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Abstract. In gravity-driven free infiltration of a wetting liquid into a homogeneous unsaturated porous medium, the flow

pattern is known to depend significantly on the initial saturation. Point-source infiltration of a liquid into an initially dry porous

medium produces a single finger with an oversaturated tip and an undersaturated tail. In an initially wet medium, a diffusion-

like plume is produced with a monotonic saturation profile. We present a semi-continuum model based on a proper scaling

of the retention curve which is discrete in space and continuous in time. We show that the semi-continuum model is able5

to describe this transition and to capture the experimentally observed dependence of the saturation overshoot and the finger

velocity on the initial saturation.

1 Introduction

Infiltration of rainwater into soil forms an essential part of the hydrological cycle. Therefore, research on the movement of

water in soil has long been a focus of attention. The origins of infiltration research were substantially influenced by the idea10

to describe the movement of water in soil by diffusion-like models (Richards, 1931). Later, it was discovered that – even

in homogeneous porous materials – flow may become spatially very inhomogeneous. Most of the infiltrating water flows

through preferential pathways leaving islands of dry material behind (Glass et al., 1988). This type of flow is well described

by a semi-continuum model introduced in Vodák et al. (2022). In this paper, we demonstrate that this semi-continuum model

captures infiltration into an unsaturated homogeneous porous medium comprehensively, in the sense that it correctly describes15

the experimentally observed complicated transition between the preferential and diffusion-like flow regimes.

There are three types of preferential flow (Nimmo, 2021): Macropore flow, funnel flow, and finger flow. Macropore flow

proceeds through individual large pores that are highly conductive. The funnel flow is the result of heterogeneity of soil or

rock hydraulic properties. Both macropore flow and funnel flow are features of non-homogeneous porous media. However,

preferential flow (also known as finger flow) also occurs in a homogeneous medium and is believed to be caused by the wetting20

front instability (Glass et al., 1989a; Bauters et al., 2000; Sililo and Tellam, 2005; Aminzadeh and DiCarlo, 2010; DiCarlo,

2013; Wei et al., 2014; Cremer et al., 2017; Pales et al., 2018). A finger consists of two parts: an oversaturated finger tip
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followed by a less saturated finger tail. It is widely accepted that this non-monotonicity of the saturation profile (i.e. saturation

overshoot) is a necessary and sufficient condition of finger flow (DiCarlo, 2004; Rezanezhad et al., 2006).

It was experimentally observed that the magnitude of the saturation overshoot (i.e. the saturation difference between the25

finger tip and tail) depends on the infiltration rate (DiCarlo, 2004). For low influx, a stable wetting front forms without a

saturation overshoot. For a larger flux, the saturation overshoot appears, and its magnitude increases with increasing flux up

to a certain point beyond which the magnitude of the overshoot decreases again. For high flow rates, the saturation overshoot

disappears completely. There is also a strong dependence of the flow regime on the initial saturation of the porous medium

(Bauters et al., 2000). For an initially dry medium, finger flow accompanied by saturation overshoot is observed. However, at a30

sufficiently high initial saturation (close to the saturated moisture limit), fingers do not form and a stable front dominates with

no saturation overshoot (see Fig. 3 in Bauters et al. (2000)). Moreover, a non-monotonic dependence of wetting front velocity

and finger width on the initial saturation was reported. With increasing initial saturation, the fingers first become more narrow

and faster, but further increase in initial saturation makes them slow down, become thicker and more irregular, and gradually

disappear completely, giving way to diffusion-like plumes with no saturation overshoot. This is counterintuitive because one35

would expect the finger velocity to increase with increasing initial saturation. We call this complicated transition from finger-

like regime to diffusion-like regime the Bauters’ paradox, honoring the first author of the seminal article Bauters et al. (2000).

Note that the preferential flow occurs also in highly saturated porous medium that is super-hydrophilic (Chen et al., 2022b).

This complex behavior is not consistent with the standard theory which (1) does not allow for saturation overshoot behavior

(Fürst et al., 2009), (2) predicts an increase in wetting front velocity with increasing initial saturation (Bear, 1972), and (3)40

does not allow for preferential flow in a homogeneous medium.

The standard model for unsaturated porous media flow is the Richards’ Equation (RE) (Richards, 1931). RE is a combination

of a mass balance equation and the Darcy-Buckingham law (Bear, 1972). It was shown by means of a mathematical proof that

in the case of a constant influx into an initially dry homogeneous porous medium, RE is incompatible with saturation overshoot

because the RE is unconditionally stable (Fürst et al., 2009). The solution of the RE is stable in this case regardless of whether45

hysteresis of the retention curve is included because the hysteresis of the retention curve never comes into action. Thus, RE is

not able to capture finger flow. There have been many attempts to model the flow in porous media differently; in principle, these

attempts can be divided into continuum models (Hassanizadeh et al., 2002; Eliassi and Glass, 2002; Schneider et al., 2017;

Brindt and Wallach, 2020; Beljadid et al., 2020; Cueto-Felgueroso et al., 2020; Ommi et al., 2022a, b), and pore-scale (discrete)

models (Lenormand et al., 1988; Blunt and Scher, 1995; Primkulov et al., 2018, 2019; Wei et al., 2022). Another approach50

is to combine the advantages of continuous and discrete modelling (Glass and Yarrington, 1989, 2003; Liu et al., 2005; Liu,

2017). Liu et al. (2005) and Liu (2017) developed an active region model in which fractal flow patterns are incorporated

into the continuum approach. Glass and Yarrington (1989, 2003) proposed a unique Macro Modified Invasion Percolation

model (MMIP), which is – in a single framework – able to capture finger flow, buoyancy-driven migration of gases through

porous media, and rough surface flow. However, saturation is not treated as a continuous quantity in the MMIP model, thus55

the model cannot reproduce the saturation overshoot or its dependence on initial saturation or influx rate. For a detailed review
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of the different types of modelling, see e.g. Rooij (2000); DiCarlo (2010); Xiong (2014); Hunt and Sahimi (2017); Chen et al.

(2022a).

Another attempt is reported in Kmec et al. (2019, 2021), who advocate for the so-called semi-continuum approach. In this

approach, the porous medium is divided into a grid of blocks which are not considered infinitesimal – each block retains60

the nature of a porous medium and it is characterized by its pressure–saturation relation, hydraulic conductivity, and porosity.

Saturation is considered continuous in time but constant throughout each block (i.e. piecewise constant in space). Flow between

neighboring blocks proceeds according to the Darcy-Buckingham law. The key feature of the semi-continuum approach is to

account for the block size. This is done by an appropriate scaling of the retention curve with the block size (Vodák et al., 2022).

As the block size decreases, the retention curve becomes more flat (i.e. its derivative decreases) while keeping the hysteresis65

effect constant. See Vodák et al. (2022) for more details and a physical justification.

The semi-continuum model was shown to reproduce well all experimentally observed features of unsaturated porous medium

flow in a long vertical tube (Kmec et al., 2019). A two dimensional version of the model was shown to correctly capture

the transition between finger flow and diffusion-like flow with increasing initial saturation (Kmec et al., 2021) for uniform

infiltration imposed on the entire top boundary. Vodák et al. (2022) examined the limit of the semi-continuum model as the70

block sizes go to zero. They report a limit version of the model in the form of a partial differential equation with a Prandtl-type

hysteresis operator (Visintin, 1993) under the derivative.

In this paper, we use a previously developed semi-continuum model and demonstrate that this model is able to fully reproduce

the Bauters’ paradox – the transition from finger-like flow in initially dry medium to diffusion-like flow in initially wet medium

for a point source infiltration. We show that the non-monotonic relation between initial saturation and flow velocity, and initial75

saturation and saturation overshoot magnitude is captured correctly by the semi-continuum model.

1.1 Bauters’ paradox

The authors of Bauters et al. (2000) used a Hele-Shaw cell (50× 30× 0.94 cm) filled with homogeneous 20/30 quartz sand

with particle size between 0.60 mm and 0.85 mm. The used sand does not change its wettability according to the duration of

contact with distilled water. Water was injected at a rate of 2 cm3 min−1 through a hypodermic needle located at the top of the80

chamber near the sand surface. The initial saturation was gradually increased from zero to the full field capacity. The results of

the experiments can be summarized as follows:

– Wetting front dependence on the initial saturation. As the initial saturation increases, the flow regime changes from

an unstable finger-like to a stable diffusion-like flow. Three flow regimes can be distinguished: unstable, intermediate,

and stable. During unstable flow, the finger width remains almost constant. This is consistent with theoretical analysis85

(Raats, 1973) and experimental observations (Selker et al., 1992; Rezanezhad et al., 2006). In the intermediate regime,

the fingers gradually give way to a stable infiltration front. This type of flow transition has not yet been sufficiently

investigated, either theoretically or experimentally. In the diffusion-like regime, the saturation and pressure profiles are

monotonic with no overshoot behavior. Moreover, the wetting front is much wider than the finger.
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– The width and velocity of the fingers. With increasing initial saturation, the fingers first become faster and narrower, then90

they get slower and wider.

– Pressure and saturation overshoot magnitude. The magnitude of the saturation overshoot decreases with increasing

initial saturation of the medium. Moreover, a hyperbolic relation between initial saturation and saturation overshoot

magnitude is observed. The same holds for the pressure overshoot magnitude.

Although the experiments of Bauters et al. (2000) are well known in the soil science community (currently more than 9095

citations in the Scopus database), there is no unified explanation for the observed paradox. Moreover, almost none of the

citing authors comment on this interesting phenomenon. To our best knowledge, there are only three attempts to model or

explain Bauters’ paradox. Chapwanya and Stockie (2010) used a dynamic capillary pressure term to model the effect of initial

saturation. However, a small artificial perturbation in the influx had to be used to initiate the finger flow, and the influx was

imposed over the entire top boundary instead of a point. The finger velocity was independent of the initial saturation of the100

medium. Moreover, the authors did not focus on the non-monotonic dependence of finger width on initial saturation.

Another attempt was undertaken by Joekar-Niasar and Hassanizadeh (2012) and Masoodi and Pillai (2012). The authors

hypothesized that the non-monotonic velocity of the front is due to a trade-off between conductivity and capillary pressure.

With increasing initial saturation, the conductivity increases because there is more trapped air in the medium. Beyond a critical

value of initial saturation, the trapping does not change significantly, but the matric potential decreases. As a result, the wetting105

front slows down. This means that the intrinsic permeability of the medium is not a constant but a function of saturation.

Finally, Kmec et al. (2021) used a semi-continuum approach to investigate the effect of the initial saturation on the wetting

flow formation. Similar to Chapwanya and Stockie (2010), the influx was imposed on the entire top boundary. The nonlinear

dependence of the finger width was reproduced (see Fig. 6 in Kmec et al. (2021)). The finger velocity dependence on the initial

saturation was not studied due to different choice of the top boundary condition than in Bauters et al. (2000).110

This article presents simulations of the point source infiltration used in Bauters et al. (2000) by means of the semi-continuum

model. We show that all the experimentally observed features of the Bauters’ paradox are reproduced well.

2 Methods

2.1 Semi-continuum model

Let us recall the 2D semi-continuum model that was introduced by Kmec et al. (2021). Here, we use the same model with115

an appropriate scaling of the retention curve with the block size (Vodák et al., 2022). The porous medium is represented as

a rectangular grid of N ×M square blocks of uniform size ∆x×∆x. Each block is denoted by its row and column indices

[i, j]. Saturation St(i, j) and pressure Pt(i, j) of the wetting phase (liquid) at time t are assumed constant within each block

(i, j), and the pressure of the non-wetting phase (gas) is assumed to be zero everywhere. Each block retains the nature of a

porous medium and it is characterized by a hysteretic pressure–saturation relation (main wetting branch pw(S), main draining120

branch pd(S)), non-hysteretic hydraulic conductivity (intrinsic permeability κ, relative permeability k(S)), and porosity θ.
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The invading wetting liquid is characterized by its density ρ and dynamic viscosity µ. Acceleration due to gravity is denoted

by g. The semi-continuum model tracks the following three key quantities: The saturation St(i, j) [−] of the wetting phase

in each block at time t, the pressure Pt(i, j) [Pa] of the wetting phase in each block at time t, and the fluxes qt[(i1, j1)→
(i2, j2)] [ms−1] of the wetting phase between neighboring blocks (i1, j1) and (i2, j2) at time t.125

At each instant, the saturation in each block is updated according to the discretized mass balance law in the following way:

θ

∆t
[St+∆t(i, j)−St(i, j)] = (1)

=
1

∆x
[qt[(i− 1, j)→ (i, j)]− qt[(i, j)→ (i+ 1, j)] + qt[(i, j− 1)→ (i, j)]− qt[(i, j)→ (i, j+ 1)]) ,

where θ [−] denotes the porosity of the material, ∆t is a time step, and ∆x is the block size. A backward scheme can be also

used (Kmec et al., 2021) but it slows the numerical algorithm unnecessarily.130

The next step is to update the capillary pressure in each block according to the capillary pressure operator P (S). The

capillary pressure operator consists of the main wetting and draining branches defined by van Genuchten equation (5). To

complete the capillary pressure operator, a hysteresis model is included (Parker and Lenhard, 1987). We use a similar approach

to the play-type hysteresis used, e.g., in Rätz and Schweizer (2013); Schweizer (2017). All scanning curves are straight lines

with a very large gradient KPS . Once a block (in the wetting mode between the two main branches) reaches the main wetting135

branch along a scanning curve, it clings to it and continues along it. A similar procedure applies for the block in the draining

mode.

Finally, the flux between neighboring blocks is updated according to the Darcy-Buckingham law (Bear, 1972):

q =
κ

µ
k(S)(ρg−∇P (S)) , (2)

where κ [m2] denotes the intrinsic permeability, ρ [kgm−3] the fluid density, g [ms−2] acceleration due to gravity, and µ [Pas]140

the dynamic viscosity of fluid, and P (S) is the capillary pressure operator. The relative permeability function k(S) is modelled

by the form derived in Mualem (1976); Mualem and Dagan (1978); Van Genuchten (1980):

k(S) = Sλ
[
1−

(
1−S 1

m

)m]2
, (3)

where λ [−] is a free parameter. Let us denote by γ(S) = κk(S) the effective permeability of the porous medium.

We use the following discrete implementation of the Darcy-Buckingham law (2):145

qt[(i1, j1)→ (i2, j2)] =


1
µ

√
γ(St(i1, j1)γ(St(i2, j2)

(
ρg− Pt(i2,j2)−Pt(i1,j1)

∆x

)
for j1 = j2, i2 = i1 + 1

1
µ

√
γ(St(i1, j1)γ(St(i2, j2)

(
0− Pt(i2,j2)−Pt(i1,j1)

∆x

)
for i1 = i2, j2 = j1 + 1

0 otherwise

(4)

Thus, for the hydraulic conductivity between blocks, we use the geometric mean of the conductivity values in the respective

blocks. This choice of averaging has the desirable property of being small if the permeability of one of the blocks is small. The

force of gravity is included only for the vertical fluxes j1 = j2. After setting the fluxes between neighboring blocks, the time is

updated to t+ ∆t and we proceed back to Eq. (1).150
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2.2 Scaling of the retention curve

A crucial idea behind the semi-continuum model is the appropriate scaling of the main branches of the retention curve which

was first introduced by Vodák et al. (2022). The scaling of the retention curve is based on the fact that the shape of the retention

curve depends on the size (especially the height) of the sample on which the measurement is made (Larson and Morrow, 1981;

Hunt et al., 2013; Silva et al., 2018).155

The simple scaling mechanism introduced in Vodák et al. (2022) is used here in which the main branches of the retention

curve take the form of the standard van Genuchten model (Van Genuchten, 1980). More details about the proposed scaling of

the retention curve and its sample size dependency are given in the following section. However, the detailed mathematical and

physical justification is already published in Vodák et al. (2022), hence for a deeper understanding we refer to this paper.

For the reference block size ∆x0, the retention curve is modelled by the formula160

pw0 (S) =− 1

αw

(
S

−1
mw − 1

) 1
nw
, pd0(S) =− 1

αd

(
S

−1
md − 1

) 1
nd , (5)

where S denotes saturation, pw0 is the capillary pressure on the wetting branch, pd0 is the capillary pressure on the draining

branch, αw,nw, and mw = 1− 1
nw

are parameters of the main wetting branch, and αd,nd, and md = 1− 1
nd

are parameters of

the main draining branch.

The idea of the retention curve scaling is the following. For block size ∆x <∆x0, the retention curve becomes more flat165

but the distance between the main wetting and draining branches remains the same. Thus for the main wetting branch

pw(S,∆x) =
∆x

∆x0
pw0 (S) + cw (6)

with cw such that pw(0.5,∆x) = pw0 (0.5), i.e.

cw(∆x) = pw0 (0.5)

(
1− ∆x

∆x0

)
. (7)

Clearly, for ∆x= ∆x0, relation (6) reduces to equation (5) while for ∆x→ 0, we obtain pw(S,∆x)→ pw0 (0.5). For the main170

draining branch pd(S,∆x) the scaling is analogous to Eq. (6) and (7).

The scaling of the retention curve for 20/30 sand is shown in Fig. 1 for the reference block size ∆x0 = 10
12 cm ≈ 0.83 cm.

Determining the dimension of ∆x0 is not trivial. It is explained in Sect. 3 how this dimension can be determined using the

results of Bauters et al. (2000).
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Figure 1. The scaling of the retention curve for 20/30 sand. The solid lines denote the main wetting branches and the dashed lines denote

the main draining branches for the respective value of ∆x. The green curve represents the reference sample for ∆x0 = 10
12

cm ≈ 0.83 cm.

As ∆x→ 0, the retention curve becomes more flat but the distance between the main wetting and draining branches remains the same. The

main wetting and draining branches “rotate” around fixed values pw0 (0.5) and pd0(0.5), respectively.

2.3 Concept of the semi-continuum model and its limit in spatial variable175

The scaling of the retention curve, i.e. the dependence of the capillary pressure-saturation relation on the block size, is not

a common approach in flow modelling. However, the dependence of the experimentally determined retention curve on the

porous medium sample size has been observed for a long time (Larson and Morrow, 1981; Mishra and Sharma, 1988; Zhou

and Stenby, 1993; Perfect et al., 2004; Hunt et al., 2013; Ghanbarian et al., 2015). Note that this dependence on the sample

volume also applies to other hydraulic and physical properties such as porosity or permeability (Mishra and Sharma, 1988;180

Ewing et al., 2010; Ghanbarian et al., 2017, 2021). In classical continuum mechanics, this scaling problem is “defined away”

by the concept of the Representative Elementary Volume (REV). REV is the smallest volume for which the key physical

quantities (e.g. saturation and pressure) can still be considered smooth. However, if the sample of porous medium is smaller

than REV, key physical quantities, such as the retention curve, are strongly dependent on the sample size, and the continuum

assumption is violated (Kouznetsova et al., 2001; White et al., 2006; Al-Raoush and Papadopoulos, 2010; Al-Raoush, 2012).185

The crucial idea of the semi-continuum model is to include the pressure-saturation dependency in the model, i.e. to scale

the retention curve according to the block size. In the semi-continuum model, a block represents a real sample of the porous

material. This makes the semi-continuum model fundamentally different from numerical schemes for solving partial differential

equations where the block plays only a discretization (i.e. mathematical) role and regardless of the block size, the retention

curve remains the same. In the semi-continuum model, the computational mesh (the blocks) takes into account the dependence190

of the physical parameters on the size of the blocks. Surprisingly, the idea of taking REV size into account in modelling porous

media has been around for a long time. For instance, in White et al. (2006), the authors estimated the size of the REV and

used it as a lower limit for the size of the finite elements. They argue that the use of smaller elements would lead to violation

of continuum assumptions and thus the continuum approximation would no longer be appropriate. The same idea is used in

the semi-continuum model: For blocks smaller than the REV, scaling of the retention curve must be included because the195
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continuum approximation is no longer adequate. Because we are interested in the description of flow phenomena below the

REV scale, we need to include the dependence of the retention curve on the block size. This scaling of the retention curve must

meet a physically justified requirement that the nature of the flow is preserved across all levels of block size. This means that

the fluxes between neighboring blocks must not change when ∆x changes. Given Eq. (4), if ∆x decreases by half, the fluxes

increase by a factor of two if the scaling of the retention curve is not included. Therefore, a linear scaling of the retention curve200

is introduced in Eq. (6), so the fluxes between blocks remain the same as ∆x decreases. For more details, see figures Fig. 4–6

in Vodák et al. (2022) that show the numerical convergence of the semi-continuum model in 1D and 2D.

The natural question is what the limit of the semi-continuum model would be as ∆x→ 0. We tried to answer this question

in Vodák et al. (2022) and derived the limit equation in a single spatial dimension:

(KPS∂tS− ∂tPH)(PH − v)≥ 0, for all v ∈ [C2,C1], and PH ∈ [C2,C1],205

θ∂tS+ ∂x

(
κ

µ

√
k(S−)

√
k(S+)(ρg− ∂xPH)

)
= 0, S±(x0, t) = lim

x→x±
0

S(x,t). (8)

In this equation, κ denotes the intrinsic permeability, ρ the fluid density, g acceleration due to gravity, µ the dynamic viscosity

of fluid, and S the saturation. The values C1 [Pa] and C2 [Pa] denote the constant limits of the main wetting and draining

branches, respectively. The limit is a partial differential equation containing a Prandtl-type hysteresis operator PH under the

space derivative. If we are located on the main wetting or draining branches, the limit equation becomes a hyperbolic differ-210

ential equation. Between the two main branches (i.e., we are located on the scanning curve), the limit represents a parabolic

differential equation. It means the limit switches between parabolic and hyperbolic types of equation. The limit equation is a

new type of mathematical model – we are not aware of any research that has investigated equations of this type. Note that the

RE is a parabolic type equation – that is why it is only able to simulate the diffusion-like flow regime (Fürst et al., 2009).

3 Results215

We want to completely reproduce the experiments reported in Bauters et al. (2000). The authors report that water was injected at

a rate of 2 cm3 min−1 through a hypodermic needle located near the sand surface. Thus, a point source infiltration is modeled

such that a constant flux is prescribed across one centimeter of the top edge (in the middle). Zero discharge at the bottom

boundary is prescribed, for simplicity. This choice of the bottom boundary condition does not affect the studied phenomena.

All parameters used for the simulations are given in Table 1. The parameter λ= 0.8, which is consistent with experimental220

measurements (Schaap and Leij, 2000).

3.1 Adjustment of reference block size for 20/30 sand

First of all, the reference block size ∆x0 is unknown. This is a parameter of the semi-continuum model that has to be set. The

parameter ∆x0 was calibrated by simulating the experiments of Bauters et al. (2000). In the simulation, we use the parameters

for 20/30 sand adopted from Schroth et al. (1996) and DiCarlo (2004) (see Table 1). We ran several simulations of the semi-225

continuum model with ∆x0 equal to 10
12 cm, 1.00 cm and 12

10 cm. The moisture profile was calculated for three different initial
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Parameter Symbol Value

Horizontal width of the chamber A 31 cm

Vertical length of the chamber B 50 cm

Reference block size ∆x0 0.83 cm

Block size ∆x 0.25 cm

Porosity θ 0.35

Density of water ρ 1000 kgm−3

Dynamic viscosity of water µ 9× 10−4 Pas

Intrinsic permeability κ 2.294× 10−10 m2

Relative permeability exponent λ 0.8

Acceleration due to gravity g 9.81 ms−2

Wetting curve parameter αw 0.177 cm−1

Wetting curve parameter nw 6.23

Draining curve parameter αd 0.0744 cm−1

Draining curve parameter nd 8.47

Slope of scanning curves KPS 105 Pa

Boundary flux qB 8× 10−5 ms−1

Table 1. Parameters used to reproduce the experiments of Bauters et al. (2000). Parameters for 20/30 sand were adopted from Schroth et al.

(1996) and DiCarlo (2004).

saturation: a dry (0.001), a medium dry (0.01) and a wet (0.05) porous medium. The parameters used for simulations are given

in Table 1, except for the block size ∆x= 0.50 cm and A= 17 cm (horizontal width of the chamber), which were changed

in order for the simulations not to be extremely time consuming. The moisture profiles for all values of ∆x0 are depicted in

Fig. 2.230

We want to choose the parameter ∆x0 for which the non-monotonic behavior of the moisture profiles widths occurs. Table 2

shows the width of the moisture profiles. The width of the moisture profile is calculated in the following way: First, we calculate

the width of each row, which equals nrow×∆x, where nrow is a number of blocks in the row for which the saturation exceeds

0.07 during the simulation and ∆x is the size of the block. The width of the moisture profile is then calculated as the average

width of all rows with non-zero width. It is clear that the most pronounced non-monotonic behavior of the moisture profiles235

widths is given for ∆x0 = 10
12 ≈ 0.83 cm (Fig. 2a), and is therefore the most appropriate.

Note that the width of the finger is not constant for initially dry porous medium, although it is experimentally observed

(Bauters et al., 2000). This artificial behavior is due to the unrealistic homogeneity of porous medium used for the simulation.

Although, in reality, the porous medium is homogeneous, this does not mean that all the characteristics are identical in each

block of the simulation. If a small distribution of the intrinsic permeability is included, the finger width will be constant. This240

is demonstrated in the next section.
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Figure 2. Snapshots of the saturation field for various ∆x0 for initially dry (Sin = 0.001), a medium dry (Sin = 0.01) and a wet (Sin = 0.05)

porous material. The moisture profiles for (a) ∆x0 = 10
12

cm, (b) ∆x0 = 1.00 cm and (c) ∆x0 = 12
10

cm are shown at 30, 30 and 20 minutes,

respectively. Saturation values are colour-coded according to the colour bar on the right.

reference block size ∆x0
moisture profile width for:

Sin = 0.001 Sin = 0.01 Sin = 0.05

10
12

cm 5.3137 cm 4.6986 cm 8.1000 cm

1.00 cm 4.0156 cm 3.8202 cm 7.8500 cm

12
10

cm 2.6333 cm 2.8421 cm 4.6200 cm

Table 2. The width of the moisture profiles for different values of ∆x0.

3.2 Wetting front dependence on initial saturation

Let us now demonstrate the ability of the semi-continuum model to capture the Bauters’ paradox. As mentioned above, even

in homogeneous porous medium, all characteristics are not identical in each block. Thus, the spatially correlated distribution

of the intrinsic permeability is introduced. Such distribution was also used e.g in Kmec et al. (2021). The distribution satisfies245

κmax/κmin ≈ 4 and the mean of the intrinsic permeability approximately equals κ. The distribution of the values of intrinsic

permeability is shown in Fig. 3. The distribution of the intrinsic permeability is not the cause of the Bauters’ paradox. However,

with such a distribution, more physical-looking fingers evolve. For a simulation of the Bauters’ paradox without the intrinsic

permeability distribution, see Fig. A1 in Appendix A.

Figure 4 shows a snapshot of the saturation field at 25 minutes for seven different values of the initial saturation. It can be250

seen that as the initial saturation increases, the finger first gets faster and narrower. Then the finger slows down and widens

and finally gives way to a diffusion-like plume. The transition between unstable and stable flow is also in agreement with

the experimental observation: The non-monotonic behavior of the finger width and velocity is captured correctly as well as

the shape of the wetting front. Moreover, a stable wetting front appears for initial saturation higher than 0.03, which is also
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consistent with experiments. Note that the authors of Bauters et al. (2000) only recorded the wetting front patterns 15 cm from255

the top. Therefore, we are not able to compare the wetting fronts at the upper part of the chamber.

Figure 3. The distribution of the intrinsic permeability κ [m2], which satisfies κmax/κmin ≈ 4. Intrinsic permeability values are colour-

coded according to the colour bar on the right.

Figure 4. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation. Saturation values are colour-coded

according to the colour bar on the right. Initial saturation of the medium increases from left to right.

One may wonder if this complex behavior depends on the choice of the intrinsic permeability distribution. We generated

seven different distributions (see Fig. A1) and the same simulations as above were performed. Snapshots of the saturation field

25 minutes from the beginning of the infiltration for seven different values of the initial saturation are shown in Fig. A2 - A8.

The figures show that the character of the flow remains the same for all types of distributions. Thus, the distribution of the260

intrinsic permeability does not affect the transition from the finger flow to the diffusion-like flow.

3.3 Width and velocity of the fingers

Figure 5a shows the width of the fingers (moisture profiles) 25 minutes from the beginning of infiltration for the simulation

shown in Fig. 4 (wetting profiles for Sin = 0.0005, 0.002, 0.04 are not included in Fig. 4 to make the figure more readable).

The width of each moisture profile is calculated in the same way as was used in Table 2. We can clearly see that the finger width265
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first slightly decreases and then increases. The narrowest finger is produced for Sin = 0.01 (2.70 cm) which is consistent with

experiments (see Fig. 5 in Bauters et al. (2000)). Let us note that the finger width for Sin = 0.0003 (3.74 cm) is slightly smaller

than for Sin = 0.0005 (3.82 cm). However, this is due to the distribution of the intrinsic permeability. Indeed, the finger width

for all simulations given by eight different distributions of the intrinsic permeability (see Fig. 3 and Fig. A1) is depicted in Fig.

5b. We observe that – on average – the finger width for the lowest initial saturation used in the simulation is higher than for270

Sin = 0.0005.
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Figure 5. The width of the finger (or wetting front) at t= 25 minutes is plotted against the initial saturation. (a) For the distribution of the

intrinsic permeability given by Fig. 3. (b) For all simulations given by eight different distributions of the intrinsic permeability (see Fig. 3

and Fig. A1). The blue line connects the averages.
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Figure 6. The velocity of the wetting front at t= 25 minutes is plotted against the initial saturation. (a) For the distribution of the intrinsic

permeability given by Fig. 3. (b) For all simulations given by eight different distributions of the intrinsic permeability (see Fig. 3 and Fig.

A1). The blue line connects the averages.

For finger velocity, we proceed similarly, i.e., we find the bottom-most block of the finger whose saturation exceeds 0.07. The

depth of the bottom-most block defines the current length of the finger. Finger velocity is computed as the rate of change of the

finger length in time. The finger (or wetting front) velocity at t= 25 minutes for the simulation given by Fig. 4 is summarized

in Fig. 6a. The advance of the wetting front was slower for the diffusion-like behavior compared to finger flow (but higher than275

for Sin = 0.002). This is rather counter-intuitive, since the classical theory as the Richards’ Equation predicts an increase in

velocity with increasing initial saturation. The highest finger velocity is observed for Sin = 0.02, and it is approximately five
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times lower than the highest finger velocity experimentally observed in Bauters et al. (2000) (for Sin = 0.01). This is consistent

because we used four times lower influx in our simulations compared to the experiments. We observed that the character of the

dependence remains the same for different distributions of the intrinsic permeability (see Fig. 6b).280

3.4 Water content at and behind the wetting front

Let us now examine the change in saturation at and behind the wetting front (a finger tip). The difference between the saturation

of the tip and the tail is called the saturation overshoot magnitude. To quantify the saturation overshoot magnitude, the saturation

is averaged for each row, which gives the saturation profiles in 1D. Averaging is applied only to those blocks whose saturation

exceeds 0.07. Saturation overshoot magnitude is then given as an average saturation at the finger tip minus an average saturation285

at the finger tail. In the case of diffusion-like flow with no overshoot, we average the bottom 20 centimeters of the saturation

profile and subtract the average of the rest of the profile.

The dependence of saturation overshoot magnitude on initial saturation at t= 25 minutes is shown in Fig. 7. We see that

there is a hyperbolic decay relationship between the initial saturation and the saturation overshoot magnitude (R2 = 0.990).

This is consistent with the experimental observation (Bauters et al., 2000). There is still a minor saturation overshoot for290

Sin = 0.02. This is again consistent with the experiments, where the authors observed a saturation overshoot for Sin = 0.02,

but no overshoot for Sin = 0.03.

Let us note that the distribution of the intrinsic permeability causes higher variability in the saturation profiles. Without this

distribution, the accuracy of the fit is better. This was shown in the 1D semi-continuum model, where the hyperbolic fit was

obtained with R2 = 0.995 (see Fig. 3.6. in Kmec (2021)).295
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Figure 7. Dependence of the saturation overshoot magnitude on initial saturation at 25 minutes. Saturation overshoot magnitude is computed

even for diffusion-like profiles (see the text for the methodology). A hyperbolic relation f(x) = ax+b
cx+d

fitted to the simulated data has a R2

value of 0.990.
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3.5 Sensitivity analysis

The parameters such as infiltration rate and material characteristics are not fitted to obtain the best results. Let us first demon-

strate the effect of the boundary flux on the flow regime. Since all the simulations are computationally demanding, a larger

block size ∆x= 0.50 cm is used while the rest of parameters remained the same (see Table 1).

Five different values of the boundary flux qB were used ranging from 2× 10−5 ms−1 to 16× 10−5 ms−1. The baseline300

simulations are given for qB = 8× 10−5 ms−1. For each value of qB , 28 different simulations are performed, with variable

initial saturation (seven different initial saturation) and variable intrinsic permeability distribution (four different distributions;

see Fig. B1). Note that 140 different simulations were performed in total. The same scheme was applied to all other sensitivity

analysis simulations, i.e. the analysis was always performed for seven different values of initial saturation and four different

distributions of intrinsic permeability. Figure 8 shows the width and the velocity of the fingers (moisture profiles) for five305

different values of boundary flux qB and for seven different values of the initial saturation Sin. For a given value qB and Sin,

the average width and velocity of the four different distributions of the intrinsic permeability is calculated and plotted.
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Figure 8. The effect of the boundary flux on the flow regime. The width (a) and the velocity (b) of the finger (or wetting front) is plotted

against the initial saturation for five different values of boundary flux qB . Times are scaled according to the boundary flux qB , thus the

width and velocity of the moisture profiles are calculated at t= 100,50,25,12.5 and 6.25 minutes for qB = 2,4,8,16,32× 10−5 ms−1,

respectively. The averages of four different distributions of the intrinsic permeability are plotted.

Since the used boundary fluxes varied by more than one order of magnitude, the times for which the velocity and the

width are calculated need to be scaled according to the boundary flux. The time-points used are t= 100,50,25,12.5 and 6.25

minutes for qB = 2,4,8,16,32× 10−5 ms−1, respectively. It can be seen in Fig. 8(a) that with decreasing boundary flux, the310

flow tends to become more diffusive. The transition between the finger-like and diffusion-like regimes is clearly evident for

the initial saturation, for which the width of the moisture profiles increases rapidly. For instance, for qB = 2× 10−5 ms−1 and

qB = 4× 10−5 ms−1, the rapid increase can be already seen for Sin = 0.02. For higher values of qB , diffusion-like behavior

is observed for higher values of initial saturation. To make this as clear as possible, a snapshot of the saturation field for the
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intrinsic permeability distribution defined by Fig. B1(a) is shown in the left panel of Fig. B5. Note that the dependence on the315

boundary flux is in good agreement with the experimental observation (DiCarlo, 2004). Moreover, it is not surprising that the

velocity of the moisture profiles shown in Fig. 8(b) decreases with decreasing boundary flux.

It is evident that the non-monotonic behavior of the width and the velocity of the moisture profiles is not dependent on the

boundary flux. Hence, the Bauters’ paradox is observed for all tested values of qB . Since the diffusion-like behavior occurs

at lower values of boundary flux, the manifestation of the Bauters’ paradox is shifted to higher initial saturation values as the320

boundary flux increases.

In order not to extend the main part of the manuscript too much, a sensitivity analysis for other parameters such as intrinsic

and relative permeability, dynamic viscosity and retention curve is included in Appendix B. It is shown that the Bauters’

paradox occurs for different values of material parameters. For details, see Fig. B1 – Fig. B6 and the corresponding text.

4 Discussion325

To our best knowledge, the presented semi-continuum model is the first model which is able to fully capture the Bauters’

paradox. This is achieved without introducing any new parameters, or material functions. The semi-continuum model is based

on well established physics only – mass balance equation, the Darcy-Buckingham law, and a proper scaling of the retention

curve with the volume of the block. The model may help to explain the precise mechanism of the transition between the

finger-like and diffusion-like regimes.330

We conjecture that the explanation of the Bauters’ paradox is rather similar to the non-monotonic dependence of porous

medium flow on the magnitude of the influx. For very small values of influx, the flow becomes stable with increasing finger

width. The same applies for very large values of influx. Hence, the unstable flow is only observed for fluxes within a certain

range (Yao and Hendrickx, 1996; Glass et al., 1989b; DiCarlo, 2013). Yao and Hendrickx (1996) hypothesized that the stable

flow occurs when the effect of gravity becomes negligible. This happens in two “extreme” cases. First, at very low infiltration335

rates, capillarity becomes the dominant force compared to the force of gravity. Second, for infiltration rates higher than the

saturated hydraulic conductivity, the viscosity dominates and the stable flow without fingers occurs. In our case, the dependence

of the flow regime on the initial saturation behaves similarly. For initially dry porous medium, the capillarity dominates and

the large capillary forces are able to win over gravity in sucking the water sideways into dry areas of the matrix. In a medium,

which is moderately wet, this becomes more difficult, because the capillary forces are generally lower. Thus, in a moderately340

wet medium, the fingers become thinner and faster. At sufficiently high initial saturation, the large conductivity between

neighboring blocks prevents water piling up behind the wetting front and the formation of saturation overshoot. This results

in the ability of lateral expansion because the persistence of the fingers is suppressed (Rezanezhad et al., 2006; Kmec et al.,

2021). Therefore, a diffusion-like flow regime is observed.

A distribution of intrinsic permeability was used in the model. This was motivated by the following observation: As the345

blocks get smaller and smaller, the variability of their material characteristics necessarily increases. The characteristic of a

block is given by an average over the pores of the block. As the block size decreases, so does the number of pores over which
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the average is taken. Thus, the variability of the characteristics increases. It is possible to introduce a distribution of other

parameters such as porosity and the parameters of the retention curve (White et al., 2006; Ghanbarian et al., 2021). However,

to keep the model as simple as possible, this has not been implemented here. It should be stressed that the Bauters’ paradox350

appears even if the intrinsic permeability is kept homogeneous. Furthermore, a sensitivity analysis of the Bauters’ paradox was

performed, which showed that the Bauters’ paradox occurs for different values of material parameters and boundary flux.

DiCarlo states the following four criteria to evaluate a model for unsaturated porous media flow (DiCarlo, 2013). Paraphras-

ing his words, the model should

1. have a minimum of adjustable parameters, and the parameters should be meaningful,355

2. reduce to the RE in non-overshoot and static profiles,

3. produce a good match of the observed 1D profiles, not just the magnitude of the overshoot,

4. be able to produce predictions of the 2D and 3D preferential flow in terms of finger widths and finger spacing.

Since the RE can simulate only a diffusion-like regime, we understand (2) in the way that the model should be able to reproduce

also diffusion-like regime, not only the fingering regime. This does not mean that the semi-continuum model behaves in the360

same way as the RE in non-overshoot profiles. This is of course not possible due to the scaling of the retention curve.

The semi-continuum model formulation uses only the physics of the Richards’ Equation (porosity, permeability, the pressure-

saturation relation, mass conservation, and the Darcy-Buckingham Law). The block size used in the simulation is not a free

parameter – it is tied to the retention curve by the scaling relation and the reference block size ∆x0. The value of ∆x0 is not

arbitrary, it is connected to the REV. Thus, item 1 of DiCarlo’s list is satisfied. In view of Fig. 4, 5, 6, 7 and the results in Kmec365

et al. (2019, 2021), we claim items 2–4 are also satisfied.

However, there are two exceptions: For 2D preferential flow, the dependence of finger width and finger spacing on the influx

is still missing. Here, we mention, for example, the experiments of Yao and Hendrickx (1996) for low infiltration rates and

Glass et al. (1989b) for higher infiltration rates. We will discuss this complex dependency in a forthcoming paper. Moreover,

the semi-continuum model has not yet been extended to 3D.370

Note that for a given ∆x and retention curve, the semi-continuum model may look like a numerical scheme for the RE.

However, when using different block size ∆x, a different retention curve must be used for the RE to retain the character of

the flow. Otherwise, only the diffusion-like behavior occurs (Fürst et al., 2009). In contrast, for the semi-continuum model,

we define the retention curve for the reference block size ∆x0 and the retention curve is then scaled automatically according

to the block size. In this case, the retention curve is a measurable material characteristic. The semi-continuum model is thus375

predictive; we do not need to fit the retention curve for each ∆x separately. Therefore, the semi-continuum model is not a

numerical scheme to solve RE. The crucial difference between the semi-continuum model and a numerical scheme for the RE

is in an appropriate scaling of the retention curve with the block size. As ∆x decreases, the semi-continuum model retains

the character of the flow between the blocks and the saturation overshoot does not disappear (Vodák et al., 2022). Let us also

stress that it is important to use the geometric mean of the hydraulic conductivity for computing the flux between neighboring380

blocks. In principle, it is necessary to use a type of averaging that has the desirable property of being small if the permeability
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of one of the blocks is small. Such an averaging of the hydraulic conductivity creates a pile-up effect, resulting in a finger with

saturation overshoot. Thus, the geometric mean is not only possible averaging choice; for example, the harmonic mean can

also be used. In the semi-continuum model, we use the geometric mean because it is shown that using this type of averaging is

the most appropriate in the case of random pore networks (Jang et al., 2011).385

We can summarize the role of (1) the appropriate averaging the hydraulic conductivity (for instance the geometric mean)

and (2) the scaling of the retention curve as follows: The geometric mean is essential to create the pile-up effect (saturation

overshoot), while the effect of scaling the retention curve is to preserve this saturation overshoot for ∆x→ 0. If (1) and (2) were

not utilized in the semi-continuum model, diffusion-like flow patterns would always be produced with a monotonic saturation

profile. This behavior is demonstrated for the initially almost dry medium in Fig. 9. The used distribution of the intrinsic390

permeability is shown in Fig. 3. A typical finger with saturation overshoot is produced for the semi-continuum model (Fig. 9a),

while without (1) and (2), a monotonic diffusion-like profile is formed (Fig. 9b). In Vodák et al. (2022) we have demonstrated

that the overshoot behavior is not lost in the limit dx→ 0; for the numerical convergence see figures Fig 4 – 6 in Vodák et al.

(2022). Thus, the semi-continuum model does not converge to the RE, even if the block size goes to zero. It converges to a

new type of hysteretic partial differential equation defined by Eq. (8) that – to our knowledge – has not been studied so far.395

We invite the porous media community to study the semi-continuum model and its limit because so far, it has been proven to

capture well all of the complex and counter-intuitive features of unsaturated homogeneous porous media flow that have been

observed and reported in the literature.

Figure 9. The role of the geometric mean of the hydraulic conductivity and the scaling of the retention curve. Snapshot of the saturation field

for (a) the semi-continuum model and (b) without utilizing the geometric mean of the hydraulic conductivity and the scaling of the retention

curve at t= 25 minutes for Sin = 0.0003. Saturation values are colour-coded according to the colour bar on the right.
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5 Conclusions

It is known from infiltration experiments that unsaturated porous media flow patterns depend on the initial saturation of the400

medium in a complex way. Going from initially dry to initially wet medium, the flow pattern changes from finger-like regime

with a pronounced saturation overshoot to a diffusion-like regime with no overshoot. During the transition, several finger

characteristics (velocity, overshoot magnitude, finger width) change in a non-monotonic way. This complex behavior is called

the Bauters’ paradox and the standard continuum mechanics-based theory has been unable to reproduce it.

Here, we introduced a semi-continuum model (discrete in space, and continuous in time) which is able to correctly reproduce405

all the observed features of the Bauters’ paradox. The semi-continuum model implements a physically relevant scaling of the

retention curve – the slope of the retention curve decreases with decreasing block size. This model correctly reproduces the

flow patterns both for initially dry, and initially wet porous medium.

Code and data availability. The software code that produced the simulations is written in MatLab and can be downloaded from Kmec

(2022). Simulation data that are needed to create the plots included in the manuscript can be downloaded from Kmec et al. (2022). Please do410

not hesitate to contact us if you encounter any problems when downloading the software code and simulation data.
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Appendix A

Figure A1 shows a snapshot of the saturation field at 25 minutes for seven different values of the initial saturation. The

distribution of the intrinsic permeability is not included, i.e. the medium is perfectly homogeneous. The effect of the intrinsic

permeability distribution is pronounced for the initially dry porous medium, while for the initially wet porous medium this

effect is negligible. This is expected because in the case of diffusion-like regime, small changes in intrinsic permeability do not425

have a significant effect on the flow. The artificial looking behavior for the initially dry porous medium is eliminated if a more

realistic porous medium is used for the simulations, i.e. if the distribution of the intrinsic permeability is included.

Figure A1. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation. The distribution of the intrinsic

permeability is not included. Saturation values are colour-coded according to the colour bar on the right. Initial saturation of the medium

increases from left to right.

Figure A2. The distribution of the intrinsic permeability κ [m2]. The distributions satisfy: (a) κmax/κmin ≈ 2.60, (b) κmax/κmin ≈

2.50, (c) κmax/κmin ≈ 3.40, (e) κmax/κmin ≈ 2.45, (f) κmax/κmin ≈ 2.35, (g) κmax/κmin ≈ 3.90, (h) κmax/κmin ≈ 3.50. Intrinsic

permeability values are colour-coded according to the colour bar on the right.
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Figure A3. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation for the distribution which satisfies

κmax/κmin ≈ 2.60 (the distribution in Fig. A1a). Saturation values are colour-coded according to the colour bar on the right.

Figure A4. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation for the distribution which satisfies

κmax/κmin ≈ 2.50 (the distribution in Fig. A1b). Saturation values are colour-coded according to the colour bar on the right.

Figure A5. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation for the distribution which satisfies

κmax/κmin ≈ 3.40 (the distribution in Fig. A1c). Saturation values are colour-coded according to the colour bar on the right.

Figure A6. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation for the distribution which satisfies

κmax/κmin ≈ 2.45 (the distribution in Fig. A1e). Saturation values are colour-coded according to the colour bar on the right.
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Figure A7. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation for the distribution which satisfies

κmax/κmin ≈ 2.35 (the distribution in Fig. A1f). Saturation values are colour-coded according to the colour bar on the right.

Figure A8. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation for the distribution which satisfies

κmax/κmin ≈ 3.90 (the distribution in Fig. A1g). Saturation values are colour-coded according to the colour bar on the right.

Figure A9. Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation for the distribution which satisfies

κmax/κmin ≈ 3.50 (the distribution in Fig. A1h). Saturation values are colour-coded according to the colour bar on the right.
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Appendix B

Figure B1. The distribution of the intrinsic permeability κ [m2] used for the sensitivity analysis of the Bauters’ paradox. The distributions

satisfy: (a) κmax/κmin ≈ 3.40, (b) κmax/κmin ≈ 3.48, (c) κmax/κmin ≈ 2.28, (d) κmax/κmin ≈ 2.42. Intrinsic permeability values are

colour-coded according to the colour bar on the right.

Effect of the intrinsic permeability and dynamic viscosity on the flow regime430

Increasing the intrinsic permeability κ has the same effect as decreasing the parameter µ and vice versa. Therefore, a fraction κ
µ

is used for the sensitivity analysis of both these parameters. The baseline values of κ and µ are given in Table 1. Five different

values b · κµ were examined, where b= 0.50, 0.75, 1.00, 1.50 and 2.00. Obviously, baseline simulations are given for b= 1.00.

Figure B2 shows the width and the velocity of the fingers (moisture profiles) 25 minutes from the beginning of infiltration for

five different values of b and for seven different values of initial saturation Sin. For a given value b and Sin, the average width435

and velocity of the moisture profile of four different distributions of the intrinsic permeability were calculated and plotted.

It can be seen in Fig. B2(a) that as parameter b increases, the width of the moisture profiles increases for higher initial

saturation. For lower initial saturation, the effect of b is negligible. This is because with increasing parameter b, diffusion-like

behavior is observed for lower values of initial saturation. The transition between the finger-like and diffusion-like regimes is

clearly evident for the initial saturation, for which the width of the moisture profiles increases rapidly. For instance, for b= 2.00440

and b= 1.50, the rapid increase can be already seen for Sin = 0.02. For lower values of b, diffusion-like behavior is observed

for higher values of initial saturation. For clarity, a snapshot of the saturation field at 25 minutes for the intrinsic permeability

distribution defined by Fig. B1(a) is shown in the right panel of Fig. B5. As for the moisture profile width, the velocity of the
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moisture profiles also increases with increasing b as can be seen in Fig. B2(b). This is expected because the parameter b affects

directly the magnitude of the flow.445
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Figure B2. The effect of the intrinsic permeability and dynamic viscosity on the flow regime. The width (a) and the velocity (b) of the finger

(or wetting front) at t= 25 minutes is plotted against the initial saturation for five different values of b · κ
µ
. The average of four different

distributions of the intrinsic permeability is plotted.

Finally, it can be seen that the Bauters’ paradox is observed for all values of b. Therefore, the non-monotonic behavior of the

width and the velocity of the moisture profiles is not dependent on intrinsic permeability and/or dynamic viscosity.

Effect of relative permeability on the flow regime

The relative permeability function k(S) is given by Eq. (3). The function contains a free parameter λ[−] and therefore the

effect of the relative permeability on the flow regime is tested by using five different values of λ ranging from 0.6 to 1.0. The450

baseline simulations are given for λ= 0.8. Note that the parameter λ affects the value of the relative permeability especially for

an initially dry porous medium. For the lowest initial saturation used for simulations (Sin = 0.0003), the relative permeability

is more than 25 times larger for λ= 0.6 compared to λ= 1.0. In contrast, it is approximately 3.6 times larger for Sin = 0.04.

As mentioned above, 28 different simulations were performed for each λ with variable initial saturation and intrinsic perme-

ability distribution. Again, a snapshot of the saturation field at 25 minutes for the intrinsic permeability distribution defined by455

Fig. B1(a) is shown in the left panel of Fig. B6.

Figure B3 shows the width and the velocity of the fingers (moisture profiles) 25 minutes from the beginning of infiltration

for five different values of λ and for seven different values of initial saturation Sin. For a given value of λ and Sin, the average

width and velocity of the four different distributions of the intrinsic permeability is calculated and plotted. With decreasing λ

(the relative permeability is increasing), the diffusion-like behavior is observed for lower initial saturation, hence the width of460

the moisture profile is increasing. This is expected because the effect of relative permeability on the flow regime should be

similar to the effect of intrinsic permeability and dynamic viscosity, see Fig. B2(a). Note that the effect of relative permeability
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is more pronounced because the relative permeability varies more significantly for different values of λ compared to the

sensitivity analysis shown in Fig. B2.

The velocity of the moisture profiles is increasing with decreasing λ for lower initial saturation values. However, this does465

not apply for initial saturation Sin = 0.02 and higher. This is because for lower λ, a diffusion-like behavior is observed for

lower values of initial saturation, hence the moisture profile slows down significantly.
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Figure B3. The effect of the relative permeability on the flow regime. The width (a) and the velocity (b) of the finger (or wetting front) at

t= 25 minutes is plotted against the initial saturation for five different values of parameter λ. The average of four different distributions of

the intrinsic permeability is plotted.

The Bauters’ paradox is again observed for all values of λ. As λ increases, both the minimum width and maximum velocity

occur for higher values of initial saturation. This is because the diffusion-like behavior occurs at higher values of initial sat-

uration. The manifestation of the Bauters’ paradox is thus shifted to higher initial saturation values. This can also be seen in470

Fig. B2, but the effect is not so pronounced.

Effect of the retention curve on the flow regime

The effect of the retention curve on the flow regime is tested using different parameters αw and αd related to the main wetting

and main draining branches, respectively. This is done by multiplying the basic values of the parameters αw and αd (given in

Table 1) by the free parameter α. Both values αw and αd are multiplied by the same parameter α ranging from 0.70 to 1.30.475

Obviously, the baseline simulations are given for α= 1.00. The parameters nw and nd are fixed and are given in Table 1.

Note that with increasing α, the main branches become flatter. This is analogous to using a porous medium with coarser

grains. On the other hand, as α decreases, the main branches get steeper, analogous to using a porous medium with finer grains.

Figure B4 shows the width and the velocity of the fingers (moisture profiles) 25 minutes from the beginning of infiltration for

five different values of α and for seven different values of initial saturation Sin. For a given value α and Sin, the average width480

and velocity of the four different distributions of the intrinsic permeability is calculated and plotted. Again, a snapshot of the

saturation field at 25 minutes for the intrinsic permeability distribution defined by Fig. B1(a) is shown in the right panel of
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Fig. B6. As α decreases, the width of the moisture profiles increases rapidly because the diffusion-like behavior is observed

for lower values of initial saturation. This is consistent with experimental observations, as the diffusion-like behavior is more

readily observed in porous media with finer grains compared to coarser grains; see e.g. the experiments in Cremer et al. (2017).485

Next, the velocity of the moisture profiles decreases as α decreases. This is expected because at lower values of α, the flow

behaves much more diffusion-like and therefore the moisture profiles are slower.

The Bauters’ paradox occurs for all tested values α. Moreover, similarly to the effect of the relative permeability, the mini-

mum width and maximum velocity occur for higher initial saturation as α increases, so that the manifestation of the Bauters’

paradox is shifted to higher initial saturation values.490

0 0.01 0.02 0.03 0.04

Initial saturation [-]

0

2

4

6

8

10

12

W
id

th
 [

c
m

]
(a)

0 0.01 0.02 0.03 0.04

Initial saturation [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

V
e

lo
c
it
y
 [

c
m

/m
in

]

(b)

Figure B4. The effect of the retention curve on the flow regime. The width (a) and the velocity (b) of the finger (or wetting front) at t= 25

minutes is plotted against the initial saturation for five different values of parameter α. The averages of four different distributions of the

intrinsic permeability are plotted.
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Figure B5. Left panel: A snapshot of the saturation field for the intrinsic permeability distribution shown in Fig. B1(a) for seven different

values of initial saturation Sin and for five different values of qB (left panel) and for five different values of b (right panel). For the left panel,

times are scaled according to the boundary flux qB , thus a snapshot of the saturation field is shown at t= 100,50,25,12.5 and 6.25 minutes

for qB = 2,4,8,16,32× 10−5 ms−1, respectively. For the right panel, times are given at 25 minutes.
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Figure B6. A snapshot of the saturation field at 25 minutes for the intrinsic permeability distribution shown in Fig. B1(a) for seven different

values of initial saturation Sin and five different values of λ (left panel) and for five different values of α (right panel).
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