

1 Permafrost degradation and nitrogen cycling in Arctic rivers: Insights from
2 stable nitrogen isotope studies

3 Adam Francis^{1*}, Raja S. Ganeshram¹, Robyn E. Tuerena², Robert G.M. Spencer³, Robert
4 M. Holmes⁴, Jennifer A. Rogers³, Claire Mahaffey⁵

5 ¹School of Geosciences, University of Edinburgh, Edinburgh, UK

6 ²Scottish Association for Marine Science, Oban, UK

7 ³Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee,
8 Florida, USA

9 ⁴Woodwell Climate Research Center, Falmouth, Massachusetts, USA

10 ⁵Department of Earth, Ocean and Ecological Sciences, University of Liverpool, UK

11 *Correspondence to: adam.francis@ed.ac.uk

12 **Abstract**

13 Across the Arctic, vast areas of permafrost are being degraded by climate change, which has the
14 potential to release substantial quantities of nutrients, including nitrogen into large Arctic rivers.
15 These rivers heavily influence the biogeochemistry of the Arctic Ocean, so it is important to
16 understand the potential changes to rivers from permafrost degradation. This study utilised
17 dissolved nitrogen species (nitrate and dissolved organic nitrogen (DON)) along with nitrogen
18 isotope values ($\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-DON}$) of samples collected from permafrost sites in the
19 Kolyma River and the six largest Arctic rivers. Large inputs of DON and nitrate with a unique
20 isotopically heavy $\delta^{15}\text{N}$ signature were documented in the Kolyma, suggesting the occurrence of
21 denitrification and highly invigorated nitrogen cycling in the Yedoma permafrost thaw zones along
22 the Kolyma. We show evidence for permafrost derived DON being recycled to nitrate as it passes
23 through the river, transferring the high ^{15}N signature to nitrate. However, the potential to observe
24 these thaw signals at the mouths of rivers depends on the spatial scale of thaw sites, permafrost
25 degradation and recycling mechanisms. In contrast with the Kolyma, with near 100% continuous
26 permafrost extent, the Ob' River, draining large areas of discontinuous and sporadic permafrost,
27 shows large seasonal changes in both nitrate and DON isotopic signatures. During winter months,
28 water percolating through peat soils records isotopically heavy denitrification signals in contrast
29 with the lighter summer values when surface flow dominates. This early year denitrification signal
30 was present to a degree in the Kolyma but the ability to relate seasonal nitrogen signals across
31 Arctic Rivers to permafrost degradation could not be shown with this study. Other large rivers in
32 the Arctic show different seasonal nitrogen trends. Based on nitrogen isotope values, the vast
33 majority of nitrogen fluxes in the Arctic rivers is from fresh DON sourced from surface runoff
34 through organic-rich top-soil and not from permafrost degradation. However, with future
35 permafrost thaw, other Arctic rivers may begin to show nitrogen trends similar to the Ob'. Our
36 study demonstrates that nitrogen inputs from permafrost thaw can be identified through nitrogen
37 isotopes, but only on small spatial scales. Overall, nitrogen isotopes show potential for revealing
38 integrated catchment wide nitrogen cycling processes.

39

Commented [AF1]: The manuscript has been made a little more concise by rewording and also removing some sections not completely relevant to this study, particularly in the intro. Also the terminology has been changed to permafrost 'degradation' and 'continuous' throughout.

40 **1 Introduction**

41 The Arctic Ocean contains ~1% of global ocean volume but receives greater than 10% of the total
42 global riverine discharge (Frey and McClelland, 2009). This disproportionate influence of rivers
43 means that any changes in riverine inputs will likely have significant implications on marine
44 chemical, physical and biological processes (Holmes *et al.*, 2012). River biogeochemistry and
45 discharge also integrate catchment wide processes, making them potentially sensitive indicators of
46 change to the terrestrial environment (Holmes *et al.*, 2000). With diminishing sea ice and opening
47 of surface waters to light, Arctic productivity is sensitive to riverine nutrient inputs and particularly
48 nitrogen which is the limiting nutrient in coastal areas (Thibodeau *et al.*, 2017).

49 Biologically available nitrogen can exist as dissolved inorganic nitrogen (DIN) in forms of nitrate,
50 nitrite and ammonium. DIN is calculated as the sum of these three forms (DIN = $\text{NO}_3^- + \text{NO}_2^- + \text{NH}_4^+$) (McCrackin *et al.*, 2014) and can be taken up by primary producers (Tank *et al.*, 2012).
51 Nitrite and ammonium are highly biologically labile and so only persist for a short time before
52 being converted into nitrate or assimilated. Nitrogen can also exist as dissolved organic nitrogen
53 (DON) but these forms generally need to be broken down (remineralised) into DIN before uptake
54 can occur (Tank *et al.*, 2012). DON is calculated as the difference between total dissolved nitrogen
55 (TDN) and DIN: (DON = TDN – DIN) (Frey *et al.*, 2007). Nitrate is expected to be the dominant
56 species so a simplification can be made to DON = TDN – NO_3^- . As part of the nitrogen cycle,
57 exchange between these pools occurs in riverine and coastal areas depending on environmental
58 conditions. In oxic conditions, assimilation and nitrification occur, while denitrification can be
59 dominant in anoxic conditions (Voigt *et al.*, 2017).

60 Extensive areas of permafrost influence most of the riverine inputs to the Arctic Ocean. Permafrost
61 is defined as '*any subsurface material that remains below 0°C for at least two consecutive years*'
62 (Van Everdingen, 1998). It is defined exclusively on the basis of temperature, not whether ice is
63 present. Permafrost can stabilise ancient soils, preventing breakdown of soil organic matter and is
64 classified based on its spatial extent and thickness. Continuous permafrost has 90-100% aerial
65 extent and is 100-800m thick, while discontinuous has 50-90% extent and is 25-100m thick
66 (Anisimov and Reneva, 2006).

Commented [AF2]: Added this reference

67 Permafrost undergoes degradation through different mechanisms. The most common is active layer
68 deepening, where the top layer of soil that degrades and refreezes each year becomes deeper due to
69 increased summer temperatures and the influx of precipitation (Nelson *et al.*, 1997). This increases
70 the depth of permafrost, allowing the active layer to penetrate previously frozen soil. Permafrost
71 can also degrade through riverbank or coastal erosion, cutting through deep horizons of permafrost
72 promoting rapid and often catastrophic degradation (Streletsckiy *et al.*, 2015). These mechanisms all
73 lead to increases in soil microbial activity that release dissolved nitrogen from previously frozen
74 organic matter (Beermann *et al.*, 2017). The proportion of the released nitrogen species vary
75 depending on the degree and mechanism of degradation.

Commented [AF3]: Removed section about thermokarst terrain

76 Climate change is causing annual surface air temperatures within the Arctic to increase at almost
77 twice the rate of the global average (Hassol, 2004). In 2010, air temperatures in the Arctic were 4°C
78 warmer than the reference period of 1968 – 1996 (NOAA, 2014). A further 4 to 7°C increase is
79 expected by the end of the century (Hassol, 2004). These dramatic temperature changes will result
80 in the Arctic experiencing unprecedented impacts on its environments. Over the whole pan-Arctic
81 watershed, river discharge is increasing by an estimated $5.6 \text{ km}^3 \text{ y}^{-1}$ each year based on observations

Commented [AF4]: Added two new references here

83 from 1964 - 2000 (McClelland *et al.*, 2006). Some recent studies have revealed even greater rates
84 occurring and predicted into the future but some uncertainty exists due to substantial variation
85 across basins and permafrost regimes (Feng *et al.*, 2021). Discharge has already increased by ~10%
86 in Russian rivers compared to this reference period (Peterson *et al.*, 2002). Permafrost is at high
87 risk of degradation with climate change with estimates that 10% of permafrost in the northern
88 hemisphere has disappeared in the last 100 years (NSIDC, 2018). Predictions of future losses vary
89 but a recent study predicts 4.8 or 6 million km² of permafrost (32 or 40% of global total) would be
90 lost for a global temperature increase of 1.5 or 2°C respectively (UNFCCC, 2015; Chadburn *et al.*,
91 2017).

Commented [AF5]: Inserted a section on uncertainty in future predictions

92 Riverine biogeochemistry across the Arctic will be significantly affected by these changes due to
93 liberation of nutrients and organic matter from the degrading permafrost and alterations to nutrient
94 cycling within Arctic rivers. Although there has been considerable research into the effects of
95 permafrost degradation on organic matter and carbon fluxes (Frey and Smith, 2005; Schuur *et al.*,
96 2009; Vonk *et al.*, 2013; Spencer *et al.*, 2015), there are fewer studies on nitrogen loading in Arctic
97 rivers and fewer still on cycling and processing. Some of the proposed dynamics of nitrogen cycling
98 from permafrost degradation have been described in a study of Alaskan permafrost by Harms
99 (2013). The active layer of soil is rich in fresh organic matter with a high C:N ratio. Within this
100 layer, biotic assimilation of nitrate occurs along with denitrification in anaerobic conditions. With
101 limited permafrost degradation, nitrogen export from this layer will largely be in the form of DON,
102 rather than nitrate, but at relatively low concentrations. Much of the Arctic is covered in many
103 meters of peat so it is argued that this may apply to large areas of Arctic watersheds, especially
104 western Siberia (Frey and McClelland, 2009). As watershed mean annual air temperature (MAAT)
105 increases past the threshold limit for permafrost (-2°C – catchment temperature where permafrost
106 begins to degrade) DON concentrations in streams and rivers rapidly increase, with only smaller
107 changes in nitrate concentrations, resulting in the DON:nitrate ratio increasing. The extent of
108 permafrost degradation is the controlling factor on DON variability as greater depths of soil are
109 exposed with increasing degradation. (MacLean *et al.*, 1999; Frey *et al.*, 2007).

110 In contrast, where shallow peat exists, warming and underlying permafrost degradation can cause
111 the active layer to deepen into mineral horizons with low C:N ratios. This can lead to flow paths of
112 groundwater being directed through these mineral horizons leading to an increased adsorption of
113 DON and release of nitrate through subsequent mineralization and nitrification (Harms, 2013). This
114 process can occur to a lesser extent on a seasonal cycle with groundwater influx from mineral
115 horizons in the winter and surface runoff from organic horizons in spring and summer. Extensive
116 future permafrost degradation in catchments with active layer deepening occurring is expected to
117 increase the seasonal groundwater contribution leading to decreased DON concentrations and
118 increased nitrate concentrations in streams and rivers (Walvoord and Striegl, 2007).

Commented [AF6]: Reworded to clarify extent of DON release with permafrost degradation. Changed to say that with limited permafrost degradation DON is preferentially released over nitrate at relatively low concentrations but as more permafrost degradation occurs, both species will be released but DON to a much greater extent with the ratio of DON:Nitrate increasing. The extent of permafrost degradation is the controlling factor on DON variability as greater depths of soil are exposed with increasing degradation.

Commented [AF7]: Added in site description of Kolyma relating to soil layers exposed with permafrost degradation

Also added peat depths estimates to table in figure 1

119 These studies focus on gradual active layer deepening processes. Other more rapid permafrost
120 degradation processes such as riverine and coastal erosion are more spatially limited but could be
121 responsible for moving nitrogen species rapidly and directly from terrestrial permafrost to riverine
122 or coastal environments (Berhe *et al.*, 2007). This mechanism is understudied so the resulting
123 nitrogen export is still relatively unknown.

124 The processing and cycling of nitrogen that occurs in-stream and in near-shore coastal areas after
125 release from permafrost is also largely unknown. DON represents a 5x greater influx to Arctic shelf

126 waters from rivers than nitrate across the whole Arctic but 70% of the DON is removed in shelf
127 waters before reaching the open marine environment (Thibodeau *et al.*, 2017). The processes
128 involved in this removal are largely unclear but riverine nitrate can have a strong remineralised
129 signal, with sources from recycling of particulate organic nitrogen (PON) and DON (Thibodeau *et*
130 *al.*, 2017). The biolability of riverine DON and exchanges with the nitrate pool are key aspects that
131 influence the Arctic nitrogen cycle, and the impact of future permafrost degradation on these
132 aspects has not been ~~studied~~. It is important, therefore, to understand how permafrost degradation
133 may influence each nitrogen species input across multiple Arctic river catchments and the
134 subsequent potential changes to the riverine and coastal nitrogen cycle as a result. This study
135 focusses solely on the dissolved species of nitrogen, where most cycling occurs.

136 Dual stable nitrogen and oxygen isotopes of dissolved nitrate ($\delta^{15}\text{N-NO}_3^-$ and $\delta^{18}\text{O-NO}_3^-$), and
137 nitrogen isotopes of TDN and DON ($\delta^{15}\text{N-TDN}$ and $\delta^{15}\text{N-DON}$) were used to determine cycling
138 and source processes. During various stages of the nitrogen cycle, biological processes favour the
139 use of the light nitrogen isotope (^{14}N) over the heavy isotope (^{15}N) due to it being more energetically
140 favourable (Sigman and Casciotti, 2001). This leaves the residual pool with more of the heavier
141 isotopes, thus a more positive (higher) isotopic signature. The relative extent of a certain cycling
142 processes is proportional to the residual isotopic signature. Transformation between nitrogen pools
143 can also induce kinetic isotopic fractionation with fractionation factors unique to each
144 transformation process (Voigt *et al.*, 2017). Oxygen isotopes behave similarly but have different
145 sources to nitrogen during each cycling stage so the use of the dual isotope technique can distinguish
146 sources of nitrate and determine the relative influence of nitrogen cycling processes such as
147 nitrification, assimilation or denitrification (Thibodeau *et al.*, 2017). Comparisons of $\delta^{15}\text{N-NO}_3^-$
148 versus $\delta^{18}\text{O-NO}_3^-$ can show distinct sources of nitrate and mixing between them based on the
149 environmental conditions inducing specific isotopic fractionations to both elements. Particular
150 nitrogen cycling processes can also be shown using this method. For example, during denitrification
151 or biological assimilation (nitrate consumption processes), the residual nitrogen and oxygen pools
152 become equally enriched in the heavy isotopes (Granger *et al.*, 2004), the fractionation of the two
153 isotopes is “coupled” resulting in a near 1:1 relationship (Botrel *et al.*, 2017). In comparison,
154 nitrification, a nitrate producing process, causes decoupled fractionation between the isotopes due
155 to different nitrogen and oxygen sources (Sigman *et al.*, 2005).

156 Since DON concentrations are elevated relative to nitrate concentrations in this Arctic riverine
157 environment (Thibodeau *et al.*, 2017), $\delta^{15}\text{N-DON}$ can be measured, allowing the possible sources
158 of DON to be determined and when combined with nitrate isotope data, some of the cycling
159 mechanisms can also be identified. This is only the second study utilising $\delta^{15}\text{N-DON}$ in the Arctic
160 (Thibodeau *et al.*, 2017) and the first to apply it to Arctic rivers.

161 This study aimed to contribute to the debate on the role of permafrost degradation on changing
162 riverine loads of nitrogen into the Arctic. Specifically determining if there is an increase of
163 dissolved nitrogen supply into Arctic rivers and coastal zones as a result of permafrost degradation
164 within catchments, what the proportions of nitrogen species within these inputs are and whether a
165 unique permafrost degradation signal be detected in rivers using dissolved nitrogen species. A
166 major focus was on the understudied area of nitrogen cycling within rivers and coastal areas.
167 Nitrogen isotope signals in degradation zones and Arctic rivers with differing permafrost extents
168 were utilised to provide insights into catchment scale nitrogen cycling and recycling of various
169 forms during riverine transport.

Commented [AF8]: Removed ‘These dissolved flux changes and alterations to cycling processes due to permafrost degradation could have substantial impacts on the productivity of Arctic marine ecosystems and on element cycling within the Arctic Ocean (Dittmar and Kattner, 2003) with potential global scale implications.’

170 **2 Methods**

171 **2.1 Study areas and sample collection**

172 *2.1.1 Kolyma*

173 Samples from the lower Kolyma River catchment were used to identify local scale nitrogen signals
174 from zones affected by varying levels of permafrost degradation (Figure 1a). Samples were
175 collected in September 2018 from surface water, filtered on-site using a $0.7\mu\text{m}$ glass fibre filter and
176 immediately frozen. Late Autumn sampling was chosen as active layer depths reach their maximum
177 extent at this time, allowing the greatest permafrost DOM influx to streams (Schuur *et al.*, 2008;
178 Mann *et al.*, 2012).

179 PD1 is a well-studied permafrost degradation zone known as Duvannyi Yar, where a 10-12km long
180 outcrop of permafrost is exposed along the bank of the Kolyma River. The permafrost is part of the
181 extensive Pleistocene Yedoma permafrost that covers much of the Kolyma and Lena catchments
182 and contains almost a third of all organic matter stored in Arctic permafrost (Vonk *et al.*, 2013).
183 Limited freeze-thaw action prevents processing and degradation of organic matter, resulting in
184 storage of ancient and well-preserved organic matter. Ancient ice wedges also characterise this
185 permafrost, accounting for about 50% of the soil volume and storing some of the organic matter
186 within it (Schirrmeister *et al.*, 2011). Yedoma permafrost is mostly continuous throughout the
187 Kolyma catchment except at a limited number of erosional sites such as Duvannyi Yar. Here, the
188 river erodes it at 100m per year, leading to extensive permafrost degradation throughout the soil
189 horizon (Vasil'chuk *et al.*, 2001). This destabilizes soil profiles, leading to bank collapses and
190 release of ancient organic matter into streams. This erosional style degradation leads to both organic
191 layer and mineral influence in dissolved nitrogen and carbon additions, differing to active layer
192 degradation mechanisms, where the peat depth determines which layer is exposed after degradation
193 (Harms, 2013). Radiocarbon dating of DOC from a fluid mud stream draining from the degrading
194 permafrost yielded an age of 20,000 years at this site. This organic matter is highly biolabile after
195 thawing occurs and can be assimilated rapidly by aquatic microorganisms after mineralisation
196 (Vonk *et al.*, 2012; Spencer *et al.*, 2015). Samples for this study were collected from a similar fluid
197 mud stream.

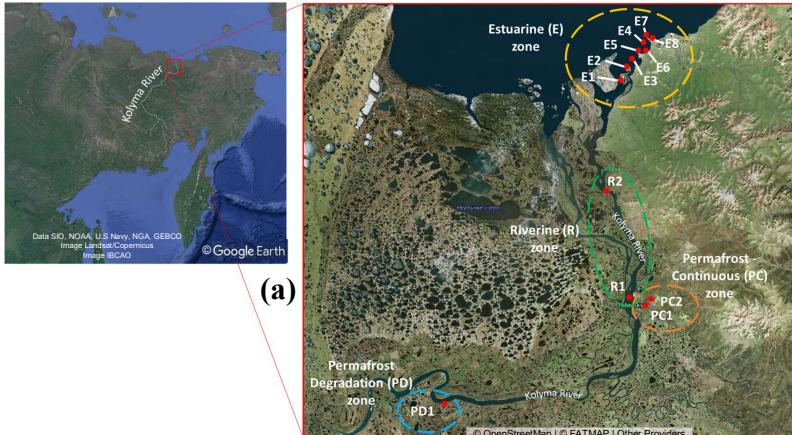
Commented [AF9]: Added this bit to highlight the difference between this site and other permafrost degradation areas where active layer deepening may be occurring.

Commented [AF10]: Changed the wording to make it clearer that samples for this study were collected from a similar fluid mud stream

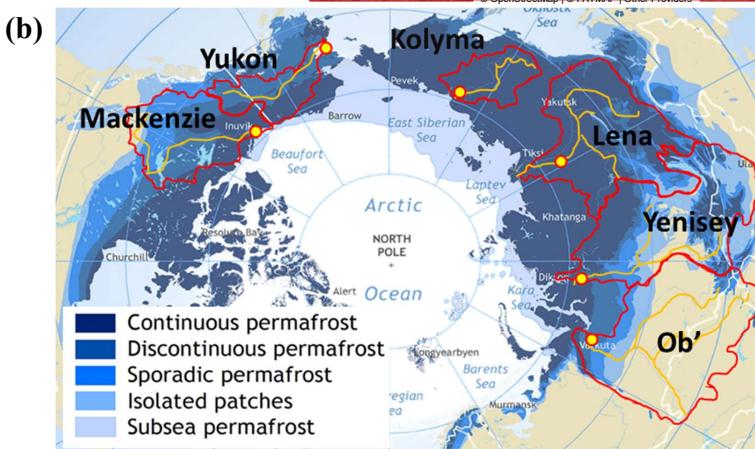
198 In contrast, samples PC1 and PC2 were taken from streams draining sites underlain with continuous
199 modern permafrost with little permafrost derived DOC, if any. The sites contained functioning
200 ecosystems of larch forests, shrub/moss and lichen understory with no exposed permafrost (Loranty
201 *et al.*, 2018). This is representative of large areas of the Kolyma catchment as well as portions of
202 other Russian Arctic Rivers so can be used to determine the background non-degradation signal for
203 nitrogen species.

204 To determine how nitrogen species from permafrost degradation are processed within an Arctic
205 river and a marine environment, samples were taken in the main stem of the Kolyma River,
206 downstream of the degradation site along with samples in the estuarine zone where the Kolyma
207 River meets the East Siberian Sea (Figure 1a). The riverine sample labelled R1 is the same site used
208 in the ArcticGRO Kolyma samples described in 2.1.2.

Commented [AF11]: Added this to clarify the overlap in sample locations between local and catchment scale samples.


209 *2.1.2 Pan-Arctic Rivers*

210 The Arctic Great Rivers Observatory (ArcticGRO) (<https://arcticgreatrivers.org/>) is an international
211 project collecting and analysing riverine water samples using identical methods. Samples used in
212 this study were collected in 2017 using methods described in Holmes *et al.*, (2021) from the six largest


213 Arctic rivers, four in Russia: Kolyma, Ob', Lena and Yenisey and two in North America: Yukon
214 and Mackenzie (Figure 1(b)). Together, the proportion of continuous and discontinuous permafrost
215 within these catchments is 48%, similar to the proportions across the whole pan-Arctic catchments
216 (52%) (Tank *et al.*, 2012). Thus, these rivers represent overall pan-Arctic conditions. These
217 catchments also cover transitions from continuous permafrost zones of the Arctic to permafrost
218 free, capturing the variability that occurs across the pan-Arctic (Tank *et al.*, 2012). Studying the
219 major Arctic rivers allowed comparisons of nitrogen loading and cycling between rivers to identify
220 variations of permafrost and catchment influences. The generated datasets from this study were
221 interpreted using discharge, concentration and other biogeochemical data from 2003 to 2018,
222 available on the ArcticGRO website (<https://arcticgreatrivers.org/data/>). The overview of the
223 production of this dataset as well as some of the associated uncertainties and variability are shown
224 in Holmes *et al.* (2012) and Shiklomanov *et al.* (2006). |

Commented [AF12]: Added 'the'

Commented [AF13]: Added reference to
limitations/variability of these records.

(a)

(b)

	Yukon	Mackenzie	Ob'	Yenisey	Lena	Kolyma
Discharge ($\text{km}^3 \text{ yr}^{-1}$)	208	298	427	636	581	111
Catchment area (10^6 km^2)	0.83	1.78	2.99	2.54	2.46	0.65
MAAT ($^{\circ}\text{C}$)	-0.4	0.7	1.4	-1.0	-6.5	-10.1
Cont. permafrost (%)	19	13	1	31	77	99
Total forest (%)	19.7	34.4	38.6	67.3	72.1	49.9
Wetlands (%)	0.4	0.1	8.5	2.6	3.3	3.8
Water bodies (%)	7.0	10.3	2.4	2.1	1.7	1.6
Average peatland depth (cm)	135	216	201	246	293	123

(c)

Commented [AF14]: Changed PT1 to PD1 and PI1 to PC1 and PC2
Cropped (b)
Added catchment characteristics table

Figure 1 – (a) Sample names and collection locations from sites around the lower Kolyma River and estuary. Samples collected on a research trip in autumn 2018. Satellite image 1 source: Data SIO, NOAA, U.S Navy, NGA, GEBCO | Image Landsat/Copernicus | Image IBCAO. © Google Earth. Satellite image 2 source: © OpenStreetMap | © FATMAP | Other Providers.

(b) Catchment areas (red lines) and sampling locations (red and yellow circles) of the six largest Arctic rivers (orange lines) used in the ArcticGRO III project. The extent and type of permafrost present in each catchment is also shown. Base map modified from Brown et al. (1997).

(c) Catchment characteristics of each river shown. Data taken from Amon et al. (2012), Holmes et al. (2012) and Hugelius et al. (2020).

226 **2.2 Analysis of nitrogen species - concentrations and stable isotopes**

227 TDN and DOC concentrations were measured using a Shimadzu TOC/TN analyser at the
228 University of Edinburgh (Kolyma samples) and Woods Hole Research Centre (ArcticGRO
229 samples). Inorganic nutrient concentrations were measured at the Woods Hole Research Centre
230 using an Astoria Analyzer (ArcticGRO samples) and also calculated from mass spectrometer peak
231 areas referenced to two internal standards with known concentrations and isotopic values (Kolyma
232 samples). All stable isotopic analysis was carried out at the School of Geosciences, University of
233 Edinburgh.

234 **2.3 $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ of Nitrate (NO_3^-)**

235 The dual isotope technique to measure nitrogen and oxygen isotopes of nitrate was carried out by
236 the denitrifier method modified from Sigman *et al.*, (2001); Casciotti *et al.*, (2002) and McIlvin and
237 Casciotti, (2011). It utilises denitrifying bacteria, *Pseudomonas aureofaciens*, which lack nitrous
238 oxide (N_2O) reductase activity to convert dissolve nitrate into N_2O gas while maintaining an
239 identical nitrogen isotopic signature to the original nitrate. The oxygen isotope signature is subject
240 to change with water molecules so is corrected for using the method in Weigand *et al.*, (2016).
241 Samples with low nitrate concentrations ($<1\mu\text{M}$) could not be analysed for nitrate isotopes. As a
242 result, some samples were excluded from analysis. The analytical precision for $\delta^{15}\text{N-NO}_3^-$ was
243 $\pm 0.4\text{\textperthousand}$ and $\pm 0.3\text{\textperthousand}$ for the two reference standards IAEA-N3 and USGS-34 respectively and for
244 $\delta^{18}\text{O-NO}_3^-$ it was $\pm 1.0\text{\textperthousand}$ and $\pm 0.8\text{\textperthousand}$ respectively. This was based on >30 measurements of the
245 international standards analysed on several different days.

246 **2.4 $\delta^{15}\text{N}$ of TDN**

247 This method utilises an extra step prior to the denitrifier method where the sample TDN is converted
248 into nitrate while maintaining the TDN isotopic signature. This involves oxidation with potassium
249 persulphate followed by digestion of the organic nitrogen to an equivalent amount of nitrate that is
250 then prepared via the denitrifier method. This procedure was adapted from Knapp *et al.*, (2005),
251 Thibodeau *et al.*, (2013, 2017) using internal standards to ensure that fractionation is minimal and values obtained are representative of the actual $\delta^{15}\text{N}$ of DON. $\delta^{15}\text{N-TDN}$ isotopic values represent
252 the values of both DON and DIN (nitrate + nitrite). Therefore, $\delta^{15}\text{N-DON}$ is calculated using
253 concentration weighted $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-TDN}$ values and allowed the processes involved in
254 organic and inorganic nitrogen to be compared. $\delta^{15}\text{N-DON}$ could only be calculated when $\delta^{15}\text{N-NO}_3^-$ values were
255 available ($[\text{NO}_3^-] > 1\mu\text{M}$). Samples with nitrate concentrations less than $1\mu\text{M}$
256 were reported as $\delta^{15}\text{N}$ of TDN since $\delta^{15}\text{N}$ of DON was not calculable and using $\delta^{15}\text{N}$ of TDN
257 allowed comparisons with other samples.
258

Commented [AF15]: Added line about internal standards

260 This calculation assumes that the isotopic signature of nitrate can represent that of DIN and the
261 contribution from ammonium is negligible. This is because ammonium is unstable in peatland
262 environments and is rapidly converted into nitrate, meaning nitrate makes up the majority of the
263 DIN pool and ammonium concentrations are low and often below detection limits, as mentioned in
264 Holmes *et al.*, (2012).

265

3 Results and Discussion

266

3.1 Permafrost extent and nitrogen species

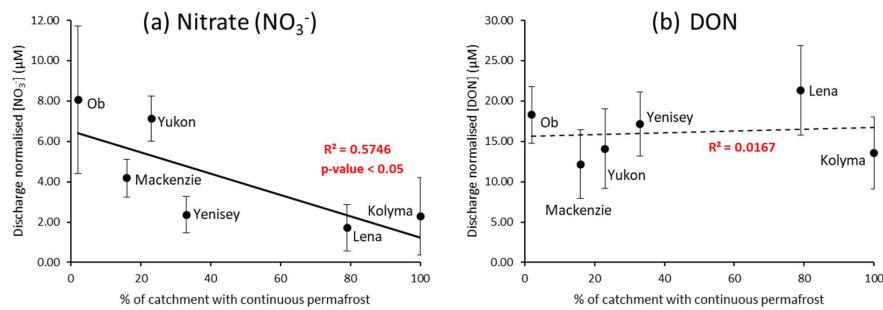
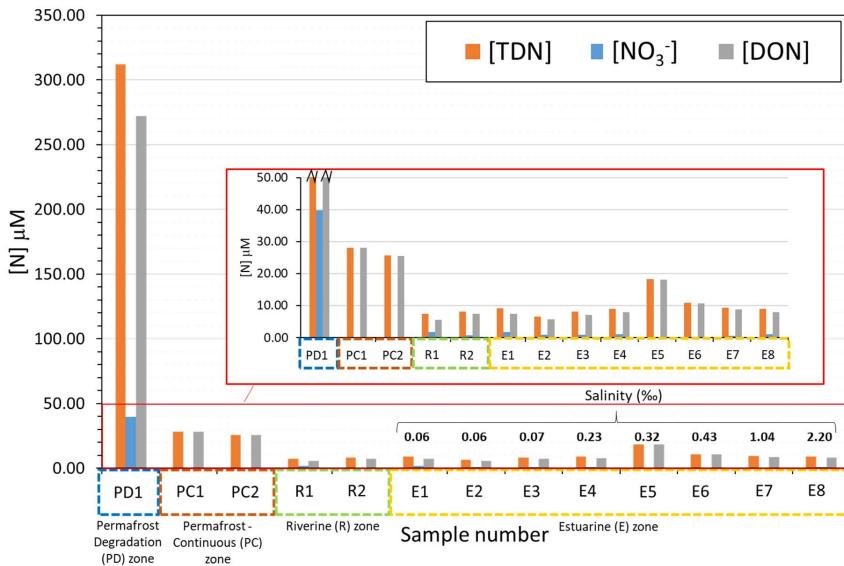


Figure 2 - Relationships between the extent of continuous permafrost within each river catchment and (a) nitrate and (b) DON discharge normalised concentrations (μM) for the period 2003 - 2018. Data from the ArcticGRO online dataset. Error bars from the discharge normalised standard deviations are quite large due to the large year-to-year variability in nitrate/DON concentrations however these do not affect the overall trends observed.

267 Mean ArcticGRO nitrate and DON (TDN-DIN) concentrations of all available data points in the
 268 ArcticGRO dataset from 2003 - 2018 were calculated for each of the six rivers. This produced
 269 average annual nitrate and DON concentrations (from Holmes *et al.*, 2012). To remove the effect
 270 of unequal seasonal sampling and the large variability in hydrology in these river systems, the
 271 concentrations were normalised to the discharge of the sample collection month and plotted against
 272 percentage continuous permafrost (Figure 2). This allowed more accurate inter-river comparisons
 273 of nitrogen species concentration.

274 Negative correlations are present between permafrost extent and discharge normalised nitrate
 275 concentrations. The concentration trend shown is statistically significant to a 95% confidence level
 276 ($p\text{-value} = 0.05$) according to the Spearman's rank test. However, no statistically significant
 277 relationship exists between discharge normalised DON concentrations and permafrost extent for all
 278 rivers.


279 Overall, these negative linear relationships suggest that the less permafrost present in a river
 280 catchment, the more nitrate is released from the surrounding soil. Therefore, permafrost degradation
 281 may induce greater concentrations of nitrate into Arctic rivers. Similar trends have been observed
 282 in other studies (Jones *et al.*, 2005; Harms, 2013). Conversely, no significant relationship can be
 283 observed between discharge normalised DON concentrations and permafrost extent in any of the
 284 plots (Figure 2 (b)). Given that DON is the dominant form of nitrogen released from soil, the
 285 increase in nitrate concentrations but not DON suggests that cycling of organic nitrogen to inorganic
 286 forms in soils and/or upstream rivers may be promoted with decreasing permafrost extents. Figure
 287 2 displays the variability from the extent of continuous permafrost, but not from active permafrost
 288 degradation. Local scale measurements of degradation sites from the Kolyma River were used to
 289 address if active permafrost degradation releases nitrogen and identify cycling processes involved.
 290 Seasonal trends were also used to see when each of the species become dominant and to help
 291 determine catchment-scale processes.

Commented [AF16]: Removed the average annual concentration panels as they didn't add anything to the results and further work in this study was based on the discharge normalised concentrations. Also changed the text in proceeding paragraphs to only refer to these two figures

Added standard deviations for the discharge normalised concentrations

Corrected spelling of continuous

292 **3.2 Local scale permafrost degradation signals**
 293 **3.2.1 Concentration of nitrogen species**

Commented [AF17]: Inserted a second panel in figure 3 to capture the small scale differences. Also Change PT1 to PD1 and PI1 and PI2 to PC1 and PC2 in accordance to changes made in rest of text to be consistent with uses of the terms permafrost 'degradation' and 'continuous' permafrost

Figure 3 - Concentrations of Total Dissolved Nitrogen [TDN], Nitrate [NO₃⁻] and Dissolved Organic Nitrogen [DON] in different zones of the lower Kolyma River as overviewed in Figure 1 (a). Salinity values are displayed for the estuarine samples in order of increasing salinity. The inserted panel shows the small scale differences on downstream sites.

294 Figure 3 shows the concentrations of different nitrogen species in zones of the Kolyma River and
 295 estuary. The concentrations of nitrate and DON represent the dissolved inorganic and the dissolved
 296 organic species of TDN respectively. Site PD1 at Duvannyi Yar, with substantial permafrost
 297 degradation, has greatly elevated concentrations of all nitrogen species in comparison to other
 298 samples. Most of the nitrogen is present as DON (312μM for DON and 40μM for nitrate). In
 299 comparison, the permafrost influenced zone (where continuous permafrost is present), has
 300 substantially lower concentrations with DON roughly 25-28μM and nitrate concentrations being
 301 almost negligible at 0.2μM. The amount of DON relative to nitrate in these sites was however much
 302 greater than the permafrost degradation site. Permafrost degradation appears to release DON and
 303 nitrate in large amounts whereas the continuous permafrost releases much less DON and very little
 304 nitrate.

305 In the main stem of the river, DON concentrations decreased (to 6-7μM). Nitrate concentrations
 306 were greater than in the permafrost-influenced zone (1-2μM) but still an order of magnitude lower
 307 than the degradation zone. In the estuarine zone, concentrations of both DON and nitrate fluctuated
 308 slightly but remained at a similar level to the riverine samples (DON = 5-9μM, nitrate = 0.2-2μM)
 309 with no clear trend in concentration with increasing salinity. DON increased slightly in site 007 but
 310 this was anomalous in comparison with the rest of the site concentrations.

311 These trends suggest that within continuous permafrost zones of the Kolyma catchment, only DON
 312 is released from soil in significant amounts. DON concentrations were 169x greater than nitrate
 313 concentrations. This observation that more permafrost leads to less release of nitrate supports

314 observations on the catchment-scale as noted in section 3.1. Our findings show that within the
 315 Yedoma permafrost degradation zone, permafrost degradation facilitates the release of large
 316 amounts of both nitrate and DON from the soil and into the dissolved phase. DON was still the
 317 dominant species, but not as much as with continuous permafrost, with a concentration 7 times
 318 greater than nitrate.

319 However, in the main stem of the river, the signals were quickly lost, with concentrations decreasing
 320 by 44 and 31-fold for nitrate and DON respectively. This decrease in both species was partially due
 321 to a dilution effect but could also be due to the diluting source having a lower proportion of nitrate
 322 than DON. Such a possibility is consistent with continuous permafrost occupying the vast majority
 323 of the catchment with smaller inputs of DON and with lower DON: nitrate ratios. DON
 324 concentrations may be 10-times higher than nitrate concentrations in the main stem due to nitrate
 325 being more readily removed than DON. However, there was no clear change in concentrations
 326 downriver, suggesting processing of the nitrogen pool may be small but cycling processes are
 327 difficult to determine using only concentration data.

328 **3.2.2 | Nitrogen Isotopic signatures**

Commented [AF18]: Changed PT1 to PD1 and PII and
 PI2 to PC1 and PC2

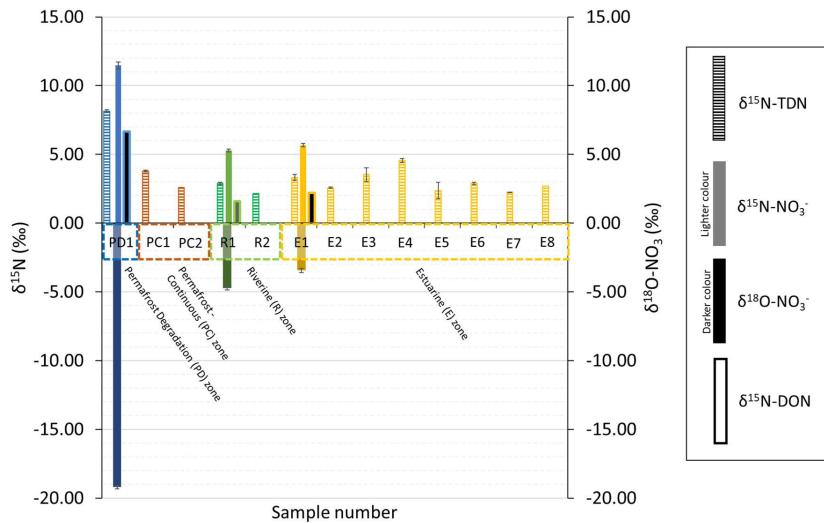


Figure 4 - Nitrogen isotopes of TDN, Nitrate (NO_3^-) and DON in different zones of the lower Kolyma River as overviewed in Figure 1(a). Oxygen isotopes ($\delta^{18}\text{O}$) of nitrate are also shown on the negative scale below the nitrogen isotope values. Only three sites (PD1, R1 & R2) were able to have nitrogen isotopes of nitrate (and therefore also of DON) analysed as most nitrate concentrations were $<1\mu\text{M}$. However, since nitrate concentrations were very small in comparison to DON (see Figure 3) – especially for the permafrost influenced site, then it can be assumed that the nitrogen isotopic signature of DON is roughly equal to the signature of TDN ($\delta^{15}\text{N-DON} \approx \delta^{15}\text{N-TDN}$). The permafrost-influenced sample was analysed across four repeat runs allowing a robust standard deviation to be calculated.

329 Figure 4 shows the stable isotopic signatures of different nitrogen species in zones along the
 330 Kolyma River. At the permafrost degradation site, nitrogen isotopes of all species were enriched in
 331 ^{15}N ($\delta^{15}\text{N-NO}_3^- = 12\text{\textperthousand}$, $\delta^{15}\text{N-DON} = 7\text{\textperthousand}$) and $\delta^{18}\text{O-NO}_3^-$ values were very negative at $-19\text{\textperthousand}$. In
 332 comparison, the permafrost influenced sites had lower isotopic values for DON (3 to 4\textperthousand).

333 The signals observed in the permafrost degradation site were rapidly lost in the main stem of the
 334 river and into the estuary. In the river, $\delta^{15}\text{N-NO}_3^-$ was $\sim 5\text{\textperthousand}$ and $\delta^{15}\text{N-DON}$ was 2 to 5\textperthousand , while

335 $\delta^{18}\text{O-NO}_3^-$ was around -5‰. At the start of the estuary, $\delta^{18}\text{O-NO}_3^-$ increased to -3‰. With
 336 consideration of the errors associated with the measurement, there were no clear trends observed
 337 for $\delta^{15}\text{N}$ moving downstream (similar to the concentration data) and into the estuary, suggesting
 338 minimal alterations to dominant processing cycles of nitrogen in the main river stem.

339 In summary, a unique signal representing inputs from degrading Yedoma permafrost was detected
 340 using concentrations and isotopic signatures of nitrogen species (Figure 3 and Figure 4). From the
 341 site at Duvannyi Yar, extensive permafrost degradation brings water to the Kolyma River with very
 342 high DON concentrations (272µM) and high $\delta^{15}\text{N-DON}$ (6.7‰). In addition, nitrate concentrations
 343 were high (40µM) with very high $\delta^{15}\text{N-NO}_3^-$ (11.5 ± 0.26‰) but very low $\delta^{18}\text{O-NO}_3^-$ (-19.2 ±
 344 0.37‰).

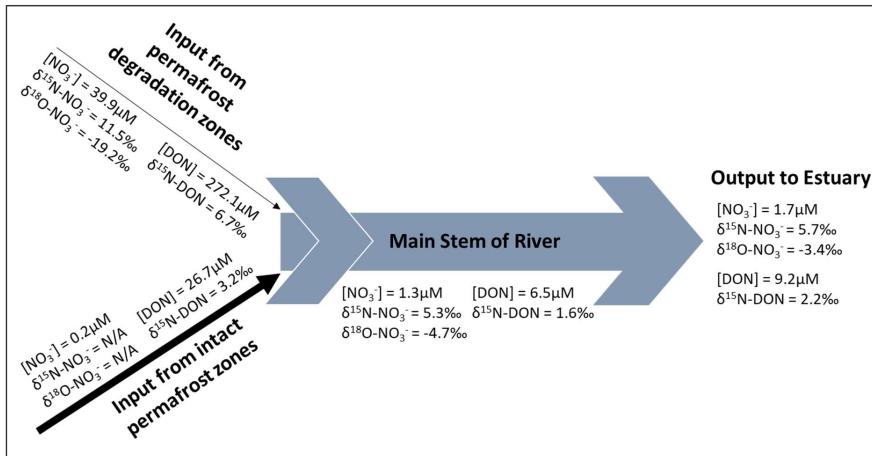


Figure 5 – Summary of concentration and isotopic signals of nitrate and DON species in the Kolyma system. Data displayed are average values of all samples in each zone of the river

345 3.2.3 Explanation of signals observed and likely processing

346 During degradation, permafrost releases large amounts of organic matter and organic nitrogen
 347 (DON) from the soil and ice (272µM in this study, Figure 5). This undergoes rapid mineralization,
 348 firstly to highly reactive ammonium then to nitrate via nitrification (Voigt *et al.*, 2017). The lighter
 349 isotope of nitrogen is preferred for these reactions through kinetic fractionation (Mariotti *et al.*,
 350 1981), however the first step of this reaction (ammonification, DON converted to ammonium), is
 351 associated with a small fractionation factor (Swart *et al.*, 2008) so cannot fully explain the high
 352 isotopic signature of the residual DON pool (6.7‰). Nitrification produces high concentrations of
 353 nitrate (40µM), however the waterlogged and anaerobic conditions in the soil, combined with the
 354 lack of vascular plants for competition (Repo *et al.*, 2009), produces good conditions for
 355 denitrifying bacteria to convert the readily available nitrate to atmospheric N₂ via denitrification.
 356 This reaction produces much stronger kinetic fractionation than nitrification (Swart *et al.*, 2008) so
 357 this partial denitrification, where not all nitrate is denitrified, results in the residual nitrate pool
 358 becoming isotopically heavy with a high $\delta^{15}\text{N-NO}_3^-$ signal of 11.5‰. DON also shows this high
 359 denitrification signal suggesting exchange of denitrified nitrogen between the nitrate and DON
 360 pools through the assimilation of partially denitrified heavy nitrate and the production of heavy
 361 DON by remineralisation. Even though ¹⁴N is preferred to form DON, a highly invigorated nitrogen

362 cycle with continuous nitrogen exchange between pools explains the unusually heavy $\delta^{15}\text{N}$ values
363 in both DON and nitrate pools.

364 Additionally, the fact that DON is not isotopically heavier than nitrate is also expected as the
365 primary source of DON is from decaying organic matter preserved in the permafrost and this
366 process releases organic matter with a low $\delta^{15}\text{N}$ to ~~start with~~ that forms DON also with a lower $\delta^{15}\text{N}$
367 (Sipler and Bronk, 2015). This is supplemented with a smaller contribution from DON formed from
368 the recycled heavy nitrate. Therefore, nitrogen processing in the permafrost degradation zone not
369 only involves active release of DON by heterotrophic remineralisation with anaerobic processes
370 such as denitrification, but also exchange between nitrogen pools. Oxygen isotopes of nitrate
371 provide further evidence for this recycling.

372 During denitrification, fractionation of nitrogen and oxygen is 1:1; therefore, oxygen isotopes
373 should behave similarly to nitrogen isotopes and become isotopically heavy (high signal) in the
374 residual nitrate pool (Sigman *et al.*, 2009). This is not observed however, as $\delta^{18}\text{O-NO}_3^-$ in the
375 permafrost degradation stream had a very negative (low) signal (-19.2‰). Therefore, denitrification
376 alone cannot explain the oxygen isotopic signatures. The $\delta^{18}\text{O-NO}_3^-$ signal ‘resets’ to the value of
377 ambient water and ~~dissolved oxygen~~ when it is recycled (Buchwald and Casciotti, 2010) while the
378 fixed nitrogen is internally cycled, retaining its isotopic signatures (Sigman *et al.*, 2009). The
379 observed $\delta^{18}\text{O-NO}_3^-$ signal in the permafrost degradation zone is very close to the value of $\delta^{18}\text{O-}$
380 H_2O of Kolyma River water for this time of year (-20‰) (Yi *et al.*, 2012). However, this stream
381 water was draining straight from the ancient ice wedges and had not been in contact with the main
382 stem ‘modern’ water. The $\delta^{18}\text{O-}\text{H}_2\text{O}$ of ice wedges was much lower than present day river $\delta^{18}\text{O-}$
383 H_2O : -33.3‰ (Vonk *et al.*, 2013) due to different environmental conditions during the formation
384 period of this permafrost (Hubberten *et al.*, 2004; Vonk *et al.*, 2013). Given that the denitrification
385 signal was largely reduced in $\delta^{18}\text{O-NO}_3^-$ suggests that the partially denitrified nitrate was almost
386 completely recycled through the assimilation-ammonification-nitrification cycle during permafrost
387 degradation. This vigorous nitrogen cycling and exchange between nitrogen pools should occur in
388 the degradation site soil before reaching the river. Collectively, the dual nitrogen and oxygen
389 isotopic signals of nitrate and nitrogen isotopes of DON provide evidence for a range of nitrogen
390 recycling process active in the degradation zone. This produced unusually heavy $\delta^{15}\text{N}$ values in
391 both DON and nitrate pools and a $\delta^{18}\text{O-NO}_3^-$ signal representing both the recycling and
392 denitrification processes. These isotopic signals show a unique signature where inputs from
393 Yedoma permafrost degradation enter the main stem of the river. Processing in the main stem can
394 then alter these signals, explaining the signal observed at the river mouth.

395 Organic matter from this permafrost site is very biolabile and ancient permafrost DOC is the most
396 biolabile source of DOC in riverine Arctic systems due to lack of processing and survival of bacteria
397 (Vonk *et al.*, 2013). Up to 50% of permafrost DOC can be lost in less than seven days in the Kolyma
398 River (Spencer *et al.*, 2015). This time period is equal to water residence times between headwater
399 streams in degradation zones and the river mouth (3 days) (Vonk *et al.*, 2013). However, DON may
400 behave differently to DOC in terms of cycling. Unlike DOC (where a large proportion of the carbon
401 is oxidised and lost as CO_2) (O’Donnell *et al.*, 2016), DON will mostly be converted into nitrate
402 during degradation. This nitrate will likely continue to be recycled along with DON degradation in
403 the river.

Commented [AF19]: Clarified the reason for low $\delta^{15}\text{N}$ here

Commented [AF20]: Added ‘and dissolved oxygen’

405 Therefore, it is expected that the high $\delta^{15}\text{N}$ values (for both DON and nitrate) from the degradation
406 site would be retained through recycling and even if some nitrogen was lost as N_2 or N_2O or to PON
407 (which sinks out) via assimilation the residual dissolved pool would remain isotopically heavy.
408 However, since these DON signals were not clearly observed downstream this suggests that the
409 contributions of these permafrost degradation streams were relatively small compared to other DON
410 sources in the main stem of the river (Drake *et al.*, 2018) probably receiving waters from continuous
411 permafrost, resulting in nitrogen signals from permafrost degradation being quickly lost. Dilution
412 with main stem water containing lower concentrations and lower $\delta^{15}\text{N}$ values is a major contributor
413 to the changes observed.

414 The main stem isotopic signatures represent the average catchment characteristics (a combination
415 of all permafrost influenced and degradation sites) and since the $\delta^{15}\text{N}$ -TDN were much more similar
416 (the same within error) to the permafrost influenced site, it can be assumed that these conditions
417 represent the majority of the Kolyma catchment as it has near 100% continuous permafrost
418 coverage. However, within that TDN input, permafrost influenced sites supply mostly DON but
419 very little nitrate (Figure 2 and Figure 3). From the permafrost zone to the main stem, DON
420 concentrations decreased and nitrate concentrations increased slightly (even with dilution effects).
421 The isotopic signature of the main stem nitrate was also significantly heavier than that of permafrost
422 and main stem DON. The concentration trends suggest that recycling of DON to nitrate was
423 occurring in the river and, when combined with the isotopic trends, some of the isotopically heavy
424 nitrogen from DON and nitrate originating in the degradation site may have contributed to these
425 recycling processes. This allows the heavy nitrogen signal from the degrading Yedoma permafrost
426 to be transferred and retained in the main stem nitrate. This was assisted by the negligible diluting
427 nitrate inputs from much of the permafrost-covered catchment. Importantly, this also suggests that
428 a significant nitrate pool in the main stem is produced from DON recycling rather than from direct
429 nitrate inputs to the river.

430 However, $\delta^{18}\text{O}$ - NO_3^- values in the main stem were higher than the degradation site (-3.4 to -4.7‰).
431 These values were much greater than would be expected from nitrogen recycling and nitrate/DON
432 exchange occurring in the main stem. Determining the cause for these high signals is difficult due
433 to a multitude of possible factors influencing the isotopic signatures. Co-occurrence of partial
434 nitrate uptake and nitrification in the main stem which decouples the nitrogen and oxygen isotopes
435 (Sigman *et al.*, 2009) may be occurring but would only account for a $\delta^{18}\text{O}$ - NO_3^- increase of around
436 5‰ (Wankel *et al.*, 2007). External sources such as atmospheric deposition and surface runoff with
437 minimal interaction with catchment soils (e.g. snowmelt or high riverine discharge during sampling
438 due to localised rainfall) may also bring high $\delta^{18}\text{O}$ - NO_3^- and lower $\delta^{15}\text{N}$ -DON values into the main
439 stem (Heikoop *et al.* (2015), Thibodeau *et al.* (2017)). However, the amount of atmospheric $\delta^{18}\text{O}$ -
440 NO_3^- signal that reaches the main stem may be low as studies have shown that nearly all snowpack
441 nitrate is assimilated or remineralised before being released into the river, thus losing nearly all the
442 high $\delta^{18}\text{O}$ - NO_3^- signal (Tye and Heaton, 2007).

443 Overall, determining the cause of the high $\delta^{18}\text{O}$ - NO_3^- values and lower $\delta^{15}\text{N}$ -DON in the main stem
444 relative to the permafrost zone cannot be constrained with this study, but is likely to be some
445 combination of atmospheric, microbial and recycling signals with co-occurrence of uptake,
446 nitrification and possible denitrification. All of these may change seasonally which is explained in
447 greater depth in section 3.3.

448 In summary, a unique signature representing inputs from degrading Yedoma permafrost was
449 identified in the lower Kolyma River catchment indicating anaerobic degradation, denitrification,
450 and vigorous nitrogen cycling within permafrost soils undergoing degradation. Dilution of the DON
451 degradation signal occurs in the main stem but the DON (from the degradation site as well as the
452 surrounding catchment) also undergoes mineralisation to nitrate, transferring the isotopic
453 degradation signature to the nitrate. Therefore, increases in the nitrogen release from Yedoma
454 permafrost soils, irrespective of the species, is most likely to be reflected in riverine nitrate
455 concentrations. However, signals are unlikely to be strongly observed around the mouth of rivers
456 unless very spatially extensive degradation zones are present in the catchment providing large
457 enough fluxes of nitrogen species liberated from permafrost. This would allow the degradation
458 signal to persist through the background catchment-wide nitrogen signal from modern surface soils.

459 The permafrost degradation occurring at this Kolyma site is only one type of degradation
460 mechanism that can occur. It involves erosion of ice rich permafrost (Yedoma) found mainly in the
461 Lena and Kolyma catchments but not in other Russian Arctic river catchments such as the Ob' and
462 Yenisey (Wild *et al.*, 2019) (some is also present in the Yukon catchment). This type of degradation
463 produces a greater export in the form of POC than DOC (Wild *et al.*, 2019), as seen in the Kolyma
464 and Lena. This preferred release of POC (thus PON) from Yedoma permafrost could partially
465 explain why a stronger degradation signal was not observed downstream in the Kolyma River.
466 Other degradation mechanisms such as top-down active layer deepening occur widely across the
467 Ob' and Yenisey catchments and produce significantly more degradation sourced DOC than POC
468 (Wild *et al.*, 2019), and possibly more DON than PON. With this type of degradation mechanisms,
469 the depth of peat would likely play a more important role in interactions with different soil horizons
470 and the associated release of different dissolved species.

471
472 Large seasonality of DOC permafrost contribution exists in Arctic rivers (Wild *et al.*, 2019).
473 Permafrost derived DOC had a greater contribution to total DOC flux in all four rivers in late
474 autumn and winter compared to spring and summer when modern DOC sources dominate export.
475 A similar mechanism may also operate for DON where the sources in spring and summer are not
476 derived as strongly from permafrost but from surface soils that experience minimal nitrogen
477 processing. Therefore, permafrost signals and associated processes should be considered on spatial
478 (inter-catchment) and temporal scales.

Commented [AF21]: Added this to link the importance of
peat depth to active layer deepening mechanisms as outlined
in the introduction

480 **3.3 Seasonal nitrogen species trends in rivers**
 481 **3.3.1 Time series concentration and discharge trends**

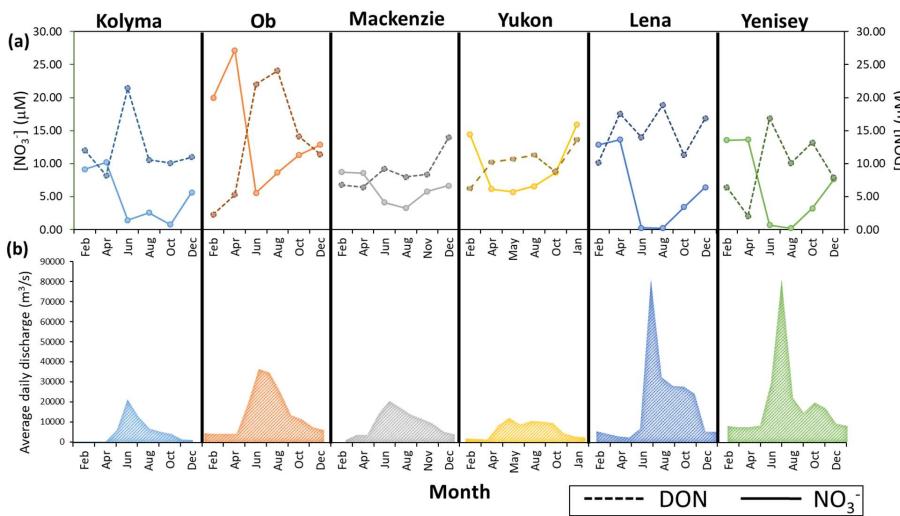


Figure 6 - Seasonal concentrations (a) for nitrate and DON in the six Arctic GRO rivers between 2003 and 2018. Discharge trends for each river are also shown in (b). Note, sample concentration values were taken six times throughout the year, every second month. The daily discharges for each month were averaged to produce the average daily discharge value for each month, 12 per year. Data obtained from the ArcticGRO online database.

482 Figure 6(b) shows that all six rivers follow a similar seasonal discharge trend typical of northern
 483 high-latitude rivers. Low flow is present in winter months, where groundwater is the primary source
 484 of water. During spring, snowmelt causes rapid increases in discharge (the spring freshet) peaking
 485 in late May to June. Peaks are greatest in the Lena and Yenisey. After the freshet, discharge
 486 decreases throughout summer, occurring more rapidly in the Lena and Yenisey, while in other
 487 rivers, peak discharge extends throughout summer, most apparent in the Yukon River.

488 All rivers in general show increases in DON concentrations [DON] in summer months during peak
 489 discharge and this concentration increase is highest in the Ob' followed by the Yenisey and Kolyma
 490 and lowest in the Lena, Mackenzie and Yukon where only small seasonal changes occur in [DON].
 491 Nitrate concentrations [NO_3^-] in most rivers show opposite seasonal trends to [DON] (Figure 6 (a))
 492 with the Ob' showing the greatest seasonal change of all rivers in both nitrate and DON. The Lena
 493 and Yenisey show nitrate concentrations decreasing to almost zero in the summer months during
 494 peak discharge.

495 In general, Figure 6 confirms that DON is the dominant form of nitrogen released from these soils
 496 and transported in these rivers, due to its high concentration during the high discharge periods of
 497 the spring freshet. This DON source is likely derived from surface runoff through organic rich top
 498 soil (Harms, 2013). Following the local scale Kolyma section, seasonal stable isotopes trends are
 499 used next to detect (1) permafrost degradation signals and (2) any in-stream processing of nitrogen.
 500

Commented [AF22]: Modified axis to provide easier comparison between panels and added 2003-2018 in figure caption

501 3.3.2 Time series nitrogen isotopic trends

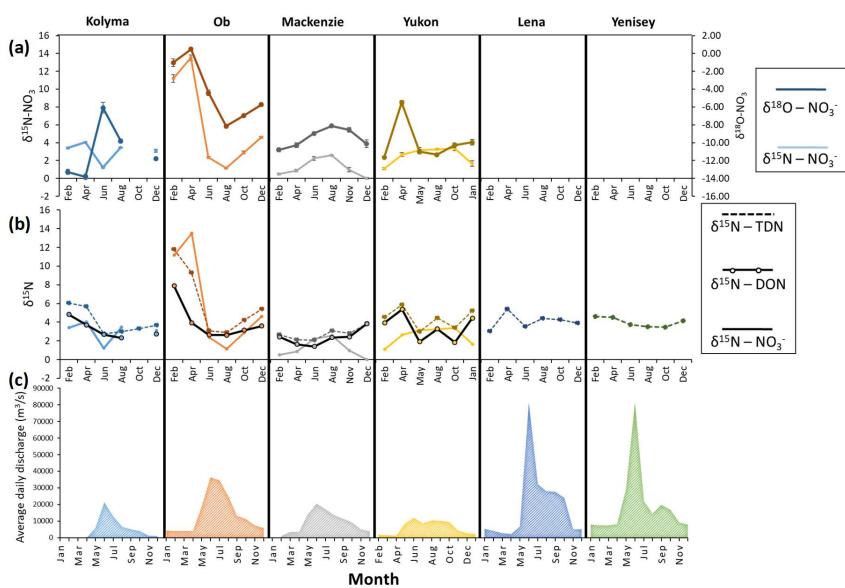


Figure 7 - Seasonal nitrogen (and oxygen) isotopic trends for all six Arctic GRO rivers. Nitrate isotopes as part of the dual isotope technique ($\delta^{15}\text{N}$ and $\delta^{18}\text{O}$) are shown on (a). Nitrogen isotopes of TDN, nitrate and DON, note the one scale for all three, are shown on (b). Seasonal discharges are also shown on (c). Only $\delta^{15}\text{N}$ values of TDN were plotted for the Lena and Yenisey since nitrate concentrations were very low for dual isotopic analysis of nitrate, hence $\delta^{15}\text{N-NO}_3^-$ and $\delta^{18}\text{O-NO}_3^-$ values were not obtained. However, since nitrate concentrations were very small in comparison to DON (see Figure 6) then it can be assumed that the nitrogen isotopic signature of DON is approximately equal to the signature of TDN ($\delta^{15}\text{N-DON} \approx \delta^{15}\text{N-TDN}$)

502 Figure 7 presents a time series isotopic analysis of the Arctic rivers. The sampling sites were located
 503 at the mouths of the rivers (Figure 1), therefore they integrate signals of various source of nitrogen
 504 and nitrogen cycling processes in the catchment. From Figure 6 and Figure 7, strong seasonal
 505 variations affect nearly all the trends of nitrogen species in each river, but the trends suggest that
 506 discharge was not the greatest influencer on the isotopic signatures. Summer values of $\delta^{15}\text{N}$ of
 507 nitrate, DON and TDN are around 2 to 4‰, similar to the Kolyma River main stem in summer,
 508 indicating a mixed nitrogen source dominated by surface nitrogen sources diluting signals from
 509 continuous permafrost and permafrost degradation signals (Figure 7). These results are consistent
 510 with previous studies of DOC in Arctic rivers (Wild *et al.*, 2019). Permafrost derived DOC has a
 511 greater contribution to total DOC flux in all four rivers in late autumn and winter compared to
 512 spring and summer when modern DOC sources dominate export. A similar mechanism may also
 513 operate for DON where the sources in spring and summer are not derived as strongly from
 514 permafrost but from surface soils that experience minimum nitrogen processing (Harms, 2013). |

Commented [AF23]: Removed dotted line on Kolyma plot in (a)

515 $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-DON}$ values of the Kolyma and Ob' in late winter and early spring are high
 516 before becoming lower in spring/summer and returning to high values at the end of the year (Figure
 517 7) (this is also seen in the Yukon to a lesser extent). It is notable that the Kolyma and Ob' have the
 518 highest and lowest continuous permafrost extent respectively among the large Arctic rivers. We
 519 evaluate the seasonal trend further in the Ob' River (with comparison to the Kolyma), which has
 520 the largest seasonal isotopic shift out of all the rivers (Figure 7).

Commented [AF24]: Moved the citation of Figure 1

Commented [AF25]: Added reference source

521 3.3.3 *Relating seasonal trends to nitrate sources, permafrost degradation and nitrogen cycling*
522 *mechanisms*

523 The Ob' has the greatest seasonal isotopic shifts with very heavy winter $\delta^{15}\text{N-NO}_3^-$ values of 12 to
524 14‰ occurring over winter and early spring but decreasing to 2‰ in summer and a change from 8
525 to 2.5‰ for $\delta^{15}\text{N-DON}$. The $\delta^{18}\text{O-NO}_3^-$ trend for the Ob' River follows a similar pattern to the $\delta^{15}\text{N-NO}_3^-$
526 (i.e. they are coupled). However, for the Kolyma, the two isotopes are decoupled and show
527 strong opposing trends, though this trend could be influenced by the anomalously high $\delta^{18}\text{O-NO}_3^-$
528 value in June and may not represent true conditions.

529 The peak $\delta^{15}\text{N-NO}_3^-$ values in the Ob' river are similar to the signal for denitrification in high-
530 latitude permafrost regions (Harms, 2013) and the isotopic and nitrate concentration peak in winter
531 could be further evidence of extensive denitrification sources. Despite low concentrations of DON
532 during the winter months, its isotopic signature was similar to the Kolyma degradation site, however
533 the higher values of $\delta^{15}\text{N-NO}_3^-$ suggests that different processes are occurring in each river and that
534 the signal cannot be compared to the possible permafrost degradation signal observed in the Kolyma
535 (section 3.2.3). The stronger denitrification signal may be more visible in the main stem of the Ob'
536 unlike in the Kolyma due to a much lower extent of continuous permafrost within the catchment
537 (permafrost present as discontinuous or sporadic under the large peatland of Western Siberian
538 Lowlands (Wild *et al.*, 2019)). The lack of permafrost in the Ob' catchment may also allow some
539 groundwater encroachment of the mineral horizon in some places within the catchment. Here DON
540 can be adsorbed and mineralised to nitrate (Harms, 2013). Denitrification of this remineralised
541 nitrate due to the waterlogging of the soil in these large wetlands would also lead to the high isotopic
542 signatures observed. It is important to note that these denitrification processes occur without
543 permafrost degradation influence in the Ob' whereas the denitrification signal observed in the
544 Kolyma Yedoma degradation site was likely due to the permafrost degradation. Denitrification
545 signals are much more influential in the Ob' than the Kolyma where the permafrost extent is very
546 low. The high nitrate concentrations show that a substantial amount of denitrified nitrate is added
547 to the rivers and the Ob' River is displaying a source-dominated signal, with instream processes
548 possibly less influential.

549 The coupling of $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-DON}$ throughout the year suggests the same source for both
550 nitrogen species. However, some DON may also be oxidised into nitrate in the main stem and allow
551 the heavy $\delta^{15}\text{N}$ signal to be transferred from the DON to the nitrate. This would also reduce the
552 DON concentrations as observed.

553 The observed variability of nitrate isotopes in the Ob' River can be approximated to changes
554 between two dominant sources as outlined in Figure 8. The heavier winter $\delta^{15}\text{N-NO}_3^-$ values in the
555 Ob' represent groundwater dominated sources and the high $\delta^{18}\text{O-NO}_3^-$ values are largely coupled
556 to the $\delta^{15}\text{N-NO}_3^-$ (Figure 7). This is further evidence for denitrification in the consistently wet
557 conditions of the Ob' catchment, preventing significant recycling of the denitrified nitrate and
558 resetting of the $\delta^{18}\text{O-NO}_3^-$ to $\delta^{18}\text{O-H}_2\text{O}$. (Frey and McClelland, 2009). Additionally, the lack of
559 permafrost allows more percolation of groundwater in winter and a greater input of a denitrified
560 signal through deeper lateral subsurface flow. The lower $\delta^{15}\text{N-NO}_3^-$ summer values were consistent
561 with minimally processed atmospheric nitrogen sources, with little denitrified nitrate present,
562 delivered through surface runoff during the spring freshet to the river. However, the lower $\delta^{18}\text{O-NO}_3^-$
563 values in the summer do not correspond to an influence of an isotopically high atmospheric
564 or snowmelt nitrate source. This could be due to the main stem summer signal being a mix of

Commented [AF26]: Added that the lateral subsurface flow will be deeper with a lack of permafrost.

566 different sources and recycling occurring (as described previously for the local scale Kolyma
567 catchment). The $\delta^{18}\text{O-NO}_3^-$ values are lower and closer to the $\delta^{18}\text{O-H}_2\text{O}$ values of the Ob' (14.85‰)
568 (Yi *et al.*, 2012), than seen in the Kolyma, suggesting some degree of nitrate recycling that can
569 cause $\delta^{18}\text{O-NO}_3^-$ values to be reset to water values. These values are likely mixed with surface
570 runoff signals from snowmelt (bringing higher $\delta^{18}\text{O-NO}_3^-$ signals) and near surface runoff through
571 topsoil, masking the smaller input of denitrification signals from groundwater.

572 A regression line between the two likely different sources in the Ob' (Figure 8) shows the dominant
573 source changing throughout the year and main-stem water showing mixing between them. Overall,
574 it is likely that the groundwater derived signal is present throughout the year as part of a mixed
575 signal but the seasonal variation of dominant sources influences its visibility in the main stem.
576 Surface spring/summer flows dominate and mask the groundwater signal during summer whereas
577 in winter the subsurface flow is dominant and allows the groundwater and associated denitrified
578 signal to be more clearly observed

579 The Kolyma seasonal trend is similar to the Ob' except the magnitude of isotopic and concentration
580 change was less (Figure 7). $\delta^{18}\text{O-NO}_3^-$ was decoupled from the $\delta^{15}\text{N-NO}_3^-$ in the Kolyma, unlike
581 the coupling in the Ob. The continuous permafrost coverage preventing catchment-wide
582 denitrification in the Kolyma along with the observed conversion of DON to nitrate and subsequent
583 recycling could explain the decoupling throughout the year. This decoupling also suggests that
584 nitrate uptake is low and the small contribution of nitrate due to the high continuous permafrost
585 extent is likely to drive nitrate limitation in this river, despite DON remineralisation (Figure 2).
586 This similar but suppressed trend suggests that the denitrification signal is less influential and was
587 diluted, similar to local-scale observations (section 3.2). The greater coverage of permafrost in the
588 Kolyma catchment compared to the Ob' may reduce the seasonal change in nitrogen species signals,
589 especially nitrate (as observed in Figure 2) by restricting flow-paths to minimal contact with mineral
590 horizons and reducing groundwater flow. This can also explain the observed mixing line and the
591 surface source dominance throughout the year shown in Figure 8.

592

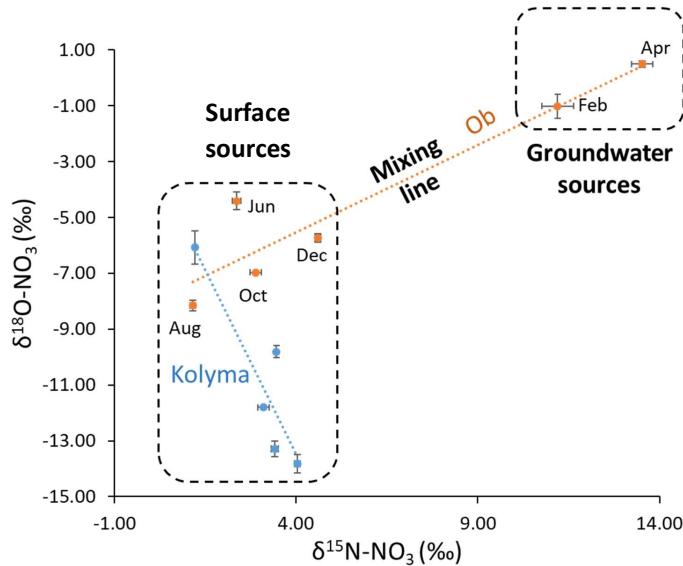


Figure 8 – Likely different sources of nitrate throughout the year in the Ob' and Kolyma catchments inferred by relationships between $\delta^{15}\text{N-NO}_3$ and $\delta^{18}\text{O-NO}_3$. A mixing line can be plotted as a regression line between the two sources. The location on the plot that each sample occurs can indicate the dominant nitrate sources at that time and from that, the processes occurring can be inferred.

593 The local scale permafrost degradation signals observed from the Yedoma permafrost degradation
 594 in the Kolyma may be visible in the seasonal trends due to similar main stem DON and nitrate
 595 signals in the early season, possibly assisted by the lack of other nitrate inputs and DON recycling
 596 to nitrate. However, it is not possible to observe any permafrost degradation signals in the Ob'
 597 catchment or to compare trends with previous local scale findings due to the dominance of the
 598 groundwater derived denitrification signal and different catchment conditions.

599 3.3.4 Explanations for times series trends in other Arctic rivers

600 The Mackenzie and Yukon show $\delta^{15}\text{N-NO}_3$ trends peaking in the summer months (Figure 7). This
 601 was an opposite trend to the nitrate concentration, and more closely follows the discharge trends.
 602 The Yukon had the most prolonged $\delta^{15}\text{N-NO}_3$ peak out of all the rivers. Little change in $\delta^{15}\text{N-DON}$
 603 occurred for the Mackenzie while for the Yukon it showed variability all year with no clear trends,
 604 $\delta^{18}\text{O-NO}_3$ was strongly coupled to $\delta^{15}\text{N-NO}_3$ for the Mackenzie but was uncoupled for the Yukon.

605 In the Mackenzie River, the source signal in the summer months is dominated by runoff, carrying
 606 a large DON signal. However, since DON isotopes and concentrations are decoupled from nitrate
 607 isotopes and concentrations, the factors influencing both nitrogen species are different. Nitrate is
 608 influenced mainly by instream processes (Harms, 2013) due to assimilation or uptake of nitrate by
 609 phytoplankton in summer. The smaller isotopic shift between seasons could also signify
 610 assimilation rather than denitrification (Struck, 2012). This process would be assisted by the large
 611 area of lakes in the Mackenzie catchment where water residence times are increased allowing
 612 extensive primary productivity (Janjua and Tallman, 2015).

Commented [AF27]: Clarified the wording in the figure caption to show that this is an interpretation for nitrate sources

613 The Yukon followed similar trends to the Mackenzie (for $\delta^{15}\text{N}$, $[\text{NO}_3^-]$, $[\text{DON}]$) suggesting uptake
614 in the summer months was also a dominant nitrogen cycling process. Similarly, there is extensive
615 lake cover in the Yukon catchment (Brabets *et al.*, 2000). However, $\delta^{18}\text{O-NO}_3^-$ and $\delta^{15}\text{N-NO}_3^-$ were
616 uncoupled and variable, potentially reflecting different sources of water throughout the year and
617 the extended discharge period providing water involved in nitrate processing with different $\delta^{18}\text{O-}$
618 H_2O values. These $\delta^{18}\text{O-H}_2\text{O}$ trends can be observed in the ArcticGRO database (Holmes *et al.*,
619 2021)

Commented [AF28]: Added reference source

620 It was difficult to determine any dominant processes within the Lena and Yenisey due to the lack
621 of nitrate isotopic data and the little seasonal change in $\delta^{15}\text{N-TDN}$ (DON). However, a unique
622 aspect of these rivers is the very high freshet discharge and the associated high DON concentrations
623 but very low nitrate concentrations. The fact that these large changes in runoff can occur without a
624 change in isotopic DON could suggest that recent topsoil derived organic matter was the dominant
625 source of nitrogen throughout the year, similar to observations for carbon (Wild *et al.*, 2019).

626 3.4 Implications of findings and possible future changes

627 Permafrost degradation will have different impacts on riverine nitrogen geochemistry in different
628 catchments across the Arctic. With future permafrost degradation, through both active layer
629 deepening and erosional degradation, the seasonal trends may change from the Kolyma style more
630 towards the Ob' style since the Ob' represents a catchment with very little permafrost present.
631 Greater shifts in concentrations and $\delta^{15}\text{N}$ isotopic signals between seasons would be expected with
632 high $\delta^{15}\text{N}$ signals in the winter and early spring through denitrification of waterlogged soil but a
633 rapid shift in $\delta^{15}\text{N}$ with runoff conditions. However, this would depend on other catchment
634 conditions as well as the style and rate of degradation.

Commented [AF29]: Changed to "on riverine nitrogen geochemistry"

635 As degradation released DON was observed to be converted to nitrate in the main stem of the
636 Kolyma and likely in other rivers, this would increase the amount of bioavailable nitrogen (nitrate
637 is more bioavailable for assimilation than DON) and possibly fuel increased productivity. As
638 observed in the study, this conversion would have the greatest impact in catchments with few other
639 nitrate inputs, e.g. from high continuous permafrost coverage, such as the Kolyma. However, if
640 active layer deepening induces the widespread reduction of continuous permafrost extent in favour
641 of discontinuous coverage, this may allow nitrogen input processes similar to those described for
642 the Ob' to dominate over this main stem mineralisation of nitrate for the long term.

643 This study demonstrates that nitrate concentrations may increase the most relative to other nitrogen
644 species and would carry with it a high isotopic signature from denitrification processes. This
645 increase of nitrate is supported by other studies such as Walvoord and Striegl (2007) but not by
646 Frey *et al.* (2007) who predict an increase in DON not nitrate. There is ongoing debate over the
647 dominant species likely to be observed.

648 Irrespective of N species released and the degradation mechanism, nitrogen fluxes are likely to
649 increase with permafrost degradation causing significant impact to the coastal zones. Any increases
650 in nitrogen loading to coastal Arctic areas will have large impacts on productivity since these zones
651 are heavily nitrogen limited (Thibodeau *et al.*, 2017). Currently, productivity peaks over a short
652 period in summer when light is not limiting. However, permafrost degradation and greater nitrogen
653 fluxes may increase the magnitude of these productivity peaks inducing possible algal blooms. Yet,
654 light limitation will still control productivity later in the year. Overall, the cycling of these nitrogen

655 species in coastal zones is essential to understand further to make robust predictions of future
656 change.

657 **4 Conclusions**

658 Overall, catchment permafrost coverage seems to control main stem nitrate concentrations but not
659 DON, with large extents of continuous permafrost leading to low concentrations of nitrate in Arctic
660 rivers. In local Kolyma degradation sites, Yedoma permafrost degradation was characterised by
661 high DON and nitrate concentrations, high $\delta^{15}\text{N}$ -DON and $\delta^{15}\text{N}$ - NO_3^- and very low $\delta^{18}\text{O}$ - NO_3^- .
662 These signatures indicate rapid recycling and exchange between nitrogen pools resulting in the
663 entire system becoming isotopically heavy for nitrogen. Upon release to the main river stem, this
664 signature is greatly diluted but evidence for recycling of degradation derived DON to nitrate,
665 transferring the heavy isotopic signature to nitrate, was observed. This DON recycling could be the
666 main source of nitrate in catchments with extensive permafrost coverage and few nitrate inputs.
667 However, these input signals from Yedoma degradation are unlikely to be observed strongly at the
668 river mouth unless degradation zones are more spatially extensive.

669 $\delta^{15}\text{N}$ of nitrate, TDN and DON during summer and spring freshets generally exhibit values around
670 2 to 4‰, DON dominates the nitrogen export within these rivers, in the form of fresh DON derived
671 from surface runoff through modern, organic rich topsoil. However, Arctic rivers all have different
672 nitrogen dynamics based on their catchment characteristics. The Ob' catchment, with its lowest
673 extent of permafrost coverage and extensive peatland area demonstrates a strong denitrification
674 signal, however this cannot be linked to the degradation induced denitrification signal observed in
675 the Kolyma. The Ob' isotopic signal is strongly seasonal and influenced by the changing soil flow
676 paths that arise throughout the year. The Kolyma had a similar seasonal trend but with reduced
677 magnitude and showed evidence of differing processes occurring compared to the Ob' but were
678 similar to local scale observations. A diluted denitrification signal, DON recycling to nitrate and
679 low nitrate uptake were all possibly assisted by the lack of other nitrate inputs and high permafrost
680 coverage. In other Arctic river catchments, different factors can mask any fresh permafrost
681 degradation signals. Lacustrine nitrogen assimilation and uptake are dominant in the Mackenzie
682 and seasonal changes in water sources are important for the Yukon catchment while large freshet
683 discharges in the Lena and Yenisey likely inundate the catchments with runoff-derived nitrogen.

684 It is possible that with future decreases in catchment permafrost coverage, seasonal nitrogen
685 dynamics in Arctic rivers could begin to resemble that of the Ob' catchment. In general, increased
686 fluxes of nitrogen are expected as a result of degradation which would have impacts on coastal
687 environments and ecosystems, as well as in rivers with nitrogen limitation. However, the extent of
688 this is unclear at present. Further studies are required to explore more local scale and coastal
689 nitrogen cycling and the impacts of permafrost degradation on riverine and coastal environments.

690 This study shows how nitrogen isotopes can be used to integrate catchment wide processes in Arctic
691 rivers as well as showcasing small scale nitrogen dynamics within permafrost degradation zones.
692 Utilising this technique across further sites in the Arctic will help to further our understanding of
693 current processes and future changes in Arctic nitrogen cycling.

694 **5 Data Availability**

695 Data will be made available on a public repository upon final publication.

696 **6 Author Contributions**

697 AF carried out laboratory work and wrote the manuscript. RSG designed of the study and helped
698 with the interpretation of the data. RET assisted with laboratory work. Both RSG and RET
699 contributed to the writing of the manuscript. JR and RGMS collected samples from the Kolyma and
700 provided further information on the sites in the lower Kolyma catchment. RMH manages the online
701 Arctic GRO dataset used for this project made available the ArcticGRO samples. CM led and
702 coordinated the CAO, ARISE project. All authors provided comments on the manuscript.

703 **7 Conflict of Interest Statement**

704 The authors declare that the research was conducted in the absence of any commercial or financial
705 relationships that could be construed as a potential conflict of interest.

706 **8 Acknowledgements**

707 We thank the ArcticGRO consortia for providing Pan-Arctic river samples and datasets. We also
708 extend thanks to the ARISE consortia and the NERC's Changing Arctic Ocean (CAO) programme,
709 particularly Louisa Norman and Antonia Doncila for logistic support. Thanks are also due to Colin
710 Chilcott for isotopic analysis at the University of Edinburgh.

711 **9 Funding**

712 This work resulted from the ARISE project (NE/P006310/1 awarded to RSG), part of the Changing
713 Arctic Ocean programme, jointly funded by the UKRI Natural Environment Research Council
714 (NERC) and the German Federal Ministry of Education and Research (BMBF).

715 **10 References**

716 Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A., Guggenberger, G.,
717 Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M., McClelland, J. W., Peterson, B. J.,
718 Walker, S. A., & Zhulidov, A. v. (2012). Dissolved organic matter sources in large Arctic rivers.
719 *Geochimica et Cosmochimica Acta*, 94, 217–237. doi: 10.1016/J.GCA.2012.07.015

720 Anisimov, O. and Reneva, S. (2006). Permafrost and changing climate: the Russian perspective.
721 *Ambio*, 35(4), pp. 169–75. doi: 10.1579/0044-7447(2006)35[169:pacctr]2.0.co;2

722 Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke, C., Schirrmeyer, L.,
723 Pfeiffer, E.-M., and Kutzback, L. (2017). Permafrost thaw and liberation of inorganic nitrogen in
724 Eastern Siberia. *Permafrost and Periglacial Processes*, 28, 605– 618. doi: 10.1002/ppp.1958

725 Berhe, A.A., Harte, J., Harden, J.W., Torn, M.S. (2007) The Significance of the Erosion-induced
726 Terrestrial Carbon Sink, *BioScience*. Narnia, 57(4), pp. 337–346. doi: 10.1641/B570408.

727 Botrel, M., Bristow, L.A., Altabet, M.A., Gregory-Eaves, I., Maranger, R. (2017) 'Assimilation and
728 nitrification in pelagic waters: insights using dual nitrate stable isotopes ($\delta^{15}\text{N}$, $\delta^{18}\text{O}$) in a shallow
729 lake', *Biogeochemistry*. Springer International Publishing, 135(3), pp. 221–237. doi:
730 10.1007/s10533-017-0369-y.

731 Brabets, T., Wang, B. and Meade, R. (2000) *Environmental and Hydrologic Overview of the Yukon
732 River Basin, Alaska and Canada Water-Resources Investigations Report 99-4204*. Anchorage.
733 Available at: <https://pubs.usgs.gov/wri/wri994204/pdf/wri994204.pdf>

734 Brown, J., Ferrians Jr., O. J., Heginbottom, J.A. and E.S. Melnikov (1997) *Circum-Arctic map of
735 permafrost and ground-ice conditions, Circum-Pacific Map*. doi: 10.3133/cp45.

736 Buchwald, C. and Casciotti, K. L. (2010) 'Oxygen isotopic fractionation and exchange during
737 bacterial nitrite oxidation', *Limnology and Oceanography*. John Wiley & Sons, Ltd, 55(3), pp.
738 1064–1074. doi: 10.4319/lo.2010.55.3.1064.

Commented [AF30]: Reviewed references to ensure they
are all on correct format

739 Casciotti, K. L.; Sigman, D. M.; Galanter Hastings, M.; Böhlke, J. K.; Kilkert, A. (2002).
740 Measurement of the Oxygen Isotopic Composition of Nitrate in Seawater and Freshwater Using the
741 Denitrifier Method. American Chemical Society. doi: 10.1021/AC020113W.

742 Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G., & Westermann, S.
743 (2017). An observation-based constraint on permafrost loss as a function of global warming. *Nature
744 Climate Change* 2017 7:5, 7(5), 340–344. doi: 10.1038/nclimate3262

745 Drake, T. W., Guillemette, F., Hemingway, J. D., Chanton, J. P., Podgorski, D. C., Zimov, N. S.,
746 & Spencer, R. G. M. (2018). The Ephemeral Signature of Permafrost Carbon in an Arctic Fluvial
747 Network. *Journal of Geophysical Research: Biogeosciences*, 123(5), 1475–1485. doi:
748 10.1029/2017JG004311

749 Feng D, Gleason CJ, Lin P, Yang X, Pan M, Ishitsuka Y. (2021). Recent changes to Arctic river
750 discharge. *Nat Commun* 12, 6917. doi: 10.1038/s41467-021-27228-1

751 Frey, K. E., McClelland, J. W., Holmes, R. M., & Smith, L. G. (2007). Impacts of climate warming
752 and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. *Journal
753 of Geophysical Research: Biogeosciences*, 112(G4), 4–58. doi: 10.1029/2006JG000369

754 Frey, K. E. and McClelland, J. W. (2009) ‘Impacts of permafrost degradation on arctic river
755 biogeochemistry’, *Hydrological Processes*. Wiley-Blackwell, 23(1), pp. 169–182. doi:
756 10.1002/hyp.7196.

757 Frey, K. E. and Smith, L. C. (2005) ‘Amplified carbon release from vast West Siberian peatlands
758 by 2100’, *Geophysical Research Letters*. John Wiley & Sons, Ltd, 32(9), p. L09401. doi:
759 10.1029/2004GL022025.

760 Granger, J., Sigman, D. M., Needoba, J. A., & Harrison, P. J. (2004). Coupled nitrogen and oxygen
761 isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. *Limnology
762 and Oceanography*, 49(5), 1763–1773. doi: 10.4319/LO.2004.49.5.1763

763 Harms, T. K. (2013) *Permafrost thaw and a changing nitrogen cycle*. Available at:
764 https://www.lter.uaf.edu/sympo/2013/FRI-1045_Harms.pdf

765 Hassol, S. (2004) *Impacts of a warming Arctic : Arctic Climate Impact Assessment*. Cambridge
766 University Press. Available at: <https://www.apmap.no/documents/doc/impacts-of-a-warming-arctic-2004/786>

768 Heikoop, J. M., Throckmorton, H. M., Newman, B. D., Perkins, G. B., Iversen, C. M., Roy
769 Chowdhury, T., Romanovsky, V., Graham, D. E., Norby, R. J., Wilson, C. J., & Wullschleger, S.
770 D. (2015). Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra
771 ecosystem. *Journal of Geophysical Research: Biogeosciences*, 120(6), 1000–1017. doi:
772 10.1002/2014JG002883

773 Holmes, R. M., Peterson, B. J., Gordeev, V. v., Zhulidov, A. v., Meybeck, M., Lammers, R. B., &
774 Vörösmarty, C. J. (2000). Flux of nutrients from Russian rivers to the Arctic Ocean: Can we
775 establish a baseline against which to judge future changes? *Water Resources Research*, 36(8),
776 2309–2320. doi: 10.1029/2000WR900099

777 Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I.,
778 Gordeev, V. v., Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G.,
779 Zhulidov, A. v., & Zimov, S. A. (2012). Seasonal and Annual Fluxes of Nutrients and Organic
780 Matter from Large Rivers to the Arctic Ocean and Surrounding Seas. *Estuaries and Coasts*, 35(2),
781 369–382. doi: 10.1007/S12237-011-9386-6/TABLES/3

782 Holmes, R.M., J.W. McClelland, S.E. Tank, R.G.M. Spencer, and A.I. Shiklomanov. (2021).
783 Arctic Great Rivers Observatory. Water Quality Dataset. <https://www.arcticgreatrivers.org/data>

784 Hubberten, H. W., Andreev, A., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Henriksen, M.,
785 Hjort, C., Houmark-Nielsen, M., Jakobsson, M., Kuzmina, S., Larsen, E., Lunkka, J. P., Lyså, A.,
786 Mangerud, J., Möller, P., Saarnisto, M., Schirrmeister, L., Sher, A. v., Siegert, C., ... Svendsen, J.
787 I. (2004). The periglacial climate and environment in northern Eurasia during the Last Glaciation.
788 *Quaternary Science Reviews*, 23(11–13), 1333–1357. doi: 10.1016/J.QUASCIREV.2003.12.012

789 Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M.,
790 Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., & Yu, Z. (2020).
791 Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. *Proceedings of the*
792 *National Academy of Sciences of the United States of America*, 117(34), 20438–20446. doi:
793 10.1073/PNAS.1916387117

794 Janjua, M. Y. and Tallman, R. F. (2015) *A mass-balanced Ecopath model of Great Slave Lake to*
795 *support an ecosystem approach to fisheries management: Preliminary results*, Canadian Technical
796 *Report of Fisheries and Aquatic Sciences*. Winnipeg. Available at:
797 <https://pdfs.semanticscholar.org/f34d/8748a5885b2a1b4a50edfbe01f97f4c5dbfe.pdf>

798 Jones, J. B., Petrone, K. C., Finlay, J. C., Hinzman, L. D., & Bolton, W. R. (2005). Nitrogen loss
799 from watersheds of interior Alaska underlain with discontinuous permafrost. *Geophysical Research*
800 *Letters*, 32(2), 1–4. doi: 10.1029/2004GL021734

801 Knapp, A. N., Sigman, D. M. and Lipschultz, F. (2005) ‘N isotopic composition of dissolved
802 organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site’, *Global*
803 *Biogeochemical Cycles*. Wiley-Blackwell, 19(1). doi: 10.1029/2004GB002320.

804 Loranty, M. M., Berner, L. T., Taber, E. D., Kropp, H., Natali, S. M., Alexander, H. D., Davydov,
805 S. P., & Zimov, N. S. (2018). Understory vegetation mediates permafrost active layer dynamics
806 and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia. *PLOS ONE*, 13(3),
807 e0194014. doi: 10.1371/JOURNAL.PONE.0194014

808 McLean, R., Oswood, M. W., Irons III, J. G., & McDowell, W. H. (1999). The effect of permafrost
809 on stream biogeochemistry: A case study of two streams in the Alaskan (U.S.A.) taiga.
810 *Biogeochemistry* 1999 47:3, 237–265. doi: 10.1023/A:1006142604714

811 Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S., Bulygina, E., Zimov, S.,
812 & Holmes, R. M. (2012). Controls on the composition and lability of dissolved organic matter in
813 Siberia’s Kolyma River basin. *Journal of Geophysical Research: Biogeosciences*, 117(G1), 1028.
814 doi: 10.1029/2011JG001798

815 Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieu, A., & Tardieu, P. (1981).
816 Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration
817 for the denitrification and nitrification processes. *Plant and Soil* 1981 62:3, 62(3), 413–430. doi:
818 10.1007/BF02374138

819 McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M., & Wood, E. F. (2006). A pan-arctic
820 evaluation of changes in river discharge during the latter half of the 20th century. *Geophysical*
821 *Research Letters*, 33(6). doi: 10.1029/2006GL025753

822 McCrackin, M. L., Harrison, J. A. and Compton, J. E. (2014) ‘Factors influencing export of
823 dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially explicit, global model’,
824 *Global Biogeochemical Cycles*. Wiley-Blackwell, 28(3), pp. 269–285. doi:
825 10.1002/2013GB004723.

826 McIlvin, M. R. and Casciotti, K. L. (2011) 'Technical Updates to the Bacterial Method for Nitrate
827 Isotopic Analyses', *Analytical Chemistry*, 83(5), pp. 1850–1856. doi: 10.1021/ac1028984.

828 Nelson, F. E., Shiklomanov, N. I., Mueller, G. R., Hinkel, K. M., Walker, D. A., & Bockheim, J.
829 G. (1997). Estimating active-layer thickness over a large region: Kuparuk river basin, Alaska,
830 U.S.A. *Arctic and Alpine Research*, 29(4), 367–378. doi: 10.2307/1551985

831 NOAA (2014) *Next Steps in Arctic Governance | Council of Councils*. Available at:
832 <https://councilofcouncils.cfr.org/global-memos/next-steps-arctic-governance>

833 NSIDC (2018) *Climate and Frozen Ground | National Snow and Ice Data Center*. Available at:
834 <https://nsidc.org/cryosphere/frozenground/climate.html>

835 O'Donnell, J. A., Aiken, G. R., Swanson, D. K., Panda, S., Butler, K. D., & Baltensperger, A. P.
836 (2016). Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent
837 material to riverine carbon. *Global Biogeochemical Cycles*, 30(12), 1811–1826. doi:
838 10.1002/2016GB005482

839 Peterson, B. J., Holmes, R. M., McClelland, J. W., Vörösmarty, C. J., Lammers, R. B.,
840 Shiklomanov, A. I., Shiklomanov, I. A., & Rahmstorf, S. (2002). Increasing river discharge to the
841 Arctic Ocean. *Science*, 298(5601), 2171–2173. doi: 10.1126/SCIENCE.1077445

842 Repo, M. E., Susiluoto, S., Lind, S. E., Jokinen, S., Elsakov, V., Biasi, C., Virtanen, T., &
843 Martikainen, P. J. (2009). Large N₂O emissions from cryoturbated peat soil in tundra. *Nature
844 Geoscience* 2009 2:3, 2(3), 189–192. doi: 10.1038/ngeo434

845 Schirrmeister, L., Kunitsky, V., Grosse, G., Wetterich, S., Meyer, H., Schwamborn, G., Babiy, O.,
846 Derevyagin, A., & Siegert, C. (2011). Sedimentary characteristics and origin of the Late Pleistocene
847 Ice Complex on north-east Siberian Arctic coastal lowlands and islands – A review. *Quaternary
848 International*, 241(1–2), 3–25. doi: 10.1016/J.QUAINT.2010.04.004

849 Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. v.,
850 Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A.,
851 Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., & Zimov, S. A.
852 (2008). Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon
853 Cycle. *BioScience*, 58(8), 701–714. doi: 10.1641/B580807

854 Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009).
855 The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. *Nature
856* 2009 459:7246, 459(7246), 556–559. doi: 10.1038/nature08031

857 Shiklomanov, A. I., T. I. Yakovleva, R. B. Lammers, I. Ph. Karasev, C. J. Vörösmarty, and E.
858 Linder (2006). Cold region river discharge uncertainty-estimates from large Russian rivers. *J.
859 Hydrol.*, 326(1–4), 231–256, doi:10.1016/j.jhydrol.2005.10.037.

860 Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Böhlke, J. K. (2001).
861 A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater.
862 *Analytical Chemistry*, 73(17), 4145–4153. doi: 10.1021/AC010088E

863 Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. M., Ho, R., Cane, G., & van Geen, A.
864 (2005). Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North
865 Pacific margin. *Global Biogeochemical Cycles*, 19(4). doi: 10.1029/2005GB002458

866 Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D. M., Knapp, A. N.,
867 Lehmann, M. F., & Pantoja, S. (2009). The dual isotopes of deep nitrate as a constraint on the cycle

868 and budget of oceanic fixed nitrogen. *Deep Sea Research Part I: Oceanographic Research Papers*,
869 56(9), 1419–1439. doi: 10.1016/J.DSR.2009.04.007

870 Sigman, D. M. and Casciotti, K. L. (2001) ‘Nitrogen Isotopes In The Ocean’. doi:
871 10.1006/rwos.2001.0172.

872 Sipler, R. E. and Bronk, D. A. (2015) ‘Dynamics of Dissolved Organic Nitrogen’, *Biogeochemistry of Marine Dissolved Organic Matter*. Academic Press, pp. 127–232. doi: 10.1016/B978-0-12-405940-5.00004-2.

873 Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C., Holmes, R. M., Zimov,
874 N., & Stubbins, A. (2015). Detecting the signature of permafrost thaw in Arctic rivers. *Geophysical
875 Research Letters*, 42(8), 2830–2835. doi: 10.1002/2015GL063498

876 Streletschi, D., Anisimov, O. and Vasiliev, A (2015), ‘Permafrost Degradation’. *Snow and Ice-
877 Related Hazards, Risks, and Disasters* (2015), 10, pp 303–344

878 Struck, U. (2012) ‘On The Use of Stable Nitrogen Isotopes in Present and Past Anoxic
879 Environments’, in, pp. 497–513. doi: 10.1007/978-94-007-1896-8_26.

880 Swart, P., Evans, S. and Capo, T. (2008) *The Origin of Nitrogen Isotope Values in Algae*. Miami.
881 Available at: [https://www.researchgate.net/publication/241642051_The-Origin_of_Nitrogen_Isotope_Values_i
882 n_Algae](https://www.researchgate.net/publication/241642051_The-Origin_of_Nitrogen_Isotope_Values_in_Algae)

883 Tank, S. E., Manizza, M., Holmes, R. M., McClelland, J. W., & Peterson, B. J. (2012). The
884 Processing and Impact of Dissolved Riverine Nitrogen in the Arctic Ocean. *Estuaries and Coasts*,
885 35(2), 401–415. doi: 10.1007/S12237-011-9417-3

886 Thibodeau, B., Miyajima, T., Tayasu, I., Wyatt, A. S. J., Watanabe, A., Morimoto, N., Yoshimizu,
887 C., & Nagata, T. (2013). Heterogeneous dissolved organic nitrogen supply over a coral reef: First
888 evidence from nitrogen stable isotope ratios. *Coral Reefs*, 32(4), 1103–1110. doi: 10.1007/S00338-
889 013-1070-9

890 Thibodeau, B., Bauch, D. and Voss, M. (2017) ‘Nitrogen dynamic in Eurasian coastal Arctic
891 ecosystem: Insight from nitrogen isotope’, *Global Biogeochemical Cycles*, 31(5), pp. 836–849. doi:
892 10.1002/2016GB005593.

893 Tye, A. M. and Heaton, T. H. E. (2007) ‘Chemical and isotopic characteristics of weathering and
894 nitrogen release in non-glacial drainage waters on Arctic tundra’, *Geochimica et Cosmochimica
895 Acta*, 71(17), pp. 4188–4205. doi: 10.1016/j.gca.2007.06.040.

896 UNFCCC (2015) *Adoption of the Paris Agreement*. Available at:
897 <https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf>

898 Vasil’chuk, Y. K., Vasil’chuk, A. C., Rank, D., Kutschera, W., & Kim, J. C. (2001). Radiocarbon
899 Dating of $\delta^{18}\text{O}$ - δD Plots in Late Pleistocene Ice-Wedges of the Duvanny Yar (Lower Kolyma
900 River, Northern Yakutia). *Radiocarbon*, 43(2B), 541–553. doi: 10.1017/S003382200041199

901 Van Everdingen, R.O (1998) Multi-language glossary of permafrost and related ground-ice terms :
902 in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian,
903 Spanish, and Swedish, *Calgary : Arctic Institute of North America*, 1, pp. 78

904 Voigt, C., Marushchak, M. E., Lamprecht, R. E., Jackowicz-Korczyński, M., Lindgren, A.,
905 Masteponov, M., Granlund, L., Christensen, T. R., Tahvanainen, T., Martikainen, P. J., & Biasi, C.
906 (2017). Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. *Proceedings*

910 of the National Academy of Sciences of the United States of America, 114(24), 6238–6243. doi:
911 10.1073/PNAS.1702902114

912 Vonk, J. E., Sanchez-Garcia, L., van Dongen, B. E., Alling, V., Kosmach, D., Charkin, A.,
913 Semiletov, I. P., Dudarev, O. v., Shakhova, N., Roos, P., Eglinton, T. I., Andersson, A., &
914 Gustafsson, A. (2012). Activation of old carbon by erosion of coastal and subsea permafrost in
915 Arctic Siberia. *Nature* 2012 489:7414, 489(7414), 137–140. doi: 10.1038/nature11392

916 Vonk, J. E., Mann, P. J., Dowdy, K. L., Davydova, A., Davydov, S. P., Zimov, N., Spencer, R. G.
917 M., Bulygina, E. B., Eglinton, T. I., & Holmes, R. M. (2013). Dissolved organic carbon loss from
918 Yedoma permafrost amplified by ice wedge thaw. *Environmental Research Letters*, 8(3), 035023.
919 doi: 10.1088/1748-9326/8/3/035023

920 Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M., Schade, J., Sobczak, W.
921 v., Zimov, N., Zimov, S., Bulygina, E., Eglinton, T. I., & Holmes, R. M. (2013). High biolability
922 of ancient permafrost carbon upon thaw. *Geophysical Research Letters*, 40(11), 2689–2693. doi:
923 10.1002/GRL.50348

924 Walvoord, M. A. and Striegl, R. G. (2007) ‘Increased groundwater to stream discharge from
925 permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and
926 nitrogen’, *Geophysical Research Letters*. John Wiley & Sons, Ltd, 34(12), p. L12402. doi:
927 10.1029/2007GL030216.

928 Wankel, S. D., Kendall, C., Pennington, J. T., Chavez, F. P., Paytan, A., Wankel, C. ;, Kendall, C.,
929 Pennington, J. T., Chavez, F. P., & Paytan, A. (2007). Nitrification in the euphotic zone as
930 evidenced by nitrate dual isotopic composition: Observations from Monterey Bay, California.
931 *Global Biogeochemical Cycles*, 21(2). doi: 10.1029/2006GB002723

932 Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., & Sigman, D. M. (2016). Updates to
933 instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. *Rapid*
934 *Communications in Mass Spectrometry*, 30(12), 1365–1383. doi: 10.1002/RCM.7570

935 Wild, B., Andersson, A., Bröder, L., Vonk, J., Hugelius, G., McClelland, J. W., Song, W.,
936 Raymond, P. A., & Gustafsson, Ö. (2019). Rivers across the Siberian Arctic unearth the patterns of
937 carbon release from thawing permafrost. *Proceedings of the National Academy of Sciences of the*
938 *United States of America*, 116(21), 10280–10285. doi: 10.1073/PNAS.1811797116

939 Yi, Y., Gibson, J. J., Cooper, L. W., Hélie, J. F., Birks, S. J., McClelland, J. W., Holmes, R. M., &
940 Peterson, B. J. (2012). Isotopic signals (^{18}O , $^{2\text{H}}$, $^{3\text{H}}$) of six major rivers draining the pan-Arctic
941 watershed. *Global Biogeochemical Cycles*, 26(1). doi: 10.1029/2011GB004159

942