatic modelling and geological
constraints, a global mean sea level between —30 m and —50 m is inferred (Dalton et al., 2022). For much of MIS3, since the
Eurasian ice sheets and the Cordilleran Ice Sheet were likely restricted to mountain-based caps (Helmens; 2044 Hughes-et-al;2016)

350 (Helmens, 2014; Hughes et al., 2016; Clague and Ward, 2011), the primary control on ice volume is assumed to be from the
LIS. Recent work in the area of the Hudson Bay (Dalton et al., 2016, 2019; McMartin et al., 2019; Dalton et al., 2022) suggests
ice-free conditions may have occurred during mid-MIS3. This implies climatic conditions in this region similar to present
(Dalton et al., 2017), and a LIS margin removed from the southern Hudson Bay. Similarly Tarasov et al. (2012) show a con-
siderably lower and less extensive LIS compared to ICE-5G and ICE-6G (Peltier, 2004; Peltier et al., 2015) LGM ice sheet

355 reconstructions. Pico et al. (2017) sea-level curves are consistent with the estimated MIS3 ice-sheet volumes from Batchelor
et al. (2019). Using Glacio Isostatic Adjustment modeling, Pico et al. (2017) also show that a small LIS can explain high MIS3
sea-level estimates alongside the eastern coast of the United States. Batchelor et al. (2019)’s synthesis of numerical modelling
results and empirical data provides additional support for a considerable reduction in the MIS3 LIS extent and very minimal
European ice sheet.

360 The recent MIS3 ice sheet reconstruction, PaleoMIST 1.0 (Paleo Margins, Ice Sheets, and Topography), was developed

independently of far-field sea-level records and indirect proxy records by Gowan et al. (2021). This reconstruction is based on

trying to fit the evolution of ice flow indicators, as well as chronological constraints of ice-free conditions.

365

370

A1 -- fa AN

betweenpresent-day-and-GM-extent-Gowan et al. (2021) provide a maximum and minimal MIS3 reconstruction, specificall
for the Laurentide Ice Sheet. The maximum scenario is more consistent with recently discovered eastward oriented, pre-LGM
ice flow direction indicators found in southeastern Manitoba (Gauthier and Hodder, 2020), so we currently consider it to be

D e 3 Y
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375  more likely. However, at 35 ka, the difference between the two scenarios is minor. The difference is primarily with the thickness
(and therefore also topography) of the ice sheet, rather than extent, but it amounts to less than I m of sea level equivalent, The
33 ka time slice represents conditions after Heinrich Event 4 (Andrews and Voelker, 2018), and the ice margin in Hudson Strait
is retreated about 350 km from the edge of the continental shelf. The ice margin elsewhere for the Laurentide Ice Sheet is based
on chronological constraints, most that are documented in the compilation by Dalton et al. (2019). The Cordillera Ice Sheet
380 extent is based on evidence of relatively restricted ice cover during MIS 3 (Clague and Ward, 2011). The Greenland Ice Sheet
margin is set to be intermediate of the LGM and present day extent. The Eurasian ice extent at 35 ka includes an advance of ice
into the Baltic Sea, which happened after Heinrich Event 4 (Hughes et al., 2016). For East Antarctica, the margin is set to be
the same as present. In West Antarctica, the margin at 35 ka is close to the shelf edge, as the maximum extent may have been

achieved by 30 ka (Larter et al., 2014).
385 . . . .

Given its strong evidence basis, we thus suggest the use of the maximum 35 ka Gowan et al. (2021) PaleoMIST ice sheet
configuration. We note the LIS is considerably reduced in size, compared to the ICE-6G LGM reconstruction in the southeastern
390 margin (Fig. 7a,d); the EIS is also significantly smaller (Fig. 7a,d).

395

Whilst the implementation of the ice sheets-sheet will differ between models, the steps of Kageyama et al. (2017) describe

400 how to implement a glacial state ice sheet in the IPSL climate model. For consistency, we likewise recommend the same steps
should be followed as far as possible. Since a reduced sea-level can modify river courses, Kageyama et al. (2017) recommend
that as a minimum, rivers should reach the oceans. Also, the ocean should be initialized with a salinity 0.6 psu higher than the
PI experiment, to account for the sea-level difference between MIS3 and PI experiment (freshwater stored as ice on land) (Guo
et al., 2019b).

405 The single ice sheet reconstruction MIS3 set-up summarized above contrasts with the PMIP4 LGM protocol, which provides
reconstructions uncertainties on climate models, particularly on model stability, would be valuable. For this purpose, further
additional 34 ky / MIS3 ice sheet reconstructions would be very valuable.
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35ka-Maximal scenario; Gowan et al. (2021)

Differences - m

Figure 7. MIS3 ice sheet reconstruction from (a,db) Gowan et al. (2021)and-(e;H-Guo-et-ak{26+9b). Also shown for comparison is the (bc,ed)
LGM ICE-6G ice sheet reconstruction from Peltier et al. (2015). Third row shows the differences between the MIS3 ice sheet reconstruction

and the LGM ICE-6G reconstruction.
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CCSM4. During the first thousand years of the simulation as the model is spun up and the ocean cools to reach a state consistent
with glacial boundary conditions, there are two thermal thresholds during which the strength of the AMOC rapidly reduces (see
Figure 2 in Peltier et al., 2020). These abrupt transitions in the AMOC coincide with abrupt reductions in surface temperatures
in_the North Atlantic and abrupt expansions of sea ice coverage. During the second of these events, the AMOC is reduced
to approximately 12 Sv, about half its strength in the pre-industrial control (Peltier et al., 2020). This event may resemble the
impact of a Heinrich event-like "kick” to the AMOC though no freshwater perturbation was imposed (Peltier et al., 2020).

- b

mere-condueiveto-unforced(D-O-type)oscillations—In a more recent study, Pedro et al. (2022) examine the CCSM4 simulations
that shows unforced D-O t , 2014; Peltier and Vettoretti, 2018), but with the addition of a
3 Sy weaker AMOC compared to the one seen in the unforced model stadial and, (2) a stronger D-O warming transition into
strength and in NA surface temperatures and sea ice coverage — and it may also help induce a stadial state in other models

which is more conducive to unforced (D-O type) oscillations (Pedro et al., 2022).

e oscillations (Peltier and Vettoretti

Given the importance of HEs to starting Bond Cycles of D-O events, an additional
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experiment to investigate how HE meltwater preconditioning impacts the simulation of D-O like oscillations under MIS3
boundary conditions would be valuable. HE freshwater preconditioning may, as in reality, be more conducive to a (Bon

Cycle-like) sequence of spontaneous D-O type oscillations (see Table 1).

The freshwater delivered during Heinrich event iceberg discharge extends-GS-duration-and-suppresses the AMOC, leading to
accumulation of heat in the Southern Hemisphere, and in the North Atlantic subsurface waters (e.g. Stocker and Johnsen, 2003).
Estimates of the meltwater input into the North Atlantic during Heinrich events range between 2 m and 15 m of sea level equiv-
alent ice volume (Hemming, 2004; Chappell, 2002; Rohling et al., 2004; Roche et al., 2004; Roberts et al., 2014b; Siddall et al.,
2008; Grant et al., 2014). It is logical to presume that these freshwater events are important in preconditioning the climate sys-
tem with respect to D-O behaviour an
. Freshwater perturbations can trigger changes between AMOC states (e.g. Ganopolskl and Rahmstorf, 2001; Timmermann
et al., 2003; Stouffer et al., 2006; Hu et al., 2008; Kageyama et al., 2012; Roberts et al., 2014a; Sime et al., 2019) and a

relatively small freshwater flux applied over convection areas can lead to a shutdown of the AMOC (e.g. Roche et al., 2010).

Studies have shown similarities between observed global features of abrupt D-O changes and the behaviour seen in freshwa-
ter forcing experiments (Liu et al., 2009; Menviel et al., 2014). However, the sensitivity of the AMOC to a wide range of
freshwater inputs varies according to model, where the meltwater is added, and the background climate state (Ganopolski and
Rahmstorf, 2001; Timmermann et al., 2003; Stouffer et al., 2006; Hu et al., 2008; Kageyama et al., 2012; Roberts et al., 2014a;
Zhang et al., 2014). Given i it it i

conditions—Given these various uncertainties, we suggest that it would be useful to run an additional experiment to investigate
how preconditioning through a H-like (freshwater) event impacts the simulation of D-O like oscillations under MIS3 boundar

conditions.

The range of H-event volumes calculated using ice sheet models varies from 24.2 to 125 x 10*km® (MacAyeal, 1993;
Dowdeswell et al., 1995; Marshall and Clarke, 1997; Hulbe, 1997), whilst isotope based estimates and a precipitation balance
approach have yielded 86, 649, and 946 x 10*km? of ice volume (Hemming, 2004; Roche et al., 2004; Levine and Bigg, 2008).
Roberts et al. (2014b), and using a sediment modelling approach estimated a discharge of 30 to 120 x 10*km? of ice volume.
Some of the spread in these estimates could be because the relationship between the oxygen isotope record, sea level, and
meltwater volume is not constant when ice is lost from marine basins, such that the use of oxygen isotopes for calculating
H-event volumes may produce unrealistically high values (Gasson et al., 2016; Hemming, 2004; Roberts et al., 2014b). There
is also some uncertainty about the duration of the H-events, with some previous studies suggesting they could be as short as 250
years (Hemming, 2004) and others suggesting a duration of 500 yr is more typical (Roberts et al., 2014b). These considerations
suggest that it is possible to justify the use of anywhere between 0.02 - 0.6 Sv freshwater flux over 500 years; or 0.04 - 1.2 Sv
over 250 years. More recent estimates of H-event magnitudes tend to favour the lower end of this range. If all forcings are set

to MIS3-cnt values and the H-event freshwater flux is distributed across the North Atlantic this could yield a range of stadial
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climates (Sime et al., 2019; Zhang and Prange, 2020).
year-H-kiek-would-be-auseful-addition-to-the MES3-ent—After 250-500 years this freshwater forcing should be switched off

Table 2. Summary of the boundary conditions (BC) and forcings for the MIS3-cnt experiment.

BC/Forcing Suggested value MIS3-cnt
CO2: 219ppm-208 ppm (Bauska et al., 2021)
Atmospheric trace gases C Hy: 526-ppb-420 ppb (Loulergue et al., 2008)

N>O: 256-ppb-204 ppb (Schilt et al., 2010)

Eccentricity: 0:043676-Berger(1978)0.01567 Berger et al. (1998

Insolation Obliquity: 23-268>Berger(1978)22.6° Berger et al. (1998)
Perihelion—180°:-205.94°Berger (1978)Precession: -0.016 Berger et al, (1998
Solar constant Same as PI control

38ka-35ka ice sheet reconstruction

(Gowan et al., 2021);
Ice sheets

mean global salinity increased by 0.6PSU to account for ice volume

Closed to avoid drifts; Snow should not accumulate
over ice sheets and rivers should flow into the ocean.
Global freshwater budget )
Models need to consider lakes when closing

the global freshwater budget

Dynamic or fixed as in PIL.

Vegetation

If fixed vegetation: tundra in fand-new-new land points
Dust As in PI control
H-kicked variant initial 0.04 - 1 Sv over 250-500 years

followed by standard MIS3-cnt simulation

4 Conclusions

D-O events are abrupt, large climate changes that punctuated the last glacial period. There is uncertainty whether current IPCC-
class models can effectively represent the processes that cause D-O events. We have shown that reduced ice sheets relative to
LGM, low obliquity values and low-to-medium MIS3 CO; values are more likely to lead to unforced quasi-oscillatory D-O
type behaviour. However, the simulations need to be run long enough to allow the strong positive AMOC feedbacks, along
with negative feedbacks on long time-scales, which can then lead to D-O type oscillations. Areund-42%-Around 40% of the
simulations set-up with full LGM or more MIS3-like conditions, have a run length of less than 2000 model years, which makes

it difficult to tell whether any of these simulations are capable of, or likely to, exhibit D-O like behaviour. In addition, the vast
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majority of PMIP4/CMIP6 models have not run LGM or MIS3-like simulations long enough to be sure which models have the
capability to oscillate.

We have provided boundary conditions for a baseline MIS3-cnt simulation, and a H-event-like-H-event preconditioned
variant (freshwater forced experiment). The MIS3-cnt experiment eevers-the-intervalfrom38-to-32-ka-beecause=(1)-itfeatures

3)-itis centered at 34 ka because it yields the ideal combination of intermediate ice sheets (smaller in size compared to LGM),
low obliquity values and medium-to-low GHG values conducive to oscillatory D-O type behaviour in models. Ideally, the
MIS3 baseline experiment should be run for 5000 years, however, given computational constraints a minimum duration of 2000
years together with a spin-up of at least 1000 years is a more practical minimum requirement. This baseline MIS3-cnt protocol
provides a common framework to explore cold-period instabilities using particular GHG-, insolation-, freshwater-, and NH ice

sheet-related forcings, together with diapycnal mixing.

finally,-are-climate models-too-stable More model simulations run under the here proposed MIS3 DO protocol together with
analyses across models, could provide better insights, along the lines of atmospheric-ice-ocean feedbacks behind DO events.
These simulations will allow us to answer questions such as: are current climate models able to reproduce DO-type behaviour
under more realistic MIS3 conditions? How well models simulate tipping events, abrupt changes? What are the mechanisms
that lead to relative levels of model stability? Moreover, a large number of standardised MIS3 simulations could encourage the
creation of new data sets, improving model-data evaluation.
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Appendix B

Table B1. Summary of LGM/MIS3-like simulations discussed in the text. Highlighted in red the models that reproduce D-O type oscillations.

Study Model Period N° of simulations  Run length
Peltier and Vettoretti (2014) UofT CCSM4 PMIP4 LGM 1 5000
Lohmann et al. (2020) AWI-ESM1-1-LR PMIP4 LGM 1 1300
Sidorenko et al. (2019) AWI-ESM-2-1-LR PMIP4 LGM 1 600
Tierney et al. (2020) CESM1.2 PMIP4 LGM 1 1800
Valdes et al. (2017) HadCM3B-M2.1aD PMIP4 LGM 3 400-2900*
Lhardy et al. (2021) iLOVECLIM1.1.4 PMIP4 LGM 2 5000
Volodin et al. (2018) INM-CM4-8 PMIP4 LGM 1 50
Sepulchre et al. (2020) IPSLCM5A2 PMIP4 LGM 1 1200
Ohgaito et al. (2021) MIROC-ES2L PMIP4 LGM 1 8960
Mauritsen et al. (2019) MPI-ESM1.2 PMIP4 LGM 1 3850
Armstrong et al. (2021) HadCM3B-M2.1aD MIS3 (30 ka) 1 6000
Zhang et al. (2021) COSMOS MIS3 (40-32 ka) 2 5000
Guo et al. (2019b) NorESM MIS3 (38 ka) 1 +6000
Zhang and Prange (2020) CCSM3 MIS3 (38 ka) 1 2170
Kawamura et al. (2017) MIROC4m Mid-glacial conditions 1 +2000
Kuniyoshi et al. (2022) MIROC4m Mid-glacial conditions 2 6000
Vettoretti et al. (2022) CCSM4 Glacial conditions 4t 8000
Brown and Galbraith (2016) CM2Mc Mixed forcing 1 +8000
Klockmann et al. (2018) MPI-ESM Mixed forcing 3 +8000
Zhang et al. (2014) COSMOS Mixed forcing 11°¢ 300-4000 ¢

“ Only one simulation run longer than 2000 model years
b Four simulations run with C'O5 levels: 200, 210, 220, 225 ppm
¢ We do not consider FWF runs nor transient simulations forced with varying C O and/or NH ice sheet height

4 Only two simulations with a duration of +2000 model years
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965 Appendix C

Table C1. Contributing members to PMIP4/CMIP6 that have run simulations under LGM or MIS3 conditions.

Model Period Run length
ACCESS-ESM1-5 - -
AWI-ESM-1-1-LR LGM 1300
CESM2 - -
CNRM-CM6-1 - -
EC-Earth3-LR - -
FGOALS-f3-L - -
FGOALS-g3 - -
GISS-E2-1-G - -
HadGEM3-GC31-LL - -
INM-CM4-8 LGM 50
IPSL-CM6A-LR - -
MIROC-ES2L LGM +8000
MPI-ESM1-2 LGM 3850
MRI-ESM2-0 - -
NESM3 - -
NorESM1-F MIS3 6000
NorESM2-LM - -
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