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1 Abstract 

Since the impoundment of the Three Gorges Reservoir area in 2003, the potential risks of geological 

disasters in the reservoir area have increased significantly, among which the hidden dangers of landslides 10 

are particularly prominent. To reduce casualties and damage, efficient and precise landslide susceptibility 

evaluation methods are important. Multiple ensemble models have been used to evaluate the 

susceptibility of the upper part of Badong County to landslides. In this study, EasyEnsemble technology 

was used to solve the imbalance between landslide and nonlandslide sample data. The extracted 

evaluation factors were input into three ensemble models, bagging, boosting, and stacking models, for 15 

training, and landslide susceptibility maps (LSMs) were drawn. According to the importance analysis, 

the important factors affecting the occurrence of landslides are altitude, terrain surface texture (TST), 

distance to residents, distance to rivers and land use. Comparing the influences of different grid sizes on 

the susceptibility results, a larger grid was found to lead to the overfitting of the prediction results. 

Therefore, a 30 m grid was selected as the evaluation unit. The accuracy rate, area under the curve (AUC), 20 

recall rate, test set precision, and Kappa coefficient of the multigrained cascade forest (gcForest) model 

under the stacking method were 0.958, 0.991, 0.965, 0.946, and 0.91, respectively, which were 

significantly better than the values produced by the other two models. 
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2 Introduction 25 

As the most common geological disaster, landslides are harmful and destructive and will have a 

serious impact on human lives and the safety of public facilities. Landslides refer to the disaster 

phenomenon in which a rock and soil mass on the slope, under the influence of natural conditions and 

human engineering activities, slides down the slope as a whole or scattered along the failure surface 

under the action of gravity. At the same time, it also includes the slope mass that is in an unstable state 30 

and may evolve into a landslide. Landslide disasters have occurred frequently in the Three Gorges area. 

The Three Gorges Reservoir project has large potential influences on the environment, geological 

disasters and the social economy, and the region has received extensive attention. More than 2,500 slope 

failure sites are known in this area (Skrzypczak et al. 2021; Zou et al. 2021; Chen and Chen 2021); due 

to the construction of dams, the risk of landslides in the area has increased, and these landslides have 35 

huge potential risks. If an effective and accurate landslide susceptibility prediction system can be 

established, the extent of losses caused by landslide disasters will be minimized (Nsengiyumva and 

Valentino 2020). 

Landslide susceptibility evaluation is particularly important for the prediction and management of 

landslides. By analysing and calculating the relationship between landslides and landslide influencing 40 

factors, landslide-prone areas can be predicted to avoid life and economic losses caused by landslide 

disasters. This paper evaluated the landslide susceptibility of Badong County using the data balance 

method and three ensemble model methods of bagging, boosting and stacking. 

The occurrence of landslides is related to many environmental factors, and landslide susceptibility 

assessment explores the connection between them. Through the investigation of historical landslide data, 45 

a detailed landslide inventory map was obtained in this paper. Using correlation coefficient analysis, 
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environmental factors were selected as independent variables. These environmental factors were 

extracted from digital elevation model (DEM) data, geological maps, Landsat-8 images, basic geographic 

databases and land cover data. The factors included profile, slope, aspect, altitude, slope length, slope 

height, slope pattern, plane curvature, middle slope location, terrain surface texture (TRI), terrain 50 

convergence index (TCI), terrain surface convexity (TSC), topographic position index (TPI), TST, valley 

depth, flow path length, catchment slope, distance to rivers, topographic wetness index (TWI), stream 

power index (SPI), land use, distance to roads, distance to residents, normalized difference vegetation 

index (NDVI), and structure data. Using the grid unit as the evaluation unit, the quantitative relationship 

between 25 landslide factors and landslide location was calculated by using the representative models of 55 

the three ensemble methods of bagging, boosting, and stacking: random forest (RF), extreme gradient 

boosting (XGBoost) and gcForest. Finally, the evaluation accuracy of landslide susceptibility was 

verified by comparing the AUC, test set precision, accuracy rate and recall rate with the known landslide. 

In this paper, ArcGIS 10 software, SAGA-GIS software, PyCharm software, and the SPSS 20 

statistical program were used for data processing, statistics, and mapping. The technical roadmap of this 60 

paper is shown in Figure. 1. 
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Fig. 1 Flowchart of this study 

3 Previous work 65 

Landslide susceptibility is evaluated by determining the combination of factors that have the greatest 

impact on the occurrence of landslides after detailed analysis of the landslide's generation conditions and 

thus predicting the possibility of landslides in this area (Kayastha and Prabin 2015). Economic 

development and the continuous expansion of the scope of human engineering activities have led to the 

increasing impact of human beings on the environment, the number of landslide disasters has increased 70 

continually, and the resulting losses are increasingly serious. Therefore, the use of efficient and reliable 

landslide hazard evaluation technology for landslide susceptibility evaluation is critical to quickly and 

accurately identifying highly prone areas of landslide hazards and predicting the location of new landslide 

hazards, which can provide efficient disaster forecasts and reduce losses caused by landslide hazards. 

Auxiliary opinions must also be provided for the prevention of geological disasters. To study the mapping 75 

of landslide susceptibility, early researchers proposed various methods and techniques to improve the 

accuracy of landslide prediction. 

Research on susceptibility evaluation of landslide hazards began in the 1960s. Since the 1990s, 
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mathematical statistics, probability theory, information theory, and fuzzy mathematics theory have been 

continually introduced into the field of geological disaster research. Traditional qualitative research has 80 

gradually moved towards quantitative research—that is, based on data and information—to reflect the 

true conditions of landslide geological disasters more objectively and scientifically. At present, GIS-

based methods for landslide geological hazard evaluation can be roughly divided into quantitative 

evaluation and qualitative evaluation. With the continuous development of instruments and methods to 

obtain spatial data, the quality and quantity of spatial data have also been improved. Data-driven models 85 

have been used in regional LSMs, including support vector machine (SVM) (Yao et al. 2008; Pradhan 

2013), RF (Catani et al. 2013; Youssef et al. 2016), artificial neural network (ANN) (Chen et al. 2021; 

Gorsevski et al. 2016), and weight-of-evidence (Jayathissa et al. 2019; Hussin et al. 2016) models. In the 

data-driven model category, machine learning models have a better prediction effect and higher accuracy 

than other approaches, such as expert opinion-based methods and analytic methods (Chowdhuri et al. 90 

2021; Pham et al. 2016). SVM and ANN models are widely used in LSMs and generally can obtain better 

prediction results. 

Although some machine learning methods perform well in terms of mathematics, explanations of 

the internal connection between landslide hazards and various factors remain unavailable. Before 

constructing a landslide susceptibility map, to analyse the effect of influencing factors on landslide 95 

occurrence, the mechanism of landslide occurrence must be fully understood, especially in areas 

threatened by different types of landslides (Guo et al. 2015). Factor correlation analysis can eliminate the 

highly correlated factors influencing landslides, and importance analysis can be used to discern the effect 

of factors influencing landslides on landslide occurrence, thereby providing powerful technical means 

for selecting important factors influencing landslides and landslide development trend analysis. However, 100 
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a single learner is prone to underfitting or overfitting. To obtain a learner with high prediction accuracy 

and no overfitting, multiple individual learners can be formed into a strong learner through a certain 

combination strategy. This method of combining multiple individual learners is called ensemble learning. 

The main work of this paper is to compare the prediction effects of three ensemble models, namely, 

bagging, boosting, and stacking, on the evaluation of landslide susceptibility in Badong County in the 105 

Three Gorges area. Compared with the above work, the main difference of this research is that the three 

ensemble models of bagging, boosting, and stacking were used to model landslide susceptibility, and the 

EasyEnsemble method was used to address unbalanced sample data. 

4 Study area 

The Three Gorges area was formed by the severe incision of lower Paleozoic and Mesozoic massive 110 

limestone mountains (Jialinjiang Group, J1) along narrow fault zones in response to Quaternary uplift 

(Li et al. 2001). Steep slopes are widely developed on outcrops of erodible or ‘soft’ materials, and 

landslides are common in these areas (Wu et al. 2001). The Three Gorges region of the Yangtze River is 

in the mountainous gorge area where Sichuan and Hubei are connected. It contains many mountains and 

steep slopes. In the event of heavy rain or earthquakes, disasters such as landslides, mudslides or 115 

rockslides easily occur. The study area is in Badong County (Fig. 2). Located in the middle of Wu Gorge 

and Xiling Gorge of the Three Gorges of the Yangtze River, Badong County is the area with the most 

complex geological conditions in the region. Folds and faults are widely distributed, and the geological 

structure is complex in this area. The whole Badong area has steep terrain with a relative elevation up to 

600 m. 120 
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Fig. 2 Location of the study area in China (A: map of China, B: map of Badong County) 

5 Data sources 

Historical landslide catalogue data include information such as location, geological hazard body, 

area, and volume and are used to extract landslide distribution maps. Shuttle Radar Topography Mission 125 

(SRTM)1 DEM data with spatial resolutions of 30 metres are used to extract topography and 

geomorphology information. Data acquired from the 1:250,000 national basic geographic database are 

used to determine the locations of residential areas, rivers, and roads. Bands 4 and 5 of the 2018 Landsat 

8 image are used to obtain the NDVI. The 30-metre global land cover data are the land use data. The 

NGAC-200,000 national geological map data provide information on the geological structure, strata, and 130 

lithology. 

Table 1 Descriptions of causative factors of landslides 

Data Type Factors Source 

Topographic features  

Profile DEM 

Slope DEM 

Aspect DEM 

Altitude DEM 

Slope length DEM 

Slope height DEM 

Slope pattern DEM 

Plane curvature DEM 
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Middle slope location DEM 

TRI DEM 

TST DEM 

TPI DEM 

TSC DEM 

TCI DEM 

Hydrological conditions 

Valley depth DEM 

Flow path length DEM 

Catchment slope DEM 

Distance to rivers GIS database 

SPI DEM 

TWI DEM 

Human engineering activities 

Land use Surface coverage data 

Distance to roads GIS database 

Distance to residents GIS database 

Surface cover NDVI Landsat-8 remote sensing images 

Basic geology Structure Geological map 

 

6 Primary factors of landslide occurrence 

In this paper, the factors affecting the occurrence of landslides mainly included topography, 135 

geomorphology, hydrological conditions, human engineering activities, surface cover, and basic geology. 

ArcGIS software and SAGA-GIS software were used to extract topographic factors from SRTM1 DEM 

data, including profile, slope, aspect, altitude, slope length, slope height, slope pattern, plane curvature, 

middle slope location, TRI, TST, TPI, TSC, and TCI. 

SAGA-GIS software was used to extract the valley depth, flow path length, catchment slope, 140 

distance to rivers, SPI, and TWI under hydrological conditions from SRTM1 DEM data. The distance to 

rivers, distance to residents, and distance to roads were obtained using the 1:25 million national basic 

geographic databases to establish a buffer zone. The NDVI was obtained by calculations of the Landsat-

8 image, the land use type was derived from the 30-metre global land cover data, and the geological 

structure was obtained from the geological map data. ArcGIS 10 software was used to extract the 145 

landslide impact factor layer and the landslide layer to the vector points and to make it easy to analyse. 
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The data set included 2,131,599 rows (number of grids) and 26 columns (25 factors and landslide data). 

SPSS 26 statistical software was used to calculate the correlation coefficient analysis for the 25 landslide 

impact factors. Most of these 25 factors had low correlation coefficients, and the linear correlation 

between these factors was weak. Therefore, 25 landslide impact factors were incorporated into the 150 

landslide susceptibility evaluation system evaluation system to build the probability prediction model of 

landslide occurrence. 

 

Fig. 3 Correlation coefficient matrix of the causative factors of landslides 

7 Method for balancing data categories 155 

The prediction of landslide disasters is a two-class problem in which the prediction results are only 

landslides or nonlandslides. An area should contain many more nonlandslide areas than landslide areas. 

Assuming that a landslide in the training data belongs to class A and that a nonlandslide belongs to class 

B, A: B = 1:99. In this case, if all samples in class A are classified as B, the error rate is only 1/100; 

however, if three samples in class B are classified as A, the error rate is 3/100. Achieving higher accuracy 160 

is the objective function of most machine learning algorithms. Such classification algorithms that aim at 
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maximizing accuracy often ignore the correct classification of small samples such that they often fail to 

obtain good prediction results in processing categories with unbalanced samples (Tsai and Lin 2021). 

In this case, the algorithm tends to predict all class A samples as class B samples. Landslide disasters 

are extremely harmful. High-risk areas are classified as low-risk areas. Once a landslide occurs, it may 165 

cause many casualties and high economic losses. However, if low-risk areas are divided into high-risk 

areas, the loss is relatively small (generally, only an economic investment is made to prevent landslide 

disasters). The cost of misclassification of the two types of samples is different, and the spatial prediction 

of landslide disasters remains a cost-sensitive issue. 

The problem of imbalance between the sample categories in landslide areas and nonlandslide areas 170 

can be solved at two levels: the algorithm level and the data level. 

At the data level, the following three main data-level solutions are applicable: random sampling, 

synthetic minority oversampling technique (SMOTE), and EasyEnsemble technology. For random 

sampling, to make the number of samples in the landslide and nonlandslide areas approximately the same, 

when selecting the training data set, the same amount of data from landslide and nonlandslide areas are 175 

randomly sampled. The important drawback of this scheme is that if the sample ratio is 1:10 and if 

extraction without replacement is used, a maximum of 2 data points can be extracted; that is, a maximum 

of 2/11 data points can be used as the training set. This may lead to an insufficient training data set and 

make the model training insufficient and unable to achieve the expected prediction accuracy. In addition, 

if random sampling with replacement is used, the small sample category is repeatedly sampled many 180 

times, which may cause the model to overfit, resulting in insufficient predictive ability. 

The SMOTE algorithm can solve the overfitting problem in random sampling, and its core idea is 

to increase the data set of a few categories to achieve the purpose of data equalization (Verbiest et al. 
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2014). The new sample obtained by this method is not only related to the original sample and its 

neighbouring samples but is also different from it. This algorithm can improve the accuracy of landslide 185 

spatial prediction to a certain extent. However, this method is prone to the problem of overlapping 

between new samples. 

Another problem in random sampling is information loss. This problem can be solved using 

EasyEnsemble technology. EasyEnsemble technology trains a number of classifiers for ensemble 

learning by repeatedly combining positive samples with the same number of randomly sampled negative 190 

samples. This technology effectively solves the problem of unbalanced data types and reduces the loss 

of information for most types of samples caused by undersampling. Therefore, this paper used 

EasyEnsemble technology to solve the problem of unbalanced sample types for landslide and 

nonlandslide samples. The technical process can be described as follows. (1) The entire training data set 

was divided into two categories, namely, majority and minority, which correspond to nonlandslide and 195 

landslide areas, respectively. (2) In each training, the nonlandslide area was randomly divided into n 

parts, and all samples in the landslide area were 1 part. (3) One piece was randomly selected from the 

nonlandslide sample to form a new training data subset, together with the landslide area. This subset was 

used to train the classifier to obtain the classification result and save it. (4) Steps (2) and (3) were repeated 

n times to obtain n classification results. (5) The average of the category scores of the n classification 200 

results was calculated to obtain the final classification result. 
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Fig. 4 EasyEnsemble technology solves the problem of unbalanced landslide samples 

The solution at the algorithm level is mainly to use the cost matrix to set the weights corresponding 

to different categories. The idea is that the cost of misclassification of different categories is different, 205 

and different categories are assigned different penalty coefficients in the algorithm. The purpose is to 

distinguish as few samples as possible. 

8 Ensemble model 

Landslide susceptibility is evaluated by predicting the possibility of landslides in a certain area by 

setting the most favourable combination of factors for landslide occurrence after analysing the landslide 210 

occurrence conditions. Many scholars have used landslide susceptibility evaluations to find potential 

high-risk areas within a region to reduce the dangers of landslides, and they have obtained good results. 

The content of landslide susceptibility evaluation includes the division of evaluation units and the 

selection of evaluation factors. Choosing a suitable model can obtain better prediction results for 

landslide susceptibility evaluation. 215 

In 1962, the idea of ensemble learning began to appear. The first appearance of a cascading 

multiclassifier ensemble system was in the book by Sebestyen. Ensemble learning entered researchers’ 

field of vision in the 1990s when Hansen et al. proposed a neural network ensemble model that used 

voting to integrate output results to obtain a better classifier than a single neural network. Bagging, 

boosting and stacking are three typical paradigms of ensemble learning. By combining several machine 220 

learning algorithms into a meta-algorithm of a prediction model, the effect of reducing errors or 

extracting predictions can be achieved. 

The bagging ensemble algorithm (Suzuki and Ohkura 2016) is an ensemble learning algorithm in 

the field of machine learning originally proposed by Leo Breiman. The combination of the bagging 
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integration algorithm and other algorithms can effectively enhance the prediction accuracy and stability 225 

of classification methods. The main content of the algorithm involves taking a training set S of size N 

and evenly selecting n subsets Si of size N from S with replacement (self-service sampling method) as a 

new training subset. By using these n training subsets, n training results can be obtained, and the analysis 

results can be obtained through strategies such as averaging or voting. The main advantage is that it can 

generate formation learners that are not dependent on each other in parallel. The bagging ensemble 230 

algorithm is suitable for the prediction of small sample data sets and has a good application effect in the 

field of machine learning. 

 

Fig. 5 Flowchart of the bagging method 

The boosting algorithm (A et al. 2002) first uses the training set and initial weight to train weak 235 

learner 1. Weak learner refers to a learner whose generalization performance is slightly better than 

random guess. Usually, different weights are given according to their classification accuracy, and the 

samples with low accuracy are given higher weights. The samples with higher weights are considered in 

the subsequent learners. Then, weak learner 2 is trained according to the training samples after adjusting 

the weights. Repeat the above steps t times to generate T base classifiers. The boosting framework 240 

algorithm weights and fuses the N base classifiers to produce a better result classifier. After weighted 

fusion of weak learners, the data will usually be reweighted to strengthen the classification of previously 

classified wrong data points. In the training of the boosting algorithm, the classifier is trained based on 

the samples with errors in the previous classification such that the algorithm can reduce the classification 
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error rate of the model; however, as the training progresses, the entire model classifies the training set 245 

correctly as the rate continues to increase, and the variance of the model increases. However, random 

sampling of features for training can reduce the correlation between models, thereby reducing the overall 

variance of the model (Benmokhtar and Huet 2006; Gou et al. 2019; Liang et al. 2021; Woniak et al. 

2014). 

 250 

Fig. 6 Flowchart of the boosting method 

The stacking method (Rahman et al. 2020) first trains the primary learner, and then the prediction 

result of the primary learner is used as the new input to train the secondary learner. In the training phase, 

the secondary learner is generated by the primary learner. If the prediction results of the primary learner 

are directly used to generate the training set of the secondary learner, the risk of overfitting is high. 255 

Therefore, the initial training set is divided into k parts, and cross-validation is used to train each learner 

(Xia et al. 2020). 

 

Fig. 7 Flowchart of the stacking method 

Each of the three ensemble methods, bagging, boosting, and stacking, has multiple models. This 260 

article uses three representative models in the three ensembles as the landslide susceptibility prediction 
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model: the RF in the bagging model, the XGBoost model in the boosting model, and the gcForest model 

in the stacking model. 

The random forest model is a classifier containing multiple decision trees whose basic unit is a 

decision tree, each of which is a classifier (Asadi et al. 2021). Random forest focuses on the ensemble 265 

learning of decision trees. After the decision tree is integrated, the model uses voting to determine the 

prediction result; that is, the prediction result is the category with the most votes. The random forest 

model is suitable for large-scale data prediction, but other models obtain poor prediction results because 

of the high dimensionality of the sample. The accuracy of the random forest model for most learning and 

prediction tasks can reach the same level as other models, and little overfitting occurs. In the process of 270 

competition and practical application, the random forest model is widely used. The model has two 

important parameters, including the number of subtrees and the maximum number of features allowed 

for a single decision tree. 

The XGBoost algorithm is an improvement method. The core idea of the improvement algorithm is 

that multiple experts individually judge a complex task and then perform a proper synthesis to reach the 275 

conclusion. The conclusion drawn after the synthesis is better than any one of the experts alone. The 

XGBoost algorithm is based on the regression tree model. The basic idea is to repeatedly extract some 

variables to construct the regression tree model, obtain hundreds of regression tree models, and combine 

them linearly to obtain the final model. 

The gcForest integration method is a new method based on decision tree forest aggregation. The 280 

gcForest integration method can make the data set of gcForest automatically learn its representation 

structure. The reason is that the method can automatically generate a decision tree forest with a higher-

dimensional cascade structure. For example, when the decision tree input has a higher-dimensional data 
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set, the gcForest method can use a multigranular scanning method to increase the dimensional features 

such that gcForest can express the awareness of structural learning. In addition, the gcForest method can 285 

automatically set its model complexity and adaptively determine the number of layers of cascading 

forests, making it more capable of training data of different sizes. In other words, gcForest automatically 

stops the next calculation when the calculation result of the last cascade layer is lower than the expected 

value. Therefore, the gcForest method is suitable for both small-scale data and large-scale data training. 

In terms of the number of model parameters, the gcForest model has less than the ANN model, and it is 290 

also reliable for the parameter setting of the neural network with fewer settings. 

9 Landslide susceptibility mapping 

The grid unit was used as the evaluation unit of this study, and the multivalue extraction-to-point 

function in ArcGIS 10 software was used to extract 25 factors that influence landslides. The data set of 

the study area had 2,131,599 rows (number of grids) and 26 columns (25 factors and landslide data). 295 

Under the 30 m grid, 269,421 pieces of data were labelled landslides, and 2,104,657 pieces of data were 

labelled nonlandslides; the ratio of landslide data to nonlandslide data was approximately 1:10. Therefore, 

25,000 pieces of landslide data and 205,000 pieces of nonlandslide data were randomly selected, 5,000 

pieces of landslide data were removed, 5,000 pieces of nonlandslide data were taken as test data, and the 

remaining 20,000 pieces of landslide data and 200,000 pieces of nonlandslide data were used as training 300 

data. Extracting training data in this way can make the ratio of landslides and nonlandslides in the training 

data close to the actual situation in the study area. Because the impact of grids of different sizes on 

landslide susceptibility needs to be compared in the future, the data of 60 m and 90 m grids were 

processed similarly and organized into training sets and test sets. After the EasyEnsemble data balance 

was performed on the data set, the data set was used to train the RF model in the bagging algorithm, the 305 
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XGBoost model in the boosting algorithm, and the gcForest model in the stacking algorithm, and the 

train results were used to predict the probability of landslides for all samples from each model. The 

prediction results were added to the attribute table of the vector points in the study area, and then the 

vector point data were converted into raster data to draw the landslide prone area map of the three models. 

Feature importance measures the contribution of each input feature to the prediction results of the 310 

model, which highlights the degree of correlation between the feature and the target. This paper 

calculated the importance of 25 factors for the three tested models. The test results show that the altitude, 

TST, distance to residents, distance to rivers and land use are the main factors that affect landslide 

susceptibility. 

 315 

Fig. 8 Feature importance measures (FIMs) of causative factors of landslides in different models 

The influence of altitude on a landslide distribution is mainly reflected in the local water collection 

platform caused by the topographic slope differences between different altitude ranges, the differences 

between the intensities of free surface and human engineering activities that are prone to landslides in 

different altitude ranges, and the characteristics of different vegetation types, coverages and atmospheric 320 
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rainfall levels in different altitude ranges. Therefore, height is an important factor in landslide disaster-

prone environments. Based on an analysis of the statistical zoning table of landslides combined with 

elevation, the frequency ratio is greater than 1 in the altitude range from 49 m to 594 m. With increasing 

elevation, the frequency ratio decreases, which shows that landslides are mainly distributed in the low 

elevation range. 325 

Terrain surface texture is one of the main parameters for representing the development 

characteristics of landforms. In places with complex terrain, such as ridges and valleys, the texture feature 

values are large, while in smooth and flat places, the texture values are small. According to the statistical 

table of landslide zoning based on terrain surface textures, the frequency ratio of terrain surface texture 

values is greater than 1 in the range of 0.06 to 14.31, and the frequency ratio is largest in the range of 330 

0.06 to 9.03, indicating that the landslides in the study area are mostly distributed in areas with relatively 

smooth and flat terrain. 

Human engineering activities are human engineering construction activities related to resource 

exploitation and infrastructure construction processes that use certain engineering and technical means, 

including planning, design, construction, mining and operation. Human engineering activities can cause 335 

land erosion and change the original landform. Such activities cause gradual and great harm. The areas 

where human engineering activities occur are often located near residential areas (examples include 

urban construction, irrigation activities, and traffic construction); thus, the distance from residential areas 

was taken as an evaluation factor. According to the statistical table of landslide zoning based on the 

distance from the residential area, the frequency ratio between 0 and 1040 m from the residential area is 340 

greater than 1, and the maximum ratio occurs within 614 m, indicating that the closer to the residential 

area the activity is, the more landslide disasters are likely to occur. 
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The impact of the river on the landslide disaster in the study area is mainly manifested in the lateral 

erosion and erosion-based cutting of the river water on the river valley bank slope. On the one hand, the 

river continuously cuts down to make the bank slope higher and steeper; on the other hand, it 345 

continuously washes the slope toe, causing the slope to always be in an unstable state. It is one of the 

important factors for the formation of new landslide masses and the revival of old landslide masses. 

Therefore, this paper selected the distance from the river as an evaluation factor to consider the impact 

of rivers on landslide disasters. The zoning statistics of the landslides based on the distance to the river 

metric indicate that the frequency ratio is greater than 1 within the range of 451.15 m from the river, and 350 

the frequency ratio decreases with increasing distance from the river, indicating that landslides are more 

likely to occur in areas that are closer to the river. 

Land use refers to the long-term or periodic use, protection and transformation of land by using 

certain transformation means based on the natural attributes and characteristics of the land of interest. 

Five main types of land use are employed in the study area, including cultivated land, forest, grassland, 355 

water bodies and artificial surfaces. According to the statistical zoning table of land use for landslides, 

the regional frequency ratios of artificial surfaces, cultivated land and water bodies are greater than 1 

(especially the frequency ratio of artificial surfaces, which is the highest), while the frequency values of 

grassland and forests are less than 1. This shows that the landslides in the study area are more distributed 

in the areas where artificial surfaces, cultivated land and water bodies are located, and few landslides are 360 

contained in forests and grasslands. 

Table 2 Statistical zoning table for the top five impact factors 

The evaluation 

factors 

Classification 

level 

Number of 

pixels in domain 

Number of 

landslides 

Percentage of 

domain (%) 

Percentage of 

landslides (%) 
FR 

Altitude 

49-594 533,942 18,846 0.25 0.70 2.79 

594-937 579,737 6,980 0.27 0.26 0.95 

937-1,241 420,759 802 0.20 0.03 0.15 
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1,241-1,561 349,147 333 0.16 0.01 0.08 

1,561-1,984 179,724 11 0.08 0.00 0.00 

1,984-3,096 67,119 0 0.03 0.00 0.00 

Terrain surface 

texture level 

0.06-9.03 287,378 9,355 0.13 0.35 2.57 

9.03-14.31 456,151 8,470 0.21 0.31 1.47 

14.31-18.88 500,238 5,491 0.23 0.20 0.87 

18.88-23.28 433,011 2,840 0.20 0.11 0.52 

23.28-28.21 313,383 659 0.15 0.02 0.17 

28.21-44.91 140,267 127 0.07 0.00 0.07 

Distance to 

residents (m) 

0-614.82 625,674 13,253 0.29 0.49 1.67 

614.82-

1,040.46 
773,592 11,579 0.36 0.43 1.18 

1,040.46-

1,489.75 
473,118 1,977 0.22 0.07 0.33 

1,489.745-

2,104.56 
174,421 133 0.08 0.00 0.06 

2,104.56-

3,121.37 
60,809 0 0.03 0.00 0.00 

3,121.37-

6,029.93 
22,547 0 0.01 0.00 0.00 

Distance to 

rivers (m) 

0-451.15 820,030 17,434 0.38 0.65 1.68 

451.15-

1,008.46 
593,174 6,963 0.28 0.26 0.93 

1,008.46-

1,645.39 
412,379 1,909 0.19 0.07 0.37 

1,645.39-

2,415.00 
207,723 547 0.10 0.02 0.21 

2,415.00-

3,529.62 
75,110 89 0.04 0.00 0.09 

3,529.62-

6,767.31 
22,012 0 0.01 0.00 0.00 

Land use 

Cultivated 

land 
580,187 16,364 0.27 0.61 2.23 

Forest 1,414,552 8,388 0.66 0.31 0.47 

Grassland 93,621 813 0.04 0.03 0.69 

Water bodies 32,002 768 0.02 0.03 1.90 

Artificial 

surfaces 
8,823 605 0.00 0.02 5.42 

 

According to the landslide occurrence possibility predicted by the model, the landslide susceptibility 

zoning map is drawn. The study area has five types of susceptibility levels: very low, low, medium, high, 365 

and very high. The RF model is visible on the susceptibility map. Compared with other models, more 

places are divided into extremely high landslide-prone areas and high landslide-prone areas. The gcForest 

model predicts the least amount of extremely high and high landslide-prone areas. Most of the very low 

landslide-prone areas are in the south and north of the study area. The extremely high landslide-prone 
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areas and high landslide-prone areas ascertained by the three models are basically located along the 370 

Yangtze River and in the middle and upper sections of the study area. The Rf model predicts many areas 

that have not experienced landslides in the past as areas with higher susceptibility, such as the north bank 

in the western section of the Yangtze River in the study area. The XGBoost model basically predicts the 

locations where landslides have occurred as areas with higher susceptibility, and the gcForest model 

predicts very few areas as areas with higher susceptibility, but most of the locations where landslides 375 

have occurred are predicted to be more landslide-prone areas. 
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Fig. 9 Landslide susceptibility zoning maps produced by three ensemble models: (A) RF model, (B) XGBoost 

model, and (C) gcForest model 380 

Through the susceptibility results yielded by the three models under different grid sizes and the 

statistical zoning table of landslides, the frequency ratio under each susceptibility level was calculated. 

The table shows that the higher the susceptibility is, the higher the frequency ratio is, indicating that most 

landslides are in the highly and extremely highly prone areas classified by the model, and the prediction 

results are reasonable. In the case in which the same model is used, taking the gcForest model as an 385 

example, as the grid increases from 30 m to 90 m, the grid proportion for landslides in extremely highly 

prone areas changes little, from 97% to 88%; meanwhile, the grid proportion for highly prone areas 

increases by more than three times, from 3% to 10%. Therefore, the frequency ratio of highly prone areas 

also decreases from 30.1380 to 8.9695, and the prediction effect of the model worsens. Therefore, a 

smaller grid should be selected as the evaluation unit for the study of landslide susceptibility. When the 390 

grid size remains the same, the frequency ratio of the extremely highly prone area of the RF model is the 

lowest, and the frequency ratio of the gcForest model is the highest, indicating that the gcForest model 
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predicts a smaller extremely highly prone area but contains more landslides; thus, its prediction effect is 

the best. 

 395 

Table 3 RF zoning model of landslide susceptibility 

Grid 

size 

Landslide 

susceptibility level 

Number of 

pixels in domain 

Number of 

landslides 

Percentage of 

domain (%) 

Percentage of 

landslides (%) 
FR 

30 

m 

Very low 1,153,876 38 0.54 0.00 0.0026 

Low 347,494 382 0.16 0.01 0.0869 

Moderate 260,594 2245 0.12 0.08 0.6812 

High 239,440 7737 0.11 0.29 2.5551 

Very high 128,884 16539 0.06 0.61 10.1469 

60 

m 

Very low 219,759 5 0.41 0.00 0.0018 

Low 110,687 56 0.21 0.01 0.0400 

Moderate 77,065 342 0.15 0.05 0.3505 

High 70,236 1192 0.13 0.18 1.3403 

Very high 52,706 5122 0.10 0.76 7.6745 

90 

m 

Very low 94,847 10 0.40 0.00 0.0083 

Low 48,629 44 0.20 0.01 0.0709 

Moderate 36,009 124 0.15 0.04 0.2700 

High 32,648 501 0.14 0.17 1.2031 

Very high 25,509 2352 0.11 0.78 7.2290 

 

Table 4 XGBoost zoning model of landslide susceptibility 

Grid 

size 

Landslide 

susceptibility level 

Number of 

pixels in domain 

Number of 

landslides 

Percentage of 

domain (%) 

Percentage of 

landslides (%) 
FR 

30 

m 

Very low 1,544,816 80 0.73 0.00 0.0041 

Low 196,104 272 0.09 0.01 0.1097 

Moderate 145,685 1082 0.07 0.04 0.5872 

High 135,596 4738 0.06 0.18 2.7628 

Very high 108,089 20770 0.05 0.77 15.1937 

60 

m 

Very low 318,751 18 0.60 0.00 0.0045 

Low 71,661 52 0.14 0.01 0.0573 

Moderate 49,886 175 0.09 0.03 0.2770 

High 44,705 652 0.08 0.10 1.1516 

Very high 45,451 5821 0.09 0.87 10.1126 

90 

m 

Very low 138,775 28 0.58 0.01 0.0158 

Low 32,145 61 0.14 0.02 0.1487 

Moderate 22,725 94 0.10 0.03 0.3242 

High 21,175 266 0.09 0.09 0.9846 

Very high 22,823 2583 0.10 0.85 8.8705 

 

Table 5 gcForest zoning model of landslide susceptibility 400 

Grid 

size 

Landslide 

susceptibility level 

Number of 

pixels in domain 

Number of 

landslides 

Percentage of 

domain (%) 

Percentage of 

landslides (%) 
FR 
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30 

m 

Very low 1,842,089 62 0.86 0.00 0.0027 

Low 105,676 104 0.05 0.00 0.0778 

Moderate 65,196 185 0.03 0.01 0.2244 

High 50,857 414 0.02 0.02 0.6437 

Very high 66,472 26,177 0.03 0.97 31.1380 

60 

m 

Very low 328,806 24 0.62 0.00 0.0058 

Low 72,528 59 0.14 0.01 0.0642 

Moderate 49,390 132 0.09 0.02 0.2110 

High 40,401 385 0.08 0.06 0.7524 

Very high 39,329 6,118 0.07 0.91 12.2830 

90 

m 

Very low 118,010 16 0.50 0.01 0.0106 

Low 42,356 42 0.18 0.01 0.0777 

Moderate 28,854 92 0.12 0.03 0.2499 

High 25,179 222 0.11 0.07 0.6911 

Very high 23,244 2,660 0.10 0.88 8.9695 

 

10 Validation of the models 

In an experiment comparing the influences of different grid sizes on the susceptibility results, the 

receiver operating characteristic (ROC) curves and AUC values of each model under different grid sizes 

were obtained. The ROC curves and AUC values were calculated by using the probability obtained from 405 

the data predicted by the three models. The numbers of grids with different sizes are different. The 

number of grids with a 30 m grid size is 2,131,599, including 26,942 landslide grids. Under a grid size 

of 60 m, the number of grids is 532,335, including 6715 landslide grids. The number of grids under a 90 

m grid is 238,296, including 3,009 landslide grids. Comparing different grid sizes under the same model, 

the AUC value was found to decrease with increasing grid size. The AUC value was largest under the 410 

30-metre grid, and the AUC value was smallest under the 90 m grid. Comparing different models with 

the same grid size, the AUC value of the gcForest model was highest and that of the RF model was 

lowest, indicating that the prediction effect of the gcForest model is the best. 
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 415 

Fig. 10 ROC curves of all data under different grid sizes (A: 30 m, B: 60 m, and C: 90 m) 

Comparing the effects of different grid cell sizes on the susceptibility results, the larger the grid cell 

is, the higher the accuracy of the training data and the lower the accuracy of the test data. This proves 

that model overfitting occurs with increasing mesh size. As the grid becomes larger, the gap between the 

accuracies of the training data and test data becomes larger, especially for the gcForest model. When the 420 

grid size is 90 m, the difference between the training data and test data accuracies of the gcForest model 

is as high as 15.2%. Therefore, in this paper, a 30 m grid was selected as the evaluation unit for landslide 

susceptibility modelling such that better prediction accuracy could be obtained without overfitting. 

Table 6 Accuracies of the training data and test data under different grid sizes 

model  30 m 60 m 90 m 

rf 
train 0.873 0.890 0.912 

test 0.862 0.851 0.838 

XGBoost train 0.929 0.960 0.988 

A B 

C 
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test 0.912 0.887 0.872 

gcForest 
train 0.999 0.999 0.999 

test 0.958 0.890 0.847 

 425 

The following table indicates the prediction accuracy of the RF, XGBoost and gcForest models for 

samples in the study area. The AUC is an evaluation index used to measure the advantages and 

disadvantages of binary classification models. From the definition, the AUC can be obtained by summing 

the areas of each part under the ROC curve. Its value represents the probability that the predicted positive 

case is ahead of the negative case. The recall rate indicates how many positive examples in the sample 430 

are predicted correctly. The accuracy is the number of samples that predict the correct prediction of the 

positive class, which accounts for the proportion of the number of all positive samples predicted. The 

kappa coefficient can be used to test the consistency and evaluate the accuracy of a multiclass 

classification model. Whether the actual classification results of the model are consistent with the 

prediction results is the consistency of the classification problem. The kappa coefficient is obtained by 435 

calculating the confusion matrix, and its value is between -1 and 1, which is generally greater than 0. The 

accuracy rate, AUC value, recall rate, test set precision, and Kappa coefficient of the gcForest model in 

the stacking method are 0.958, 0.991, 0.965, 0.946, and 0.91, respectively, which are significantly better 

than the values of the other two models. 

Table 7 Statistical measures of different methods obtained on the training and test sets 440 

Data set Learning methods 
Performance  

Accuracy AUC Recall Precision Kappa 

Training set 

RF 0.873 0.943 0.933 0.808 0.749 

XGBoost 0.929 0.979 0.97 0.89 0.861 

gcForest 0.999 0.999 0.999 0.999 0.999 

Test set 

RF 0.862 0.932 0.914 0.805 0.725 

XGBoost 0.912 0.968 0.955 0.875 0.819 

gcForest 0.958 0.991 0.965 0.946 0.91 
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11 Discussion and conclusions 

This paper is a comparative study of multiple ensemble models of landslide susceptibility 

assessment in the upper half of Badong County of the Three Gorges area. The landslide data were 

obtained from historical landslide records. In this landslide susceptibility analysis, 25 factors influencing 445 

landslides, including slope, aspect, plane curvature, profile curvature, and elevation, were used. 

According to the importance analysis, the important factors affecting the occurrence of landslides are the 

altitude, TST, distance to residents, distance to rivers and land use. Comparing the influences of different 

grid sizes on the susceptibility results, larger grids lead to the overfitting of the prediction results. 

Therefore, a 30 m grid was selected as the evaluation unit, and the study area contains 2,131,599 grid 450 

units. Due to the imbalance between the sample landslide data and the nonlandslide data, ensemble data 

balance processing was performed on the sample to construct the test data and the training data. Using 

the RF model in the bagging model, the XGBoost model in the boosting model, and the gcForest model 

in the stacking model for training and prediction, a landslide susceptibility map was generated. According 

to the landslide susceptibility map, the locations of the extremely high landslide-prone areas and high 455 

landslide-prone areas in the three models are basically consistent with the locations of historical 

landslides. The surrounding areas of the Yangtze River and its tributaries and the middle and upper areas 

of the study area are very prone to landslides. 

The landslide susceptibility map was verified using the success rate curve to compare with known 

landslides. The quantitative results show that the order of the AUC values from small to large are the RF 460 

model, the XGBoost model, and the gcForest model. The accuracy rate, AUC value, recall rate, test set 

precision, and Kappa coefficient of the gcForest model in the stacking method are 0.958, 0.991, 0.965, 

0.946, and 0.91, respectively, which are significantly better than the values of the other two models. 
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