
Point to point response to reviewer RC2

Citation of the review: https://doi.org/10.5194/egusphere-2022-673-RC2

We thank the reviewer for the valuable feedback and constructive comments. Below you will find the detailed
responses to all the reviewer’s comments. The reviewer’s comments are highlighted in red, our comments are in
black.

The paper analyses the process of infiltration of a liquid into an unsaturated porous medium, which is characterized
by different regimes depending on the level of saturation. The liquid is assumed to be wettable with respect
to the homogeneous medium. Then, the authors introduce a semi-continuum model that lends itself well to the
interpretation of the infiltration regime.

The topic is of interest and deals with a process that even in extremely simple situations reveals a degree of
complexity.

Major issue 1: However, I see the major limitation in the absence of experimental validation: the numerical
scheme, although of interest, appears limited in its interpretation of physical reality.

We agree that a more detailed explanation of the semi-continuum model should be included in the manuscript
to make the manuscript easier to understand. Since reviewer RC1 raised a similar comment, we copied the response
to the reviewer RC1 below.

The concept of the semi-continuum model is closely related with the scaling of the retention curve (see Figure
1 in the manuscript). Understanding this concept may not be clear, so we provide a brief discussion below that
we plan to include in the manuscript. However, the detailed mathematical and physical justification is already
published in [1], hence for a deeper understanding we refer to this paper.

The scaling of the retention curve, i.e. the dependence of the capillary pressure-saturation relation on the block
size, is not a common approach in flow modelling. However, the dependence of the experimentally determined
retention curve on the porous medium sample size has been observed for a long time [2, 3, 4, 5, 6, 7]. The concept of
REV is essential in this case because if the sample of porous medium is smaller than REV, key physical quantities,
such as the retention curve, are strongly dependent on the sample size. The crucial idea of the semi-continuum
model is to include this dependency in the model, i.e. to scale the retention curve according to the block size. In
the semi-continuum model, a block represents a real sample of the porous material. This makes the semi-continuum
model fundamentally different from numerical schemes for solving partial differential equations where the block
plays only a discretization (i.e. mathematical) role and regardless of the block size, the retention curve remains the
same. In the semi-continuum model, the computational mesh (the blocks) takes into account the dependence of the
physical parameters on the size of the blocks. Surprisingly, the idea of taking REV size into account in modelling
porous media has been around for a long time. For instance, in [8], the authors estimated the size of the REV and
used it as a lower limit for the size of the finite elements. They argue that the use of smaller elements would lead to
violation of continuum assumptions and thus the continuum approximation would no longer be appropriate. The
same idea is used in the semi-continuum model: For blocks smaller than the REV, scaling of the retention curve
must be included because the continuum approximation is no longer adequate. Because we are interested in the
description of flow phenomena below the REV scale, we need to include the dependence of the retention curve on
the block size. This scaling of the retention curve must meet a physically justified requirement that the nature of
the flow is preserved across all levels of block size. This means that the fluxes between neighboring blocks must not
change when ∆x changes. Given equation (4) in the manuscript, if ∆x decreases by half, the fluxes increase by a
factor of two if the scaling of the retention curve is not included. Therefore, a linear scaling of the retention curve
is introduced in equation (6) in the manuscript, so the fluxes between blocks remain the same as ∆x decreases. For
more details, see figures Fig. 4–6 in [1] that show the numerical convergence of the semi-continuum model in 1D
and 2D.
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The natural question is what the limit of the semi-continuum model would be as ∆x → 0. We tried to answer
this question in [1] and derived the limit equation in a single spatial dimension:

(KPS∂tS − ∂tPH) (PH − v) ≥ 0, for all v ∈ [C2, C1], and PH ∈ [C2, C1],

θ∂tS + ∂x

(
κ

µ

√
k(S−)

√
k(S+)(ρg − ∂xPH)

)
= 0, S±(x0, t) = lim

x→x±
0

S(x, t).

In this equation, κ denotes the intrinsic permeability, ρ the fluid density, g acceleration due to gravity, µ the dynamic
viscosity of fluid, and S the saturation. The values C1 [Pa] and C2 [Pa] denote the constant limits of the main
wetting and draining branches, respectively. The limit is a partial differential equation containing a Prandtl-type
hysteresis operator PH under the space derivative. If we are located on the main wetting or draining branches,
the limit equation becomes a hyperbolic differential equation. Between the two main branches (i.e., we are located
on the scanning curve), the limit represents a parabolic differential equation. It means the limit switches between
parabolic and hyperbolic types of equation. The limit equation is a new type of mathematical model – we are not
aware of any research that has investigated equations of this type. Note that the Richards’ equation is a parabolic
type equation – that is why it is only able to simulate the diffusion-like flow regime [9].

Major issue 2: Moreover, and this is a second major issue, there is a lack of sensitivity analysis, since the only
estimator comes from repeating the numerical tests by changing only the intrinsic permeability distribution. In this
sense, it is necessary for the authors to thoroughly analyse the uncertainty of the parameters (viscosity, degree of
saturation, etc.) and analyse the variability of the governed quantities.

We agree and provide the sensitivity analysis. All the simulations are computationally demanding, and so
distributed computing infrastructure “e-Infrastruktura CZ” (e-INFRA LM2018140) has been used. The sensitivity
analysis was performed by varying intrinsic permeability, dynamic viscosity, relative permeability, retention curve
and the boundary flux. This was done for four different distributions of the intrinsic permeability and seven different
values of initial saturation. In total, 588 simulations were performed. However, for the block size that is used in
the manuscript (∆x = 0.25 cm), a single simulation takes almost 30 days. Thus, the sensitivity analysis could not
be performed for ∆x = 0.25 cm. Therefore, a larger block size ∆x = 0.50 cm was used while the rest of parameters
remained the same as in the manuscript. Let us note that even with the larger block size, all the simulations took
almost 1000 CPU days.

The results of the sensitivity analysis are presented below. It is demonstrated that the Bauters’ paradox occurs
for different values of material parameters or different boundary conditions. Some figures related to the sensitivity
analysis are included at the end of this response so that this text is not too extensive. We suggest to include these
figures in the appendix of the manuscript.

Effect of the intrinsic permeability and dynamic viscosity on the flow regime

Increasing the intrinsic permeability κ has the same effect as decreasing the parameter µ and vice versa. Therefore,
a fraction κ

µ is used for the sensitivity analysis of both these parameters. The baseline values of κ and µ are given
in Table 1 in the manuscript. Five different values b · κµ were examined, where b = 0.50, 0.75, 1.00, 1.50 and 2.00.
Obviously, baseline simulations are given for b = 1.00. For each value of b, 28 different simulations are performed,
with variable initial saturation (seven different initial saturation) and variable intrinsic permeability distribution
(four different distributions). To generate spatially correlated distribution of the intrinsic permeability, the same
approach was used as in the manuscript; see Fig. A.1 at the end of this response. Note that 140 different simulations
were performed in total. The same scheme was applied to all other sensitivity analysis simulations, i.e. the analysis
was always performed for seven different values of initial saturation and four different distributions of intrinsic
permeability.

Figure 1 shows the width and the velocity of the fingers (moisture profiles) 25 minutes from the beginning of
infiltration for five different values of b and for seven different values of initial saturation Sin. The width of each
moisture profile was calculated in the same way as in the manuscript. For a given value b and Sin, the average
width and velocity of the moisture profile of four different distributions of the intrinsic permeability were calculated
and plotted.
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Figure 1: The effect of the intrinsic permeability and dynamic viscosity on the flow regime. The width (a) and
the velocity (b) of the finger (or wetting front) at t = 25 minutes is plotted against the initial saturation for five
different values of b · κµ . The average of four different distributions of the intrinsic permeability is plotted.

It can be seen in Fig. 1(a) that as parameter b increases, the width of the moisture profiles increases for
higher initial saturation. For lower initial saturation, the effect of b is negligible. This is because with increasing
parameter b, diffusion-like behavior is observed for lower values of initial saturation. The transition between the
finger-like and diffusion-like regimes is clearly evident for the initial saturation, for which the width of the moisture
profiles increases rapidly. For instance, for b = 2.00 and b = 1.50, the rapid increase can be already seen for
Sin = 0.02. For lower values of b, diffusion-like behavior is observed for higher values of initial saturation. To make
this as clear as possible, a snapshot of the saturation field at 25 minutes for the intrinsic permeability distribution
defined by Fig. A.1(a) is shown in Fig. A.2 at the end of this response. As for the moisture profile width, the
velocity of the moisture profiles also increases with increasing b as can be seen in Fig. 1(b). This is expected
because the parameter b affects directly the magnitude of the flow.

Finally, it can be seen that the Bauters’ paradox is observed for all values of b. Therefore, the non-monotonic
behavior of the width and the velocity of the moisture profiles is not dependent on intrinsic permeability and/or
dynamic viscosity.

Effect of relative permeability on the flow regime

The relative permeability function k(S) is given by equation (3) in the manuscript. The function contains a free
parameter λ[−] and therefore the effect of the relative permeability on the flow regime is tested by using five
different values of λ ranging from 0.6 to 1.0. The baseline simulations are given for λ = 0.8. Note that the
parameter λ affects the value of the relative permeability especially for an initially dry porous medium. For the
lowest initial saturation used for simulations (Sin = 0.0003), the relative permeability is more than 25 times larger
for λ = 0.6 compared to λ = 1.0. In contrast, it is approximately 3.6 times larger for Sin = 0.04. As mentioned
above, 28 different simulations were performed for each λ with variable initial saturation and intrinsic permeability
distribution. Again, a snapshot of the saturation field at 25 minutes for the intrinsic permeability distribution
defined by Fig. A.1(a) is shown in Fig. A.3 at the end of this response..

Figure 2 shows the width and the velocity of the fingers (moisture profiles) 25 minutes from the beginning of
infiltration for five different values of λ and for seven different values of initial saturation Sin. For a given value
of λ and Sin, the average width and velocity of the four different distributions of the intrinsic permeability is
calculated and plotted. With decreasing λ (the relative permeability is increasing), the diffusion-like behavior is
observed for lower initial saturation, hence the width of the moisture profile is increasing. This is expected because
the effect of relative permeability on the flow regime should be similar to the effect of intrinsic permeability and
dynamic viscosity, see Fig. 1(a). Note that the effect of relative permeability is more pronounced because the
relative permeability varies more significantly for different values of λ compared to the sensitivity analysis shown
in Fig. 1.

The velocity of the moisture profiles is increasing with decreasing λ for lower initial saturation values. However,
this does not apply for initial saturation Sin = 0.02 and higher. This is because for lower λ, a diffusion-like behavior
is observed for lower values of initial saturation, hence the moisture profile slows down significantly.
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Figure 2: The effect of the relative permeability on the flow regime. The width (a) and the velocity (b) of
the finger (or wetting front) at t = 25 minutes is plotted against the initial saturation for five different values of
parameter λ. The average of four different distributions of the intrinsic permeability is plotted.

The Bauters’ paradox is again observed for all values of λ. As λ increases, both the minimum width and
maximum velocity occur for higher values of initial saturation. This is because the diffusion-like behavior occurs
at higher values of initial saturation. The manifestation of the Bauters’ paradox is thus shifted to higher initial
saturation values. This can also be seen in Fig. 1, but the effect is not so pronounced.

Effect of the retention curve on the flow regime

The effect of the retention curve on the flow regime is tested using different parameters αw and αd related to
the main wetting and main draining branches, respectively. This is done by multiplying the basic values of the
parameters αw and αd (given in Table 1 in the manuscript) by the free parameter α. Both values αw and αd
are multiplied by the same parameter α ranging from 0.70 to 1.30. Obviously, the baseline simulations are given
for α = 1.00. The parameters nw and nd are fixed and are given in Table 1 in the manuscript.

Note that with increasing α, the main branches become flatter. This is analogous to using a porous medium
with coarser grains. On the other hand, as α decreases, the main branches get steeper, analogous to using a porous
medium with finer grains. Figure 3 shows the width and the velocity of the fingers (moisture profiles) 25 minutes
from the beginning of infiltration for five different values of α and for seven different values of initial saturation
Sin. For a given value α and Sin, the average width and velocity of the four different distributions of the intrinsic
permeability is calculated and plotted. Again, a snapshot of the saturation field at 25 minutes for the intrinsic
permeability distribution defined by Fig. A.1(a) is shown in Fig. A.4 at the end of this response. As α decreases,
the width of the moisture profiles increases rapidly because the diffusion-like behavior is observed for lower values
of initial saturation. This is consistent with experimental observations, as the diffusion-like behavior is more readily
observed in porous media with finer grains compared to coarser grains; see e.g. the experiments in Cremer et al. [10].
Next, the velocity of the moisture profiles decreases as α decreases. This is expected because at lower values of α,
the flow behaves much more diffusion-like and therefore the moisture profiles are slower. See Fig. A.4 at the end of
this response for more details.

The Bauters’ paradox occurs for all tested values α. Moreover, similarly to the effect of the relative perme-
ability, the minimum width and maximum velocity occur for higher initial saturation as α increases, so that the
manifestation of the Bauters’ paradox is shifted to higher initial saturation values.
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Figure 3: The effect of the retention curve on the flow regime. The width (a) and the velocity (b) of the finger
(or wetting front) at t = 25 minutes is plotted against the initial saturation for five different values of parameter α.
The averages of four different distributions of the intrinsic permeability are plotted.

Effect of the boundary flux on the flow regime

Finally, sensitivity analysis for the boundary flux qB is performed. Five different values of the boundary flux were
used ranging from 2× 10−5 ms−1 to 16× 10−5 ms−1. The baseline simulations are given for qB = 8× 10−5 ms−1.
Figure 4 shows the width and the velocity of the fingers (moisture profiles) for five different values of boundary flux
qB and for seven different values of the initial saturation Sin. For a given value qB and Sin, the average width and
velocity of the four different distributions of the intrinsic permeability is calculated and plotted. Snapshot of the
saturation field for the intrinsic permeability distribution defined by Fig. A.1(a) is shown in Fig. A.5 at the end of
this response. Since the used boundary fluxes varied by more than one order of magnitude, the times for which the
velocity and the width are calculated need to be scaled according to the boundary flux. The time-points used were
t = 100, 50, 25, 12.5 and 6.25 minutes for qB = 2, 4, 8, 16, 32 × 10−5 ms−1, respectively. It can be seen in Fig. 4(a)
that with decreasing boundary flux, the flow tends to become more diffusive. This is in good agreement with the
experimental observation [11]. Moreover, it is not surprising that the velocity of the moisture profiles shown in
Fig. 4(b) decreases with decreasing boundary flux.

The Bauters’ paradox is again observed for all tested values of qB , so that the manifestation of the Bauters’
paradox shifts towards higher initial saturation values as the boundary flux increases.
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Figure 4: The effect of the boundary flux on the flow regime. The width (a) and the velocity (b) of the finger
(or wetting front) is plotted against the initial saturation for five different values of boundary flux qB . Times are
scaled according to the boundary flux qB , thus the width and velocity of the moisture profiles are calculated at
t = 100, 50, 25, 12.5 and 6.25 minutes for qB = 2, 4, 8, 16, 32×10−5 ms−1, respectively. The averages of four different
distributions of the intrinsic permeability are plotted.
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Major issue 3: There is one point of particular interest: if Bauter’s paradox occurs even when intrinsic permeability
is homogeneous, how does the proposed model behave in this situation?

As stated in the text of the manuscript (lines 214–216), the Bauters’ paradox with constant intrinsic permeability
can be observed in Fig. 4.3 in the Dissertation Thesis [12]. However, more physical-looking fingers evolve if the
distribution of the intrinsic permeability is included. We believe that including the simulations in the Appendix
of the manuscript for the case of homogeneous intrinsic permeability is more appropriate than referring to the
Dissertation. Therefore, the same simulations as in the manuscript have been performed with homogeneous intrinsic
permeability. The parameters used for simulations are given in Table 1 in the manuscript. Figure 5 shows a snapshot
of the saturation field at 25 minutes for seven different values of the initial saturation. It is observed that the Bauters’
paradox occurs even in this case. The effect of the intrinsic permeability distribution is pronounced for the initially
dry porous medium, while for the initially wet porous medium this effect is negligible. This is expected because in
the case of diffusion-like regime, small changes in intrinsic permeability do not have a significant effect on the flow.
The artificial looking behavior for the initially dry porous medium is eliminated if a more realistic porous medium
is used for the simulations, i.e. if the distribution of the intrinsic permeability is included.

Figure 5: Snapshot of the saturation field at 25 minutes for seven different values of the initial saturation. The
distribution of the intrinsic permeability is not included, i.e. the medium is perfectly homogeneous. Saturation
values are colour-coded according to the colour bar on the right. Initial saturation of the medium increases from
left to right.

Major issue 4: Last, the authors tell us about the behavior of their model, but the interpretation of why appears
to be missing.

We agree with the reviewer that interpretation/explanation why the Bauters’ paradox occurs is missing. We
suggest to include the following explanation in the manuscript.

We conjecture that the explanation of the Bauters’ paradox is rather similar to the non-monotonic dependence
of porous medium flow on the magnitude of the influx. For very small values of influx, the flow becomes stable with
increasing finger width. The same applies for very large values of influx. Hence, the unstable flow is only observed
for fluxes within a certain range [13, 14, 15]. Yao and Hendrickx [13] hypothesized that the stable flow occurs
when the effect of gravity becomes negligible. This happens in two “extreme” cases. First, at very low infiltration
rates, capillarity becomes the dominant force compared to the force of gravity. Second, for infiltration rates higher
than the saturated hydraulic conductivity, the viscosity dominates and the stable flow without fingers occurs. In
our case, the dependence of the flow regime on the initial saturation behaves similarly. For initially dry porous
medium, the capillarity dominates and the large capillary forces are able to win over gravity in sucking the water
sideways into dry areas of the matrix. In a medium, which is moderately wet, this becomes more difficult, because
the capillary forces are generally lower. Thus, in a moderately wet medium, the fingers become thinner and faster.
At sufficiently high initial saturation, the large conductivity between neighboring blocks prevents water piling up
behind the wetting front and the formation of saturation overshoot. This results in the ability of lateral expansion
because the persistence of the fingers is suppressed [16, 17]. Therefore, a diffusion-like flow regime is observed.

Minor comments:

1. Figure 3: specify units for the colorbar

2. Figures 5-6: add the frame to panel b diagram

These minor issues will be fixed in the manuscript.
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A Figures

Figure A.1: The distribution of the intrinsic permeability. The distributions satisfy: (a) κmax/κmin ≈ 3.40,
(b) κmax/κmin ≈ 3.48, (c) κmax/κmin ≈ 2.28, (d) κmax/κmin ≈ 2.42. Intrinsic permeability values are colour-
coded according to the colour bar on the right.
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Figure A.2: A snapshot of the saturation field at 25 minutes for the intrinsic permeability distribution shown in
Fig. A.1(a) for five different values of b and for seven different values of initial saturation Sin.
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Figure A.3: A snapshot of the saturation field at 25 minutes for the intrinsic permeability distribution shown in
Fig. A.1(a) for five different values of λ and for seven different values of initial saturation Sin.
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Figure A.4: A snapshot of the saturation field at 25 minutes for the intrinsic permeability distribution shown in
Fig. A.1(a) for five different values of α and for seven different values of initial saturation Sin.
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Figure A.5: A snapshot of the saturation field for the intrinsic permeability distribution shown in Fig. A.1(a) for
five different values of qB and for seven different values of initial saturation Sin. Times are scaled according to
the boundary flux qB , thus a snapshot of the saturation field is shown at t = 100, 50, 25, 12.5 and 6.25 minutes for
qB = 2, 4, 8, 16, 32× 10−5 ms−1, respectively.
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