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Abstract. Since 2004, collapse sinkholes occur on the sports field of Münsterdorf, a village north of Hamburg in Germany. The

sinkholes, around 2-5 m in diameter and 3-5 m deep, develop in peri-glacial sand, which in around 20 m depth is underlain by

cretaceous chalk. The chalk has been pushed up close to the surface by a salt diapir. The sinkhole formation initiated suddenly

and occurs with a frequency of one every two years.

We use a variety of geophysical results (e.g. gravity, electrical resistivity imaging, ground-penetrating radar) from previous5

field-work campaigns together with a new data set from direct push-based methods to infer mechanical and hydrological

properties of the material beneath the sports field (peri-glacial sand, glacial marl, cretaceous chalk).

Based on the derived material properties, we develop a mechanical model for the sinkhole collapse, starting from simple

analytical considerations and then moving towards a three-dimensional distinct-element model explaining the sudden onset of

collapse sinkholes for the sports field.10

The mechanical model supports our hypothesis that the sudden onset of sinkholes is triggered by changes in groundwater

level.
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1 Introduction

Collapse sinkholes are cylindrical to elliptical surface structures with diameters ranging from one to several hundred meters, and

similar depth extensions (e.g. Williams, 2004; Waltham et al., 2005). Collapse sinkholes form suddenly and pose a substantial15

risk to infrastructure because of their sudden inception and almost no warning signs before (e.g. Parise and Gunn, 2007;

De Waele et al., 2011; Kaufmann, 2014; Kaufmann and Romanov, 2016). Often, collapse sinkholes form in karst terrains.

A karst terrain is defined as an area comprising a soluble rock, such as limestone, dolomite, anhydrite, gypsum, or salt.

Common to all this soluble rock types is the ability of water flowing through rock fractures and bedding partings to dissolve

material from the rock wallsmass. While for the first two types of soluble rocks mentioned, limestone and dolomite, dissolution20

is substantial only, when the water is acidic, e.g. by dissolving carbon dioxide from air and/or soil to form carbonic acid, for

the latter rock types, anhydrite, gypsum and salt, dissolution occurs in pure water.

The dissolution of soluble rock enhances the initially low primary permeability of the rocks, which is controlled by fractures

in the sub-millimetre range. With time, the developing secondary permeability becomes orders of magnitude larger. The reason

is the enlargement of fissures and bedding partings in the subsurface, in parts to the meter scale, to form subsurface voids25

and caves. This process occurs naturally over time scales of 10,000-100,000 years (limestone, dolomite), 1,000-10,000 years

(anhydrite and gypsum), and even faster in salt.

Once the subsurface voids reach a critical size, they can become mechanically unstable and start to collapse. If the void is

deep below the surface, the collapse results in roof and wall breakdown, and breakdown can enlarge the void space by forming

a mechanically stable shape. If the voids develop closer to the surface, breakdown might slowly migrate towards the surface,30

until only a thin ledge of rock remains. It is the final collapse of this thin ledge, which causes the sudden appearance of the

collapse sinkhole (e.g. Parise and Lollino, 2011; Lollino et al., 2013).

Depending on the overburden of the soluble rock, collapse sinkholes are classified into purebedrock-collapse sinkholes,

caprock-collapse sinkholes and cover-collapse sinkholes, and suffosion sinkholes (see Waltham and Fookes, 2003; Waltham

et al., 2005; Gutiérrez et al., 2008a, b, 2014; Parise, 2019, 2022, and references therein). REFERENCE ADDED All of the three35

types of sinkholes listed above describe collapse as process to form the sinkholes, but the surface layer affected by the collapse

is different: soluble bedrock in the first case, unconsolidated deposits in the second case, and insoluble rock in the third case.

We discuss a group of collapse sinkholes formed on the sports field in the village of Münsterdorf in northern Germany. As

the material above the soluble rock comprises both unconsolidated peri-glacial sand and more consolidated glacial marl, these

sinkholes fall somewhere between the cover- and caprock-collapse sinkhole categories. The sinkholes started to appear in 200440

with a rate of one per year, being steep-walled, with a diameter of 2-3 m and 2-5 m deep. We explore the mechanical stability

(or instability) of the locality and try to answer the following questions:

(i) Why do the collapse sinkhole formation starts suddenly in 2004?

(ii) What mechanical conditions are needed to initiate sinkhole collapse?

(iii) Where is the location of the initial subsurface void responsible for the sinkhole formation?45
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We have organised the paper as follows: In section 2, we introduce the locality, its geological setup, and we describe the

sinkhole cluster. In section 3, we briefly summarise the results of previous geophysical campaigns, and we derive a lithological

model for the subsurface structure. We then discuss locations of the initial voids responsible for the sinkhole collapse in terms

of depth and size, and we investigate the chance to spot these voids prior to sinkhole formation with geophysical methods,

depending on their depth. In section 4, we describe several direct push-based methods performed on and around the sports50

field in Münsterdorf. We then discuss hydrological and mechanical properties derived from these direct push-based methods.

In section 5, we first develop a simple mechanical model for sinkhole collapse, and then we apply a discrete-element model

to simulate the collapse sinkholes occurring on the sports field. We discuss the mechanical and hydrological properties likely

to trigger the collapse sinkholes. In section 6, we come back to our hypothesis of the void origin and present geochemical

measurements favouring the deep void origin in the chalk layer. In section 7, we refine our previous hypothesis on the temporal55

evolution of the collapse sinkholes on the sports field in Münsterdorf. We finally summarise our findings in section 8.
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2 Site

The village of Münsterdorf is located around 50 km north of Hamburg in the northern part of Germany (Fig. 1), just south of

the river Stör, which runs in a westerly direction close to Münsterdorf, then turns south to flow into the river Elbe. The river

Stör is the natural local base level for the region, and is influenced by the tides of the North Sea.60

2.1 Geological setup

As most of the landscape in Northern Germany, the surface morphology is dominated by the Pleistocene ice-age cycles. The

repeated advance and retreat of the Fennoscandian Ice Sheet carried glacial and peri-glacial sediments, which form the main

features in the landscape: Münsterdorf sits on a geest ridge, a sandy deposits from deposition below the ice, about 20-30 m

above sea level in the region. Beyond this geest island, the landscape is lower, between 5-15 m above sea level, and dominated65

by swampy marsh land. The geest ridge has been deposited during the Elsterian (455-320 ka BP) and Saalian (300-125 ka BP)

glacial cycles, while during the last glacial cycle, the Weichselian, the ice did not reach the area around Münsterdorf.

The geest ridge consists of unconsolidated and consolidated peri-glacial sand, interbedded with glacial till, in parts composed

of clay lenses.

The entire region is tectonically controlled by the Krempe-Lägerdorf salt ridge (e.g. Grube, 1955; Köstler and Ehrmann,70

1986), a salt diapir, with salt sequences from the Permian Zechstein period. These Zechstein rocks can usually be found in a

depth range between 3-5 km underneath northern Germany, but as the salt layers in the Zechstein evaporites can flow plastically

under stress, numerous salt structures have been pushed up by the large stress imposed by the overburden. The vertical uplift

of these salt domes has pushed up the overburden by several kilometres, often reaching the surface. In the Münsterdorf region,

the Krempe-Lägerdorf salt ridge has pushed up cretaceousCretaceous chalk from its original depth of 0.5-1 km to a position75

close to the surface (e.g. Grube et al., 2017; Grube and Rickert, 2019).

Just 1.5 km south-west of Münsterdorf, the chalk is just below the surface (6 m below the ground), and several large open-pit

mines exploit the material. The deepest open-pit mine reaches down to 90 m below sea level, which requires a substantial effort

to dewater the mines (e.g. Iwanoff, 1998). The pumped groundwater from the open-pit mines is routed via an artificial channel

in the east towards the river Stör. In the mines, numerous karst features can be observed, such as dissolutionally-enlarged80

fissures and bedding planes and small collapse sinkholes.

On the southern rim of the village of Münsterdorf, the local sports field is located. The chalk can be found here in around

20 m depth below the sports field (see Fig. 1), confirmed by several boreholes (see Kirsch and Werner, 2008; Kirsch et al.,

2011; Göthling et al., 2010, and references therein). Above the cretaceousCretaceous chalk, we find mainly peri-glacial sand,

inter-bedded with glacial till.85

From the geological and morphological setup, we identify three key aspects responsible for the presence of karst structures

in the Münsterdorf region:

– Salt diapirism responsible for local tectonics and uplift of Permian and Cretaceous sequences,

– thus cretaceousCretaceous chalk in around 20 m below sports field,
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– and landscape morphology dominated by ice-age cycles, with deposition of glacial till as flow barrier.90

The glacial till with its lower hydraulic permeability confines groundwater flow, whilst the salt diapirism caused chalk layers

to the uplifteduplift close to the surface (see also Kaufmann et al., 2018).

2.2 Sinkhole cluster

Since 2004, collapse sinkholes occur regularly on the sports field (Fig. 2). These collapse sinkholes are about 2-3 m in diameter

and about 3-5 m deep, exposing the peri-glacial sand. The sinkholes occur suddenly, often underneath the grass of the sports95

field, and are initially steep-walled, with near-vertical sides. Most of the sinkholes are filled with artificial material immediately,

but, if left open (as in Fig. 3), develop towards a mechanically more stable funnel shape. No groundwater can be found in

the sinkholes, as the groundwater table nowadays is lower, in about 5-7 meter depth, when compared to previous decades

(1-3 meter depth). Fluctuations due to rainfall are in the sub-meter range. The sinkholes are aligned along a narrow band about

50-70 m wide and 300 m long, striking in west-easterly direction.100

The sudden onset of the sinkhole occurrence and the limitation to the narrow band suggests a relation to a lithological feature

in the subsurface, and a possible inception by a change in hydraulic conditions (e.g. Kaufmann et al., 2018). Thus, we regard

these two aspects as important constraints for the explanation of the collapse sinkholes along the sports field in Münsterdorf:

(i) Sudden onset in around 2004, (ii) Restriction to narrow west-east band.
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3 Geophysical site exploration105

Since the sudden onset of sinkholes on and around the sports field in 2004, several geophysical investigations have been carried

out (e.g. Kirsch, 2009; Gebregziabher-Gared, 2010; Harland, 2010; Kirsch et al., 2011; Schulze-Dieckhoff, 2015; Timm, 2015;

Tippelt et al., 2017; Mai et al., 2017; Kaufmann et al., 2018), with the aim to (i) find the cause of the sinkholes, (ii) characterise

the subsurface beneath the sports field.

3.1 Previous work110

From the numerous geophysical methods used (gravity, geoelectrics, electro-magnetics, georadar, seismics, borehole-based

spectrally-induced polarisation, see table 1 for a summary), especially geoelectrics and georadar have been successful to de-

lineate the glacial till from the peri-glacial sand. In almost all profiles (taken in north-south direction), the high-resistivity

peri-glacial sand is thin (1-2 m) in the north and underlain by more conductive glacial till, while the peri-glacial sand becomes

thicker (5-8 m) towards the south, whileand the glacial till seems to be thinner and more isolated in the south. These results115

can be explained by the geest island, on which Münsterdorf rests, which peters out towards the south (Fig. 4). Cored boreholes

confirm this setup locally (e.g. Kaufmann et al., 2018).

The chalk layer in about 20 m depth has not been identified in the geoelectric and georadar measurements, because electrical

conductivities between the chalk and wet till are too similar for the former method, and because of depth restrictions for the

latter method. However, in seismic p-wave profiles, the chalk layer can be seen.120

From the geophysical and borehole measurements, we have derived a simplified lithological setup underneath the sports

field:

– Three layers, peri-glacial sand, glacial till, soluble chalk.

– Peri-glacial sand varies from 2 to 8 m thickness, becoming thicker in the south.

– glacial till massive in the north (several meter thick), and peters out towards the south.125

– Chalk in an almost constant depth of 20 m below surface underneath the sports field.

We will discuss this simplified setup in more detail later, with more sub-divisions of glacial sand and till, based on our results

of the direct push-based methods.

We argue that the soluble chalk in shallow depth is accessible to ground water and thus has the potential to be dissolved,

resulting in karstified structures. However, as stated below in our first hypothesis, there is also the possibility that voids are130

present in the sand layers.

3.2 Hypothesis

To start our discussion on the origin of the subsurface voids, we propose two different competing scenarios for the development

of the collapse sinkholes:
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1. Non-karstified: The initial void causing the sinkhole collapse has developed above the lower till layer, in about 6-8 m135

depth in the peri-glacial sand.

As we know the sinkhole sizes (w = 2−3 m diameter, d= 2−5 m depth), the initial void should have a volume around

V = πw
2
2d ∈ [6,35] m3, a substantial initial void, which in this depth should possibly be detectable by geophysical

methods. We will try to estimate the effect on gravity and ERT surveys below.

We note that in this scenario the initial void would be located in insoluble unconsolidated rocks, thus the origin of the140

void cannot be dissolution of material, only either removal of material by erosion of melting of a block of ice. We

then have to ask us, why such a void is only present along the narrow band on the sports ground, and not much more

widespread, as expected in a landscape dominated by glacial features.

2. Karstified: The initial void causing the sinkholes developed in the chalk in around 20 m depth by chemical dissolution

of the rock. The initial void volume must be similar as above.145

In Kaufmann et al. (2018) we have argued that initial voids can have developed in the top part of the chalk, because

surface water undersaturated with respect to calcium is diverted into deeper zones. The reason for surface water to

reach the chalk layer is the lower hydraulic conductivity of the glacial till, which is more prominent underneath the

northern part of the sports field. This massive glacial till in the northern section of the sports field acts as a flow barrier,

forcing surface water to greater depths. Here, the aggressive water with calcium concentrations below the calcium-150

equilibrium concentration creates (on time scales of 10,000-100,000 years) dissolutionally-enlarged voids, having meter-

size dimensions. The voids are mechanically meta-stable, because the water in the voids with its buoyancy counteracts

gravity (which we show later by modelling).

In this case we speculate that the over-consolidated lower peri-glacial sand layer, which is directly above the initial void,

has been loosened and then slowly drops into the karst void, but the layers above the peri-glacial sand were kept in place155

by the finite strength of one of these layers. Thus the initial void started migrating upwards, into the saturated zone. A

drop of the groundwater table through mining (as discussed in Kaufmann et al., 2018) then removed the buoyant support

for the overburden, and the upper layers finally collapse.

3.3 Geophysical forward modelling

In our summary on the geophysical work done over the years, we mentioned the identification of the lithological setup of160

the region around the sports field. However, geophysical exploration was less successful in identifying the subsurface voids

causing the collapse sinkholes. Only old sinkholes show a faint signal in georadar and (in parts) in geoelectrical measurements.

We therefore present results from forward modelling of gravity and geoelectrical signals induced by subsurface voids in a

simplified setup (Figs. 5 and 6): A top layer of dry peri-glacial sand (0-10 m), followed by a wet layer of peri-glacial sand

(10-20 m), and below the soluble chalk (>20 m). We do not include a glacial till layer, as (i) the model depicts the situation165

close to the transition zone from thicker glacial till to thin, more isolated glacial till, (ii) the material properties of the glacial

till, especially electrical resistivity, are not too different from the wet chalk.
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Depending on the hypothesis, voids are either (i) in the peri-glacial sand (air-filled, see Fig. 5), or (ii) in the chalk (water-

filled, see Fig. 6). Material properties are listed in table 2.

The gravity forward model is based on box models for the lithological layers, and spheres for the voids (e.g. Blakely et al.,170

2010). All density values are referenced against the chalk density, thus the calculated Bouguer gravity values will be negative,

as peri-glacial sand and voids have lower densities, when compared to the chalk.

For the electrical resistivity model, we first create a 2D forward model with res2Dmod (e.g. Loke, 2016) to calculate apparent

resistivities for the given setup. Then, these apparent resistivities are perturbed by random noise (2%) and then loaded into

res2Dinv (e.g. Loke and Barker, 1995, 1996) to find the resulting resistivity model from inverse modelling.175

Following our two hypotheses for the void origin, the non-karstified and the karstified case, we define two forward models

with voids in different depths: (i) Shallow origin (6-8 m) in insoluble dry sand, air-filled voids, (ii) deeper origin (20-22 m) in

soluble chalk, water-filled voids. We locate three voids in these two different depth ranges, with increasing radius from left to

right (1.1, 1.7, and 2.0 m) to account for the uncertainty in initial void volume introduced before.

– Non-karstified: In the non-karstified setup (Fig. 5), the voids are located in the dry peri-glacial sand. The Bouguer180

gravity is negative, because the density of the peri-glacial sand (1800-19000 kg/m3) is lower than the density of the

chalk (2600 kg/m3), which we took as reference density. The air-filled voids are modelled with a density of 0 kg/m3. All

three initial voids are visible in the Bouguer signal, but the amplitude (less than 1 mGal) would be hard to detect within

the accuracy of a typical relative gravimeter.

In the ERT cross section, we used electrical resistivities of 1000 Ωm for the dry peri-glacial sand, and 800 Ωm for the185

air-filled voids. Below, both the wet peri-glacial sand and the chalk are more conductive, with values around 200 Ωm.

The resulting resistivity model can distinguish between dry sand and wet sand/chalk, but does not reveal the void spaces,

as theretheir resistivity is too close to the one of the dry sand.

– Karstified: In the karstified setup (Fig. 6), we moved the voids down to the top of the chalk, with a water-filled void

density of 1000 kg/m3 and a void resistivity of 0.5 Ωm, resembling water with dissolved ions. The Bouguer gravity190

signal now is rather uniform, reflecting the mass deficit of the peri-glacial sand, but no clear indication of the voids. In

the ERT cross section, resistivities again identify the interface between dry and wet sand, but the low-resistivity voids

within the low-resistivity chalk cannot be seen.

From this simple forward modelling exercise, we would expect to find hints for initial voids from geophysical signals (mainly

gravity), if these initial voids would be in the shallow peri-glacial sand. For a deeper-seated origin of the voids, e.g. in the chalk,195

no clear geophysical signal both in gravity and geoelectrics can be expected. As outlined in Kaufmann et al. (2018), we have

not found evidence for subsurface voids in the geophysical data.
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4 Direct push-based methods

In this section, we discuss results from direct push-based methods applied to several locations on the sports field, which we

use to characterise the hydrogeological regime and relevant mechanical parameter values for the the site. The results from the200

direct push-based methods provide high-resolution data for geomechanical and hydrogeological properties of the subsurface.

This new field data will complement the existing geophysical data set used to derive a lithological model for the Münsterdorf

sports field and its vicinity. For the numerical modelling discussed later, the results from the direct push-based methods are

mandatory to calibrate the models.

The area around the sports field has been probed extensively by several direct push-based methods (e.g. Vienken et al., 2012).205

These versatile in-situ measurements can be used in unconsolidated and weakly consolidated sediments to obtain vertical high-

resolution profiles of a number of material properties, e.g. mechanical failure criteria, hydraulic parameter values, and electrical

conductivities, as we will outline below. From the measured parameter values listed above, several hydrological and mechanical

material properties can be derived:

(i) HPT (Hydraulic profiling tool): Water is injected with a flow rate Q [m3/s] from the direct push-based probe into the210

surrounding unconsolidated rock, the back pressure p [Pa] is measured and used to delineate hydro-stratigraphic units

within the subsurface. The ratio of flow rate and back pressure (corrected for air pressure and hydro-stratigraphic pres-

sure) can be used as proxy that can be correlated to hydraulic conductivity, K [m/s], of the material probed (e.g. Rogiers

et al., 2014).

Relative HPT hydraulic conductivity, referring to the ratio of HPT injection rate Q and back pressure P , can be correlated215

with hydraulic conductivity ∆Kh [m/s] (e.g. McCall, 2011):

∆Kh = 21.14ln

(
Q

P

)
− 41.71, (1)

Note that Q is in ml and P in psi in this ratio.

(ii) EC (Electrical conductivity): By injecting an electric current I [A] from the probe into the ground and measuring the

resulting electrical potential U [V], electrical conductivity σe [Sm] can be calculated (e.g. Christy et al., 1994).220

(iii) CPT (Cone penetration testing): A cone can be pushed at constant speed into the ground, and the force at the tip of the

cone can be measured and normalised to the cone surface area to obtain the cone pressure qc [Pa]. Additionally, the

force acting along the side of the cone can be measured, and normalised by the so-called sleeve area to obtain the sleeve

friction fs [Pa] (Lunne et al., 1997).

To estimate the failure of the material under stress, both the friction angle αf and the shear strength µ0 can be derived.225

The friction angle is related to the cone pressure qc (DIN Deutsches Institut für Normung e.V., 2011):

αf = f(qc), (2)

with the function f tabulated in geotechnical manuals (e.g. DIN Deutsches Institut für Normung e.V., 2011).
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The undrained shear strength uc [Pa] can be calculated from the cone pressure qc and the overburden stress qv0 [Pa] as

(Lunne et al., 1997):230

uc =
qc − qv0
Nk

, (3)

with Nk an empirical cone factor, around Nk ∼ 17 for over-consolidated clays (e.g. Kjekstad et al., 1978), and Nk ∼ 11−
19 for normally-consolidated marine clays (e.g. Lunne and Kleven, 1981). The overburden stress can be approximated

as qv0 = ρgh, with ρ [kg/m3] the average density, g [m/s2] gravitational acceleration, and h [m] the thickness of the

overburden.235

With the two quantities friction angle and undrained shear strength, the shear stress σs [Pa] as a function of normal

stress σn [Pa] can be defined as:

σs = µ0 +σn tan(αf ), (4)

which can be used to evaluate the likelihood that the material will break under certain applied stresses. Here, we assume

µ0 ≃ uc.240

From cone pressure qc and sleeve friction fs, the soil-behaviour type (SBT) index can be calculated, following Robertson

(2016):

SBT =

√[
3.47− log

(
qc
pa

)]2
+ [logRf +1.22]

2 (5)

with our cone pressure qc defined earlier, pa [Pa] the atmospheric pressure, Rf = fs
qc

the friction ratio, and fs [Pa] the

sleeve friction defined earlier. The SBT index characterises soil types, as is maps the qc-fs parameter space, and thus the245

position in the Mohr circle.

(iv) SMP (Soil moisture probe): Electrical permittivity ϵr [-] can be measured in the frequency domain to derive the soil

moisture content Θ [-], which for the saturated zone is equal to the porosity Φ [-] (e.g. Vienken et al., 2013).

From the dielectric permittivity ϵr measured, we can derive the volumetric water content Θ [-] from an empirically fitted

relation (e.g. Topp et al., 1980):250

θ = −5.3× 10−2 +2.92× 102ϵr

− 5.50× 104ϵ2r +4.3× 10−6ϵ3r
(6)

In the saturated zone, the volumetric water content is equal to the porosity Φ [-]: Θ=Φ.

All direct push-based methods listed above have been carried out along a south-north transect on the western edge of the

sports field, thus the locations are aligned perpendicular to the sinkhole zone (for locations see Fig. 2).

The following lithological units can be identified from the combined interpretation of the direct push-based methods (Fig. 7):255

(i) Well-sorted sand and silty sand (peri-glacial sand), (ii) poorly-sorted sand/till layers (glacial till), (iii) dissolved chalk along
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the maximum depth reached by the direct-push measurements. Thus, the direct-push inferred setup provides more details, when

compared to the simpler lithological structure derived earlier from other geophysical methods. The glacial till can be further

sub-divided into an upper discontinuous layer (3-5 m depth), and a lower more continuous till layer (10-12 m depth). The lower

till layer can be characterised as aquitard based on the results from the HPT measurements.260

It is interesting to note that the direct push-based profile performed at investigation point 5 (see Fig. 7) reveals an isolated

depth interval of increased relative hydraulic conductivity within the chalk. This isolated interval is also characterised by in-

creased values of measured electrical conductivity. The combination of these two elevated parameter values can be interpreted

as a karstified zone: H,having a high hydraulic conductivity, and water enriched with dissolved species from the chalk, e.g.

calcium and bicarbonate. This is also supported by a CPT log that was performed through an artificially filled sinkhole in ap-265

proximately 10 m distance to the HPT probing location 5. This CPT log, which was in contrast to the other CPT measurements

able to reach into the chalk layer, shows an area with very low cone resistance (indicating very weak and/or loose material)

between 22-27 m below the ground surface.

Mechanical properties have been estimated from the CPT measurements (see also tab. 2). While the glacial till seems to

have a friction angle around αf ≃ 37◦ and an undrained shear strength around uc ≃ 70− 150 Pa, the peri-glacial sand is270

stronger, with a friction angle around αf ≃ 40−42◦ and an undrained shear strength of uc ≃ 300 Pa in the upper part and up to

uc ≃ 500−600 Pa in the lower part of the cross section. It seems that the lower package of peri-glacial sand is over-consolidated,

a result from the high normal stress induced during the ice-covered phases (Elsterian and Saalian). The peri-glacial sand above

the lower till layer is also strong, except in the zone, where the sinkholes occur (friction angles around αf ≃ 35◦).

From the results of the direct push-based methods, with the almost continuous lower till layer being (at least in parts) an275

aquitard, we continue discussing mechanical models for the sinkhole collapse to elucidate, which of our two hypotheses is

more likely.
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5 Mechanical models

In this section, we introduce and discuss mechanical concepts and models, which we will use to describe the sudden occurrence

of collapse sinkholes on the sports field. We start with simple analytical stability considerations, which serve as base for more280

complicated discrete-element mechanical deformation models.

5.1 Simple mechanical models

We first discuss two simple end members of a situation prone to collapse sinkhole generation (e.g. Panno et al., 2013;

Messerklinger, 2014),: a first case considering buoyancy only, and a second case assuming that part of the stresses are supported

by a stronger elastic material.285

5.1.1 Buoyancy driven model

We define a two-layer setup (Fig. 8 top), with consolidated sediments of thickness H [m] on top and a density of ρs [kg/m3],

underlain by soluble rock of density ρc. Below the depth H , a circular void of radius a [m] is present, created by dissolution

of the rock. The void is either water-filled, with the density of water ρw ≃ 1000 kg/m3, or air-filled, with a density of ρa ≃ 0.

Thus, in this setup, a vertical cylinder (thin dashed line) with cross section A= πa2 [m2] and volume V = πa2H [m3] hangs290

above the void, and is kept in place by buoyancy and friction along its side walls.

We then can derive a force balance:

FG −FB −FR = 0, (7)

with FG and FB [N] the gravitational and the buoyancy forces, acting in the normal direction, and FR the frictional force,

acting on the side of the column. Considering only the vertical component of the force balance (e.g. FG = (0,0,FG)
T ), and295

solving for the frictional force, we obtain:

FR = FG −FB = ρsgV − ρw/agV = (ρs − ρw/a)gπa
2H. (8)

Note that the variable ρw/a means either water or air density. Rewriting (8) to a shear stress by using τR = FR

AR
[Pa], with

AR = 2πaH the side hull of the cylinder, we obtain:

τR =
(ρs − ρw/a)ga

2
. (9)300

We now define a standard model with parameter values similar to the Münsterdorf sinkholes: Sinkhole radius a= 1.5 m,

depth of unconsolidated rock column above void H = 20 m, and gravitational acceleration g = 9.81 m/s2. For a sediment

density of ρs ≃ 2000 kg/m3, a water density of ρw = 1000 kg/m3, and air density of ρa = 0, as shear stress we find for a

water-filled and an air-filled void, respectively:

305

τR(water-filled) ∼ 7.4 kPa,

τR(air-filled) ∼ 15 kPa.
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This result exemplifies the minimum shear stress needed to support the hanging column in both cases, water-filled and air-filled

cavity. If the measured shear stress is above the maximum value of 15 kPa, the hanging column remains stable, the void is kept

open. For shear stresses below this threshold, the column drops into the void and a collapse sinkhole forms.

5.1.2 Flexure- and buoyancy-driven model310

For the second example (Fig. 8 bottom), we consider the same setup as above, but this time the vertical cylinder is hold in place

by a thin (2h) elastic layer. From the force balance, we can derive the classical equation for a thin elastic plate under surface

loading q (e.g. Turcotte and Schubert, 1982) with isotropic and homogeneous material properties:

D∇4w =−q, (10)

with D [Nm] the flexural rigidity, w [m] the vertical deformation, and q [Pa] the load acting on the plate (in vertical direction).315

For the flexural rigidity, we use (e.g. Turcotte and Schubert, 1982):

D =
(2h)3E

12(1− ν2)
, (11)

with E [Pa] the Young modulus, ν [-] the Poisson ratio, and 2h [m] the plate thickness. Considering a thin circular plate

of radius a [m], which is fixed around its perimeter, an analytical solution of (10) can be derived within the framework of

Love-Kirchhoff plate theory: (e.g. Reddy, 2007):320

w(r) =− q

64D

(
a2 − r2

)2
. (12)

Defining the load as the sum of the vertical sediment cylinder ρsgH , the buoyancy induced by the water-filled void ρwgH , and

assuming wall friction, τR along the side of the column we arrive at:

qfull−load = ρsgH − ρw/agH − τR

= (ρs − ρw/a)gH − τR.
(13)

Inserting (13) into (12), we now can calculate the deflection of the supporting layer in the center (r = 0). For a Young modulus325

of E ≃ 10 GPa, a Poisson rationratio of ν ≃ 0.3, and a plate thickness of 2h= 0.6 m, the deflection for a water-filled resp.and

for an air-filled void , respectively, is:

w(water-filled) ∼ 0.08 / 0.06 m,

w(air-filled) ∼ 0.16 / 0.14 m,

with the left values assuming no wall friction (τR = 0), the right value assuming a wall friction of τR = 50 kPa (a higher value330

than the minimum shear stress derived before).

However, the more important parameter is the thickness of the elastic layer h as, according to (11), it scales with the power

of three.
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We now want to estimate, when the elastic layer will break. We therefore need to calculate the stresses in the thin elastic

plate:335

σrr = − 3qz
32h3

[
(1+ ν)a2 − (3+ ν)r2

]
,

σθθ = − 3qz
32h3

[
(1+ ν)a2 − (1+3ν)r2

]
,

τrθ = 0,

(14)

with z [m] the vertical coordinate, z ∈ [−h,h]. As the shear stress τrθ is zero, the two normal stress σrr and σθθ are the two

principal stresses, which we term σ1 = σrr and σ2 = σθθ. The maximum values for these two normal stresses are obtained for

r = a and z = h:

σmax
rr = +

3qa2

16h2 ,

σmax
θθ = +

3qa2

16h2 ν.
(15)340

Using the material parameter values from our numerical example above, the normal stresses are:

σmax
rr (water-filled) ∼ 920 kPa,

σmax
θθ (water-filled) ∼ 276 kPa,

σmax
rr (air-filled) ∼ 1839 kPa,

σmax
θθ (air-filled) ∼ 552 kPa

Note that reducing the plate thickness to 50% increases both normal stresses increase by a factor of 4!

For the two principal stresses, we can calculate the center Mc and the radius Mr of the Mohr circle as (e.g. Stüwe, 2013):345

Mc = σ1 +σ2
2 = 598/1196 kPa,

Mr = σ1 −σ2
2 = 322/644 kPa,

(16)

with the values given for a water-filled and an air-filled void, respectively.

The two Mohr circles are shown in Fig. 9, along with the lines of failure for the glacial till and the peri-glacial sand. For

the failure lines, parameter values have been taken from the results of the direct push-based methods discussed before. If the

column above the void is supported by the buoyancy of water, the Mohr circle is below the line of failure. Removing the buoyant350

support moves the Mohr circle closer to the failure line. Here both the thickness of the elastic plate, 2h, and the Poisson ratio,

ν, strongly control the failure: Reducing either one or both of these values results in a Mohr circle crossing the failure line.

Thus we have shown with our simple analytical examples that a collapse sinkhole with size and depth typical to the Müns-

terdorf sinkholes can form, if the buoyant support of the material above the void is reduced.

Next, we extend our simple setup to a three-dimensional mechanical model, based on the discrete-element method.355

5.2 Discrete-element mechanical models

The discrete-element method (DEM) is a computational method to simulate the interaction of a large number of particles

(e.g. Cundall and Strack, 1979). Often, the particles are spheres with pre-described radius and some material properties such
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as density ρ [kg/m3], Young modulus E [Pa], and Poisson ratio ν [-]. Spheres are packed into a three-dimensional region to

represent a macroscopic material, with packing being either regular or irregular. Neighbouring spheres can interact, with a large360

choice of mechanical laws defined. Modelling of the mechanical deformation consists of several steps: (i) setup of modelling

domain, (ii) packing with spheres, (iii) definition of material properties and interaction laws, (iv) time-stepping procedure to

track position and velocity of each sphere.

We use the open-source DEM model YADE (e.g. Scholtés and Donzè, 2012, 2013; Šmilauer et al., 2020). Our modelling

domain is 50×50×50 m in size, thus ten times larger than the collapse sinkholes in Münsterdorf (Fig. 10). This large modelling365

domain ensures that the fixed boundary spheres (also shown in red as the chalk) have no influence on the deformation (see

Romanov et al., 2019, for more details on the implementation). The material properties for the different layers (upper and lower

peri-glacial sand, glacial till, chalk) have been taken from the literature (Young modulus, Poisson ratio) and from the direct

push-based methods discussed above (friction angle and cohesion).

The spheres in the initial model (upper and lower peri-glacial sand: light brown; glacial till: orange; chalk: red) are packed,370

and the model is stable, thus no deformation is observed (Fig. 11 top). We then initiate a void in the chalk (red spheres) by

removing spheres within a given radius (removed spheres marked in blue). The removed spheres represent either a water- or

an air-filled initial void. This initial void in the chalk destabilises the model domain mechanically. The material above the void

starts to break down into the void, until a new mechanical equilibrium is reached.

Two scenarios are shown in Fig. 11 (middle and bottom row).375

(i) Buoyant support: In the left column, the subsurface is characterised by a high water table, the initial void is filled with

water. Thus the difference between gravitational force and buoyancy force is smaller, (ρs − ρw)g, and thus the buoyant

force compensates the gravitational force significantly. The model experiences breakdown of sand layers above the chalk,

but the elastic strength of the till supports the weight of the column above and the void does not migrate towards the

surface. The initial void enlarged by chemical dissolution becomes enlarged by additional breakdown, but remains stable.380

No collapse sinkhole will form (unless the boundary conditions are changed).

(ii) No buoyant support: In the right column, we reduce the buoyant force, the initial void is air-filled, simulating a drop in

water table, as possibly initiated by groundwater withdrawal. The difference between gravitational force and buoyancy

force becomes larger, (ρs−ρa)g with ρa ≃ 0, and thus the overlying column experiences a stronger downward force. In

this model, the initial void also enlarges through roof collapse, but the overlying layers cannot support the weight any385

more, the entire overburden slips into the void and a collapse sinkhole appears suddenly on the surface.

By comparing these two models we have shown, that a simple change in the hydraulic boundary condition, here a drop in

water table, which reduces buoyancy and thus increases the weight of the column hanging above the void, can trigger a collapse

sinkhole.

We stress that the time scales of dissolution and mechanical breakdown are completely decoupled: Whilewhile the void in390

the chalk, created by chemical dissolution of the material on time scales of 1,000−100,000 years, might initiate roof collapse

into the insoluble formation, the surface remains stable, because the overlying material is partially supported by the mechanical
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strength of the layers. However, a drop in water table through groundwater withdrawal on time scales of years can destabilise

the system, and initiate a sudden collapse of the surface, creating a collapse sinkhole.

Of course one can argue that a similar situation might occur for a void located in the peri-glacial sand. However, we have no395

evidence for a mechanically sound layer in the top part of the insoluble overburden (down to 6-8 m), thus a potential subsurface

void in the peri-glacial sand is unlikely to be mechanically meta-stable, but will collapse more or less immediately. Thus we

argue that the void origin is more likely to be in the chalk layer. We will support this argument further in the next section.
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6 Chemical considerations

In this section, we pick up the short-term mechanical failure models developed in the last section in view of the long-term400

evolution of the sinkhole cluster on the sports field. With the mechanical models presented before we have shown, that a water

table drop can trigger the sinkhole collapse. The initial void, however, can be present in the subsurface for a long period before

the collapse.

We want to continue the discussion on the origin of the voids in the surface. In section 4, we have discussed the lower

glacial till layer, which seems to be a continuous structure in around 12-15 m depth, with possible interruptions in the sinkhole405

zone. Hints for these interruptions come from the higher hydraulic conductivities and the elevated electrical conductivities in

boreholes crossing the sinkhole zone, which might indicate water from the chalk, enriched with dissolved matter (we come

back to this argument later).

6.1 Chemistry

From the direct push-based electrical conductivity measurements, we found values for the electrical conductivity around σe,f ≃410

30− 50 mS/m where direct-push profiling reached the hydraulically conductive part of the chalk, in parts even higher. We

convert this electrical conductivity representative for the fluid, σe,f [µS/cm], to the total amount of dissolved solids, TDS

[mg/l], using an experimentally determined linear relation (e.g. Lloyd, 1985; Atekwana et al., 2004)

TDS = keσe,f , (17)

with ke ∈ [0.55,0.80] [cm mg / l / µS] a correlation factor, and the electrical conductivity σe,f [µS/cm] in this equation415

referenced to 25◦C. Using ke = 0.6, we obtain a TDS value around 180-300 mg/l.

When we argue that a large amount of the TDS value can be explained with dissolution of the chalk, we derive the concen-

tration of calcium c [mol/m3] from the TDS value, using

c=
TDS

mr
, (18)

with mr = 0.101 kg/mol the atomic mass of calcite, resulting in c∼ 2− 3 mol/m3.420

If we compare this calcium concentration c derived from TDS to the calcium equilibrium concentration ceq [mol/m3] for

calcite dissolved under closed-system conditions (decoupled from the atmosphere), which is in the range of ceq ≃ 2−5 mol/m3

(e.g. Buhmann and Dreybrodt, 1985a, b), we find that the dissolution of chalk is close or at its equilibrium value, thus at its

maximum.

Arguing that the high calcium concentration in the probed water in the chalk has been attained locally, the EC results425

from direct push-based methods support the idea of Kaufmann et al. (2018), that enlargement of voids in chalk by chemical

dissolution has created the initial void space in around 20 m depth. The isolated area of high permeability within the chalk,

that was identified using the direct push-based HPT as well as the depth interval with strongly reduced cone pressure (CPT

measurement), support the theory that the high calcium concentration has been generated by the local dissolution, creating a

large secondary permeability in the chalk.430
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7 Interpretation

In Kaufmann et al. (2018), we have developed a simple hypothetical model for the formation of sinkholes on the sports

field in Münsterdorf. With the additional information gained in this work from the direct push-based methods, the short-term

mechanical collapse models, and estimates of the chemical composition of the groundwater, we are now able to refine our

previous hypothesis.435

The cross sections in Fig.figure 12 follow a temporal evolution (from top left via bottom towards top right). Shown are three

lithological units, chalk (light blue), peri-glacial sand (yellow), and glacial till (brown). The thick blue line depicts the water

table.

From our evolution models, we speculate that groundwater is forced to flow vertically down in the middle of the section,

because the glacial till present in the northern part is less hydraulically conductive. The groundwater, undersaturated with440

respect to calcium, reaches the chalk inat around 20 m depth, and dissolves it, creating voids up to the meter range. This

dissolution process, a long-term process, occurs on the 10,000-100,000 year time scale.

The voids developing in the chalk start to migrate upwards through roof breakdown, once they reach a certain size. However,

thin glacial till layers in the south, mechanically stronger than the peri-glacial sand, stabilise the situation, as the entire void

and collapsed roof part is located in the saturated zone, thus buoyancy supports the strength of the thin glacial till layers in the445

southern part. This situation is meta-stable, as long as there are no significant changes in groundwater level.

A drop in groundwater level, which can be initiated through pumping in the nearlynearby open-pit mines, removes the

buoyant support to the glacial till above a void, and the weight of the overburden becomes too much and triggers a collapse,

which results in a sinkhole in the overlying peri-glacial sand.
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8 Conclusions450

The collapse sinkhole cluster on the sports field of Münsterdorf started in 2004, with an occurrence rate of about one per

year. The sinkholes, typical cover-collapse sinkholes, are usually 2-3 m in diameter and 3-5 m deep. We have investigated

the mechanical stability of collapse sinkholes with similar dimensions with a discrete-element model to simulate the stability

conditions of the final collapse.

In the introduction, we posed three main questions, which we want to answer in this last part:455

(i) Sudden onset:

The sudden onset of collapse sinkhole formation in 2004 points to a change in a boundary condition close to the site,

e.g. changes in the mechanical and/or hydrological situation. We are able to explain the sinkhole collapse with a drop in

groundwater table, reducing the buoyant force, which stabilises the existing subsurface voids.

(ii) Mechanical failure:460

Our mechanical models of a void in the subsurface, embedded in the typical setup of the locality (peri-glacial sand,

glacial till, and soluble chalk in 20 m depth), indicate stability of the layers above an existing subsurface void, when the

water table is high.

A drop in groundwater reduces the buoyant force, which counteracts the gravitational force of the overburden, and the

overburden can exceed its mechanical threshold and collapse into the void below, creating a cover-collapse sinkhole.465

(iii) Void origin:

We have speculated about a void origin either shallow in the peri-glacial sand (6-9 m depth) of deeper in the chalk (20-

22 m depth). We have shown that the shallow void might be detectable by gravity measurements, but a deeper void is

not really detectable with geophysical measurements.

The high electrical conductivity, together with an elevated hydraulic permeability, which we measured with direct push-470

based methods in about 22.7-25 m depth, point to dissolution on top of the chalk layer, thus pointing to void spaces

developing in around or below 20 m depth.
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Figure 1. Topographical map of the Münsterdorf-Lägerdorf area. Shown is the elevation (colour-coded), the river Stör as local base level

in the north, the villages of Münsterdorf and Lägerdorf (grey dots), the three open-pit chalk mines Saturn (abandoned), Schinkel, and

Heidestrasse (black contour lines) including their actual extension (blue dashed line) not present in the SRTM model, the depth to the chalk

layer (red contours), and the recent sinkholes since 2004 (blue dots). Insert: Overview map with working area marked in red.
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Figure 2. Sports field in Münsterdorf, view from the south towards north. Areal photo draped onto topography. The red cylinders mark the

locations of the sinkholes, which occur along a narrow west-east trending line. The blue cylinders are direct push-based probe locations

(shown along a south-north profile in Fig. 7). Digital orthophoto ©GeoBasis-DE/LVermGeo SH.
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Figure 3. Typical sinkhole (2015, east of sports field in the meadow), with a diameter of 2 m, about 3 m visible depth, and the originally

vertical slopes already collapsing to form a more stable form (Photo: Georg Kaufmann). NEW FIGURE
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Figure 4. Sports field in Münsterdorf, view from the west towards east. The red cylinders mark the locations of the sinkholes, which occur

along a narrow west-east trending line. The color-coded cylinders are boreholes from the LLUR. The blocky area underneath the sports field

are mapped high electrical resistivities above 1000 Ωm from ERT profiles. In the interpretation, the anomaly delineates the dry peri-glacial

sand from the more conductive glacial till. Digital orthophoto ©GeoBasis-DE/LVermGeo SH.
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Figure 5. Prediction for Bouguer gravity (top) and electrical resistivity (middle) resulting from a given lithological structure (bottom). The

structural model (bottom) comprises dry and wet peri-glacial sand (brown and red), chalk (blue), and either air-filled (white) or water-filled

(gray) voids. For the first hypothesis, we located air-filled voids in around 6 m depth with radii (from left to right) of 1.1, 1.7, and 2.0 m.

Density and electrical resistivity values can be found in table 2). Gravity predictions are based on a box geometry model, electrical resistivity

predictions on a Wenner setup with 5 m electrode spacing.
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Figure 6. As Fig. 5, but voids are water filled (1000 kg/m3 and 0.5 Ωm) and start in 20 m depth.
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Figure 7. Results from from direct push-based methods, plotted along a a south-north transect. Direct push-based locations are labeled on top

(EC_x,CPT_x, with x the core number). Borehole transects show the calculated soil-behaviour type (SBT, legend on top), and additionally

electrical conductivity (EC, solid lines). The colours in the background represent the structural model interpolated from the direct push-based

results (orange:peri-glacial sand, green:glacial till, blue: chalk).
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Figure 8. Simple mechanical sinkhole setup. Top: Buoyancy-driven sinkhole, void as thick dashed line, sediment pile on top as thin dotted

line, forces as black arrows, water table as blue line. H is the sediment thickness. Bottom: Flexure-driven sinkhole, parameter values as

above, 2h is the thickness of the elastic plate.
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Figure 9. Mohr-Coulomb circle for stresses induced by column resting on elastic plate, with buoyancy (dark blue) and without buoyancy

(light blue). The line of failure is shown for the weaker glacial till (solid red) and the stronger peri-glacial sand (dashed red), with parameter

values derived from results of the direct push-based methods.
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Figure 10. Setup of YADE mechanical model. The model is 50c50x50 m in size and filled with spheres irregularly packed. The colors of

the sphere represent different layers: Upper peri-glacial sand (light brown), glacial till (orange), lower peri-glacial sand (light brown), chalk

(red). Note that the sides of the modelling domain (also shown in red) are fixed.
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Figure 11. Mechanical breakdown simulated with YADE. Top: Initial condition, the dissolved void in the chalk is shown in blue. Left row:

Two snapshots of collapse with full buoyant support. Right row: Two snapshots of collapse with partial buoyant support. Note that we show

a thin slice of the 3D model, crossing the void in the chalk.
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Figure 12. Evolution of collapse sinkhole. Light blue colours indicate chalk as soluble rock, yellow colours peri-glacial sand and brownish

colours glacial till, the latter two as insoluble rocks. The dark blue line is the hypothetical water table, and the white area a void in the chalk.
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Table 1. Selected geophysical field work carried out around the Münsterdorf sports field.

Method Year Institute Reference

Electrical resistivity sounding 2005 LLUR Kiel Kirsch et al. (2011)

P-wave reflection seismics 2006 geoFact Bonn Kirsch et al. (2011)

Airborne electromagnetics 2006 BGR Hannover Kirsch et al. (2011)

P-wave reflection seismics 2007 LIAG Hannover Kirsch et al. (2011)

S-wave reflection seismics 2007 LIAG Hannover Kirsch et al. (2011); Gebregziabher-Gared (2010)

Electrical resistivity tomography 2009 LIAG Hannover Kirsch et al. (2011); Gebregziabher-Gared (2010)

Electrical resistivity tomography 2014 CAU Kiel Schulze-Dieckhoff (2015)

Ground-penetrating radar 2014 CAU Kiel Schulze-Dieckhoff (2015)

S-wave reflection seismics 2014 CAU Kiel Timm (2015)

Direct push-based measurements 2014 UFZ Leipzig Tippelt et al. (2017)

Spectral induced polarization 2017 TU Berlin Mai et al. (2017)

Gravity 2018 FU Berlin Kaufmann et al. (2018)

Ground-penetrating radar 2018 FU Berlin Kaufmann et al. (2018)

Electrical resistivity tomography 2018 FU Berlin Kaufmann et al. (2018)

Table 2. Material properties for different lithological layers beneath the Münsterdorf sports field. Density and electrical resistivity from

Kaufmann et al. (2018). Young modulus and Poisson ratio from Bowles (1997) (sand and till) and Olsen et al. (2008) (chalk).

Material dry sand wet sand glacial till chalk air-filled void water-filled void

Density ρ [kg/m3] 1800 1900 2100 2600 1.2 1000

El. resistivity ρe [Ωm] 1000 200-300 5-200 100-700 ∼ 800 ∼ 0.5

Young modulus E [MPa] 10-25 50-81 10-700

Poisson ratio ν [-] 0.3-0.4 0.4-0.4 0.2-0.5

Friction angle αf [◦] 40-42 40-42 37

Shear strength uc [Pa] 300 500-600 70-150
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