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Abstract. Rapidly evolving floods are rare but powerful drivers of landscape reorganisation that have severe and long lasting

impacts on both the functions of a landscape’s subsystems and the affected society. The July 2021 flood that particularly hit

several river catchments of the Eifel region in West Germany and Belgium was a drastic example. While media and scientists

highlighted the meteorological and hydrological aspects of this flood, it was not just the rising water levels in the main valleys

that posed a hazard, caused damage, and drove environmental reorganisation. Instead, the concurrent coupling of landscape5

elements and the wood, sediment and debris carried by the fast-flowing water made this flood so devastating and difficult to

predict. Because more intense floods are able to interact with more landscape components, they at times reveal rare non-linear

feedbacks, which may be hidden during smaller events due to their high thresholds of initiation. Here, we briefly review the

boundary conditions of the 14–15 July 2021 flood and discuss the emerging features that made this event different from previous

floods. We identify hillslope processes, aspects of debris mobilisation, the legacy of sustained human land use, and emerging10

process connections and feedbacks as critical non-hydrological dimensions of the flood. With this landscape scale perspective,

we develop requirements for improved future event anticipation, mitigation and fundamental system understanding.

1 Introduction

The 14–15 July 2021 flood in Western Germany as well as parts of Belgium and the Netherlands revealed the unpreparedness of

societies, policy makers, and scientists across many dimensions. The anticipated precipitation amounts had been communicated15

several days ahead, hydrological models and numerous stream gauges were in place, and information chains and authority
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responsibilities were implemented. Yet the flood, which hit several catchments that originate in the Eifel (Fig 1), developed

into a massive hazard event that propagated downstream for long distances and persisted for many hours. Meanwhile, and

evident from media reports focussing on the preceding rain event and the evolution of the flood, mitigation efforts remained

insufficient, the actual flood wave was underpredicted, and emergency activities failed to prevent a disaster that led to 18420

fatalities and two missing persons (as of 24 November 2021) in Germany alone (Thieken et al., 2021). This unexpectedly high

toll is the highest in Germany since six decades.

The meteorological driver of the crisis was a cyclone named "Bernd" (Schneider and Gebauer, 2021). It travelled from the

North Atlantic via France towards central Europe. Over Western Germany, its propagation speed was slowed down by an

anticyclone over eastern Europe, causing almost stationary precipitation over the Eifel region from 12 to 15 July, releasing 11525

mm rain in 72 h on average in for example the Ahr catchment (Junghänel et al., 2021), with a maximum value of 157 mm

on 14 July at the DWD station Köln-Stammheim. The soils in the entire region were already mostly saturated due to frequent

previous rain events, which is expressed by an average free storage capacity < 70 mm within the soils’ top 60 cm as well as an

average soil field capacity of 80–100 % (DWD-Agrowetter, 2022). The meteorological situation was properly forecasted days

in advance by several weather prediction models (DWD, 2022; Schneider and Gebauer, 2021). The discrepancy between the30

accuracy of the meteorological forecasts and the shortcomings of flood hazard forecasting and communication reveals some of

the challenges involved in anticipating the impacts of extreme events.

The next element of the evolutionary trajectory of the crisis was the surface runoff of excess rainfall that was not able

to infiltrate into the ground, and hence triggered several non-linear processes, positive feedbacks and process connections

(Dietze and Ozturk, 2021). Altogether, these dynamics amplified the impact of the flood on the landscape, particularly in the35

anthropogenic realm. To understand these dynamics, it is necessary to first examine the different landscape elements activated

by the event and then to explore their modes of interplay. The flood hit several European countries. In Germany particularly, it

impacted two geomorphically distinct regions: the Eifel with the Ahr Valley to the south and the Lower Rhine Bay with the Erft

catchment to the north. The Eifel is a typical low mountain range with steep, deeply incised valleys (see Fig. 1 for the slope

signature). These valleys cut through numerous Paleozoic lithologies with varying degrees of fracturing, crack orientation,40

and ground permeability, which impose a pronounced predisposition to gravitational mass movement (Damm et al., 2010). In

general, hillslopes are covered by Pleistocene, 1-3 m thick periglacial cover beds that are largely unstable due to the specific

grain-size distribution, sensitive to water supply, and frequently incorporated in landslides (Bell, 2007; Damm et al., 2013).

Rockfall dominated cliffs are developed on steep slopes. In contrast, the Lower Rhine Bay region including the Erft catchment

is an area of subsidence with smooth topography, filled by highly-permeable Cenozoic sediments with a widespread cover45

of Quaternary loess deposits. There is no susceptibility to gravitational mass movement in this landscape, except for steep

landforms that predominantly result from man-made construction (e.g., road escarpments, waste dumps, open pit mining, cf.

Fig 1). Both regions hold a long legacy of human land use.

Although the official data collection on economic flood impacts in Germany’s federal states of North Rhine-Westphalia

and Rhineland-Palatinate is ongoing, current estimates point at 33 billion Euro damage to private households, infrastructure,50

forestry, and agriculture as well as viticulture enterprises (Fekete and Sandholz, 2021). In Germany, the Ahr valley was hit
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hardest: 62 out of 75 bridges were destroyed and almost all wineries were heavily affected (BMI, 2021). In Rhineland-Palatinate

at least 65000 people were directly affected by the event. 135 people lost their lives, at least 766 people were injured and

two are still missing (Schmid-Johannsen et al., 2022). However, societal impacts occurred not only during the event itself.

Months later, inner cities remain severely damaged, and commercial and gastronomy businesses are still heavily disrupted.55

Their reopening depends on the timely and simultaneous restoration of key infrastructure like electricity, telecommunications,

water and sewage. Disruption also affects schools and childcare facilities in some places putting another burden on affected

families. Physiological illnesses as well as psychological impacts on people who lost their homes, relatives and friends during

the flood represent a long-term legacy of the flood event, also beyond the areas actually impacted by the flood. Former floods

in Germany revealed that a devastating experience preoccupied affected people for years (Thieken et al., 2016). Therefore,60

socio-psychological support is a key to recovery.

Based on empirical field studies during, immediately after, and over several weeks after the flood, we propose four critical

non-hydraulic dimensions of flood-related processes. We present examples for each of these dimensions and discuss conse-

quences of their interaction. These representative case studies form the basis of our synthesis of requirements to improve

mitigation efforts for future events.65

2 Method overview

In this text, we decisively pursue a descriptive approach, focusing on generalised implications of systematic findings during

field mapping campaigns carried out early after the flood event. There are several reasons for this approach. The amount and

quality of data during the flood, such as gauge data, satellite imagery and on-site instrumental data are limited due to abundant

could cover. Likewise, post-flood remote sensing data (BBK-DLR, 2022) is only available for the main valley sections but70

not for headwater systems, where the flood gained its momentum and non-linearity (Dietze and Ozturk, 2021). Finally, model

results that are currently produced do not capture the non-hydrodynamic dimension of the flood while high resolution 3D

terrain information, essential for quantitative evaluation of erosion and deposition patterns are currently still being produced

(Bell et al., 2022; Wenzel et al., 2022).

Nevertheless, we are able to constrain the antecedent conditions, driver mechanisms and, to some extent, the impacts of the75

flood event based on instrumental data. Spatially resolved precipitation information (Weigl and Winterrath, 2009; CDC, 2022)

as 1 km2 gridded hourly data were stacked as 72 h sums throughout the main event duration (12–15 July 2021). In addition,

instrumental station data (CDC, 2022) of representative sites were used to characterise the severity of the rain event. We

fitted intensity-duration-frequency (IDF) curves to historical annual maximum precipitation measurements. The IDF model

was fitted with the extended consistent quantile estimation method (Fauer et al., 2021) and evaluated for the DWD station80

Weilerswist-Lommersum (Fig. 2).

Flood affected areas and the surface change due to erosion and deposition of sediment and large woody debris were inspected

by analysing aerial RGB imagery. The material was collected one day after the flood and allowed a comparison of emerging
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Figure 1. Map of the affected area. 3-day precipitation accumulated for 12–15 July 2021 from RADOLAN data (CDC, 2022). Stars indicate

locations of pictures of other figures in this article. Light blue lines depict rivers of special interest mentioned in the text. Background map

shows two of the most affected river systems, Erft and Ahr (line width indicating stream order), on top of a hillshade and slope map (red

colours). Inset shows the location of the map within Germany.

surface features with imagery from months before the event (BBK-DLR, 2022). However, the availability and format of the

data (web service) only allowed non-quantified, descriptive studies.85

Core information about the flood event is based on extensive and multi temporal field mapping campaigns throughout the

wider Eifel region, decisively including headwater regions and their coupling with tributaries of the Ahr river. Surveys of flood

water marks, erosional features along channels and hillslopes, deposited sediment bodies caused by ponding and hydrodynamic

ejection of bed material, and large woody debris accumulations were carried out one day after the flood, and repeatedly within

2–3 weeks, and 2–4 months. Surveys included the documentation of the type of feature as denoted above, information on the90

location and size and a description of the geomorphic process regime responsible for its creation. The material presented in this

text is limited to representative examples, because a quantitative regionalisation needs to be based on post-event high resolution

terrain information (see above).
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Figure 2. IDF curve for the weather station Weilerswist-Lommersum. Observations of 14 July precipitation are added in black based on

different measurement intervals. Coloured lines depict different non-exceedance probabilities, respective shadings indicate 90 % confidence

intervals.

3 Flood dimensions and emerging aspects

3.1 Hydrometeorological dimension95

According to Fig. 1 based on radar and station observations (RADOLAN data set; (Weigl and Winterrath, 2009)) the pre-

cipitation amount for the 72 h period 12–15 July at Weilerswist-Lommersum is similar to the amount observed in Blessem

(Fig. 1). Moreover, the time series at the selected station is sufficiently long for the calculation of robust IDF curves (daily

precipitation is available since 1905 and hourly precipitation since 2004). The analysis confirms the unusual extreme character

of the precipitation amounts during the July event (black lines and crosses in Fig 2). Sub-daily as well as daily and multi-day100

amounts exceeded the values corresponding to a 500-year return period determined under the assumption of stationary climate

conditions.

3.2 Hillslope dimension

In typical scenarios, hillslope runoff delivers unconcentrated Hortonian or saturation overland flow to the streams, where

discharge can accumulate and build up deeper and faster hydrographs. For the July 2021 flood, during post-event mapping105

campaigns we have witnessed several occasions where ephemeral headwater drainages had turned into streams, conveying

overland flow some decimetres deep (Fig. 3a). These local phenomena allowed overland flow velocity to increase by one to

two orders of magnitude (Dietze and Ozturk, 2021), which was further amplified by the effects of infrastructure (see section

2.3), such as forest tracks with rain ditches running alongside. While the tracks perpendicular to slope aspect were extensive

runoff collectors (evidenced by systematic high water marks throughout mapped regions), the ditches efficiently conveyed110
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Figure 3. Landscape features emerging from the flood. For locations of these pictures see star signatures in Fig. 1. a) Focussed discharge

along the hillslope causing deep and fast flow and thus efficient drainage in the background. However, the provided water is not routed

downslope in the foreground but ponded by infrastructure, and released at selected spots with increased erosive stream power. b) Deposition

area of the debris flow shown in (c), injecting massive debris into the main channel (Trierbach), temporally blocking the stream and causing

severe reorganisation of the hydraulic geometry. c) Lateral deposits of the debris flow at the end of the valley confined section. Inset shows

upstream knickpoint formed by overspill and erosion of clogged drainage pipe (50 cm diameter). d) Old slope instability (yellow line) above

a 20 m high engineered terrace with industrial infrastructure on it. The terrace just east of the town of Antweiler had been undercut by the

Ahr river during the flood.

collected water to release spots that acted as new gully heads (based on freshly developed erosional features). Once such

gullies had formed, it is physically plausible that a positive feedback loop was implemented (Molina et al., 2009; Anderson

and Anderson, 2010), leading to increasingly faster and more erosive discharge towards the valley bottoms. Hence, during the

flood, concurrent landscape reorganisation, namely gullying by a concentration of overland flow amplified by infrastructure,

most likely played a key role in changing the drainage efficiency. This spatial feedback is not accounted for in commonly115

applied hydraulic models.

Hillslopes not only contributed material through unconcentrated overland flow and focussed fluvial processes but also via

gravitational mass wasting, most importantly in the form of debris flows, shallow and deep-seated landslides. During field

mapping campaigns immediately after the event, we documented numerous debris flows emerging from hillslopes. These

debris flows altered the hillslopes by erosion of soil and vegetation, and severely impacted the channels that drain the valleys.120

They injected coarse particles and woody debris to the channels, which had a series of consequences. In many cases, the

channel thalweg was displaced or the entire trunk river was relocated within the flood plain, the local gradient was changed,

and in some cases the entire flow was blocked at least temporarily (Fig. 3b). These abrupt changes have follow-on effects on

channel morphology, for example bed-armouring due to sediment sizes exceeding transport capacity, and the excavation of

the bed including bedrock downstream, with enhanced capacity of future bedload transport and potential knickpoint migration125

upstream (Berger et al., 2011; Hu et al., 2021). Most of the mapped debris flow source points were locations where excess water
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was able to enter a debris flow channel, ultimately triggering this mass wasting process. In most cases there were ditch-lined

roads that collected and delivered the water. In addition to excess water, the investigated debris flows had at least one location

in their contributing area that served as a massive source of mobile material. For example, the debris flow in Fig. 3c mobilised

large amounts of material downstream of a 4–5 m high knickpoint, which formed by the overflow of a manufactured forest130

track crossing the channel. This artificial dam had a 50 cm drainage tube that quickly got clogged, causing backfilling and

finally overtopping by the flood water. The high energy release at the resulting waterfall base caused erosion of the surrounding

slope sections and the channel bed, sourcing rock material and trees into the debris channel and then into the main channel, the

Trierbach, downstream (Fig. 1). Evidently, there were several previous debris flow deposits visible in the eroded bank of the

Trierbach, indicating that the entering debris channel had been active several times in the past.135

The landsliding component of hillslope material contribution had a series of triggers, mechanisms and time lags to the

precipitation phase. Post flood mapping revealed numerous shallow landslides that were not related to fluvial undercutting

as a trigger, but were located on steep concave slope sections, hence at preferentially wetter slope positions (Giuseppe et al.,

2021). This suggests that their activity was triggered by excess precipitation before and during the rainfall event. These features

typically had a spatial extent of a few to a few tens of metres and were in most cases not connected to a channel. In contrast,140

there were also numerous river banks on the outer side of river bends that showed significant undercutting and, consequently

slope failures (Ozturk et al., 2018). These well-connected landscape elements were able to deliver sediment and woody debris

directly to the channel (Fig. 4a). Such slope instabilities ranged in length from a few metres to features that have affected

significant parts of valley hillslopes. In some cases, entire hillslopes with older instabilities were undercut (Fig. 3d) and might

become reactivated subsequently. One such example of a river meander bend is depicted in Fig. 4b, where a 100 m long and145

16 m high rock face was stripped of its debris apron as the Ahr river level rose by about 5 m above the current water level (cf.

the flood impact scar in Fig. 4b). Subsequent visits to the site revealed traces of slope movement, such as extending cracks in a

paved road crossing just above the rock slope. It is unclear how increased soil moisture during the winter period (Dietze et al.,

2020) will affect the transient activity of this rock slide. Hence, further close monitoring of the slope instability is required to

anticipate its failure and the potential for subsequent blockage effects on the Ahr River.150

3.3 Debris mobilisation

Large woody debris played a critical role in rendering the flood non-linear and difficult to predict, from small headwater

channels down to the main streams. Tree logs could have been recruited from forest-covered hillslopes with abundant dead

wood due to the drought years of 2018 to 2020 (van der Wiel et al., 2021). However, apart from the linear erosive features

described in section 2.2, there was limited field evidence of systematic unconcentrated overland flow on hillslopes, and in155

no occasion pointing at potential flow depths necessary to entrain logs (Baudrick and Grant, 2000) and route them through

a maze of standing trees. The recruitment of large woody debris from riparian zones, where lateral erosion impacted former

tree habitats (green line signature in Fig. 3a) is thus much more likely. Aerial imagery collected along main rivers a day

after the flood (BBK-DLR, 2022) shows substantial removal of trees along the Ahr River and other floodplains. Nevertheless, a

quantitative survey of the dead wood delivery capability of the forested hillslopes and riparian zones still needs to be conducted.160
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Figure 4. Debris mobilisation features, Ahr valley near Müsch (cf. Fig. 1) Aerial image (BBK-DLR, 2022) taken one day after the flood.

The light green outline depicts the tree limit before the flood. Blues lines illustrate the pre-flood course of the Ahr river. b) View from the

green star in (a) towards the eroded right bank, which had activated a 16 m high rockslide (persons for scale). Note flood impact mark on a

remaining tree at 5 m above current water level.

Ideally, such a survey would be based on high resolution point cloud data, for example from dedicated airborne laser scan

missions. Understanding the relative importance and pattern of different large woody debris sources is important not only for

restoration efforts in the flood-affected areas, but also for mitigating future flood hazards (Lucia et al., 2018). In a preventive

manner, especially given the likely increase in extreme events (IPCC, 2021), the general impact of large woody debris on

central European landscape dynamics and the susceptibility of different tree species should be investigated.165

The subsequent transport of large woody debris through the river channels had a series of effects (Jochner et al., 2015;

Okamoto et al., 2020). In the main streams, clogging of obstacles, mostly bridges, resulted in temporary ponding and backwater

effects (Fig. 5a). As a consequence, upstream water levels rose and the inundated areas grew until the obstacle was either

bypassed, overtopped or destroyed. In the former case, the bypass location experienced increased flow velocity and thus bed

shear stress, resulting in focussed erosion. The latter effect has the potential to generate a pulse of water travelling downstream170

like an outburst flood. Given the presence of many such obstacles along the course of the Ahr valley (62 out of 75 bridges

destroyed) and most likely other streams draining the Eifel, the failure of obstacles most likely contributed to non-linear,

pulsed hydrograph behaviour, as partly confirmed by affected people (REFTOBEADDED) and experienced during earlier

floods (Roggenkamp and Herget, 2022). However, the large spacing, insufficient time resolution (15 min sampling interval)

and eventual failure of existing stream gauges prevent us from resolving this conceptualised hydrograph behaviour and its175

resulting inundation and shear stress pulses. The traces of these clogs are visible both in the main valleys (BBK-DLR, 2022)

and in headwater regions, where we were able to map numerous blockages of first order streams, either at anthropogenic
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Figure 5. Effects of large woody debris. For locations on wider map see stars in Fig. 1) Pair of clogged bridges near Altenahr, bypassed

along the left and right bank. Note the bipartition of the collected debris with woody material caught by the downstream road bridge and

anthropogenic debris collected later by the upstream railway bridge. Note two remaining standing trees in the river depicting the width of

the Ahr river before the flood. Aerial image by (BBK-DLR, 2022). b) Huhnenbach near Aremberg about 2 km from its source (see Fig. 1).

Note clogging by woody debris at riparian trees and the resulting ejection of coarse bed material out of the channel. c) Another clogging of

the Huhnenbach some 20 m upstream of (b), with both ejected coarse debris and deposition of fine sediments in front of the obstacle.

structures (bridges, water passages, fences) or at narrows formed by riparian trees (Fig. 5b). In many reaches, these blockages

were formed at a few tens of metres spacing, ponding backwater due to accumulation of organic fine material (Schalko et al.,

2018), and implying significant effects already at very small contributing areas. The propagation of non-linear flow effects180

from small creeks to and throughout the trunk river of a catchment is a crucial step to take for successful future flood impact

anticipation.

A further important effect of large woody debris, especially in headwater regions, was the role in ejected coarse inorganic

debris from the stream bed (Fig. 4b) onto the floodplain. Also fine material was deposited in front of woody debris obstacles

(Fig. 5c) and clogged anthropogenic structures, such as bridges. This readily available fine material is now a temporary source185

for increased fluvial sediment flux. Hence, even low intensity floods will be able to carry comparably high concentrations

of sediment particles. In contrast, the ejected coarse bed particles are currently removed from the fluvial domain until future

bank erosion (or human land-use practice) re-incorporates them to the channel. Debris also resulted in permanent alterations to

stream courses, due to lateral and vertical erosion, and in some steep channel reaches even led to incision into the underlying

weathered bedrock as mapped out systematically in headwater reaches. This again resulted in undercutting of the banks and190

local landslides. The spatial reorganisation of sediment in the fluvial domain as well as overall changes in river geometry and

bed properties – from small creeks a few kilometres past the watershed to major rivers like the Ahr – inevitably caused a

transient in the catchment reaction to future floods.
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3.4 Anthropogenic dimension

The flood happened in a cultural landscape with a long legacy of human land-use. Accordingly, there were typical primary195

effects of land-use, particularly surface features on flood dynamics such as an increased and accelerated surface runoff on

cultivated hillslopes (Bronstert et al., 2020), some of which are already mentioned above (e.g., Fig. 2a, Fig. 4a, clogged

structures, shallow landslides due to undercut or oversteepened slopes). During our mapping campaign, we observed systematic

changes in fluvial erosion features along small headwater channels. Forest-covered floodplains with strong erosional features

were connected to virtually unaffected grassland sections, and intact slopes suddenly showed linearly incised sections without200

a plausible contributing area. In most of these cases, however, we were able to identify artificial subsurface drainage systems,

often visible as fragments of drainage pipes. Not surprisingly, according to interviews with residents, systematic tile drainage

is a common practice in the area to improve grassland quality or simply to manage the waste water of dispersed houses. The

consequences during the July flood were either an increased discharge contribution where tile drainage remained intact or

injection of excess water into the ground where drainage pipes eventually filled up with debris and were clogged. In the former205

case, the hydrological flashiness of the landscape increased, while in the latter case the result was an elevated susceptibility

of hillslopes to failures and incision. Such failures may be local effects, but the increased flashiness had an external effect by

increasing the rapid build-up of flood waves in subsequent channels. Since many of the tile drainage and waste water systems

are several decades old and not necessarily documented, including their effects in runoff models will be a challenging though

necessary future task.210

Both regions, Ahr valley and Lower Rhine Bay, hold a long legacy of human land use that influence the susceptibility

to gravitational mass movements. According to the German landslide database (Damm and Klose, 2015) the pronounced

susceptibility to mass movements in the Ahr valley is exemplified by 49 database records from the middle and lower valley

sections over the last about 70 years. The records document a preference for fall processes (73 % of the events), in general

consisting of rock- and boulder falls of low magnitude. Sliding processes amount to 27 %. Inadequate land management as215

a mass wasting driver or trigger is conservatively estimated to explain almost 20 % of all cases (Damm and Klose, 2015). In

contrast, the Lower Rhine Bay is virtually not susceptible to gravitational mass wasting, except for artificially oversteepened

landforms. Over the last 130 years, only 26 events were documented (Damm and Klose, 2015), all of them exclusively located

in engineered landscape parts such as slope cuts, hillside fillings, road embankments, waste dumps, open pit mining and

river management activities. Triggers of the few large-magnitude processes (collectively linked to open pit mining sites) were220

predominantly the direct intervention related to mining and the intrusion of external water into the pits, caused by heavy rainfall

or flooding. Hence, direct links of flood magnitude to mass wasting activity are convoluted with land use practice and thus hard

to disentangle, at least for past events.

The unprecedented economic damage of more than EUR 30 billion was most likely caused not only by the extent of the

affected area (see section 2.1), but also by the velocity of the water flow and the combined impact of water, wood and debris225

on buildings and infrastructure. Field inspection revealed inundation depths at buildings of several meters affecting not only

cellars and ground floors, but also the first floor of many houses (e.g., Roggenkamp and Herget (2022) and own mapping
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efforts). Previous major floods in the Ahr valley, Germany, namely 2006 and 2013, also caused inundation damage. However,

those previous water levels rose on average to 0.83 and 0.46 m above the ground level, respectively (Thieken et al., 2022).

The Ahr valley experienced larger events in the more distant past, such as 1804 Roggenkamp and Herget (2022). However,230

the settlement and landuse structure was significantly different from 2021, which makes comparisons of comparably large

but temporally more distant events challenging. In addition to inundation dpeths, high flow velocities and resulting damage

due to impacting debris, undermining of paved surfaces and souring of foundations were reported frequently for these valley

confined flood events (Laudan et al., 2017), processes specifically harmful to critical road infrastructure (Kreibich et al., 2002).

At downstream reaches, water levels became elevated by deposited debris that reduced accommodation space. None of these235

processes and damage mechanisms are included in common damage models (Laudan et al., 2017). Likewise, without their

inclusion, identification of affected buildings by automatic flood mapping routines (e.g., CEMS, 2022) remains incomplete

and requires tedious and time consuming manual data collection to derive a proper damage estimate. In the Ahr valley, CEMS

identified around 5000 affected residential buildings while an overlay of the reconstructed water mask and an openstreetmap

data set identifed about 7000 buildings. These 7000 buildings are likely to be a too low estimate as the water masks usually do240

not map the rapid surface runoff, which could also lead to structural damage of buildings. Hence, the development of concepts

and readily applicable tools to reliably estimate the damage particularly to infrastructure is an important emerging goal.

The high death toll along the river Ahr could however not just be related to the shortcomings of damage estimates discussed

above. A further effect was the general underestimation of the flood magnitude by locals due to an anticipation legacy. During

the 2016 flood in the Ahr valley, discharge was estimated to resemble a 100-year event (Demuth et al., 2022). In 2021, residents245

tended to recall that past event and the way they coped with it. Since the 2021 event was considerably higher and accompanied

by geomorphic processes, this ultimately led to an underestimation of its impact. An online survey that was conducted from

August to October 2021 in the affected areas (Thieken et al., in prep.) revealed that based on the warnings just 14.8 % of

856 warned residents anticipated massive damage and life-threatening situations (assessed on a Likert-scale from 1 to 6). In

addition, public authorities, particularly in the district of Ahrweiler, evacuated very late in the evening when the water had250

already flooded houses. Hence, many residents endured this threatening flood situation on the roofs of their buildings (or

drowned).

3.5 Interactions and process connections

Landscape elements and process domains are typically linked by the river network that drains them. Hence, changes in equi-

librium processes such as sediment fluxes into a river, ponding, or advancing flood waves can be seen as input signals that are255

transmitted downstream while becoming modulated in their response. The magnitude and filter function of this modulation can

be so strong that the initial input signal is no longer discernible; it gets shredded (Jerolmack and Paola, 2010). One example

of this concept, namely the change of the flood’s hydrograph by cascades of clogged bridges, has been described in section

2.3. Nevertheless, the modulated response (here the modulated flood wave) still severely impacts downstream reaches – and

sometimes even upstream reaches. We follow this concept of signal shredding during landscape interaction through connection260

mechanisms in the Erft catchment (Fig. 1).

11



At a comparably small scale, the town of Blessem on the Erft river was subject to such an emerging landscape connectivity

case. The excess rain water of Blessem was collected and channelized in pipes below the main road (Frauenthaler Straße, then

passed to Radmacherstraße). These pipes ended in a drainage ditch at the western town limit that routed the water towards

the Erft river (Fig. 6b), passing by a gravel pit that was protected by a few meter high rampart. During the flood, overbank265

discharge of the Erft river moved water across the main streets of Blessem (light blue arrows in Fig. 6) and injected excess

discharge into the drainage pipes but also ran as overland flow along the streets. In addition, Erft overbank discharge was

routed over a field west of the town, towards the drainage ditch already carrying the town’s excess water. Whether that excess

water caused overspilling of the 2 m deep drainage ditch or if the additional water inflow from the field caused the overspill

cannot be resolved here. Regardless, the ditch overtopped and discharge followed the line of steepest descent into the gravel270

pit, whose protection rampart was not fully closed but had a gap through which the water could enter the pit. As the flow path

gradient changed from less than 1 to about 20 degrees down the pit slope, the shear stress increased by two orders of magnitude

(Anderson and Anderson, 2010). This high shear stress, combined with the high erodibility of the underlying material (a thin

loess cover on tertiary Rhine gravel), resulted in extremely rapid erosion and the development of an erosional margin (yellow

line in Fig. 5) that cut backwards by about 250 m within a few hours. The final shape of the erosional margin shows four275

discrete tongues of enhanced slope retreat (cf. numbered triangles in Fig. 6), which correspond to the main sources of excess

water: the road and drainage pipes running through the town of Blessem (triangle 1), two overflow spots of the river Erft across

the field at the edge of the town (triangles 2 and 3), and ultimately, the river Erft itself (triangle 4), which routed its whole

discharge into the eroded gravel pit. This led to rapid inundation of the pit, massive deposition of > 450,000 m3 of material,

enhanced lateral erosion along the (new) outer bank of the diverted river, as well as significant depth erosion not only of the280

new course of the river Erft but also in its old bed, forming a knickzone and resulting in a bed elevation lowering of 1.4–1.8 m.

Despite initial media reports of a landslide (i.e., a gravitational mass wasting process) happening near Blessem, all evidence

rather imply that it actually was a process driven by flowing water. That process in turn was the result of a local process

connection mechanism: backward erosion of the gravel pit margin. At the same time, the mechanism was also controlled by

emerging feedbacks, i.e., the reduction of backward erosion by cessation of overbank discharge through base level lowering of285

the river Erft as it flowed into the gravel pit. Hence, what happened in Blessem is an example of how geomorphic processes

first amplified and later counteracted the impact of a hydrological extreme event.

At a larger scale, the Blessem site was almost subject to another process connection case, which would have delivered

a further significant wave of water. Through the rivers Erft, Swist and Schießbach, the town is connected to the Steinbach

reservoir some 30 km upstream (Fig. 1). The 12 m high earth dam of that reservoir was severely dissected by sustained crown290

overspill for several hours during the flood event. Gullies of 10 m width and up to 4 m depth formed over a length of about 100

m (quantified by UAV based structure from motion topographic data). If the Steinbach reservoir dam had failed, another 1.2

Mio. m3 of water would have moved downstream, most likely refuelling the erosion processes in Blessem with another new

flood wave all along the river’s course from the reservoir.
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Figure 6. Aerial image (BBK-DLR, 2022) of the town of Blessem. a) Situation shortly after the flood event, with annotated features. The

top right inset (b) shows conditions before the flood. The break in slope along the margin of a gravel pit (red dashed line) had started to

erode towards the town by fluvial erosion (yellow line) that formed three individual clusters. The erosion was fuelled by overbank discharge

of the Erft river, evading the town of Blessem and moving down the main street as well water flowing over the field west of the town

margin, following the line of steepest descent. Water flow directions are indicated by blue arrows where visible from aerial imagery. The four

numbered blue triangles depict sites of increased water input towards the pit.

4 Challenges and future needs295

A particular phenomenon of the July 2021 flood was the widespread activity of mostly small features that ultimately added up to

unexpectedly large effects in the main valleys of the Ahr and Erft rivers. There was not one dominating factor that can explain

the event magnitude, but rather the interaction of many seemingly unrelated effects, a situation that needs to be considered

jointly, and conceptualised and implemented in predictive models as well as upcoming mitigation strategies. Some of these

isolated effects were straightforward to detect and can be implemented in future strategies, such as insufficiently designed300

bridges or protective dams. Other effects are inherently difficult to identify and even harder to conceptualise and ultimately

implement into models and risk management strategies. Examples for the latter category are tile drainage systems of unknown

extent and capacity or injected versus ejected volumes of sediment. These latter effects could, however, be incorporated to the

models via Monte Carlo simulations, e.g., considering the full range of potential sediment budget, to at least quantify within

the uncertainties bounds of the model estimates.305

These emerging effects rendered the flood an extreme beyond the hydrological scope. Hence, this underlines the need for

a cross-topic consideration of its internal and external drivers, its effects, and its internal feedbacks. This touches especially
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the non-hydrological processes and their representation in posterior models, future predictions and concepts as well as hazard

zone definitions, in addition to the fruitful efforts already emerging from the hydrological realm. For example, while it is evi-

dently important to provide close range forecasting of potentially inundated areas, it is as important to develop and implement310

methods to forecast potential effects driven by overland flow and stream discharge. These include outlining potentially unsta-

ble hillslopes, riverbed changes, cascading effects and landscape connectivity effects. Connectivity effects do not necessarily

need to be restricted to gravel pits and upstream water reservoirs, as revealed here. More likely are far-reaching effects, for

example triggered by blocked tunnels, undermined bridges, valley damming mass wasting deposits and channel straightening

that swiftly initiate long lasting effects.315

Upcoming fundamental research needs to quantify the severity and modes of landscape reorganisation as well as constraining

the duration of the transient that is now dominating the functional relationships of the affected regions. Key elements of these

functional relationships are the reorganisation of the hydraulic geometry, the fluvial and sediment coupling between channels

and adjacent hillslopes, and landuse and settlement planning. Approaching all these questions crucially depends on dedicated,

high resolution and continuous empirical data from distributed field instrumentation (also properly operating during future320

extreme events) in close junction with metrics of societal activities. The 2021 flood clearly demonstrated a flaw in classic flood

sensing approaches: collection of just a single metric, water level, by gauges at a few spots along the main stream, that overall

got destroyed significantly before peak discharge had arrived. To overcome this systematic shortcoming, other systems need

to be implemented, systems that are able to collect distributed multivariate data at high temporal resolution and that are not

endangered by hostile flood conditions. For example, at scales from global to small catchments Ekström and Stark (2013),325

Cook et al. (2021), Walter et al. (2017) seismic networks have proven to deliver near real time information that allow the

detection, location and description of catastrophic mass wasting events. Instead of just the main channel, such high quality

flood related process information should also be available for headwater regions, where the 2021 flood gained its momentum

and non-linearity.

Headwater regions are also the areas where proper flood risk reduction actions can be implemented. The German Federal330

Water Act allows the federal states to identify flood generating areas, which are areas that tend to quickly produce surface

runoff. Land management can be regulated in such statutory areas to prevent further deterioration of the infiltration capacities

of soils. Currently, only the Freestate of Saxony makes use of this option. Besides land management planning and engineering

solutions, flood risk reduction decisively needs to consider sensibilisation of citizens to overcome the anticipation bias due to

the legacy of experienced events of lower magnitude of less non-linear effects.335

Data availability. All data used in this article are freely available under the references denoted in the text.
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