
Nudging allows direct evaluation of coupled climate models with
in-situ observations: A case study from the MOSAiC expedition
Felix Pithan1, Marylou Athanase1, Sandro Dahlke1, Antonio Sánchez-Benítez1, Matthew D. Shupe2,3,
Anne Sledd2,3, Jan Streffing1,4, Gunilla Svensson5, and Thomas Jung1,6

1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven/Potsdam, Germany
2Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
3National Oceanic and Atmospheric Administration Physical Science Laboratoriy, Boulder, Colorado
4Jacobs University Bremen, Bremen, Germany
5Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
6Institute of Environmental Physics, University of Bremen, Bremen, Germany

Correspondence: Felix Pithan (felix.pithan@awi.de)

Abstract. Comparing the output of general circulation models to observations is essential for assessing and improving the

quality of models. While numerical weather prediction models are routinely assessed against a large array of observations,

comparing climate models and observations usually requires long time series to build robust statistics. Here, we show that by

nudging the large-scale atmospheric circulation in coupled climate models, model output can be compared to local observa-

tions for individual days. We illustrate this for three climate models during a period in April 2020 when a warm air intrusion5

reached the MOSAiC expedition in the central Arctic. Radiosondes, cloud remote sensing and surface flux observations from

the MOSAiC expedition serve as reference observations. The climate models AWI-CM1/ECHAM and AWI-CM3/IFS miss

the diurnal cycle of surface temperature in spring, likely because both models assume the snow pack on ice to have a uniform

temperature. CAM6, a model that uses three layers to represent snow temperature, represents the diurnal cycle more realisti-

cally. During a cold and dry period with pervasive thin mixed-phase clouds, AWI-CM1/ECHAM only produces partial cloud10

cover and overestimates downwelling shortwave radiation at the surface. AWI-CM3/IFS produces a closed cloud cover but

misses cloud liquid water. Our results show that nudging the large-scale circulation to the observed state allows a meaningful

comparison of climate model output even to short-term observational campaigns. We suggest that nudging can simplify and

accelerate the pathway from observations to climate model improvements and substantially extends the range of observations

suitable for model evaluation.15

1 Introduction

As any model, a model of the Earth’s atmosphere is not an exact copy of what it represents (Box, 1979). To make the best

possible use of a model for research as well as for scenarios or forecast applications, it is important to understand the degree and

the limitations to which a weather or climate model truthfully represents the physics that govern the real system. Comparing

model output with real-world observations is crucial to obtain such understanding (Eyring et al., 2019). For numerical weather20

prediction models, this happens routinely in forecast verification, as forecasts of the atmospheric state are compared to the state
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that actually occurred (Casati et al., 2008). The reduction of forecast errors can be tracked from model version to model version

or over decades, and the forecasting capability has continually increased by about one day per decade (Bauer et al., 2015).

Comparing the output of a coupled atmosphere-ocean climate model to observations is less straightforward. The purpose of

a climate model is to reproduce the long-term average state and the variations of the Earth’s climate system given an external25

forcing, such as the orbital configuration, greenhouse gas and ice sheet extent of the last glacial maximum or of today’s climate.

Even on decadal time scales, any given local, regional or global observation is subject to substantial internal variability, such

that even perfect models would not exactly reproduce the observable (Notz, 2015). Large spatial and temporal scales are

therefore required for model-data comparisons, which limits the amount of independent data points that can be used for model

evaluation. These datasets are often highly aggregated, rendering it difficult to use a mean state comparison between model30

and observations to infer something about the representation of a specific process in the climate model.

Process-based diagnostics enable a broader comparison of climate model data with short and high-frequency observational

records and can help to reveal at least qualitative, categorical errors of climate models (Eyring et al., 2005; Ahn et al., 2017).

They can also be useful to reveal biases that only occur in a specific state of the atmosphere.

A number of climate model setups have been developed to constrain the dynamics, i.e. the atmospheric circulation mostly in35

atmosphere-only models in order to directly compare the model physics, including thermodynamic processes, to observations.

Single-column setups prescribe the horizontal advective tendencies and vertical motions at a given point or follow a column

of air in Lagrangian simulations (Randall et al., 1996; Bretherton et al., 1999). The Transpose-AMIP (Atmospheric Model

Intercomparison Project) approach effectively runs climate models in a weather forecast mode, initialising the atmosphere to

its observed state and studying the short-time evolution of the atmospheric state in models. Despite the risk of an initial shock40

when the model is started in a state that it might never generate by itself, this method has proven useful to diagnose the genesis

of cloud biases in the Southern Ocean, for example (Williams et al., 2013).

Climate models can be nudged to the observed atmospheric circulation by relaxing the model state to reanalysis data at

each timestep (Coindreau et al., 2007). Nudging can be restricted to certain regions, altitudes and variables. Analysing nudging

increments can allow to pinpoint where models tend to deviate from the processes occurring in the real atmosphere. This45

method has been applied to evaluate processes related to atmospheric dynamics and the momentum budget by van Niekerk et al.

(2016). Wehrli et al. (2018) used nudging to demonstrate that an overestimation of hot, dry mid-latitude summers in CESM

(Community Earth System Model) is largely caused by thermodynamic processes rather than a biased large-scale circulation

and Gettelman et al. (2020) evaluated nudged CAM6 runs over the Southern Ocean against results from the SOCRATES field

campaign.50

Nudged climate models including coupled atmosphere-ocean models have recently also been used to study specific events

such as heat waves across different climate states (van Garderen et al., 2021; Wehrli et al., 2020; Sánchez Benítez et al., 2022).

In these studies, a given event is recreated by nudging the (large-scale) atmospheric circulation to its observed state, and the

climate state can be altered by initialising the model in present, pre-industrial or possible future climates (Shepherd et al.,

2018). Comparison of the present-day runs with observations have shown a close match on a day-to-day basis.55
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Here, we explore the possibility of using nudged runs of coupled atmosphere-sea ice-ocean models for evaluating model

physics. In contrast to the Transpose-AMIP approach, a nudged coupled model is spun up over several months to one year and

then can be run for several years, such that any initial shock would not affect the model-data comparison. Nudging ensures that

the model follows the observed trajectory of the atmospheric state over time, whereas transpose-AMIP setups strongly deviate

from observations within days after their initialisation.60

While the large-scale atmospheric circulation is constrained by the nudging, the thermodynamics of the climate system can

entirely be left to the model itself, such that clouds, temperatures including ocean temperatures, sea ice and the water budget

are fully computed by the model with no other constraints than the imposed large-scale winds in the free troposphere.

The approach is limited to observed phenomena that are strongly constrained by the large-scale vorticity and divergence.

This includes many important meteorological phenomena in the extratropics from mid-latitude heat waves and cyclones to65

intrusions of warm, moist air and cold-air outbreaks in the Arctic. Weather events in the Tropics or events in mid-latitudes that

are driven by localised convection are probably more difficult to capture using this approach.

Over longer timescales (years to decades), nudged coupled models tend to develop climatological biases that are not the

same as in their free-running equivalents. This issue is not a first-order problem for the relatively short runs analysed here, and

not further explored in this paper.70

We use April 2020 observations from the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)

expedition as a case study (Shupe et al., 2020). During MOSAiC, the German research icebreaker Polarstern (Knust, 2017)

drifted across the central Arctic Ocean from October 2019 to September 2020.

The beginning of April is characterized by cold, dry conditions in the central Arctic, whereas several warm, moist intrusions

reach the observational site in mid April. Such intrusions are driven by the large-scale circulation (Woods et al., 2013; Pithan75

et al., 2018), which is constrained in our model setups. We can thus use in-situ observations at the MOSAiC site to evaluate

how models handle the thermodynamic transformation of the initially warm and moist air mass that cools and loses moisture

through precipitation over Arctic sea ice. This transformation depends on mixed-phase microphysics and surface interactions

that are challenging to represent in large-scale models and contributed to important Arctic climate biases in CMIP3 and CMIP5

climate models (Karlsson and Svensson, 2011; Pithan et al., 2014, 2016).80

In the following, we briefly present the evaluated models, their representations of key physical processes and our nudging

method as well as the observational datasets used. We then evaluate model output against observations for April 2020.

2 Models and data

2.1 Models

We use the Alfred Wegener Institute’s coupled climate models AWI-CM1 (Sidorenko et al., 2015; Rackow et al., 2018) and85

AWI-CM3 (Streffing et al., 2022). In AWI-CM1, the FESOM 1.4 sea ice-ocean model (Wang et al., 2014) is coupled to the

atmospheric model ECHAM6.3 (Stevens et al., 2013), while in AWI-CM3 FESOM2 (Scholz et al., 2019, 2022) is coupled

to OpenIFS 43r3 (ECMWF, 2017). Full documentations of the models are available under the above references. We present
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aspects of both models that are especially relevant for our study period below, namely cloud processes, boundary-layer tur-

bulence and surface coupling. For some analyses, we include data from an atmosphere-only run (i.e. prescribed sea-surface90

temperatures and sea-ice extent) with CAM6 (Danabasoglu et al., 2020).

The MOSAiC drift during April 2020 and nearby model grid points are shown in Fig. 1. The gaussian grid of AWI-

CM1/ECHAM results in a high zonal resolution close to the pole, whereas the reduced gaussian grid of AWI-CM3/IFS and the

cubed-sphere grid of CAM6 have substantially less grid points in the area. The ratio between the zonal and meridional spacing

of grid points is closer to unity in the latter models. For technical reasons, AWI-CM3/IFS data was re-gridded to a regular95

1x1-degree grid before being analysed. Model time series are taken from the grid point closest to the MOSAiC observatory in

mid-April, as choosing the closest grid point for each time step did not lead to considerably different results.

Figure 1. Drift of the MOSAiC central observatory during April 2020 and model grid points covering the area. The observatory is drifting

southward.
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2.1.1 Cloud schemes

The presence of clouds in ECHAM is diagnosed following Sundqvist et al. (1989). Cloud fraction is parameterized as

fcloud = 1−
√

rhsat − rh

rhsat − rhcrit
, (1)100

where rh is the relative humidity in a model gridbox, rhsat the saturation relative humidity and rhcrit the critical relative

humidity, which is the threshold for cloud formation. rhsat is generally set to one and rhcrit = 0.7+0.2exp

(
1−

(
psfc
p

)4
)

,

where p is pressure and psfc is surface pressure. If a temperature inversion exists below the 700 hPa height, these parameters

are set to rhcrit = 0.7 and rhsat = 0.9 below the inversion level.

Cloud water and cloud ice are treated as prognostic variables following Lohmann and Roeckner (1996).105

In the IFS, cloud fraction is a prognostic variable that is changed by horizontal transport, detrainment from convection,

large-scale condensation and evaporation (ECMWF, 2017). Large-scale condensation increases the cloud fraction whenever

the saturation specific humidity decreases, i.e. when an air parcel is cooling. Evaporation decreases the cloud fraction 1) when

the saturation specific humidity increases and the cloud water content approaches zero and 2) by mixing with environmental

air from the cloud-free part of the grid box.110

In CAM6, liquid cloud cover is determined by integrating over the subgrid distribution of total water in the CLUBB (cloud

layers unified by binormals, Bogenschutz et al. (2012)) scheme, whereas ice cloud is diagnosed using a relative humidity

threshold.

2.1.2 Boundary-layer turbulence and surface coupling

In ECHAM6, turbulent fluxes between the atmosphere and surface and within the atmosphere are computed using prognostic115

turbulent kinetic energy to compute the turbulent diffusivities for heat and momentum (Brinkop and Roeckner, 1995). In the

IFS, only the mean winds are prognostic variables and turbulence is diagnosed at each time step. Above the surface layer,

the diffusivity approach is combined with a mass-flux scheme to represent the effect of large turbulent eddies in convective

boundary layers (ECMWF, 2017). In CAM6, turbulent fluxes and shallow convection are computed in the CLUBB scheme.

CLUBB prognostically computes sub-grid variances and co-variances to determine the turbulent fluxes (Larson, 2022; Guo120

et al., 2021).

While the IFS uses a skin temperature that can be different from the surface temperature and a skin layer conductivity

dependent on surface type and conditions, ECHAM6 has no separate skin layer and directly uses the temperature of the

uppermost surface layer to compute fluxes. In both models, the temperature of the uppermost layer represents the uppermost

10 cm of sea ice plus the entire snow layer. This surface temperature is updated every time step (200s) inside the atmospheric125

model in AWI-CM1/ECHAM, but only at every coupling step (2h) in AWI-CM3/IFS, where the temperature update occurs

within the sea-ice model.
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2.2 Nudging

In the AWI models, vorticity and divergence in the free troposphere (700 to 200 hPa) are nudged to ERA5 reanalysis (Hersbach

et al., 2020) using a spectral truncation of T20. AWI-CM3 is nudged with a 1-hour relaxation time scale. We use AWI-CM1130

runs with a relaxation time scale of 24 hours that were originally produced for a study on European heatwaves, where the

longer relaxation timescale allowed a good match with reanalysis data (Sánchez Benítez et al., 2022). We do not expect the

different relaxation timescales to impact our results beyond the larger ensemble spread in AWI-CM1. Five ensemble members

for each model are initialised on 1st January 2017 from different atmosphere and ocean states based on CMIP6 ssp370 scenario

forcing (O’Neill et al., 2016).135

The 1-hour relaxation time scale in AWI-CM3 was chosen because it results in similar mean values and a smaller spread of

atmospheric temperature profiles compared to a 24-hour relaxation timescale in the present case study (not shown). An even

stronger nudging setup with a 1-hour timescale and without truncation, i.e. nudging all wavenumbers of vorticity and divergence

in AWI-CM3, did not further reduce the spread between ensemble members but lead to a stronger cold bias development in the

Arctic on interannual time scales (not shown).140

In the uncoupled, i.e. atmosphere-only, CAM6 run used here, free-tropospheric (above 690 hPa) temperature and horizontal

wind components are nudged to ERA5 fields with a 1-hour relaxation timescale. Note that the wind field is not truncated in this

non-spectral model, such that the full field including smaller scales is used for nudging. Daily values of sea-ice concentration

and SST are interpolated from monthly HadISSTdata. We focus on evaluating the near-surface variables from this run, where

we expect physical errors from boundary-layer and cloud processes to dominate with minimal impacts of the different setup.145

2.3 Observations

We use observational data from the MOSAiC Central Observatory (Shupe et al., 2022). On the sea-ice adjacent to Polarstern,

measurements of near-surface temperature, wind speed, snow physical depth, and sensible heat flux were made from a 10-m

meteorological tower (Cox et al., 2021). Near the tower, a suite of up- and down-looking broadband radiometers measured

the incident and reflected solar radiation (Riihimaki, 2019) and were used to derive the surface skin temperature. All of these150

on-ice measurements were representative of a relatively small domain directly around the measurements in questions, often

representing domains on the order of 1 up to ∼ 100 meters. Onboard Polarstern, measurements from a ceilometer (Morris

et al., 2021) provided information about cloud occurrence. Cloud microphysical properties were derived from multiple ship-

based sensors including radar, lidar, microwave radiometer, ceilometer, and radiosondes using the ShupeTurner cloud retrieval

algorithm (Shupe et al., 2015; Shupe, 2022). Radiosondes were launched 4-7 times per day during the period of interest from155

the back deck of Polarstern, providing profiles of atmospheric state variables (Maturilli et al., 2021). While all of these ship-

based measurements were made in a vertical or slant-path above Polarstern, we assume they are representative of the domain

directly adjacent to Polarstern as well, including the other on-ice measurements. We do not explicitly address the heterogeneity

that may exist within the scale of a model grid box in the present study, but our use of hourly averages means that any non-

stationary inhomogeneities on scales ∼ 10 km along-wind would be advected across the measurement site and averaged out.160
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Observed snow temperatures were taken from 10 Snow and Ice Mass Balance Arrays (SIMBA), installed during the fall

and spring of MOSAiC at the Central Observatory as part of the Distributed Network (Lei et al., 2022). SIMBAs are a 5

m long thermistor chain with sensors at 2 cm intervals installed vertically through the upper ocean, sea ice and snow, and

lower atmosphere. Conductive fluxes are derived by assuming the temperature changes in time at a particular level in the

column are equal to the divergence of vertical conduction and extinction of penetrating solar radiation, as in Lipscomb (1998).165

Profiles of thermal conductivity are solved for using temperature profiles from SIMBAs starting from 100 cm below the sea

ice-snow interface through the snow top. Solar radiation is assumed to decay exponentially in sea ice and snow, and a constant

bulk extinction coefficient of 1.5 m−1 is assumed for sea ice. A 7-day running mean derived from light chain buoy 2020R11

following Katlein et al. (2021) is used for the bulk extinction coefficient of snow. Density is assumed to be related to thermal

conductivity following Calonne et al. (2019). Heat capacity is assumed to depend on temperature (Paterson and Bryce, 1994).170

At the lower boundary, the thermal conductivity of sea ice is assumed to be 2 Wm−1K−1. For time steps with conductive flux

convergence, i.e. when the vertical temperature gradient changes sign, derived thermal conductivities are unrealistically low.

For these time steps, thermal conductivity is interpolated from surrounding timesteps at each level. Conductive fluxes, C, are

then re-calculated as

C =−k
dT

dz
, (2)175

where k is thermal conductivity and
dT

dz
is the vertical temperature gradient. Finally, the conductive heat flux is averaged

across individual SIMBAs. Note that all fluxes are defined as positive towards the surface, i.e. downwards in the atmosphere

and upwards through sea-ice and snow in agreement with climate modelling conventions.

3 Results

Our study is focused on April 2020, which corresponds to a targeted observation period initiated by the Year of Polar Prediction180

(YOPP) Process Task Team (Werner et al., 2020; Svensson et al., submitted). During this period, several pulses of warm, moist

air from the open ocean at lower latitudes reached the MOSAiC site, causing temperatures to rise close to the melting point.

The cold period at the beginning of April is characterised by persistent but optically thin cloud cover with little or no liquid

water and a substantial diurnal cycle in downwelling shortwave radiation and temperature, which also leads to alternating stable

and unstable stratification near the surface. During the moist intrusions in mid-April, temperatures are higher, clouds contain185

more liquid water, are deeper and optically thick and the diurnal cycle is largely muted. During the peak of the intrusion, the

atmosphere consistently warms the surface.

During the first half of April, near-surface air temperature at the MOSAiC site was about 25 K below the freezing point, with

a brief warming of about 10 K around 6 April (Fig. 2). The analysed models generally reproduce the observed temperature, but

AWI-CM1 misses the warming on 6 April. Both AWI models miss or substantially underrepresent the cooling trend and diurnal190

cycle visible in observations from 9 to 12 April, a period that is discussed in more detail below. CAM6 has a more realistic
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Fig. 3 and 4

Temperature profiles in Fig. 9

Figure 2. Observed and modelled hourly 2m temperatures during April 2020 at the MOSAiC site. Thin dashed and dotted lines show

individual ensemble members, the thicker lines show ensemble mean for each AWI model. Throughout the paper, full black lines represent

the observations, blue dashed lines AWI-CM1/ECHAM, green dotted lines AWI-CM3/IFS and orange dash-dotted lines CAM6. The period

9 to 12 April that we investigate in more detail and the timing of two soundings we analyse are indicated for reference.

representation of the diurnal cycle and cooling trend over these days. Ensemble spread for AWI-CM1/ECHAM is larger than

for AWI-CM3/IFS due to the longer nudging timescale (24h vs. 1h). The ensemble spread for AWI-CM3/IFS, i.e. the strong

nudging configuration, is substantially smaller than the differences between models or between models and observations at

most times. Such differences are thus robust to the remaining variability of the nudged model.195

From 13 to 16 April, warmer and moister air masses from lower latitudes arrive at the MOSAiC site. The observed near-

surface temperature rises by about 25 K and thus reach close to the melting point. The overall warming is reproduced by

the models, with some delay in AWI-CM3 and CAM6. Observed temperature drops rapidly by about 15 K on 17 April as

the MOSAiC region comes under the influence of colder air masses. As a second pulse of warm air arrives on 19 April, the

temperature rises to the freezing point again. After the moist intrusions, from 21 April onwards, the temperature stabilizes200

around 15 K below freezing, about 10 K warmer than before the intrusions. This stabilisation at a higher level is captured by

all models.

AWI-CM3/IFS has the onset of the first pulse of the intrusion and some other (but not all) noteable features of the temperature

evolution delayed by about one day. We attribute this to the coarser horizontal resolution in the region compared to AWI-

CM1/ECHAM (see Fig. 1), as a newly-arriving arriving air mass may have to travel further to reach the closest grid point than205

to the actual MOSAiC location.

We first analyse the skin temperature and components of the surface energy budget in the days prior to the moist intrusion

and then temperature and cloud profiles before and during the intrusion.
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3.1 Diurnal cycle of skin temperature and surface energy budget

Figure 3. Observed and modelled skin temperature, surface energy budget, shortwave fluxes, albedo and cloud cover for 9 to 12 April 2020,

the cold period prior to the moist intrusion. Blue dashed lines show AWI-CM1/ECHAM, green dotted lines show AWI-CM3/IFS and orange

dash-dotted lines show CAM6 results. Observations are shown by a black solid line, and the gray line in panel d shows an estimate of net

shortwave radiation using a time-averaged albedo (see text). Cloud cover was not output for the CAM6 runs analyzed here.

The skin temperature evolution in the period 9 to 12 April is characterized by a pronounced diurnal cycle with a magnitude210

of about 5 K and a general cooling trend with a similar magnitude (see Fig. 3a). Neither the cooling nor the diurnal cycle are

realistically represented in the surface temperature of AWI-CM1/ECHAM and AWI-CM3/IFS, despite a diurnal cycle with

realistic magnitudes in the total surface energy budget (see Fig. 3b). In contrast, a diurnal cycle is apparent in CAM6 surface

temperature (orange dash-dotted line in Fig. 3a). Note that AWI-CM1/ECHAM does not distinguish between skin and surface
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Figure 4. Temperature evolution within the snowpack at the snow-ice interface, 10 cm depth and just below the snow surface for the cold

period 9 to 12 April 2020. Temperature is averaged from a subset of 4 SIMBAs with snow depths of 20-25 cm .

temperature, whereas a separate skin temperature exists, but was not output in the initial version of AWI-CM3/IFS. The changes215

we apply to AWI-CM3/IFS in section 3.4 effectively eliminate the distinction between skin and surface temperature, but have

little impact on the surface temperature evolution shown here.

The unresponsiveness of modelled surface temperature to the diurnal cycle in the surface energy budget is probably due to

the simplistic treatment of the snow pack on sea ice in both versions of AWI-CM. Snow temperature is assumed to be uniform

throughout the snow pack, which leads to a substantial thermal inertia. With a modelled snow thickness of about 0.1m water220

equivalent, a surface flux imbalance on the order of 100 Wm−2 during one hour would be required to raise the temperature of

the snowpack by 1 K. While the observed snow depth at the MOSAiC site in April was of similar magnitude (Wagner et al.,

2021), flux imbalances that are an order of magnitude smaller are sufficient to raise the surface temperature by several degrees

during the day. This points to a much thinner layer of snow being directly thermally coupled to the atmosphere, with the low

conductivity of snow limiting the vertical distribution of heat within the snowpack. Fig. 4 indeed shows that the diurnal cycle225

of temperature is strongest in the uppermost 2 cm of the snowpack (solid line) and substantially dampened below (dashed and

dotted lines).

The diurnal cycle of temperature can have important implications for the surface albedo, as snow that melts during the day

and refreezes at night has a different albedo than a snowpack with a temperature that consistently remains below freezing.

While temperatures remain well below freezing in the period discussed here, the models’ inability to reproduce the observed230

diurnal cycle is thus a cause for concern, and fundamentally supports the idea to introduce more sophisticated representations of

sea-ice and snow thermodynamics in climate models (Zampieri et al., 2021). However, thermodynamically more sophisticated

models have not been shown to better reproduce observed sea ice trends or variability in the past (Blockley et al., 2020),

suggesting that this is (or at least was) not a first-order problem in the CMIP5 generation of climate models.
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Surface downwelling shortwave radiation tends to be overestimated by AWI-CM1 and matches observations in AWI-CM3235

and CAM6 (Fig. 3c). However, absorbed shortwave radiation is underestimated by AWI-CM3 and slightly overestimated by

AWI-CM1 (see Fig. 3d) due to the higher surface albedo in AWI-CM3 than in AWI-CM1 or the observations (Fig. 3e). In

CAM6, the albedo closely matches the observed value during the first days and is somewhat lower thereafter. Note that we

compare a 24-hour rolling average of the albedo, as the diurnal cycle in the albedo computed from observations is probably

overestimated (not shown). We attribute this to a slight shift between the timings of maximum upwelling and downwelling240

radiation, which might be caused by a sloped snow surface under the radiation sensors. Using a time-average not only smoothes

this out, but also reduces the physically realistic time-dependence of the albedo that may be due to the sun angle or cloud state.

Using the time-averaged albedo to recompute the net shortwave radiation at the surface (gray line in Fig. 3d) leads to a

substantial shift in the diurnal cycle on 11 and 12 April, but does not affect our general conclusions: AWI-CM1 overestimates

and AWI-CM3 slightly underestimates absorbed shortwave radiation, whereas CAM6 closely matches observations.245

:::::::::::
Downwelling

:::
and

:::::::
surface

:::
net

:::::::::
longwave

:::::::
radiation

:::::
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::
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:::::::::
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::::
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::
in

::::::::::
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::::
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::::::
surface

::::::
energy

:::::::
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::::
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::::::::::::
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::::
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:::
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:::::
Arctic

::::::
winter

::::::::::::::::::::::::::::::::::
(Stramler et al., 2011; Pithan et al., 2014).

::::::
During

:::
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::::::
period

::::::
studied

:::::
here,

:::::::::::
downwelling

::::::::
longwave

:::::::
radiation

:::::::::
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::
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:::::
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::::
time

::::::
scales

::
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::::
both

::::::
models

::::
and

:::::::::::
observations,

::::::
which

:::
we

:::::::
attribute

::
to

:::::
subtle

::::::::
changes

::
in

::::
cloud

:::::::::
properties

::::
that

:::
are

:::
not

:::::::::
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:::
by

:::
the

:::::::::
large-scale

:::::::
nudging

::::
(not

:::::::
shown).

:::::::::
Longwave

::::::::
radiation

:::::
could

:::
still

:::
be

::::::::
evaluated

::::
using

::::::::::::
process-based

:::::::
metrics

:::::::::::::::::
(Pithan et al., 2014),

:::
but

:::
not

::::
with

::
a

:::::::::
one-to-one

::::::::::
comparison

::
of

::::::
hourly

::::::::
averages

::
as

::::::
shown

:::
for

:::
the250

::::::::
shortwave

::::::
fluxes.

3.2 Cloud cover, ice and liquid water

AWI-CM3 produces a virtually closed cloud cover throughout the discussed period, whereas AWI-CM1 produces more variable

and lower cloud cover fractions (see Fig. 3f). Ceilometer data from MOSAiC indicates that clouds were detected in 58 % of all

measurements from 9 to 12 April 2020 (Morris et al., 2021), but the cloud radar detects cloud condensate almost continously255

(not shown). We attribute this apparent mismatch to optically thin clouds that are not detected by the ceilometer and may not

appear as clouds to a human observer. The continuous 100% cloud cover produced by the AWI-CM3/IFS thus reflects the

presence of condensate over the MOSAiC site, while the lower and more variable cloud cover in AWI-CM1/ECHAM is closer

to the cloud cover perceived by an optical instrument.

Throughout much of the cold, dry phase prior to the intrusion, the estimate of the liquid water path in observations is lower260

than the observational uncertainty of about 10−2 kg m−2 (Fig. 5). AWI-CM1/ECHAM has a substantially higher liquid water

path, whereas the liquid water path in AWI-CM3/IFS is about two orders of magnitude smaller than suggested by observations

in this period. CAM6 produces no cloud liquid water at all before the arrival of the first intrusion, and has a liquid water path

similar to observations during the intrusions. Both AWI models also have more realistic liquid water paths during the intrusion.

AWI-CM3/IFS consistently overestimates cloud ice in the cold phase and AWI-CM1/ECHAM tends to overestimate cloud ice265

on individual days (eg 12th-14th April), whereas cloud ice in CAM6 is similar to observations.

AWI-CM1’s overestimation of surface downwelling shortwave radiation (Fig. 3) in spite of a realistic liquid water path is

apparently caused by the partial cloud cover. Note that the liquid water path shown is a grid-box mean value, suggesting that
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Temperature profiles in Figure 9

Figure 5. Observed and modelled liquid and ice water path for the period 9 to 23 April 2020.

Temperature profiles 
in Figure 9

Temperature profiles 
in Figure 9

Figure 6. Observed and modelled (AWI-CM3) liquid and ice water content (sum of cloud and precipitation) for the period 9 to 23 April

2020. Vertically resolved prognostic precipitation was not output by the other models.
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the in-cloud liquid water path in AWI-CM1/ECHAM is even higher. At least in this particular case study, Arctic stratus clouds

in AWI-CM1/ECHAM thus mirror a typical pattern of low-latitude stratocumulus cloud biases, where clouds are too few and270

too bright (Nam et al., 2012). CAM6 has a realistic surface downwelling shortwave radiation despite a lack of cloud liquid

and realistic amounts of cloud ice during the cold phase at the beginning of the months. CAM6 thus appears to produce very

reflective ice clouds with a moderate amount of condensate.

Both cloud liquid and ice are spread out over substantially deeper layers in AWI-CM3/IFS than in observations (Fig. 6).

Other ensemble members (not shown) have very similar profiles of cloud condensate. Tjernström et al. (2021) also reported275

that clouds in the IFS were too deep in forecasts for a summertime Arctic ocean campaign. Data from the other models that did

not output 3-dimensional precipitation is not shown here, as the retrieval does not distinguish between cloud and precipitating

condensate.

3.3 Heat conduction through ice and snow

Figure 7. Observed and modelled 6-hourly conductive heat fluxes (positive towards the surface, i.e. upwards) during April 2020. Grey

shading shows the range of one standard deviation around the mean observational value. Note that measurements are for the uppermost snow

layer at the surface and the snow-ice interface, whereas ECHAM data is for conductive heat flux through the ice. For CAM6, the heat flux

between the snow surface and the atmosphere was reconstructed from the atmospheric fluxes at the surface.

As the ocean temperature underneath the sea ice is constrained to the freezing point of sea water (-1.9 ◦C), upward conductive280

heat flux through the ice makes a noticable contribution to the seasonally averaged surface energy budget over sea ice in winter.

Figure 7 shows observational estimates of heat conduction derived from snow and sea-ice temperatures alongside model output

for the conductive heat flux through the ice (AWI-CM1/ECHAM) and the flux passed from the atmosphere to the sea ice (outpu

from AWI-CM3/IFS and computed from the surface energy budget for CAM6) for April 2020. These fluxes are not identical

- as sea ice has a non-negligible heat capacity, more (less) heat can be conducted upwards at the snow-ice interface than285

is simultaneously conducted through the ice from the ocean at cold (warm) surface temperatures, for example. Nevertheless,

absolute values and variability of both variables should match approximately over longer time scales, on which the heat capacity

of snow and ice is small compared to the energy exchange at the surface.
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Both observed and modelled fluxes decrease substantially when the surface temperature rises during the moist intrusion.

During the cold period at the beginning of April, fluxes in AWI-CM1/ECHAM are on the order of 15 Wm−2, somewhat lower290

than the mean observational estimate but within one standard deviation. In AWI-CM3/IFS, the heat flux towards the surface is

substantially smaller, around 5 Wm−2. CAM6 fluxes closely match observed fluxes including a realistic representation of the

diurnal cycle as discussed above.

When the MOSAiC region is impacted by the moist intrusions in mid-April, the observed conductive heat flux at the surface

and snow-ice interface changes sign and becomes negative. There is a convergence of conductive heat flux within the snow-ice295

system, and the snow pack and sea ice are warmed by the atmosphere. The output from AWI-CM1/ECHAM is not expected

to reflect this downward flux, as the conductive heat flux through the ice cannot become negative - the ice would melt before

conducting heat to the ocean. In AWI-CM3/IFS, downward fluxes do briefly occur in mid-April, but can hardly be seen in Fig.

7 due to the much smaller magnitude of the flux.

Figure 8. Relationship between near-surface temperature gradients and sensible heat fluxes (positive downwards) using hourly averages.

3.4 Turbulent heat flux300

As neither version of AWI-CM reproduces the observed diurnal cycle with its alternation between a stably stratified and a

shallow convective boundary layer, these models have little chance of reproducing the observed sensible heat flux at any mo-

ment in time despite the nudging. But models should represent the observed relationship between the near-surface temperature

gradient and the heat flux normalized by the wind speed (see Fig. 8, flux is positive downwards,Tjernström et al. (2005)). In

this representation, the slope of a regression line corresponds to the transfer coefficient computed in sensible heat flux param-305

eterizations. Note that we use the diagnostic 2 m temperature and 10 m winds in models to match the observations. Using the

lowest level atmospheric temperatures instead would not qualitatively change the conclusions (not shown).

Taking into account some scatter due to measurement errors, the deviation of AWI-CM1/ECHAM from observations corre-

sponds to known deficiencies in its representation of turbulent surface fluxes (Pithan et al., 2015), that are largely representative

for weather prediction and climate models: under strongly stable stratification, i.e. when the 2 m temperature is substantially310
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larger than the surface temperature, sensible heat fluxes towards the surface are overestimated in models. This corresponds to

the long-standing issue of models producing too much turbulence in strongly stable boundary layers (Holtslag et al., 2013).

Under unstable stratification (negative gradients in Fig. 8), ECHAM produces unrealistically large temperature gradients. This

is due to the purely local diffusion scheme in ECHAM that cannot directly represent the mixing by large eddies throughout the

entire boundary layer. Combined eddy-diffusivity-mass-flux (EDMF) schemes represent this more realistically.315

In contrast, AWI-CM3/IFS (dark green triangles pointing upward in Fig. 8) produces much larger temperature gradients

than observed, hardly shows a correlation between the temperature gradient and sensible heat flux, and frequently produces

downward turbulent fluxes despite a negative gradient (i.e. values in the upper left quadrant of Fig. 8). We attribute this to an

inconsistent treatment of surface coupling: the IFS uses separate skin and surface temperatures, whereas surface temperatures

in the coupled model are updated on the FESOM side using a scheme modelled after ECHAM6, which does not distinguish320

skin and surface temperatures. Effectively enforcing Tskin = Tsurface in the IFS by setting the skin layer conductivity to 1010

Wm−2K−1 (as discussed in Hartung et al. (2022)) largely fixes this issue (downward pointing triangles in Fig. 8). The spread is

still larger than in AWI-CM1/ECHAM, which we attribute to less frequent updates of the surface temperature (every two hours

in AWI-CM3/IFS vs. each timestep in AWI-CM1/ECHAM). This substantial improvement of the turbulent surface fluxes only

has a small impact on the overall temperature evolution (not shown), suggesting compensating errors in other fluxes. The large325

modelled thermal inertia of the snowpack may also contribute to this small impact of changes in the surface flux computation

on temperatures.

CAM6 (orange circles in Fig. 8) correctly represents the cutoff of the temperature gradient in unstable situations, i.e. when

the surface is warmer than the atmosphere, but overestimates downward heat fluxes under stable stratification even more than

AWI-CM1/ECHAM and AWI-CM3/IFS.330

2020-04-11 10:50:11

2020-04-16 16:52:43

Figure 9. Modelled and observed a) temperature and b) potential temperature profiles at the MOSAiC site before (2020-04-11T10:50:11)

and during (2020-04-16T16:52:43) the moist intrusion. High-frequency model-level output was only saved for two of the AWI-CM3/IFS

ensemble members, but these cover the full spread of the five-member ensemble (not shown).
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3.5 Temperature profiles before and during the intrusion

Temperature inversions, i.e. temperature increasing with height, frequently occur in the lower Arctic troposphere in the cold

season (Serreze et al., 1992). They play an important role for the radiative effect of clouds (Sedlar et al., 2012) and for the lapse-

rate feedback, which is an important contributor to Arctic amplification (Manabe and Wetherald, 1975; Pithan and Mauritsen,

2014). CMIP3 and CMIP5 climate models had substantial biases in the typical Arctic wintertime inversion strength (Medeiros335

et al., 2011; Pithan et al., 2014). In the following, we analyse how the AWI-CM models represent the atmospheric temperature

profile on two days chosen to represent the cold, dry phase at the beginning of April and the moist intrusion. We do not evaluate

the temperature profile in CAM6, where temperature was nudged to ERA5 above 690 hPa.

The sounding from 11 April shows a cold air mass with elevated temperature inversions (Fig 9). The inversion layer is

interrupted by a thin cloud layer, with strong and deep inversions below and above the cloud. Cloud-driven mixed layers that340

do not reach down to the surface called decoupled clouds and clouds capped by or extending into a temperature inversion have

been described before (Sedlar et al., 2012; Shupe et al., 2013). Here, the cloud-driven mixed layer is particularly thin, which

points to cloud-driven turbulence being weak compared to the atmospheric stratification.

Both AWI models also show a cold air mass and at least one temperature inversion at the ground or aloft, with AWI-CM1

substantially underestimating low-level atmospheric temperatures. AWI-CM3/IFS does not reproduce the elevated mixed layer345

or temperature inversion at all, but has a rather steady increase in potential temperature with height. More and less stable

layers are apparent in AWI-CM1/ECHAM, but the model does not form an obvious cloud-driven mixed layer with constant

potential temperature as seen in observations. These temperature profiles are consistent with the representation of clouds and

cloud condensate discussed above (see Figures 5 and 6): A high-emissivity liquid layer as present in AWI-CM1/ECHAM may

be required to generate the elevated mixed layer and inversion layer, which may not be as pronounced in AWI-CM1/ECHAM350

as the model only has partial cloud cover in this period. The deeper ice cloud in AWI-CM3/IFS produces realistic shortwave

radiation at the surface, but lacks a single high-emissivity layer in the atmosphere that could sustain a mixed layer and elevated

temperature inversion. The shallow mixed layer observed close to the ground is probably caused by solar heating of the surface,

and is not captured by the AWI models due to their excessive latency in surface temperature discussed above.

During the moist intrusion on 16 April, the observed temperature profile is largely adiabatic in the lower troposphere with a355

shallow elevated temperature inversion of a few Kelvin. While AWI-CM3 matches the profile rather well, AWI-CM1 substan-

tially underestimates atmospheric temperature near the surface and slightly underestimates it above the boundary layer. The

near-surface cold bias on 16 April is at least partly related to the brief cooling between the main warm pulses being somewhat

too early in AWI-CM1/ECHAM (see Fig. 2). A cold bias in the free troposphere is also visible in the profile from 11 April and

in temperature profiles from Ny-Alesund, i.e. close to the sea-ice edge during cold-air advection from the central Arctic, but360

not during warm air advection (not shown). This suggests that AWI-CM1/ECHAM computes excessive atmospheric cooling

rates in the free troposphere during the transformation of initially warm and moist air masses over sea ice.
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4 Conclusions

Our case study uses high-frequency in-situ data from the MOSAiC expedition to evaluate climate models in which the large-

scale circulation was nudged towards ERA5. Nudging a coupled model proves to be an effective way to directly evaluate365

climate model physics with short-term observational campaigns, even for individual weather events.

Both the atmosphere-ice-ocean models AWI-CM1/ECHAM and AWI-CM3/IFS and the atmosphere-only model CAM6

reproduce the key features of the observed cold phase at the beginning of April 2020, the warm phase dominated by moist

intrusions in mid-April and cooling thereafter. Under optically thin clouds during the cold phase, a clear diurnal cycle is

observed but not captured by the AWI-CM models, which we attribute to the simplistic treatment of the snow pack as a single370

layer with uniform temperature in both models. CAM6 uses three layers to represent snow on sea ice (Danabasoglu et al.,

2020) and captures the diurnal cycle much better than the AWI-CM models.

AWI-CM1/ECHAM correctly models the occurrence of cloud liquid water during this period, but overestimates the liquid

water path and underestimates cloud cover, which is nearly ubiquitous in observations. As a result, the model overestimates

downwelling shortwave radiation at the surface. AWI-CM3/IFS has about two orders of magnitudes less cloud liquid water,375

but a fully overcast sky and surface downwelling shortwave radiation close to observed, likely due to compensation by overes-

timated cloud ice. CAM6 closely matches observed surface shortwave radiation despite lacking cloud liquid water. In contrast

to AWI-CM1/IFS, CAM6 does not have a clear overestimation of cloud ice, so the reasons for the close match of the short-

wave radiation is unclear. Cloud phase in the present-day climate controls the potential for future cloud brightening as ice

clouds transition to optically thicker liquid clouds, an important climate feedback with substantial impacts on Earth’s climate380

sensitivity (Ceppi et al., 2017; Zelinka et al., 2020).

We detect an unphysical relationship between the near-surface temperature gradient and turbulent surface fluxes in AWI-

CM3/IFS. We have resolved this issue by making the treatment of surface/skin temperature more consistent with the surface

temperature update routine. Within our case study, all models overestimate turbulent heat fluxes under stable stratification, and

this overestimation is stronger in CAM6 than in AWI-CM1/ECHAM and AWI-CM3/IFS.385

Our evaluation underscores the need to further improve the model representation of mixed-phase clouds in cold environments

and of stable boundary layers. It suggests that going beyond a 1-layer model for the representation of snow thermodynamics

over sea ice would be beneficial for ice-atmosphere coupling in climate models.

Observing system simulators (Zhang et al., 2018) would facilitate even closer comparisons to cloud radar and lidar data.

For studies in the polar regions involving spatially narrow features such as moist intrusions, we recommend the use of strong390

nudging with relaxation timescales on the order of 1h to limit ensemble spread and stay as close to the observed large-scale

flow as possible.

We conclude that nudging provides a strong tool to leverage observations, especially from intense, time-limited campaigns,

for the evaluation and improvement of coupled climate models. Nudging intensity needs to strike a balance between constrain-

ing the relevant weather phenomena and leaving the model sufficient freedom to respond in a physically plausible way. A395

nudging intercomparison involving more coupled models and using the full MOSAiC dataset, data from the COMBLE cam-
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paign (Geerts et al., 2022), YOPPsiteMIP (Uttal et al., 2019) and recent Southern ocean campaigns (McFarquhar et al., 2021)

would be an asset for evaluating and improving the representation of crucial processes in climate models.

Code and data availability. MOSAiC observations are available from multiple sources. The Met City flux tower, meteorological data, and

snow depth are available at the Arctic Data Center (https://doi.org/10.18739/A2VM42Z5F, 2021, Cox et al. (2021)). The Met City radiation400

measurements (https://doi.org/10.5439/1608608, Riihimaki (2019)), ceilometer data (https://doi.org/10.5439/1181954, Morris et al. (2021),

and ShupeTurner cloud microphysics product (https://doi.org/10.5439/1871015, Shupe (2022)) are available from the DOE Atmospheric

Radiation Measurement archive. The radiosonde data are available from the PANGAEA archive (https://doi.org/10.1594/PANGAEA.928656,

Maturilli et al. (2021)). Snow temperature measurements from SIMBAs are available from the PANGAEA archive (see Table 1). MOSAiC

buoy data is available at https://data.meereisportal.de/data/buoys/processed/MOSAiC/mosaic_buoy_data.zip.405

https://doi.pangaea.de/10.1594/PANGAEA.940393 940231 940593 940617 940634 940659

940668 940680 940692 940749 940702
Table 1. DOIs for SIMBA snow temperature datasets. The last six digits change for each SIMBA.

CESM/CAM6 model code is available at https://github.com/ESCOMP/CESM. The ocean model FESOM2 source code is available on

Zenodo at 10.5281/zenodo.6335383 and at https://github.com/FESOM/fesom2/releases/tag/AWI-CM3_v3.0. OpenIFS is not publicly avail-

able but rather subject to licecing by ECMWF. However licences are readily given free of charge to any academic or research institute. All

modifications required to enable AWI-CM3 simulations with OpenIFS CY43R3V1 as provided by ECMWF can be obtained on Zenodo at:

10.5281/zenodo.6335498. The OASIS coupler is available upon registration at: https://oasis.cerfacs.fr/en/downloads/. The XIOS source code410

is available on Zenodo (10.5281/zenodo.4905653, Meurdesoif, 2017) and on the official repository (http://forge.ipsl.jussieu.fr/ioserver, last

access: 4 March 2022). The runoff mapper scheme is available on Zenodo at 10.5281/zenodo.6335474. The compile and runtime engine

esm-tools is available on Zenodo at: 10.5281/zenodo.6335309.
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