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Abstract 

Accurate, un-biased wetland inventories are critical to monitor and protect wetlands from future harm or land conversion. However, 

most wetland inventories are constructed through manual image interpretation or automated classification of multi-band imagery 

and are biased towards wetlands that are easy to detect directly in aerial and satellite imagery. Wetlands that are obscured by forest 

canopy, occur ephemerally, and those without visible standing water are, therefore, often missing from wetland maps. To aid in 15 

detection of these cryptic wetlands, we developed the Wetland Intrinsic Potential tool, based on a wetland indicator framework 

commonly used on the ground to detect wetlands through the presence of hydrophytic vegetation, hydrology, and hydric soils. Our 

tool uses a random forest model with spatially explicit input variables that represent all three wetland indicators, including novel 

multi-scale topographic indicators that represent the processes that drive wetland formation, to derive a map of wetland probability. 

With the ability to include multi-scale topographic indicators that help identify cryptic wetlands, the WIP tool can identify areas 20 

conducive to wetland formation while providing a flexible approach that can be adapted to diverse landscapes. For a study area in 

the Hoh River watershed in Western Washington, USA, classification of the output probability with a threshold of 0.5 provided an 

overall accuracy of 91.97%. Compared to the National Wetland Inventory, the classified WIP-tool output identified over two times 

the wetland area and reduced errors of omission from 47.5% to 14.1%, but increased errors of commission from 1.9% to 10.5%. 

The WIP tool is implemented as an ArcGIs toolbox using a combination of R and python scripts in ArcGIS.  25 
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1 Introduction 

Wetlands provide a vast array of ecosystem services, including water storage, carbon sequestration, sediment removal, and wildlife 

habitat (Davidson et al., 2019). Despite their value, over 50% of wetlands worldwide have been lost through draining and filling 30 

(Davidson, 2014; Davidson and Finlayson, 2018). Remaining wetlands are surrounded by an increasingly modified landscape that 

can adversely affect both the condition and function of wetlands (Calhoun et al., 2017; Tiner, 2009). An accurate inventory of 

wetland locations is necessary to protect wetlands from further land cover changes and degradation. However, in many regions, 

wetland inventories do not exist or are inaccurate with high errors of omission (Halabisky, 2019). Wetlands under partial or closed 

canopy, ephemeral wetlands that are flooded for only a portion of the year, and wetlands with no visible standing water (i.e. 35 

saturated soils) are often missing from wetland inventories (Halabisky, 2019).  
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On the ground, wetlands are identified by the presence of three wetland indicators; hydrophytic vegetation, surface hydrology (e.g., 

inundation or signs of inundation), and hydric soils (Cowardin, 1979). At the landscape scale, however, wetlands are primarily 

identified using remotely sensed data. Hence, wetland inventories have been commonly created through manual image 40 

interpretation by directly identifying wetland characteristics in imagery (e.g., presence of water) or proxies that represent wetland 

characteristics (e.g., areas of low slope represent areas more likely to be flooded) (Brinson, 1993; Tiner, 1990). In the last decade, 

there have been great strides in mapping wetlands through automated or semi-automated processes using remotely sensed 

multispectral data that provide indicators of hydric soil and hydrophytic vegetation (Dronova, 2015; Halabisky, 2019; Lang and 

McCarty, 2009).  45 

 

However, small, ephemeral wetlands with dense canopy cover are virtually undetectable in aerial imagery (Figure 1). Even in areas 

without dense canopy, trees and topography can create shadows in the imagery that can resemble flooded wetlands and confuse 

automated methods based on spectral features alone. Wetlands with fluctuating water levels or wetlands without visible surface 

water expression may not be easily detected in the imagery due to a mismatch in the image acquisition timing or poor spectral or 50 

spatial image resolution. These cryptic, undetected wetlands can comprise a substantial portion of total wetland area in certain 

landscapes (Creed et al., 2003; Janisch et al., 2011). 

 

With widespread availability of lidar-derived elevation data, topographic information has been increasingly included as an 

indicator of wetland potential in analysis of remotely sensed data. Coincident with lidar availability, development of machine 55 

learning techniques has enabled analysis of large multivariable data sets at both very high spatial resolution (e.g., Ågren et al., 

2021; O'neil et al., 2020; Montgomery et al., 2021; Du et al., 2020) and over very large areas (e.g., Zhang et al., 2023; Woznicki 

et al., 2019). This work seeks to build on those efforts, with a focus on development of new methods to identify difficult-to-

detect, cryptic wetlands. We seek to incorporate the same suite of physical indicators used for ground-based wetland mapping, 

but using remotely sensed data so that these methods can be applied at regional extents. Because those cryptic wetlands are both 60 

difficult to detect with optical or multispectral imagery and typically small, though potentially numerous, we rely on high-

resolution lidar elevation data to resolve intrinsic topographic controls on water flux. Recognizing that topographic features that 

affect water fluxes through a landscape span a large range of spatial extents, we include tools developed to measure topographic 

attributes over multiple length scales.  

1.1 Topographic and hydrologic indices 65 

Cryptic wetlands can be indirectly identified by mapping the hydrologic processes driving wetland inundation patterns (Lang et 

al., 2013; Wu and Lane, 2017). Many studies have shown that delineation of terrain attributes indicative of these processes is 

effective at predicting wetland locations (Lang et al., 2013; Maxwell et al., 2016; O’Neil et al., 2020, 2018), particularly when 

these attributes are calculated using high-resolution lidar elevation data. The primary attributes explored in the literature include 

local topographic position, slope gradient and curvature, the topographic wetness index (TWI), and the cartographic depth-to-70 

water (DTW) (Maxwell et al., 2018). These attributes are calculated using Digital Elevation Models (DEMs), which provide 

point measures of elevation over a regular grid.  

 

Local topographic position provides a measure of vertical position in the landscape and can differentiate between higher and the 

low-lying terrain where wetlands tend to occur. There are a variety of methods to calculate local topographic position (Newman et 75 

al., 2018), all of which involve comparison of the elevation of a DEM grid point to the elevations of all the other grid points within 
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a neighborhood of specified radius. The variety of methods for local topographic position differ in how these comparisons are 

made. The center-cell elevation can be compared to the minimum and maximum elevations or to the mean elevation. That elevation 

difference can then be used directly or normalized by the range of elevations, by the mean, or by the standard deviation. For 

mapping wetland potential, measures of local topographic position are used for identifying landforms where water may tend to 80 

accumulate (Branton and Robinson, 2020; Riley et al., 2017). 

 

Slope gradient and curvature are related to the direction and rate of surface and shallow subsurface water flow across the terrain. 

Water tends to drain quickly from steep slopes and less quickly from lower-gradient slopes. Curvature can indicate areas where 

flow directions converge and where rates of flow decrease, both of which are associated with zones of increased soil moisture 85 

(Fink and Drohan, 2016). 

 

The topographic wetness index is based on a simple conceptual model of shallow subsurface flow  (Beven and Kirkby, 1979). 

The depth of soil saturation at a point, or at a DEM cell, is determined by the amount of water flowing to that cell, the degree of 

convergence or divergence of the topography there, and the effective velocity (the Darcy velocity) of saturated flow through the 90 

soil. Under steady-state rainfall, the amount of water is proportional to the area of the flow tube draining to that DEM cell. The 

effect of topographic convergence is accounted for by dividing that contributing area by the width of a contour line crossed by 

water flowing through the cell, giving the specific contributing area AS. The flow velocity is proportional to the tangent of the 

slope . With these definitions, saturation depth varies with As / tan. The topographic wetness index is defined as TWI = ln(As / 

tan. TWI, also called the Compound Topographic Index (CTI), is used as a topographic indicator of relative soil moisture 95 

(Kopecký et al., 2021). 

 

The cartographic depth to water (DTW) provides an estimated depth from the ground surface to the saturated zone in the soil 

column (Murphy et al., 2007). DTW calculates the elevation difference between a DEM grid point and a nearby location of water 

at the ground surface, such as a river or lake, which are included as inputs in the model. The location of the associated surface-100 

water point is found by repeatedly finding the adjacent DEM cell with the smallest downslope elevation difference, jumping to 

that point, and repeating that procedure until surface water is encountered; that is, the least-cost path using slope as the measure 

of cost. Small DTW values can be good indicators of wetland occurrence (White et al., 2012). Height above the nearest drainage 

(Nobre et al., 2011) offers an alternative method for estimating depth to the saturated zone. This method finds the elevation 

difference between a DEM cell and the surface-water point it drains to based on the downslope flow path traced from each DEM 105 

cell (Rennó et al., 2008).  

 

These terrain attributes in various combinations have all been used for wetland identification. The degree of success and the 

attributes of primary importance vary across studies. This variability reflects intrinsic differences across landscapes (Branton and 

Robinson, 2020), but also differences in the spatial resolution of the data used (Fink and Drohan, 2016), preconditioning of that 110 

data (O’Neil et al., 2018), and the specific topographic attributes examined. Another source of variability are differences in the 

spatial scale of the terrain attributes examined.  
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1.2 Multi-scale indices for complex topographic features 

All of the terrain measures outlined above are dependent on the length scales over which measurements are calculated. For 115 

example, the local topographic position will vary depending on the neighborhood radius used (De Reu et al., 2013). A 

neighborhood spanning 20 meters will differentiate tree-fall pits and mounds (if resolved by the DEM) while a neighborhood 

radius spanning kilometers will differentiate valley floors and ridge tops. Gradient and curvature measured over 5 meters length 

might also detect pits and mounds; gradient and curvature measured over 50 meters will miss those pits and mounds, but will 

detect a broad swale. With measurement of any topographic attribute, it is important to match the scales of the landforms we 120 

wish to detect and of the processes we wish to characterize.  

 

In regions with complex topography, wetlands are found in topographic features that occur at multiple, interconnected scales 

(Bertassello et al., 2018; Wu and Lane, 2017). These scales and the degree of interconnectedness vary across and within landscapes, 

depending on the landforms and hydrologic processes involved with wetland formation. This variability challenges our ability to 125 

use topographic attributes as general indicators of wetland potential. Is a 50-meter-wide depression as important as a 300-meter-

wide depression, or a 1000-meter-wide depression? Does it matter if that 50-meter depression is inside of a 1000-meter depression? 

Likewise, does a depression on a valley floor have the same importance as a depression on a ridge top? Do the relevant scales 

differ across landscapes? To answer such questions, we must examine topographic attributes over multiple spatial scales. 

 130 

1.3 Random Forest 

A large range of factors can be considered for wetlands detection: multispectral imagery, multiple interacting topographic attributes 

over a range of spatial scales, variations in substrate and landuse. Analysis of such large and diverse datasets has benefited from 

the development of machine-learning algorithms that do not require assumptions about the statistical distribution of input data 

(Maxwell et al., 2018). Non-parametric supervised classification approaches to land cover mapping produce more efficient and 135 

accurate results than earlier supervised parametric classification methods (e.g. maximum likelihood) primarily because satellite 

image data values are not normally distributed (Wulder et al., 2019). Random forest modelling is a commonly used non-parametric 

classification method (Breiman, 2001), which allows for the use of multiple, correlated input variables that are not normally 

distributed. These methods are increasingly being used for remote detection of wetlands (Halabisky et al., 2018; Kloiber et al., 

2015; Maxwell et al., 2016; O’Neil et al., 2018; Zhang et al., 2023). 140 

 

1.4 Research Goal 

Our goal was to develop a methodology to map intrinsic wetland potential using spatially explicit proxies for three wetland 

indicators: hydrophytic vegetation, hydrology, and hydric soils. A key objective was to test inclusion of novel multi-scale terrain 

indices as a proxy for hydrologic features of variable shapes and sizes. We used a wetland-indicator framework to ensure 145 

comprehensive inclusion of wetland characteristics in development of a model, reflecting common wetland identification practices 

used by wetland ecologists. Framing model development using this framework (and developing a tool for model building with this 

in mind) helped us ground our approach in wetland ecology, enabling us to more easily bring our domain knowledge into a remote 

sensing solution. We applied and tested this approach in the Hoh River watershed of Northwest Washington State, a particularly 

challenging area to map due to its complex topography, tall and structurally complex forests, and the high variability of wetland 150 

types, including many ephemeral wetlands under dense canopy. We have incorporated the methods outlined here into a flexible 
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ArcGIS toolbox called the Wetland Intrinsic Potential (WIP) Tool to provide an end-to-end workflow that enables users to develop 

proxies of wetland indicators for their area of interest, including a wide range of topographic indices at multiple scales, to evaluate 

those indicators using a random forest model, and to use that model to create maps of wetland potential.  

2 Study area and datasets 155 

Here we define wetlands broadly as wet areas that have one of three wetland indicators; hydric vegetation, hydric soils, or signs of 

inundation for at least two weeks during the growing season. We included both ephemeral and permanent waterbodies such as 

rivers and streams in our wetland definition. This decision was driven by the National Wetland Inventory, which includes open 

water features such as lakes and rivers (Cowardin, 1979). 

2.1 Study area  160 

Data collection and analyses were performed in the middle and lower Hoh River watershed on the Pacific Northwest coast of 

Washington State, USA (Figure 1). The Hoh River watershed contains a broad valley filled with alluvial and alpine glacial deposits, 

with steep alpine zones predominately in marine sedimentary rocks. The main river channel is active and unconfined and has 

formed terraces from previous higher flows. The Hoh River watershed is part of the Olympic temperate rainforest, receiving 

between 2.8 and 4.3 meters of precipitation a year, based on PRISM 30-year normals (https://prism.oregonstate.edu/normals/). 165 

While the majority of the lower watershed has undergone significant impacts from forest harvest, the upper watershed and area 

along the coast are within the Olympic National Park (ONP), where forest harvest is prohibited. The trees of the old-growth forest 

in the ONP can be up to 80 m in height (Harmon and Franklin, 1989), while the lower watershed is dominated by plantation forests 

managed for timber harvest (Pelt, 2001). The wetlands within the Hoh River watershed are diverse, from precipitation-driven peat 

bogs to riparian wetlands driven by stream flow inputs, as well as upland wetlands driven by surface water flows and groundwater 170 

inputs. The National Wetland Inventory identifies 3,084 hectares of wetlands (not including buffered National Hydrography 

Dataset streamlines), which comprises 4.4% of the study area (69,558 hectares). Many of the wetlands are under completely closed 

canopy cover; however, trees in areas of high levels of inundation can display stunted growth.  
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Figure 1. Study area in the Hoh rainforest located in the Pacific Northwest of the United States. Study area shows the variability 175 

in tree height largely determined by a legacy of forestry. National Wetland Inventory (NWI) wetlands are represented as pink 

polygons. Areas within Olympic National Park have not been logged. The photo on the right is a picture taken on the ground of 

the forested wetland shown in the aerial image from the 2017 National Aerial Imagery Program (NAIP) (orange dot). This wetland 

was missed in the NWI and is hard to detect in the aerial imagery. The dark areas in the aerial image are created by shadows from 

trees and are not standing water.  180 

2.2 Data sources 

We used multiple raster and vector datasets as inputs and training data into our random forest model:  

1. 4-band aerial imagery acquired by the National Aerial Imagery Program (NAIP) in 2017 at 1m resolution.  

2. A DEM and digital surface model (DSM) derived from lidar acquired in 2012 and 2013 by Watershed Sciences at 3-foot 

pixel resolution and downloaded from the Washington State Department of Natural Resources Lidar data portal 185 

(https://lidarportal.dnr.wa.gov/). A DSM is a surface model created from the highest hit object in the lidar point cloud. 

Subtracting the DEM from the DSM provides estimates of canopy height.  

3. Two data layers from the United States Department of Agriculture SSURGO soils data for the Hoh River watershed: the 

depth to any restricted layer and the hydraulic conductivity.  
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We used the National Wetland Inventory to create an initial sample training dataset for our preliminary model and for model 190 

output comparison. We removed buffered streamlines added into the NWI from the National Hydrography Dataset (NHD) because 

of the high positional error and the use of a default uniform buffer. Before processing, we re-scaled all of the raster input datasets 

to match a 4m pixel resolution. The reason for re-scaling to a coarser pixel resolution was to reduce processing time, while still 

preserving the resolution needed for wetland identification. 

3 Methods 195 

3.1 Developing proxies for wetland indicators 

As a first step, we identified spatially explicit proxies that represent wetland indicators for hydrophytic vegetation, hydrology, 

and hydric soils that we could either derive from aerial imagery, lidar data, or are freely available (i.e., SSURGO soils) (Figure 

2). This framework provided us with a systematic way to consider the characteristics used to identify wetlands in the field and in 

imagery and determine the ideal proxy that could represent these characteristics as inputs in a random forest model. This 200 

framework also allowed us a way to test which group of indicators was most useful in identifying wetlands. We identified 

datasets that represented proxies based on our own experience and from a thorough literature review. 

 

Figure 2. Input variables used in the random forest model represent proxies of wetland indicators used for wetland identification. 

Topographic indices, calculated at multiple scales, represent areas where water flows and collects. Profile curvature calculated at 205 

three different scales; 50m, 300m, & 1000m scale is shown as an example. 

 

3.1.1 Hydrologic Indicators 

We identified surface water directly in the imagery using the normalized difference water index (NDWI) created from the 2017 

NAIP imagery. The NDWI is a normalized band ratio between the near infrared and green bands that is useful to identify open 210 

water (McFeeters, 1996). We generated the TWI and the DTW indices using the ArcHydro toolbox in ArcPro using permanent 

riverine features and waterbodies in the National Hydrography Dataset as input water features for DTW (O’Neil et al., 2018).  
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In addition to the TWI and the DTW, we explored the use of topographic indices calculated at different length scales.  

Gradient and curvature were calculated using the methodology described by Zevenbergen and Thorne, (1987) in which the shape 215 

of the ground surface at a DEM grid point is interpolated as a smooth polynomial surface that matches elevations of the grid point 

and its eight adjacent points. This methodology was modified to use a circular neighbourhood (Shi et al., 2007) of arbitrary radius, 

with elevations along the circle interpolated from adjacent DEM grid points. This procedure allows estimates of gradient and 

curvature for each DEM point measured over any length scale, down to the DEM grid size. This is similar to the "local quadratic 

regression" described by Newman et al. (2022) but uses a slightly higher-order polynomial with an exact fit to only 9 points, 220 

elevation at the current DEM grid point and elevations at 8 equally spaced points on the circumference of a circle of specified 

radius. This effectively smooths the DEM over the diameter of the circle with no increase in processing time with increasing spatial 

scale, i.e., with larger circle diameters. 

 

Several topographic position indices have been developed to provide different measures of local relief (Newman et al., 2018)). Of 225 

these, deviation from mean elevation (DEV) proved most appropriate for delineating low-lying areas across topographically diverse 

terrain,  DEV = (z-zmean)/,  where z is elevation at the point of measurement, zmean  is the mean elevation within a neighborhood 

of specified radius, and  is the standard deviation of elevation within that neighbourhood (Newman et al., 2018). Positive values 

of DEV indicate the point is higher than the mean of neighboring points (within the specified radius); negative values indicate the 

point is lower. Dividing by the standard deviation – a measure of how variable elevations are within the neighborhood – acts to 230 

normalize DEV values so that depressions in gentle, low-relief terrain, like broad river valleys, are recognized just as well as 

depressions in high-relief terrain, like alpine glacial cirques. 

 

We calculated the topographic indices at five different length scales, 50m, 150m, 300m, 500m, 1000m to approximate the 

variability of topographic features across the landscape. We visually assessed each topographic index at these scales and decided 235 

to only use scales 50m, 300m, and 1000m as they captured the most variability across the landscape and to reduce the number of 

input datasets to improve processing time. 

 

Topographic indices were calculated using compiled Fortan programs from the Netstream program suite (Miller, 2003). These 

programs implement the procedures described above for calculating gradient, curvature, and local relief over any length scale. We 240 

developed an ArcGIS Pro toolbox called DEM Utilities for users to create topographic indices at multiple scales. 

 

3.1.2 Hydrophytic vegetation and hydric soil indicators 

To detect hydric vegetation, we created a normalized difference vegetation index (NDVI) from the 2017 NAIP imagery, rescaled 

to 4 meters. NDVI is a normalized band ratio between the near infrared and red bands that is useful at distinguishing wetland from 245 

non-wetland vegetation, as well as vegetation that may be stressed from inundation (Halabisky, 2011). We created two raster 

datasets from the SSURGO soil database, depth to any restricted layer and the hydraulic conductivity, to differentiate the soil 

properties that influence soil saturation and drainage. 
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3.2 Training Data 

Without knowing the location of forested wetlands a priori, it was difficult to develop an efficient and unbiased sampling design. 250 

Therefore, to aid in placement of points for a training dataset, we used a stratified random sample from a preliminary wetland 

model developed from the National Wetland Inventory (NWI, https://www.fws.gov/program/national-wetlands-inventory) for the 

Hoh River watershed. The preliminary model was based on a random forest model using the topographic indices and trained on 

1000 wetland and 2000 non-wetland locations sampled from the NWI. The preliminary model then consisted of a raster of wetland 

probability with values from 0 to 1. To generate point locations for training the final model, we randomly placed 600 sample points 255 

equally into four strata based on the preliminary wetland probability raster: 0 – 0.25, 0.25 – 0.5, 0.5 – 0.75, 0.75 – 1.0. This provided 

an efficient way to identify potential wetland (high probability) and non-wetland (low probability) areas for a balanced point 

placement, as well as areas where there is high model uncertainty (i.e., probability near 0.5). We felt that stratifying the sample 

points using the preliminary model would reduce potential bias introduced by referencing the NWI better than if we had solely 

used the NWI to create our sample stratification.  260 

 

Each sample point was evaluated by two analysts and labelled as wetland or upland using available datasets, including a hillshade 

and slope index from the lidar DEM, pre-existing wetland inventories including the NWI, NAIP imagery, and Forest Practices 

permits issued by the Washington State Department of Natural Resources, which indicate the presence of wetlands in areas where 

timber harvest occurs. If a point could not be determined as a wetland or non-wetland in aerial imagery or any other available 265 

datasets, it was marked as unknown. The challenge with this approach is that many of the areas with model certainty close to 0.5 

are hard to assess using image interpretation. We made several site visits to ensure that assumptions made in manual image 

interpretation aligned with the ground truth. Ten percent of the points were visited in the field. In 25 cases where the edge of the 

wetland was difficult to determine, the point was moved to an area clearly inside or outside the wetland. We removed 2 points 

because we could not agree on the label.  We were unable to identify any wetlands formed by groundwater expression on slopes 270 

with no channel formation to include in the training or validation dataset. Therefore, we expected that the model could not predict 

or validate the presence of these type of slope wetlands.  

3.3 Random Forest Model 

We used the randomForest package in R (Breiman, 2001) with 598 sample points and 200 trees to train random forest models 

using 19 wetland indicators (Figure 2). We decided to use the most complete model with all 19 input data layers based on 275 

comparison of the out-of-bag error, a bootstrapped validation approach using sub-selections of the training data. The final model 

provided a raster showing the probability that a wetland will be found at each DEM grid cell (Figure 3). The Gini coefficient 

provides a measure of the relative importance of each input indicator in the final model (Figure 4). We classified the wetland 

probability values into a binary classification of upland and wetland classes using a probability threshold of 0.5.  

3.4 Model Validation 280 

The WIP tool outputs the probability that a pixel is a wetland. It does not return a binary classification of wetland or upland that 

could be compared directly to a wetland inventory. To directly compare WIP modeled probabilities to the National Wetland 

Inventory, we classified all pixels with a modeled probability of 0.5 or above as wetland and all others as not a wetland. The choice 

of 0.5 for the classification threshold simply reflects that, based on this model output, these pixels are more likely within a wetland 

than not. A lower threshold would increase the area classified as wetland; a higher threshold would reduce the area. We used this 285 

classification to randomly distribute 100 points within the wetland area and 200 points in the area outside the wetland classification 
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(i.e. upland). We used the same two-person image interpretation process used for the training sample to label the 300 points. We 

moved 5 points because we could not detect the wetland edge and removed one point because the analysts could not agree on a 

label. We used this validation dataset to assess the accuracy of the random forest output and to identify errors of omission and 

commission. 290 

4 Results 

 

Our WIP model classification for the Hoh River watershed identified 6,995 hectares of wetlands using a threshold of 0.5, 2.25 

times the area of wetlands mapped by the NWI (3,084 hectares). Model results for the Hoh River watershed can be viewed in 

detail on an online map available at 295 

https://uw.maps.arcgis.com/apps/mapviewer/index.html?webmap=46889ad0fda44662a95efe1559d3f32. The areas identified as 

wetland had an overall accuracy of 91.97%. The wetland error of commission (false positives) was 10.53% and the error of 

omission (false negatives, missed wetlands) was 14.14%. In contrast, using the same validation points, the current NWI for the 

Hoh River watershed had an overall accuracy of 83.95%, with an error of commission of 1.89% and an error of omission of 

47.47%. 300 

 

Table 1. Accuracy assessment for WIP model based on 299 reference points (wetland = 99, upland = 200). A total of 275 of the 

299 reference points were classified correctly. Wetland commission error was 10.53% and omission error was 14.14%. 

 Reference Data    

  Wetland Upland Total Commission error 

Model 

Results  

Wetland 85 10 95 10.53% 

Upland 14 190 204 6.86% 

Total 99 200   

Omission error  14.14% 5.00% Overall Accuracy = 275/299 (91.97%) 

 

Gradient calculated at a scale of 50m, tree height (derived from lidar), and local elevation with a scale of 300m were identified as 305 

the three variables that contributed the most importance to the model as measured by the Gini importance (Figure 4). Amongst 

categories shown in Figure 2., there were slightly more topographic indices loading strongly as predictors. Less significant metrics 

included the coarser 1000m length scales of topography indices, with the exception of the 1000m gradient metric. Other lower 

metrics of importance included the depth to the restrictive layer and the TWI.  

 310 
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Figure 3. Wetland probability map of the entire study area with three examples: Depressional wetland (a.), peatland (b.), and 

riverine wetland (c.).  

 

Of the 14 labelled wetland points misclassified in the WIP model as upland (errors of omission), 9 of them were within 5 meters 315 

of the WIP wetland classification. Conversely, none of the 50 labelled wetland points misclassified as upland (errors of omission) 

in the NWI model were within 5 meters of the NWI.  
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Figure 4. Gini coefficient output from the WIP tool random forest model, which is a measure of how each variable contributes to 

the homogeneity of the nodes and leaves in the resulting random forest. The variables at the top of the chart contributed the most 320 

to the model results. 

5 Discussion 

The Wetland Intrinsic Potential tool was designed to improve the detection of wetlands with a specific focus on increasing detection 

of cryptic wetlands obstructed by vegetation canopy, influenced by shadows from nearby objects and steep topography, and 

wetlands that do not have visible standing water for some part of the year. Our multi-scale machine learning approach improved 325 

the identification of wetlands that were missed in the existing NWI because of these challenging, yet common remote-sensing 

issues. Using a WIP probability threshold of 0.5 for our validation our model reduced the error of omission by over 33% and the 

overall accuracy increased by 8% compared to the NWI. The increase in overall accuracy from the NWI was driven by the large 

reduction in errors of omission. It is important to keep in mind that the NWI has a minimum mapping unit of 0.5 ha, while our 

WIP tool did not set a minimum mapping and is only limited by the resolution of the input DEM.  330 

 

For our study area, we found that a combination of proxies representing all three wetland indicators contributed to the overall 

model importance. However, indicators for hydrologic features and hydrophytic vegetation contributed the most. Specifically, 

three topographic indices that represent hydrologic features were among the top five input variables. It is unsurprising that 

measurements of gradient contributed the most, as wetlands are found primarily in areas of low slope. Tree height was the second 335 

contributing data layer, which may be driven by both the preference for timber companies to harvest outside of wetlands and the 

stunted height of trees in wetlands. We did notice that while including tree height improved our model, it also led to an increase in 

errors of commissions in harvested areas. Users who are interested in identifying wetlands in areas with timber harvest may choose 

not to include tree height to remove this bias. Measurements of DEV at a scale of 300 was also a top contributing factor, which is 

useful in identifying medium-sized depressions. Proxies for hydric soils did not contribute as much to the model as other wetland 340 

indicator proxies. The hydrologic indicator DTW contributed more than the TWI, however both were lower in importance than 

seven of the multi-scale terrain indices. 
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5 .1 Model error 

Systematic errors can provide clues for improving model performance. An exploration of the misclassified points shows that, for 345 

this study area, zones with the highest commission error are located around the main river channel. This suggests that large 

floodplain and terrace zones should be delineated as categorical variables for input to the random forest model.  Several old river 

terraces in old-growth forest stands were also misclassified as wetlands. Further investigation of these points on the ground suggest 

that these areas are right on the edge of meeting the definition of a wetland.   

 350 

Because the majority of the errors of omission were within 5m of a mapped wetland suggests that the model can identify wetland 

areas but struggles to accurately delineate the wetland boundary. Some wetlands have clear boundaries, while others have a subtle 

wet-dry gradient. In these locations, the edges of wetlands can be hard to delineate on the ground. For wetland types without hard 

boundaries, the wetland probability output may provide more realistic information as it picks up the wet-dry gradient.  Object-

based approaches may help identify wetland boundaries in areas with more distinct wetland boundaries, but would require an 355 

additional step of segmentation (Halabisky et al, 2011). Regardless, while the WIP tool can be useful to aid wetland delineations, 

standard field techniques on the ground are required for precise wetland delineation. We did not include slope wetlands in our 

study because of the difficulty of finding enough samples to train our model for this class of wetlands. We used a threshold of 0.5 

and above to classify wetlands for our accuracy assessment.  If users want to lower errors of omission a lower threshold is 

recommended. Conversely, if users prefer to avoid over mapping, a higher threshold should be selected.  360 

5.2 Extension of model to new locations 

The WIP tool is currently available as an ArcGIS toolbox and provides the ability to calculate multi-scale terrain indices. Our 

wetland indicator framework allowed us to comprehensively assess a full suite of variables for wetland identification, while 

providing a flexible approach that can be adapted to other areas with different topographic features and wetland types. Extension 

of the random forest model to new areas requires new training data, which may limit its applicability. The ability of a model to 365 

predict wetland occurrence depends on how well the data used to train the model represent the range of wetland types and locations 

that exist on the ground. Our intention was not to develop a model that could be extended to new areas without the collection of 

new training data. A model trained on one study area, but run on a different study area, will not produce accurate results if the two 

study areas are dissimilar. The importance of different wetland indicators can vary for different study areas, but often the variables 

themselves will vary in importance as well. For example, in one watershed that contains many surface-water driven wetlands, the 370 

topographic wetness index may be the most important variable that describes the variability between wetlands and uplands, but in 

another study area, DTW may be ranked as a more important contributing variable.  

 

For application of the WIP tool in a new area we recommend re-visiting the wetland indicator framework and consider the wetland 

types in the area of interest and if new remote sensing proxies should be added that we have not considered in our tool. We have 375 

found that local knowledge is a critical component of developing solutions that improve model accuracy by identifying data proxies 

for local conditions. The WIP tool and the wetland indicator framework is designed to be a workflow that can be updated and 

iteratively improved as new applications and datasets are identified. Indeed, for this project the wetland indicator framework 

provided our team a useful framework for testing out existing methods and ultimately led us to identify multi-scale terrain indices 

that helped identify cryptic forested wetlands and improve our model results. For this study, we tested the WIP tool out in one 380 

study area that is considered especially difficult to map. However, the WIP tool has been applied to several new and distinct 

geographies. Seattle city government used the WIP tool to aid in wetland delineation in the Skagit Basin of Washington (Seattle 
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City Light, 2022); the WIP tool was used to map wetlands in the Island of Hawaii (Tanh et al., 2022), where geology was a key 

predictor due to the influence of the volcano.  

 385 

The WIP tool is designed to be both flexible and allow for iterative improvements from inclusion of additional datasets (e.g. 

Sentinel-1 data). New datasets can easily be added into the raster stack of input variables in the ArcGIS toolbox. While our goal 

here was to develop a model with high accuracy and assess multiple wetland indicator proxies, we also realize that our 

comprehensive approach may present hurdles to those in areas where some of the data inputs are unavailable. Here we developed 

a model to optimize for overall accuracy. However, a modified version of the WIP tool with fewer inputs can provide useful results, 390 

especially if the probability gradient does not need to be converted into a hard classification. In cases, where a hard wetland 

classification is not the goal, it may be justifiable to focus only on lidar-derived data inputs as a starting point and include spectral 

or soils data only if out-of-bag error is not adequate.  

 

In this study area, we used a lidar-derived DEM to create our random forest model input datasets. While lidar data is becoming 395 

increasingly more widespread, it is not available everywhere. For areas without lidar coverage, the WIP tool can still be run with 

a DEM that was not created from a lidar acquisition. We have qualitatively tested out models using a 1/3-arc-second National 

Elevation Dataset DEM and an IfSAR-derived DEM and found them both to provide potentially adequate results, although at a 

coarser spatial resolution.  

 400 

While we tested this model in a heavily forested area, we believe the WIP tool could be applied to identify wetlands in other 

landscapes, such as agricultural areas, rangelands, and non-forested areas. However, none of the variables we included in our 

testing captured water movement influenced by human activity, such as water infrastructure, draining, ditching, or damming. 

Therefore, we expect that in areas with high levels of human modification of the hydrology the WIP model may identify areas of 

intrinsic potential and not necessarily areas that meet current definitions of a wetland. 405 

 

Finally, our approach was a pixel-based probability and identifies areas of wetland intrinsic potential. However, others may prefer 

an object-based output (polygons). Object-based segmentation can be run on the WIP tool output to produce polygons and may 

improve results for areas where wetlands have more distinct boundaries.  

 410 

5.3 Future directions 

While the WIP tool is currently available as an ArcGIS toolbox, we are currently working to integrate components of the WIP into 

Esri’s Wetland Identification Model (WIM), a random forest approach for wetland identification similar to the WIP. Like the WIP 

the WIM uses elevation-derived wetland indicators for its baseline implementation (O'neil et al., 2020); O'neil et al. (2019); (O'neil 

et al., 2018), and also accepts other raster-based predictors. WIM is available as part of the Arc Hydro toolset for ArcGIS Pro 2.5 415 

and higher. Specifically, we are working to integrate multi-scale terrain indices and inclusion of point based training data 

(https://community.esri.com/t5/water-resources-blog/wim-updates-for-arcgis-pro-3/ba-p/1233973.  Despite our enthusiasm at 

integrating the WIP into the WIM, we still see value in a stand-alone open-source tool for those without access to ESRI products. 

We are currently working with Digital Earth Africa to develop an open-source python based tool to map wetland intrinsic potential 

using the Open Data Cube (www.digitalearthafrica.org). 420 

https://community.esri.com/t5/water-resources-blog/wim-updates-for-arcgis-pro-3/ba-p/1233973
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5.4 Model availability 

We designed the WIP tools for this project expecting that they will evolve over time. The scripts and software are licensed as open 

source and publicly available. The python and R scripts and any new updates for the DEMutilities and Wetland Tool ArcGIS Pro 

toolboxes are posted to a public github repository at https://github.com/TerrainWorks-Seattle/ForestedWetlands. Bug reports, 

comments, and feature requests for these toolboxes can be submitted by posting an issue on github. The random forest model can 425 

readily accommodate new terrain attributes as explanatory variables and the scripts in the Wetland Tools toolbox can accommodate 

any input grid that can be imported to ArcGIS. We used the R-ArcGIS Bridge to build the Wetland Tools ArcGIS Pro toolbox that 

implement scripts that call R functions to build and apply random forest models.   

6 Conclusion 

Wetland inventories are critical sources of data to support wetland conservation prioritization, land use permitting and regulations, 430 

monitoring, and wetland research. While wetland features may individually be small, collectively they cover vast areas and 

contribute to critical ecosystem services. The omission of a large percentage of wetlands within a region impedes our understanding 

of the total ecosystem services provided by wetlands and how specific land use regulations and policies may impact these services.  

 

Accurate, unbiased wetland inventories are necessary to avoid further degradation and losses of wetlands. The WIP tool was 435 

specifically developed to identify cryptic wetlands that are missing from existing wetland inventories, but can also be applied to 

areas where wetlands have not been mapped well. Our wetland indicator framework, which includes spatial variables representing 

hydrophytic vegetation, hydrology, and hydric soils, can be used to quantify probability of wetland occurrence, including cryptic 

wetlands, with high confidence. The inclusion of novel multi-scale topographic attributes greatly improved model results as they 

were able to capture the variability of topographic features conducive to wetland formation. Our wetland indicator framework 440 

provides a flexible approach that can be adapted to identify diverse wetland types across varied landscapes. We expect that the 

capabilities of the WIP tool will expand over time as users determine the most effective wetland indicators used for identifying 

wetlands in other regions. 

7 Code/Data availability 

The Fortran programs used to build the raster data sets are licensed under the Gnu Public License1, version 3. The python and R 445 

scripts for the DEMutilities and Wetland Tool ArcGIS Pro toolboxes are posted to a public github repository at  

https://github.com/TerrainWorks-Seattle/ForestedWetlands. TerrainWorks maintains all software developed during collaborative 

projects. A comparison between the WIP outputs and the NWI for our study area can be viewed through ArcGIS online map 

https://uw.maps.arcgis.com/apps/mapviewer/index.html?webmap=46889ad0fda44662a95efe1559d3f32c 

8 Author contribution 450 

MH, DM, AJS, and LMM designed the sampling, methods, and model design and MH and AJS carried them out. MH, DM, TB, 

and DL developed the model code and MH performed the simulations. MH prepared the manuscript with contributions from all 
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1 https://www.gnu.org/licenses/gpl-3.0.en.html 

https://github.com/TerrainWorks-Seattle/ForestedWetlands
https://uw.maps.arcgis.com/apps/mapviewer/index.html?webmap=46889ad0fda44662a95efe1559d3f32c
https://www.gnu.org/licenses/gpl-3.0.en.html
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