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Abstract. Gas- and particle–phase molecular markers provide highly specific information about the sources and atmospheric 

processes that contribute to air pollution. In urban areas, major sources of pollution are changing as regulation selectively 10 

mitigates some pollution sources and climate change impacts the surrounding environment. In this study, a Comprehensive 

Thermal Desorption Aerosol Gas Chromatograph (cTAG) was used to measure volatile, intermediate volatility, and semi-

volatile molecular markers every other hour over a 10-day period from 11 April to 21 April 2018 in suburban Livermore, 

California. Source apportionment via Positive Matrix Factorization (PMF) was performed to identify major sources of 

pollution. The PMF analysis identified 13 components, including emissions from gasoline, consumer products, biomass 15 

burning, secondary oxidation, aged regional transport, and several factors associated with single compounds or specific 

events with unique compositions. The gasoline factor had a distinct morning peak in concentration but lacked a 

corresponding evening peak, suggesting commute-related traffic emissions are dominated by cold starts in residential areas. 

More monoterpene and monoterpenoid mass was assigned to consumer product emissions than biogenic sources, 

underscoring the increasing importance of volatile chemical products to urban emissions. Daytime isoprene concentrations 20 

were controlled by biogenic sunlight- and temperature-dependent processes, mediated by strong midday mixing, but gasoline 

was found to be the dominant and likely only source of isoprene at night. Biomass burning markers indicated residential 

wood burning activity remained an important pollution source even in the springtime. This study demonstrates that specific 

high-time-resolution molecular marker measurements across a wide range of volatility enable more comprehensive pollution 

source profiles than a narrower volatility range would allow. 25 

1 Introduction 

Organic carbon in the atmosphere spans more than 15 orders of magnitude of volatility (Jimenez et al., 2009; 

Donahue et al., 2011). Some of the organic carbon is emitted directly as primary organic aerosol (POA), but most organic 

carbon is emitted in the gas phase as thousands of distinct compounds (Goldstein and Galbally, 2007). The most volatile 

class, volatile organic compounds (VOCs), exist exclusively in the gas phase. Many VOCs are toxic or contribute to 30 
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respiratory illness (Srivastava et al., 2005; Nurmatov et al., 2013). They play a critical role in urban and regional ozone 

formation (National Research Council, 1992; Atkinson, 2000) and produce lower vapor pressure compounds via atmospheric 

oxidation reactions (Seinfeld and Pankow, 2003) which form secondary organic aerosol (SOA). Intermediate volatility 

organic compounds (IVOCs, defined as having an effective saturation concentration C* of 103 to 106 μg m-3) and semi-

volatile organic compounds (SVOCs, C* of 10-1 to 103 μg m-3), can partition between gas and particle phases in the 35 

atmosphere and can account for a large fraction of total organic aerosol (OA) (Robinson et al., 2007; Weitkamp et al., 2007; 

Chan et al., 2009; de Gouw et al., 2011; Lim and Ziemann, 2009; Presto et al., 2010). OA is a major source of uncertainty for 

radiative forcing predictions (Myhre et al., 2013) and negatively impacts human health (Brunekreef and Holgate, 2002; Nel, 

2005; Lippmann and Chen, 2009). In the United States, it comprises 30-80 % of annually averaged particulate matter with a 

diameter of less than 2.5 µm (PM2.5; Hand et al., 2013). PM2.5 is regulated by the U.S. Environmental Protection Agency due 40 

to its adverse impacts on human health (Ridley et al., 2018). 

Sources of VOCs, IVOCs and SVOCs in urban areas are changing. Historically, vehicle exhaust has been 

responsible for the bulk of VOC emissions in polluted urban areas such as Los Angeles, but VOC emissions from gasoline 

vehicles have decreased by almost two orders of magnitude between 1960 and 2010 (Warneke et al., 2012). Diesel emissions 

have also decreased, though to a lesser extent (McDonald et al., 2013). As a result, sources of non-motor-vehicle organic 45 

carbon in urban areas have increased in relative importance. McDonald et al. (2018) recently showed that volatile chemical 

products, including fragrances, solvents, pesticides, coatings, inks, adhesives and cleaning agents, were responsible for more 

VOC emissions by mass than vehicle and upstream petrochemical emissions combined in Los Angeles. Coggon et al. (2021) 

demonstrated the same for New York City and showed that monoterpene emissions from fragrances in Manhattan rivaled 

those of a comparably sized U.S. forest. Furthermore, global climate change directly affects biogenic emissions of reactive 50 

organic carbon (Heald et al., 2008; Lin et al., 2016) and, in the American West, has led to increased emissions from forest 

fires (Hurteau et al., 2014; Westerling, 2016); indirectly, climate change may affect pollution patterns related to heating and 

cooling indoor spaces. Given the changing urban and regional environments, sources of pollution in urban and suburban 

areas need to be continually reevaluated to improve predictions of ozone and SOA formation and inform policy decision 

making around emission reductions and mitigation of pollution impacts. 55 

Many organic compounds have more than one source category contributing to their abundance in the atmosphere. 

Source apportionment models may be used to identify the underlying sources behind the measured concentrations of 

speciated organics based on the variation of individual concentration timelines. Positive Matrix Factorization (PMF; Paatero 

and Tapper, 1994; Hopke, 2016) is a technique often used to apportion VOCs (e.g. Brown et al., 2007; Yuan et al., 2009; 

Yuan et al., 2012) and compositionally resolved particulate matter (e.g. Wang et al., 2019a; Li et al., 2020) into different 60 

factors contributing to their measured abundance. PMF does not require pollution source profiles as inputs, making it an 

attractive approach to analyzing contributions to ambient atmospheric abundances when not all possible sources are known. 

In this work PMF was applied to concentration timelines of a suite of VOCs, IVOCs and SVOCs in the gas and 

particle phases measured every other hour by the Comprehensive Thermal Desorption Aerosol Gas Chromatograph (cTAG) 
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over a 10-day period in Livermore, CA. Our aim was to identify and understand the major sources of pollution in a suburban 65 

setting in the context of changing emission controls and dominant sources observed in other urban and suburban areas 

nationwide. With compounds encompassing such a wide range in volatility and degree of oxidation, we sought to more 

comprehensively describe the composition of the identified pollution sources. We examine the detailed temporal patterns of 

the different factors and provide possible explanations for their variability based on likely activity patterns, atmospheric 

chemistry and the meteorology of the region. 70 

2 Methods 

2.1 Sampling site 

Livermore, California is a suburban city located on the eastern edge of the San Francisco Bay Area in the 

Livermore Valley. It is subject to prevailing winds from the larger Bay Area region to the west, bringing primary pollutants 

that, combined with optimal conditions in the city itself for photochemical smog formation, often lead to the highest ozone 75 

levels in the Bay Area (Flagg et al., 2020). Regional transport is also possible from the neighboring San Joaquin Valley to 

the east. In wintertime, temperature inversions and low wind speeds can lead to elevated particulate matter concentrations. 

 Speciated VOC, IVOC and SVOC measurements were collected at the May Nissen Swim Center, 685 Rincon 

Avenue in Livermore (37.687°N, 121.784°W). The Swim Center is approximately 60 m west of Rincon Avenue, the closest 

road, and 1.4 km south of Interstate 580. An uncovered outdoor swimming pool, closed to public access for the season, was 80 

10 m to the northeast of the sampling site. Approximately 100 m to the north at 793 Rincon Ave, the Livermore Bay Area 

Air Quality Management District Monitoring Site obtained hourly measurements of ozone, temperature, black carbon and 

wind direction and speed used in this analysis. Figure 1 shows a map of the site and surrounding area with points of 

interested marked. 

2.2 cTAG measurements of VOCs, IVOCs and SVOCs 85 

Hourly VOC, IVOC and SVOC speciated measurements were collected and analyzed by cTAG between 9 April 

and 11 May 2018. This work analyzes data from a 10-day focus period between 11 April and 21 April when the cTAG 

instrument was operating optimally. Ambient air from approximately 5 m above ground was pulled through a 25 cm 

diameter duct to the inlet of cTAG at 1000 L min-1. This high flow rate ensured small residence times for semivolatile 

analytes of interest in the ducting and thus negligible partitioning to the walls of the duct. cTAG is described elsewhere in 90 

detail (Wernis et al., 2021). Briefly, 10.1 L min-1 of ambient air is pulled from the duct through a cyclone (PM2.5 cut point) 

and split. To measure gas-particle partitioning, on every other sample 10.0 L min-1 is passed through a denuder to remove 

gas phase compounds, resulting in alternating hourly measurements of total gas plus particle concentration versus particle 

phase only concentration. This 10.0 L min-1 is then pulled through a coated metal mesh filter cell held at 30 °C which 

collects IVOCs and SVOCs between C14 and C32 alkane equivalent volatility (C* ≈ 10-1 to 105 µg m-3). The remaining 100 95 
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contain hundreds to thousands of compounds, often leading to overlapping peaks. Single ion chromatograms (SICs) consist 120 

of the signal from a single mass-to-charge ratio and have far fewer overlaps; thus integrated peaks on the SIC of a prominent 

mass-to-charge ratio in the target compound’s mass spectrum are used as the basis for quantification. Background 

subtraction isolates the mass spectral fingerprint of the target compound for better matching with searches against the 2020 

National Institute of Standards and Technology (NIST) mass spectral library (NIST Standard Reference Database 1A, 2022) 

and authentic standards analyzed on cTAG or similar instruments.  The retention index (RI) describes the relative location of 125 

a compound in a chromatogram to a series of reference compounds. The n-alkane retention index for a compound i is 

defined as: 

 RI ൌ 100 ൈ ൤𝑛 ൅
𝑡௜ െ 𝑡௡
𝑡௡ାଵ െ 𝑡௡

൨ (1) 

where n is the number of carbon atoms of the n-alkane that elutes immediately prior to compound i and t is the retention 

time. N-alkane RI comparisons between the target compound and candidate matches aid in conclusively identifying the 

target compound. 130 

2.2.2 Compound quantification 

The integrated peak area calculated for a given compound on a given chromatogram depends on a number of 

variable factors including but not limited to drift in the response of the detector, ion source cleanliness, transfer efficiency 

between the collectors and the GC columns and derivatization efficiency (SVOC channel only). Furthermore, these variables 

can affect the integrated peak area in a compound-dependent way. To account for these variables, compound quantification 135 

involves a multistep process. On the SVOC channel: 

(1) A constant quantity of a suite of isotopically labeled compounds with a variety of volatilities and functional groups 

comprising an internal standard mixture was automatically injected (Isaacman et al., 2011) onto the filter cell after 

every sample collection and before thermal desorption. These compounds were analyzed along with the ambient 

sample. Variations in integrated peak area for these compounds capture the instrument response variability 140 

described above, improving measurement precision. Ambient compound peak areas are normalized by the SIC peak 

area of the internal standard that most closely matches it in volatility and functionality. 

(2) In the laboratory after the field campaign, an external standard mixture consisting of 218 compounds was injected 

onto the filter cell in varying concentrations to obtain a 6-point calibration curve for those compounds. The same 

internal standard mixture used during ambient sampling was injected during calibration runs, and peak-integrated 145 

ion signals of the calibrant compounds were normalized by the most suitable internal standard. 

(3) External standard calibration curves are fit with a least-squares regression. Ambient compounds with exact matches 

in the external standard mixture have the slope b and y-intercept a from this fit applied directly to convert peak area 

SA to mass MA. For ambient compounds without exact external standard matches the final mass MA is adjusted by 

the ratio of the fraction of signal represented by each SIC in each TIC: 150 
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 𝑀஺ ൌ ൬
𝑆஺ െ 𝑎
𝑏

൰ ൬
𝑓஼
𝑓஺
൰ (2) 

 𝑓 ൌ 𝑠ୗ୍େ ෍𝑠௜

ସ଴଴

௜ୀସ

ൗ  (3) 

where f is the fraction of TIC signal represented by the signal at the SIC used for quantification (fA is for the analyte 

and fC is for the external standard calibration compound), sSIC is the quantification SIC signal, and the denominator 

is the sum of all SIC signals (i.e. the TIC signal). i is a mass to charge ratio, which ranges from 4 to 400 for this 

campaign and analysis. 

I/VOC channel calibration is functionally equivalent to SVOC channel calibration with a couple important 155 

differences. (1) A single gas-phase internal standard, neohexane, was introduced at the inlet at a constant 100 parts-per-

trillion throughout every sampling period for run-to-run normalization. All analytes are normalized by neohexane. (2) 

External standard compounds originated from a Photochemical Assessment Monitoring Stations 57-component commercial 

standard gas cylinder (Scott-Specialty), a gas cylinder with a custom mixture (Apel-Riemer Environmental, Inc., 2019), and 

two custom liquid mixtures. Standards were delivered with the dynamic dilution system developed for cTAG (Wernis et al., 160 

2021), generating 6-point calibrations. Neohexane could not be sampled during calibrations, so was sampled before and after 

each set of calibration runs and the average was used to normalize all calibration points. 

2.2.3 Uncertainty in reported concentration 

There are two distinct types of uncertainty affecting reported concentrations for compounds measured by cTAG. 

The first, uncertainty around accuracy, arises from calibration, which affects all ambient data points of a given compound 165 

identically. Uncertainty on the least squares fit of the calibration data and uncertainty arising from the lack of an authentic 

external standard are uncertainties of this type. The second, uncertainty of precision, arises from run-to-run variability (Sect. 

2.2.2), which we assume to be independent between samples. Internal standard normalization greatly mitigates this source of 

uncertainty but does not eliminate it. The uncertainty that remains depends on the choice of internal standard. The total 

uncertainty in the reported concentration of a given compound is all of these sources of uncertainty added together in 170 

quadrature. 

2.2.3.1 Accuracy uncertainty 

Accuracy uncertainty from the least squares fit is generally limited to the uncertainty of the slope, ∆௕, as the y-

intercept is kept fixed at 0 for compounds without background contamination, which is the great majority of them. The 

percent uncertainty from calibration fit UCb is thus: 175 

 𝑈𝐶௕ ൌ 100 ൈ ൬
∆௕
𝑏
൰ (4) 

In practice, this adds less than 5 % uncertainty to the total for a given compound. 
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Compounds without an authentic external standard have an additional source of accuracy uncertainty arising from 

the use of a surrogate standard. This source is much greater than that from the calibration fit, and impossible to quantify 

individually for each compound in the absence of an authentic standard to serve as the control. Jaoui et al. (2005) report 

approximately 30 % error from this step; we conservatively estimate 50 % uncertainty for surrogate standard use. 180 

2.2.3.2 Precision uncertainty 

Precision uncertainty is based on choice of internal standard. To estimate this source of uncertainty, all possible 

pairs of internal standards were ratioed for all ambient data points and each distribution of ratios analyzed, a technique used 

with previous TAG instruments (Isaacman et al., 2014). Ideally, all internal standards would vary proportionally and the 

ratio between two standards would remain constant, implying no error from internal standard choice. In practice the ratio 185 

varies between samples and the relative standard deviation (RSD, standard deviation divided by mean) of the ratios provides 

an estimate of the precision uncertainty. 

Figure S1 shows the relative standard deviations of the internal standard ratios for all internal standards used for 

normalization in this analysis and Fig. S2 shows examples of the distributions of ratios. Overall, hydrocarbons paired with 

hydrocarbons have the lowest RSDs, especially for compounds with similar RIs. An exception is made for compounds with a 190 

RI below 1400, where occasional losses during the refocusing step due to high ambient temperature increase the variability. 

Ambient compounds in this category are normalized by deuterated n-tetradecane. Oxygenated internal standards exhibit the 

greatest RSD values whether they are paired with hydrocarbons or other oxygenates. Ambient oxygenated compounds are 

thus assigned the highest uncertainty and are normalized by the nearest deuterated oxygenate if their RIs are within 200 and 

the nearest hydrocarbon otherwise. Table S1 summarizes the categories of precision uncertainty assigned to ambient 195 

compounds for this analysis. 

2.3 Positive matrix factorization 

Positive Matrix Factorization is a mathematical source apportionment technique that groups measured ambient 

compounds based on their covariance in time, taking into account their measurement uncertainty (Paatero and Tapper, 1994). 

PMF is a receptor-only model that requires no a priori information about pollution sources, instead inferring source 200 

composition from the compound groupings in the solution. The solution is constrained to non-negative values and assumes 

source profiles do not vary with time. It takes the form of three matrices G, F and E such that  

 𝑥௜௝ ൌ ෍𝑔௜௞𝑓௞௝ ൅ 𝑒௜௝

௣

௞ୀଵ

 (5) 

where xij is an element of the m x n matrix X of input data. As applied to this cTAG dataset, the m rows of X are the 

individual compounds and the n columns of X are the sample times. Element gik of G represents the source contribution of 

the ith compound to the kth factor, and element fkj of F represents the kth factor at sample j. E is the m x n matrix of residual 205 

values. Crucially, the total number of factors p is an input to the model, requiring the model user to use PMF solution 
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diagnostics and outside information to determine the most meaningful number of factors. The solution is determined by 

minimizing the sum of squares of error-weighted residuals, known as the quality of fit parameter 𝑄, given by 

 𝑄 ൌ෍෍ቆ
𝑒௜௝
𝜎௜௝
ቇ
ଶ௡

௝ୀଵ

௠

௜ୀଵ

 (6) 

where σij is the uncertainty in concentration units for compound i at sample j and eij is the corresponding element of matrix 

E. 210 

 This analysis is performed on 2 hour time resolution data aligning with the gas plus particle phase concentration 

measurements on the SVOC channel. For the PMF, I/VOC channel data that coincides with particle only measurements on 

the SVOC channel are not used, though the full hourly resolution I/VOC data are used for other data analysis (e.g., 

correlations) and in figures. Similarly, particle only data on the SVOC channel are not used in the PMF analysis but 

partitioning information does inform some of the interpretation of factor results. 215 

In this analysis the precision uncertainty (Sect. 2.2.3.2) is the only uncertainty assigned to each compound for use in 

the PMF model, since the model assumes uncertainty between samples is independent, which is not true of the accuracy 

uncertainties described above (Sect. 2.2.3.1). In the final PMF solution, accuracy uncertainty increases the uncertainty of the 

factor timelines (while preserving ratios between individual data points) but not the source contributions. PMF modelling 

was carried out with the U.S. Environmental Protection Agency PMF 5.0 program (Norris et al., 2014). The program 220 

automatically handles uncertainty for concentrations near the detection limit by applying a smooth function to the 

uncertainty between the input percent uncertainty (applies to concentrations ≫ the detection limit) and a large fixed fraction 

of the detection limit (applies to concentrations at or below the detection limit). We use the “robust” mode of the PMF 

algorithm, which limits the weight of outliers (ห𝑒௜௝/𝜎௜௝ห ൐ 4) by increasing the uncertainty of those outliers. We also explore 

the stability of the most plausible solutions by varying FPEAK, a parameter which applies rotations by adding G columns to 225 

each other and subtracting F rows from each other or vice versa (Paatero and Hopke, 2009). 

3 Results and discussion 

Of 163 ambient compounds processed in the dataset, 123 were used in the PMF analysis. The remaining 40 were 

excluded for one of the following reasons: the compound’s concentration was below the detection limit more than 90 % of 

the time (27 compounds), the compound was determined to have too much instrument contamination to be quantifiable (7 230 

compounds), the compound could not be definitively identified (3 compounds), the compound’s transfer losses were not well 

characterized due to being outside cTAG’s designed optimal volatility range (2 compounds), or the compound is nonreactive 

in the atmosphere (1 compound). 

 Of the 123 compounds used in the PMF analysis, 58 compounds were measured on the I/VOC channel and the 

remaining 65 were measured on the SVOC channel. Table 1 shows the compounds included in the PMF analysis. Major 235 

compound categories represented include branched and linear alkanes and aromatics important for photochemical smog 
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formation, monoterpenes and other biogenic compounds, polycyclic aromatic hydrocarbons, biomass burning markers, 

alkanoic acids, chlorobenzenes, and plasticizers and other industrial chemicals. 

3.1 Positive matrix factorization solution 

We find the 13 factor PMF solution to best resolve the pollution sources in Livermore in Spring 2018. Solutions 240 

between 3 and 16 factors were considered and are contrasted in Sect. S2. In summary, solutions with additional factors have 

less uniqueness between factors and the source profiles of the additional factors are either not physically meaningful or are 

too similar to factors present in the 13 factor solution. Solutions with fewer factors fail to separate factors with meaningful 

physical interpretations and do not incorporate one of the largest reductions in 𝑄/𝑄௘௫௣ (defined in Sect. S2.1). 

Table 1. Compounds measured by cTAG and included in the PMF analysis. The compound index is used in Figs. 2, 4-7, 10-17 and 245 
19. PAH = Polycyclic Aromatic Hydrocarbons; Ox. = Oxidation; Alk. Acids = Alkanoic Acids; HCs = Hydrocarbons; BB = 
Biomass Burning; THM = Trihalomethanes; DCB = Dichlorobenzenes; DEHA = Bis(2-ethylhexyl) adipate; DEHP = Bis(2-
ethylhexyl) phthalate; D4 = Octamethylcyclotetrasiloxane; D5 = Decamethylcyclopentasiloxane; PCBTF = 
Parachlorobenzotrifluoride. 

Compound 
Class Compound Index and Name CAS # 

Meas. 
Chan-
nel 

Mean ± S. 
Deviation 
(ng m-3) 

Mean ± S. 
Deviation 
(ppt) 

Highest 
Mass 

Fraction 
& Factor 

Saturated HCs (1) Methylcyclopentane 96-37-7 I/VOC 290 ± 320 85 ± 93 0.33 3 

Saturated HCs (2) 2-Methylhexane 591-76-4 I/VOC 140 ± 170 33 ± 40 0.45 3 

Saturated HCs (3) 3-Methylhexane 589-34-4 I/VOC 360 ± 190 87 ± 47 0.19 1 

Saturated HCs (4) 2,3-Dimethylpentane 565-59-3 I/VOC 130 ± 180 33 ± 44 0.31 3 

Saturated HCs (5) Cyclohexane 110-82-7 I/VOC 120 ± 140 35 ± 42 0.44 3 

Saturated HCs (6) 2,2,4-Trimethylpentane 540-84-1 I/VOC 400 ± 503 86 ± 108 0.29 3 

Saturated HCs (7) Benzene 71-43-2 I/VOC 610 ± 310 190 ± 100 0.23 3 

Saturated HCs (8) Heptane (C7) 142-82-5 I/VOC 170 ± 180 42 ± 43 0.31 3 

Saturated HCs (9) Methylcyclohexane 108-87-2 I/VOC 120 ± 140 30 ± 34 0.35 3 

Saturated HCs (10) 2,3,4-Trimethylpentane 565-75-3 I/VOC 140 ± 190 29 ± 40 0.29 3 

Saturated HCs (11) 2-Methylheptane 592-27-8 I/VOC 370 ± 470 79 ± 102 0.32 3 

Saturated HCs (12) 3-Methylheptane 589-81-1 I/VOC 84 ± 100 18 ± 21 0.36 3 

Saturated HCs (13) Octane (C8) 111-65-9 I/VOC 86 ± 88 18 ± 19 0.26 3 

Saturated HCs (14) Toluene 108-88-3 I/VOC 930 ± 960 250 ± 250 0.30 3 

Saturated HCs (15) Nonane (C9) 111-84-2 I/VOC 64 ± 68 12 ± 13 0.20 3 

Saturated HCs (16) Ethylbenzene 100-41-4 I/VOC 190 ± 220 43 ± 51 0.36 3 

Saturated HCs (17) m-Xylene + p-Xylene 
108-38-3, 
106-42-3 I/VOC 670 ± 840 150 ± 190 0.36 3 

Saturated HCs (18) o-xylene 95-47-6 I/VOC 290 ± 360 66 ± 83 0.37 3 
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Compound 
Class Compound Index and Name CAS # 

Meas. 
Chan-
nel 

Mean ± S. 
Deviation 
(ng m-3) 

Mean ± S. 
Deviation 
(ppt) 

Highest 
Mass 

Fraction 
& Factor 

Saturated HCs (19) Styrene 100-42-5 I/VOC 52 ± 61 12 ± 14 0.36 3 

Saturated HCs (20) Cumene 98-82-8 I/VOC 10 ± 12 2.1 ± 2.4 0.23 3 

Saturated HCs (21) n-Propylbenzene 103-65-1 I/VOC 39 ± 47 8.0 ± 9.6 0.36 3 

Saturated HCs (22) Decane (C10) 124-18-5 I/VOC 63 ± 72 11 ± 12 0.18 5 

Saturated HCs (23) m-Ethyltoluene 620-14-4 I/VOC 110 ± 150 23 ± 31 0.41 3 

Saturated HCs (24) 1,3,5-Trimethylbenzene 108-67-8 I/VOC 68 ± 99 14 ± 20 0.44 3 

Saturated HCs (25) o-Ethyltoluene 611-14-3 I/VOC 55 ± 73 11 ± 15 0.41 3 

Saturated HCs (26) 1,2,4-Trimethylbenzene 95-63-6 I/VOC 290 ± 410 60 ± 84 0.41 3 

Saturated HCs (27) 1,2,3-Trimethylbenzene 526-73-8 I/VOC 55 ± 78 11 ± 16 0.42 3 

Saturated HCs (28) m-Diethylbenzene 141-93-5 I/VOC 9.4 ± 14.3 1.7 ± 2.6 0.43 3 

Saturated HCs (29) p-Diethylbenzene 105-05-5 I/VOC 63 ± 98 12 ± 18 0.41 3 

Saturated HCs (30) Undecane (C11) 1120-21-4 I/VOC 53 ± 92 8.3 ± 14.4 0.18 5 

Saturated HCs (31) Dodecane (C12) 112-40-3 I/VOC 31 ± 67 4.5 ± 9.6 0.22 11 

Saturated HCs (32) Tridecane (C13) 629-50-5 I/VOC 56 ± 123 7.4 ± 16.4 0.25 11 

Saturated HCs (33) Tetradecane (C14) 629-59-4 I/VOC 49 ± 71 6.1 ± 8.8 0.32 5 

Saturated HCs (34) Pentadecane (C15) 629-62-9 SVOC 15 ± 11 1.7 ± 1.3 0.26 5 

Saturated HCs (35) Hexadecane (C16) 544-76-3 SVOC 10 ± 10 1.1 ± 1.1 0.22 11 

Saturated HCs (36) Heptadecane (C17) 629-78-7 SVOC 11 ± 10 1.1 ± 1.0 0.21 6 

Saturated HCs (37) Pristane 1921-70-6 SVOC 5.3 ± 4.7 0.48 ± 0.43 0.24 11 

Saturated HCs (38) Octadecane (C18) 593-45-3 SVOC 6.8 ± 6.1 0.66 ± 0.59 0.26 6 

Saturated HCs (39) Phytane 638-36-8 SVOC 2.8 ± 2.3 0.24 ± 0.20 0.24 6 

Saturated HCs (40) Nonadecane (C19) 629-92-5 SVOC 3.90 ± 2.2 0.36 ± 0.20 0.22 10 

Saturated HCs (41) Eicosane (C20) 112-95-8 SVOC 4.0 ± 1.9 0.34 ± 0.17 0.26 4 

Saturated HCs (42) Heneicosane (C21) 629-94-7 SVOC 8.50 ± 4.9 0.70 ± 0.41 0.31 4 

Saturated HCs (43) Docosane (C22) 629-97-0 SVOC 9.0 ± 6.5 0.71 ± 0.51 0.37 2 

Saturated HCs (44) Tricosane (C23) 638-67-5 SVOC 6.3 ± 5.40 0.47 ± 0.41 0.49 2 

Saturated HCs (45) Tetracosane (C24) 646-31-1 SVOC 2.3 ± 2.0 0.16 ± 0.14 0.54 4 

Saturated HCs (46) Pentacosane (C25) 629-99-2 SVOC 4.0 ± 2.8 0.28 ± 0.19 0.43 4 

Saturated HCs (47) Hexacosane (C26) 630-01-3 SVOC 2.1 ± 1.7 0.14 ± 0.11 0.50 4 

Saturated HCs (48) Heptacosane (C27) 593-49-7 SVOC 1.5 ± 1.2 0.09 ± 0.08 0.31 4 

Alk. Acids (49) Octanoic (C8) Acid 124-07-2 SVOC 11 ± 5 1.9 ± 0.8 0.20 4 
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Compound 
Class Compound Index and Name CAS # 

Meas. 
Chan-
nel 

Mean ± S. 
Deviation 
(ng m-3) 

Mean ± S. 
Deviation 
(ppt) 

Highest 
Mass 

Fraction 
& Factor 

Alk. Acids (50) Nonanoic (C9) Acid 112-05-0 SVOC 41 ± 16 6.3 ± 2.5 0.22 4 

Alk. Acids (51) Decanoic (C10) Acid 334-48-5 SVOC 17 ± 7 2.4 ± 1.0 0.24 4 

Alk. Acids (52) Undecanoic (C11) Acid 112-37-8 SVOC 7.8 ± 3.7 1.0 ± 0.5 0.32 4 

Alk. Acids (53) Dodecanoic (C12) Acid 143-07-7 SVOC 12 ± 6 1.5 ± 0.7 0.29 4 

Alk. Acids (54) Tridecanoic (C13) Acid 638-53-9 SVOC 5.8 ± 3.3 0.66 ± 0.38 0.40 4 

Alk. Acids (55) Tetradecanoic (C14) Acid 544-63-8 SVOC 15 ± 8 1.6 ± 0.9 0.31 4 

Alk. Acids (56) Pentadecanoic (C15) Acid 1002-84-2 SVOC 9.5 ± 6.7 0.96 ± 0.68 0.46 4 

Alk. Acids (57) Palmitic (C16) Acid 57-10-3 SVOC 66 ± 63 6.4 ± 6.1 0.26 4 

Alk. Acids (58) Heptadecanoic (C17) Acid 506-12-7 SVOC 24 ± 27 2.1 ± 2.5 0.42 4 

Alk. Acids (59) Stearic (C18) Acid 57-11-4 SVOC 1100 ± 1300 93 ± 116 0.31 4 

Alk. Acids (60) Azelaic (C9) Acid 123-99-9 SVOC 96 ± 115 12 ± 15 0.33 4 

Other (61) C16 acid methyl ester 112-39-0 SVOC 20 ± 14 1.8 ± 1.3 0.20 10 

Other (62) Nonanal 124-19-6 I/VOC 890 ± 1260 150 ± 220 0.25 11 

Terpenoid (63) Isoprene 78-79-5 I/VOC 190 ± 220 68 ± 79 0.73 12 

Terpenoid (64) Camphene 79-92-5 I/VOC 19 ± 22 3.5 ± 3.9 0.29 6 

Terpenoid (65) Camphor 76-22-2 I/VOC 74 ± 60 12 ± 10 0.29 8 

Terpenoid (66) alpha-Pinene 80-56-8 I/VOC 480 ± 1370 87 ± 246 0.35 5 

Terpenoid (67) beta-Pinene 127-91-3 I/VOC 49 ± 54 8.8 ± 9.7 0.25 6 

Terpenoid (68) Limonene 138-86-3 I/VOC 160 ± 300 28 ± 53 0.66 5 

Terpenoid (69) 3-Carene 13466-78-9 I/VOC 18 ± 25 3.3 ± 4.4 0.35 5 

Terpenoid (70) Eucalyptol 470-82-6 I/VOC 310 ± 250 49 ± 40 0.28 8 

Terpenoid (71) Aromadendrene 109119-91-7 SVOC 0.9 ± 0.6 0.10 ± 0.08 0.37 4 

Terpene Ox. (72) Pinic Acid 473-73-4 SVOC 2.5 ± 1.7 0.32 ± 0.22 0.37 8 

Terpene Ox. (73) Pinonic Acid 473-72-3 SVOC 21 ± 15 2.8 ± 1.9 0.52 8 

Other (74) Methyl Salicylate 119-36-8 SVOC 3.3 ± 1.8 0.52 ± 0.29 0.22 8 

Other (75) alpha-Isomethyl ionone 127-51-5 SVOC 0.70 ± 0.99 0.08 ± 0.12 0.45 5 

Other (76) Dibenzofuran 132-64-9 SVOC 1.6 ± 0.9 0.23 ± 0.13 0.21 8 

Other (77) Benzophenone 119-61-9 SVOC 2.9 ± 1.8 0.38 ± 0.24 0.24 8 

Other (78) Phthalic Anhydride 85-44-9 SVOC 0.72 ± 0.53 0.12 ± 0.09 0.42 4 

Plasticizer (79) Dibutyl Phthalate 84-74-2 SVOC 1.2 ± 0.8 0.11 ± 0.07 0.26 4 

Plasticizer (80) Diethyl Phthalate 84-66-2 SVOC 3.7 ± 2.0 0.41 ± 0.22 0.20 10 

Plasticizer (81) Dimethyl Phthalate 131-11-3 SVOC 0.61 ± 0.31 0.08 ± 0.04 0.23 8 



12 
 

Compound 
Class Compound Index and Name CAS # 

Meas. 
Chan-
nel 

Mean ± S. 
Deviation 
(ng m-3) 

Mean ± S. 
Deviation 
(ppt) 

Highest 
Mass 

Fraction 
& Factor 

Plasticizer (82) Benzyl butyl phthalate 85-68-7 SVOC 2.6 ± 1.5 0.20 ± 0.12 0.28 10 

Plasticizer (83) DEHA 103-23-1 SVOC 500 ± 600 33 ± 40 0.62 4 

Plasticizer (84) DEHP 117-81-7 SVOC 10 ± 10 0.7 ± 0.6 0.46 4 

BB (85) Furfural 98-01-1 I/VOC 160 ± 130 41 ± 33 0.29 9 

BB (86) Levoglucosan 498-07-7 SVOC 18 ± 27 2.7 ± 4.1 0.67 9 

BB (87) Galactosan 644-76-8 SVOC 0.6 ± 1.1 0.09 ± 0.17 0.68 9 

BB (88) Mannosan 14168-65-1 SVOC 5.3 ± 8.5 0.81 ± 1.3 0.62 9 

BB (89) Catechol 120-80-9 SVOC 0.7 ± 0.3 0.16 ± 0.07 0.22 4 

BB (90) p-Anisic Acid 100-09-4 SVOC 2.5 ± 1.2 0.41 ± 0.20 0.26 10 

BB (91) 4-Hydroxybenzoic Acid 99-96-7 SVOC 3.1 ± 1.2 0.56 ± 0.21 0.35 1 

BB (92) Vanillin 121-33-5 SVOC 8.2 ± 6.7 1.3 ± 1.1 0.21 9 

BB (93) Vanillic Acid 121-34-6 SVOC 1.0 ± 1.0 0.14 ± 0.14 0.46 9 

BB (94) Syringaldehyde 134-96-3 SVOC 0.9 ± 1.8 0.13 ± 0.24 0.66 9 

BB (95) Syringic Acid 530-57-4 SVOC 0.8 ± 1.0 0.10 ± 0.13 0.59 9 

BB (96) 4-Nitrocatechol 3316-09-4 SVOC 1.7 ± 2.3 0.27 ± 0.37 0.41 9 

Other (97) 2-Nitrophenol 88-75-5 SVOC 1.3 ± 1.2 0.23 ± 0.22 0.25 8 

Other (98) 4-Nitrophenol 100-02-7 SVOC 3.1 ± 2.6 0.54 ± 0.45 0.38 4 

Other (99) Palmitoleic Acid 373-49-9 SVOC 2.8 ± 10.6 0.24 ± 0.93 0.50 3 

Other (100) Phthalimide 85-41-6 SVOC 7.1 ± 2.5 1.2 ± 0.42 0.37 1 

Other (101) 1-Octadecanol 112-92-5 SVOC 6.3 ± 4.3 0.57 ± 0.39 0.31 2 

Other (102) 1-Tridecene 2437-56-1 SVOC 0.6 ± 0.6 0.08 ± 0.08 0.27 11 

Other (103) 2-Tridecanone 593-08-8 SVOC 2.0 ± 1.2 0.25 ± 0.15 0.20 5 

Other (104) Acetone 67-64-1 I/VOC 430 ± 190 180 ± 80 0.23 10 

Other (105) 2-Cyclopenten-1-one 930-30-3 I/VOC 71 ± 22 21 ± 7 0.32 1 

Other (106) Methyl Ethyl Ketone 78-93-3 I/VOC 1700 ± 700 580 ± 250 0.26 4 

PAH (107) Naphthalene 91-20-3 I/VOC 130 ± 130 25 ± 25 0.32 3 

PAH (108) 1-Methylnaphthalene 90-12-0 I/VOC 25 ± 22 4.3 ± 3.8 0.25 3 

PAH (109) 2-Methylnaphthalene 91-57-6 I/VOC 39 ± 44 6.8 ± 7.6 0.30 3 

PAH (110) 2-Methoxynaphthalene 93-04-9 SVOC 1.0 ± 0.9 0.16 ± 0.13 0.33 1 

PAH (111) Acenaphthylene 208-96-8 SVOC 0.7 ± 1.7 0.11 ± 0.27 0.61 3 

PAH (112) Fluorene 86-73-7 SVOC 1.6 ± 1.3 0.24 ± 0.18 0.21 8 

PAH (113) Phenanthrene 85-01-8 SVOC 2.4 ± 2.1 0.33 ± 0.29 0.17 1 

PAH (114) Pyrene 129-00-0 SVOC 0.7 ± 0.9 0.09 ± 0.11 0.32 10 

THM (115) Chloroform 67-66-3 I/VOC 1900 ± 700 380 ± 150 0.33 1 
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Both chloroform and bromoform have atmospheric lifetimes of weeks or more (World Meteorological Organization 

et al., 2019), allowing them to be well-mixed in the troposphere and to therefore have stable concentrations unaffected by 305 

meteorological phenomena such as boundary layer height changes. Chloroform accounts for about 40 % of the total mass of 

Factor 1. 

The other compounds present in this factor have the common characteristics of (1) being constantly present and (2) 

having a weak to nonexistent diurnal variation, but their known sources are distinct and they are much more reactive than 

chloroform and bromoform. 4-hydroxybenzoic acid and p-anisic acid have been identified as tracers for burning of grasses 310 

(Simoneit, 2002) and have an estimated atmospheric lifetime with respect to OH ([OH] = 2 x 106 molecules cm-3 for this and 

every atmospheric lifetime estimate hereafter) of about a day (U.S. EPA, 2022). Phthalimide is a fungicide and insecticide 

degradation product produced in the processing of crops. It may also be formed from phthalic anhydride and primary amino 

groups in the high temperature desorption process just before chromatographic separation, a possibility that we cannot rule 

out (Gao et al., 2019). Phthalimide has an estimated OH lifetime of a few hours (U.S. EPA, 2022). Atmospheric studies of 2-315 

cyclopenten-1-one, which is naturally occurring and biologically significant (PubChem, 2022), and of 2-

methoxynaphthalene, which has industrial sources and uses (European Chemicals Agency, 2022), are lacking. The latter has 

an estimated lifetime with respect to reaction with OH of a few hours (U.S. EPA, 2022). 

These relatively reactive compounds must have constant emission sources to produce timelines with so little 

variability. Agricultural activity may be able to account for 4-hydroxybenzoic acid, p-anisic acid, phthalimide, and 2-320 

cyclopenten-1-one, perhaps from the vineyards approximately 4 to 5 km to the south of the sampling site. 

3.3 Factor 2: Episodic petrochemical source 

Factor 2 (profiled in Fig. 5) is a transient source, elevated during the first few days of the measurement period and 

nearly nonexistent after that. It contains minor contributions from C20–C25 n-alkanes (mass fraction 20–50 %), 1-octadecanol 

(31 %) and some semivolatile phthalates (~25 % each). Winds tend to originate from the west when this factor is high (Fig. 325 

5(c)). 

 The heavy n-alkanes are split between Factors 2 and 4 (oxidized urban and temperature-driven emissions), with 

slightly different distributions; the Factor 2 n-alkanes skew slightly lighter, while Factor 4 includes contributions from C26 

and C27 alkanes. C20–C27 n-alkanes are associated with petroleum-based products (Simoneit, 1999). (Biogenic sources of 

heavy alkanes exhibit a preference for alkanes with an odd number of carbon atoms over those with an even number 330 

(Simoneit, 1989), which is not observed in this dataset, confirming the fossil fuel origin of the n-alkanes.) Two possible 

sources in this study are motor oil (Caravaggio et al., 2007; Mao et al., 2009; Isaacman et al., 2012) and asphalt (Rogge et 

al., 1997; Khare et al., 2020), both of which exhibit temperature-dependent evaporation of alkanes in this carbon number 

range. Since the alkane distribution is different between the two factors, it is reasonable to assume the elevated levels of 

some of these alkanes at the beginning of the campaign represent a different source than the regular afternoon maxima 335 

characteristic of Factor 4. The center of the n-alkane mass distribution in motor oil is typically at C25 or greater, though 
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emissions from cold starts dominate non-methane organic gas emissions from light duty vehicles, with over 45 km of driving 

required to match the initial cold start emissions for over 97 % of light duty vehicles in use in the United States today. The 

morning peaks are correlated with, and enhanced by, cooler temperatures and generally slower wind speeds (Fig. 3). The 380 

shallow planetary boundary layer overnight and absence of sunlight allow NOx and hydrocarbons to build up, raising 

measured concentrations. As the day progresses, the boundary layer rises and wind speeds increase, diluting species near 

ground level, and photochemistry begins, reacting away hydrocarbons and NOx and producing ozone. Late afternoon and 

evening return commutes have greatly reduced emissions because vehicle catalytic converters are already hot by the time 

drivers return to the predominantly residential area surrounding the sampling site. Higher ambient temperatures in the 385 

afternoon also contribute to reduced cold start emissions and greater wind speeds and more rapid oxidative loss prevent what 

emissions are still produced from building up. In the late evening and night, emissions remain low and thus concentrations 

also remain low despite the low boundary layer and lack of photochemistry.  

Factors 5 and 6 and many marker compounds share this general pattern of elevated concentrations exclusively in the 

early morning hours. They are governed by the same large-scale atmospheric processes. Thus while differences exist which 390 

allow them to be separated by the PMF model, which will be discussed in the descriptions for those factors, their overarching 

similarity means the sources are not separated perfectly. For example, palmitoleic acid is primarily a tracer of cooking 

(Rogge et al., 1996; Robinson et al., 2006), yet has its highest mass fraction in this factor, while other cooking tracers appear 

in other factors. Together with the overall similarity in variability between gasoline and cooking markers, palmitoleic acid’s 

low and noisy signal may have caused it to be placed in this factor primarily by the model, even though it does not originate 395 

from the same pollution source. The high uncertainty of palmitoleic acid’s allocation between factors 3, 5, 11 and 13 

(compound 99 in Fig. 2) confirms this. 

D4 and D5 siloxanes have substantial fractions of their mass in this factor (23 % and 27 % respectively). D5 has 

been established as a tracer compound for personal care product emissions (Horii and Kannan, 2008; Wang et al., 2009; 

Coggon et al., 2018). It is also prominent (mass fraction of 28 %) in Factors 5 and 8, which both contain fragrance 400 

compounds commonly found in consumer products, including personal care products. The fact that D5 is present in Factors 

3, 5 and 8 while the fragrance compounds are only present in Factors 5 and 8 could be reflective of different emission rates 

from those products. D5 is found in the greatest concentrations in antiperspirants (Wang et al., 2009); once applied, while 

emissions are highest immediately after application, it evaporates over the course of several hours (Montemayor et al., 2013) 

and has even been directly measured in an engineering classroom in the afternoon (Tang et al., 2015) and outside an 405 

automobile in cabin fan exhaust from human occupants who had applied D5-containing personal care products earlier that 

day (Coggon et al., 2018). Evaporation of monoterpenes and monoterpenoids, which comprise the vast majority of the mass 

of fragrance compounds measured in this study, is likely to happen much faster due to their greater volatility (Hazardous 

Substances Data Bank, 2022). A study of evaporation of 300 μL of essential oils indoors found that most VOC mass, 

including most monoterpene mass, was emitted during the first 30 min (Su et al., 2007). 410 
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DEHA and DEHP are both semivolatile plasticizers found in polyvinyl chloride, commonly found in building 

materials (Liu and Little, 2012; Shi et al., 2018; Bui et al., 2016). Like Factor 4, these two compounds correlate strongly with 

temperature (r = 0.83 for DEHA and r = 0.73 for DEHP), consistent with temperature-dependent emission which has been 

observed in controlled studies (Clausen et al., 2012; Fujii et al., 2003; Liang and Xu, 2014). The heavy alkanes are discussed 

in detail in the Factor 2 (episodic petrochemical source) section. They are known to originate from evaporative, temperature-435 

dependent sources such as motor oil and asphalt, consistent with the temporal profile of Factor 4. 

 The remaining compounds represented in this factor are not likely to originate from evaporative sources, but given 

the consistent winds from the west could represent oxidized emissions transported from the east and south Bay Area. 

Phthalic anhydride is a secondary product of the photooxidation of naphthalene and phthalic acid has been found in 

secondary organic aerosol formed from naphthalene photooxidation (Chan et al., 2009; Kleindienst et al., 2012; Wang et al., 440 

2007). During the study period, conditions for optimal photooxidation (i.e., high solar flux) coincided with periods of high 

temperature, causing these distinct source categories to appear in the same PMF factor. 

 In urban and suburban areas, the n-alkanoic acid homologous series is most often ascribed to cooking emissions 

(Schauer et al., 2002a; Robinson et al., 2006; Allan et al., 2010; Mohr et al., 2012; Yao et al., 2021), but biomass burning, 

motor vehicle exhaust and road dust can all contribute (Schauer et al., 1996; Rogge et al., 1996). The fatty acids also 445 

originate from terrestrial microbial activity (Simoneit and Mazurek, 1982) and marine phytoplankton (Kawamura et al., 

2003), sources that tend to dominate in remote areas (Kawamura et al., 2003; Cahill et al., 2006; Fu et al., 2014; Boreddy et 

al., 2018). Alkanoic acids from cooking exhibit a distinct diurnal profile, with elevated concentrations around dinner time 

and occasionally another similar peak around lunchtime (Allan et al., 2010; Mohr et al., 2012; Dall’Osto et al., 2015; Yao et 

al., 2021). In this study, palmitic (C16) and stearic (C18) acids, which are emitted from meat cooking (Rogge et al., 1991), do 450 

show occasional evening elevated concentrations (not captured in the Factor 4 profile), but the other alkanoic acids do not. 

The defining feature that likely caused the fatty acids to be grouped in this factor is the period of sustained elevated 

concentrations between the evenings of 13 April and 15 April, with almost no diurnal sensitivity (Fig. 8). This temporal 

profile is inconsistent with local emissions from the sources mentioned above, but an elevated regional background 

transported from urban areas to the west could explain the variability. Azelaic acid, the C9 dicarboxylic acid, has similar  455 

sources to the n-alkanoic acids (Kawamura and Bikkina, 2016) and a similar temporal profile to palmitic and stearic acids, 

including brief evening spikes in concentration likely from cooking and the two-day period of elevated concentration. 

The timeline of the sesquiterpene aromadendrene exhibits the same period of sustained elevated concentration as 

the alkanoic acids and azelaic acid. Sesquiterpene emissions from plants are temperature dependent (Duhl et al., 2008; 

Bouvier-Brown et al., 2009). Emission outpaces loss on some days despite aromadendrene’s very high reactivity with ozone 460 

(Pollmann et al., 2005) and the hydroxyl radical (Ng et al., 2007). 
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limonene is the monoterpene typically found in the highest concentrations in fragranced consumer products, the other 

monoterpenes included in this PMF analysis (α-pinene, β-pinene, camphene and 3-carene) are also common components of 

consumer products (Steinemann et al., 2011; Steinemann, 2015). The early morning spikes in concentration just before 

gasoline markers become elevated is consistent with consumer product use by individuals preparing for their day before 510 

starting their cars to drive to work. In contrast, studies reporting monoterpene concentrations in rural or remote locations, 

where biogenic emissions likely dominate, show sustained elevated concentrations throughout the night (Bouvier-Brown et 

al., 2009), not just early morning. 

D5 is also prominent in this factor and, as stated in the discussion of Factor 3, is a tracer for personal care product 

emissions. Methyl salicylate, as the primary component of wintergreen oil, is also used as a fragrance compound 515 

(Lapczynski et al., 2007). α-isomethyl ionone is naturally found in Brewer’s yeast and emitted during fermentation (Loscos 

et al., 2007), but is also commonly produced synthetically and found in cosmetics and personal care products (del Nogal 

Sánchez et al., 2010). There are three breweries about 1.1 km to the southeast of the sampling site and one about 3.5 km to 

the northeast (Fig. 1); given their distance, the low northeastern winds and the presence of other personal care product 

fragrance compounds in this factor it is most likely α-isomethyl ionone measured at the sampling site also originates from 520 

personal care products. Methyl salicylate and α-isomethyl ionone are relatively low-volatility IVOCs, measured on the 

SVOC channel of cTAG. Their presence in this factor contributes to a more comprehensive source profile for consumer 

product emissions than could be obtained with a VOC-only measurement focus. 

 p-Dichlorobenzene is an industrial chemical used as a deodorant and insect repellent, especially in mothballs 

(ATSDR, 2011). It is widely available as a consumer product and is typically placed in enclosed spaces with clothes 525 

vulnerable to moth damage (Chin et al., 2013). Its inclusion in this factor and Factor 8 could be explained by morning 

occupant activity that disturbs and ventilates spaces where p-dichlorobenzene is placed, temporarily increasing their 

emission to the rest of the indoor environment and, in turn, outdoors. It is also possible that general household activity 

correlates with VOC exchange from indoor residences to outdoors, independent of whether occupants are interacting with p-

dichlorobenzene-containing substances. Further highly time resolved studies are needed to assess time-of-day exposure and 530 

transport to the outdoors. 

Dibromochloromethane is a disinfection byproduct found in chlorinated tap water (Krasner et al., 1989). It is also 

produced from marine macroalgae (Manley et al., 1992; Sturges et al., 1992; Carpenter and Liss, 2000), the more important 

source globally (World Meteorological Organization et al., 2019), and is well-mixed in the troposphere, with a lifetime of 70 

days (World Meteorological Organization et al., 2019). One likely source of this compound above the regional background is 535 

the outdoor swimming pool 10 m to the northeast (Fig. 1), which was closed to the public for the season but was nonetheless 

kept filled. Trihalomethane emissions from commercial pools have been extensively documented (Fantuzzi et al., 2001; 

Zwiener et al., 2007; Richardson et al., 2010; Righi et al., 2014; Westerlund et al., 2019). While pool emissions may be 

responsible for elevated concentrations throughout the nighttime when dilution is low, the spikes in concentration in the 

early morning hours are more likely related to human activity. Residential showering has been shown to increase the 540 
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concentration of dibromochloromethane in the bathroom air by 10 μg m-3 or more, depending on its initial concentration in 

the tap water (Kerger et al., 2000). Once ventilated outside, it is plausible that with enough temporally coincident showers in 

nearby residences the concentration measured at the sampling site would increase by the observed 5–10 ng m-3 in the early 

morning hours. 

 The C10–C16 n-alkanes contribute between 15 and 32 % of their mass to this factor. These compounds come chiefly 545 

from gasoline and diesel exhaust or fuel evaporation (Schauer et al., 1999b, 2002b; Gentner et al., 2013; Drozd et al., 2021), 

but use of petroleum distillates in some consumer products is another contributor (McDonald et al., 2018). A consumer 

product source would be the most consistent with the temporal variability and composition of this factor. 

3.7 Factor 6: Primary biogenic and diesel 

Factor 6 (profiled in Fig. 11) is designated primary biogenic and diesel. Three out of the five monoterpenes 550 

measured are shared between this factor and the consumer products factor (camphene, mass fraction 29 %, α-pinene, 32 %, 

and β-pinene, 25 %). The only other major constituents of Factor 6 are a narrow range of semivolatile n-alkanes (C16–C19) 

and pristane and phytane, contributing about 20 to 30 % of their mass. Like Factors 3 (gasoline) and 5 (consumer products), 

Factor 6 is elevated exclusively in the early morning hours. However unlike those two factors, the majority of the signal 

from Factor 6 is confined to one event in the early morning hours of 17 April. Winds were calm (<1 m s-1) and from the 555 

northeast during this event (Fig. 11(c)). 

While most of the measured monoterpene mass is likely due to consumer product emissions (see Factor 5 

discussion), the personal care product tracer D5 contributes no mass to Factor 6. The peak of the early morning event on 17 

April is at 3AM, two hours earlier than the typical diurnal maximum for Factor 5. Therefore this factor is more likely to 

represent concentrated local biogenic emissions. 560 
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When comparing compounds predominantly present in one factor or the other, more volatile, less oxygenated 

compounds are represented in Factor 5, while oxygen-containing IVOCs and larger, semivolatile compounds, many of them 

oxygen-containing, are found in Factor 8. Factor 8 species tend to have longer atmospheric lifetimes as well, with camphor 620 

(Reissell et al., 2001), eucalyptol (Corchnoy and Atkinson, 1990), methyl salicylate (Ren et al., 2020), benzophenone (U.S. 

EPA, 2022), dimethyl phthalate (Han et al., 2014), p-dichlorobenzene (Atkinson and Arey, 1993), dibromochloromethane 

(World Meteorological Organization et al., 2019) and D5 siloxane (Navea et al., 2011) all having lifetimes of over 1 day 

when exposed to typical hydroxyl radical concentrations ([OH] = 2 * 106 molecules cm-3), and likely even longer lifetimes in 

practice when the gas-particle partitioning of the semivolatile organics is taken into account (Kroll and Seinfeld, 2008; 625 

Cousins and Mackay, 2001). In contrast, the compounds in Factor 5 associated with personal care product emissions that are 

not also present in this factor (the monoterpenes) have atmospheric lifetimes of a few hours at most (Atkinson and Arey, 

2003). This is consistent with the diurnal profiles of the two factors: long-lived personal care product compounds, while they 

may be emitted in the early morning, are not fully reacted away during the day and get reconcentrated under the boundary 

layer in the evening, leading to elevated concentrations throughout the night. Short-lived compounds are only observed 630 

during and shortly after their morning emission. 

D4 siloxane has a somewhat greater mass fraction in Factor 8 (29 %) than in Factor 3 (23 %). Like the compounds 

split between factors 5 and 8, D4 has a long atmospheric lifetime (11 days; Navea et al., 2011), likely leading to elevated 

concentrations outside of typical emission times, unlike the gasoline markers that make up the bulk of the mass of Factor 3. 

2-Nitrophenol contributes moderately to Factor 8 (mass fraction 24.8 %). Possible sources are discussed in the Factor 4 and 635 

Factor 9 descriptions. 

3.10 Factor 9: Biomass burning 

Factor 9 (profiled in Fig. 14) represents primary biomass burning emissions. The top mass fraction contributors, in 

order, are galactosan, levoglucosan, syringaldehyde, mannosan, syringic acid, vanillic acid, 4-nitrocatechol, and furfural, all 

tracers of biomass burning (Simoneit et al., 1999; Simoneit, 2002; Bertrand et al., 2018; Finewax et al., 2018). This factor is 640 

consistently elevated exclusively in the nighttime hours. Winds are light (< 1.5 m s-1 except for one data point) and come 

from all directions, but predominantly from the northeast, when Factor 9 is elevated (Fig. 14(c)). 

Wood burning in residences for heat or recreation is a significant source of pollution in the Bay Area, with 25 % of 

primary PM2.5 emissions attributed to residential wood burning annually (Kniss et al., 2017). That fraction rises to 33 % or 

more between November and April (Bay Area Air Quality Management District, 2012; Bhattacharyya, 2022). With average 645 

evening temperatures (19:00 to 21:00 LT) of 10.4 °C during the sampling period, some residential wood burning activity is 

anticipated. While we expect wood burning to occur only early in the nighttime hours before residents go to sleep, the lower 

boundary layer throughout the night traps emissions, keeping concentrations elevated. 
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Figure 16. (a) Factor 11 timeline. (b) Diurnal profile for Factor 11. (c) Rose plot showing correlation of elevated emissions and 
wind direction. (d) Factor 11 composition profile. See Fig. 4 description for further information on how to read this figure. 

 

While little information is available about sources of 1-tridecene specifically, lower molecular weight alkenes come 

from mostly anthropogenic origin in urban areas, specifically mobile sources (Luecken et al., 2012). In this data set, 1-715 

tridecene correlates better with diesel tracers (r ≈ 0.7) than gasoline tracers (r ≈ 0.55), though it is not specifically mentioned 

in speciated diesel composition studies (Rogge et al., 1993; Schauer et al., 1999b; Gentner et al., 2013). Even at its peak, the 

1-tridecene concentration is less than 4 ng m-3 (0.5 ppt). 

3.13 Factor 12: Isoprene 

Factor 12 (profiled in Fig. 17) contains 73 % of the mass of isoprene, and no more than 10 % of the mass of any 720 

other compound. The concentration is elevated between the early morning hours and late evening hours, with a peak in the 

early evening (18:00 LT) and a much smaller peak in the morning (04:00 to 06:00 LT). When the concentration of this factor 

is high, wind speeds are typically elevated and from the west (Fig. 17(c)). 

Isoprene is predominantly of biogenic origin and its emission is light- and temperature-dependent (Guenther, 1997). 

Seasonal output varies greatly, with maximum emission in the summer months (Palmer et al., 2006; Liakakou et al., 2007). 725 

Summertime diurnal concentration profiles of isoprene typically increase from morning to a midday maximum, declining 

again by nightfall, in accordance with its sensitivity to light and temperature. In wintertime when biogenic production is low, 

isoprene has been observed to correlate with pollutants of known vehicle traffic origin in urban areas and is inferred to 

originate from that source (Reimann et al., 2000; Borbon et al., 2001; Lee and Wang, 2006; Hellén et al., 2012; Kaltsonoudis 

et al., 2016).  730 

As spring represents a transition from winter to summer conditions, evidence of both anthropogenic and biogenic 

isoprene is present in Livermore. The small early morning peak is unlikely to be of biogenic origin since it occurs when 

temperatures are coldest and before the sun rises. The peak coincides with those of the traffic markers; restricted to the hours 

of 22:00 to 05:30 LT, isoprene correlates with benzene and several other gasoline markers (methylcyclopentane through p-

diethylbenzene in Table 1). The correlation between benzene and isoprene is shown in Fig. 18. A linear regression of the 735 

data puts the intercept within error of the origin, suggesting no additional sources for isoprene or benzene overnight. The 

slope, which represents an average ratio, is 0.22. Analysis of vehicle emissions measured during dynamometer tests 

performed in 2014 (Drozd et al., 2016) show a median isoprene:benzene ratio of 0.18 with 50 % of the data between 0.14 – 

0.34 (Fig. S10), providing independent support for attributing these isoprene emissions to anthropogenic sources.  
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temporal profiles and are present in different factors, suggesting distinct sources. The clearly separated biomass burning 

factor demonstrates that residential wood burning is still an important source of organic emissions even in the springtime. 

 This analysis underscores the increasing importance of anthropogenic petroleum-derived VOCs from non-mobile 

sources in a suburban environment, an emerging topic of interest in recent years (McDonald et al., 2018). The ability to 

resolve individual isomers at high time resolution proved crucial, as it allowed for (1) the separation of the monoterpenes 790 

between consumer product emissions and a suspected biogenic source, and (2) the distinct categorization and interpretation 

of the nitrophenol and dichlorobenzene isomers. Including VOCs, IVOCs and SVOCs together in a single analysis expanded 

the profiles of some sources dominated by VOCs, such as the IVOCs methyl salicylate and α-isomethyl ionone being 

included in the consumer product factor. Similarly, the secondary oxidation/persistent personal care product emissions factor 

included a mix of SVOCs, stable VOCs and oxygenated VOCs, constituting a unique profile distinct from fresh personal 795 

care product emissions. Measurement of compounds over a wide range of volatilities and oxidation states can allow for more 

detailed source characterization and tracking of atmospheric processes than focusing on VOCs or particulate matter alone. 

 

Data availability. Concentration timelines, positive matrix factorization results, and data for each figure are available from 

the first author upon request. 800 
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