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Abstract. Lateral inhomogeneity in Earth’s mantle affects the tidal response. In this study, the analytical method for 

determining the effect of lateral inhomogeneity on tidal gravity, presented by Molodenskiy (1980), is introduced. Moreover, 

the current study reformulates the expressions for estimating the lateral inhomogeneity effects with respect to the 

unperturbed Earth and supplements some critical derivation process to enhance the method. The effects of lateral 

inhomogeneity are calculated using several real Earth models. By considering the collective contributions of seismic wave 10 

velocity disturbance and density disturbance, the global theoretical changes of semidiurnal gravimetric factor are obtained, 

which vary from −0.22% to 0.17% compared with those in a layered Earth model, no more than 1/3 of the ellipticity’s effect. 

The gravity changes caused by laterally-inhomogeneous disturbance are also computed, and turn out to be up to 0.16% 

compared with the changes caused by tide-generating potential. The current study tests the importance of lateral 

inhomogeneity and other factors. The results indicate that the rotation, ellipticity, and inelasticity on tidal gravity are the 15 

most dominant factors, the ocean tide loading is the moderate one, and the lateral inhomogeneity is the least but not 

negligible factor, because the three-dimensional effect is comparable with ocean tide loading at some locations. Moreover, 

the amplitude of tidal gravity caused by lateral inhomogeneity is noticeable larger than the precision of superconducting 

gravimeters. 

1 Introduction 20 

Tides induced by gravitational attraction of the sun and moon constantly affect the shape and gravity field of Earth. The 

improvements in measurement techniques allow increasingly precise monitoring of periodic changes in geoid and gravity, 

which are concomitant with solid tides. The precision of the global positioning system (GNSS) and very long baseline 

interferometry (VLBI) in representing surface deformation is up to 1 mm (Petrov and Boy, 2004), and the iGrav 

superconducting gravimeter can detect gravity changes of 10-2 nm/s2 (Rosat and Hinderer, 2018). These observations are of 25 

importance for investigating Earth’s internal structures and dynamic processes (Yuan et al., 2013). Correspondingly, tidal 

theories have been developed to interpret and support the observations. 

The first studies on tidal theory occurred in the early 20th century, with Love (1909) pioneering a method for calculating the 

tidal deformation of a spherically-stratified and non-rotating Earth. Longman (1963), Saito (1967), Farrell (1972), and 
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Takeuchi and Saito (1972) gradually developed the tidal theory by taking account of spherical symmetry, elasticity, and 30 

isotropy of the Earth. Subsequently, Wahr (1981), Wahr and Bergen (1986), Dehant (1987), and de Vries and Wahr (1991) 

presented the expressions for computing the effects of rotation, inelastic mantle, solid inner core, and non-hydrostatic 

structure on the Earth’s tide. Dehant et al. (1999) calculated tidal gravimetric factors for two rotating, non-spherical Earth 

models and determined that the results of an inelastic Earth model with a non-hydrostatic initial state are closer to 

measurements compared with those of an elastic Earth model in hydrostatic equilibrium. The majority of the aforementioned 35 

studies did not consider the direct effects of lateral inhomogeneity in the mantle. Although some studies taken account of 

mantle convection induced by lateral inhomogeneity, the treatments on rheology parameters remained one-dimensional. 

In fact, the occurrence of plumes, volcanoes, large low shear velocity provinces, and other dynamic phenomena demonstrate 

that the interior of the Earth is far from homogeneous but full of large lateral variations. As a result, scientists have used the 

analytical or numerical methods to study solid tidal gravity in a three-dimensional Earth model. Métivier et al. (2006) used a 40 

spectral element method to develop a model of elastogravitational deformation which considers lateral inhomogeneity as 

well as non-hydrostatic pre-stress. Qin et al. (2014) proposed a semi-analytical method to compute solid tidal gravity for a 

laterally-heterogeneous Earth model. Lau et al. (2015) assembled a theoretical framework that permits the simulation of tidal 

deformation in an aspherical Earth model with an arbitrary equilibrium stress field. Tromp and Trampert (2018) 

demonstrated how effects of induced stress may be incorporated in seismic modelling and inversion. Lau and Faul (2019) 45 

developed and validated the method of Wahr and Bergen (1986) using measurements and calculated the effects of 

inelasticity on tidal gravity. All of the aforementioned, indeed, most of the recent tidal studies are based on the work of the 

classical Dahlen and Tromp (2021) book (Theoretical Global Seismology). These studies are mainly based on numerical 

approaches. The numerical approaches have many advantages, e.g., considering the effects of mantle convection and plate 

movements, over analytical approaches. On the other hand, analytical approaches are more flexible when combining with 50 

seismology and gravity models. As a result, it is worthy introducing and developing the analytical approach for calculating 

the effect of inhomogeneity on deformation issues. 

The first efforts of analytical approach started from 1980s by Molodenskiy. Although Molodenskiy (1977, 1980) presented 

analytical expressions for determining changes to the tidal gravimetric factor induced by lateral inhomogeneity, only the 

effects of seismic waves have been considered. Molodenskii and Kramer (1980) based on the work of Molodenskiy (1980) 55 

to evaluate the changes in gravimetric factor for a simple laterally-heterogeneous ocean-land model. After that, Wang (1991, 

1994, 1997) developed the three-dimensional tidal theory more comprehensively and systematically, considering the 

contributions of rotation, spherical asymmetry, visco-elasticity, and lateral inhomogeneity, and discussed the effect of non-

hydrostatic pre-stress, which greatly improved the three-dimensional tidal theory in the field of analytical solution. Fu and 

Sun (2007) developed the tidal theory by determining the effects of laterally varying densities in the mantle on tidal gravity, 60 

and showed that the effects are comparable with those of laterally-varying seismic wave velocities. 

The aim of this study is to present formulae for representing the effects of laterally-inhomogeneity in the mantle on tidal 

gravimetric factors with a new analytical approach (presented by Molodenskiy, 1977, but new for most readers) and to 
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determine whether the effects are comparable with other factors, e.g., rotation, ellipticity, and ocean tide loading. Firstly, the 

analytical expressions for computing the effects of laterally-inhomogeneity on tidal gravimetric factors are presented. Then 65 

the effects of lateral inhomogeneity on gravimetric factors and gravity are computed using various three-dimensional Earth 

models. Finally, the tidal gravity changes caused by laterally-inhomogeneous disturbance are calculated and compared with 

those caused by tide-generating potential, rotation and ellipticity, and ocean tide loading. 

2 Basic Tidal Theory for a One-Dimensional Earth Model 

The tidal theory presented in the current study starts from a system of equations describing an elastic, self-gravitational, and 70 

spherically-symmetrical Earth model. The equilibrium, constitutive, and Poisson equations (Farrell, 1972; Takeuchi and 

Saito, 1972) are: 

𝐿(𝒖,𝛹) = 𝜌𝑔𝒆𝑟(∇ ∙ 𝒖) + 𝜌∇(𝛹 − 𝑔𝑢𝑟) + ∇ ∙ 𝜏 = 0                                                                                                                             (1) 

𝜏 = 𝜆𝐈∇ ∙ 𝒖 + 𝜇(∇𝒖 + (∇𝒖)𝑇)                                                                                                                                                                      (2) 

∇2𝛹 = −4𝜋𝐺(𝛿𝜌) = 4𝜋𝐺∇ ∙ (𝜌𝒖)                                                                                                                                                             (3) 75 

In Equations (1) - (3), 𝒖 is the displacement vector, 𝛹 is the gravitational potential changes, 𝜌 is density, 𝑔 is gravity, 𝒆 is 

unit vector, subscript 𝑟 indicates the radial direction, 𝜏 is stress tensor, or incremental stress with respect to initial static stress 

(Dahlen, 1972; Wang, 1991), 𝜆 and 𝜇 are Lame’s constants, and 𝐺 is Newton’s gravitational constant. Equations (1) - (3) are 

reduced to dimensionless form for convenience. The values of the rheology parameter 𝜆0 , density 𝜌0  at the center and 

gravity 𝑔0 on the surface of the Earth are denoted as the unit rheology parameter, unit density, and unit gravity, respectively. 80 

Displacement 𝒖, stress tensor component 𝜏 ∙ 𝒆𝑟, and potential changes 𝛹 during tidal deformation can be expanded into a 

series of spherical harmonic functions: 

𝒖0 = ∑ ∑ 𝒖𝑛0𝑚0

𝑛0

𝑚0=−𝑛0

∞

𝑛0=0

= ∑ ∑ [𝑦1(𝑟; 𝑛,𝑚)𝑹𝑛0
𝑚0(𝜃, 𝜙) + 𝑦3(𝑟; 𝑛,𝑚)𝑺𝑛0

𝑚0(𝜃, 𝜙)]

𝑛0

𝑚0=−𝑛0

∞

𝑛0=0

                                                           (4) 

𝜏0 ∙ 𝒆𝑟 = ∑ ∑ 𝑻𝑛0𝑚0

𝑛0

𝑚0=−𝑛0

∞

𝑛0=0

= ∑ ∑ [𝑦2(𝑟; 𝑛,𝑚)𝑹𝑛0
𝑚0(𝜃, 𝜙) + 𝑦4(𝑟; 𝑛,𝑚)𝑺𝑛0

𝑚0(𝜃, 𝜙)]

𝑛0

𝑚0=−𝑛0

∞

𝑛0=0

                                                    (5) 

𝛹0 = ∑ ∑ 𝛹𝑛0𝑚0

𝑛0

𝑚0=−𝑛0

∞

𝑛0=0

= ∑ ∑ 𝑦5(𝑟; 𝑛,𝑚)𝑌𝑛0
𝑚0(𝜃, 𝜙)

𝑛0

𝑚0=−𝑛0

∞

𝑛0=0

                                                                                                         (6) 85 

The subscript and superscript 0 indicate variables of the spherically-symmetrical model, distinct from those of the 

spherically-asymmetrical model (see below). The Toroidal component of the model is not considered as Fu and Sun (2007) 

have confirmed that this component makes no contribution to changes in gravity. In Equations (4) - (6), 

𝑹𝑛0
𝑚0(𝜃, 𝜙) = 𝒆𝑟𝑌𝑛0

𝑚0(𝜃, 𝜙)                                                                                                                                                                            (7) 

𝑺𝑛0
𝑚0(𝜃, 𝜙) = [𝒆𝜃

𝜕

𝜕𝜃
+ 𝒆𝜙

1

sin 𝜃

𝜕

𝜕𝜙
] 𝑌𝑛0

𝑚0(𝜃, 𝜙)                                                                                                                                       (8) 90 
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𝑌𝑛0
𝑚0(𝜃, 𝜙) = 𝑃𝑛0

𝑚0(cos 𝜃) {
cos𝑚0𝜙
sin𝑚0𝜙

                                                                                                                                                           (9) 

In Equations (7) - (9), 𝒆𝑟, 𝒆𝜃, and 𝒆𝜙 are unit vectors, 𝑃𝑛0
𝑚0(cos 𝜃) is the Legendre function for degree 𝑛0 and order 𝑚0. The 

use of sine or cosine in Equation (9) is determined in Section 5. 𝑦6(𝑟) is defined as follows according to Longman (1963): 

𝑦6(𝑟; 𝑛,𝑚) = 𝑦̇5(𝑟; 𝑛,𝑚) − 4𝜋𝐺𝜌𝑦1(𝑟; 𝑛,𝑚)                                                                                                                                       (10) 

In Equation (10), the dot indicates a derivative with regard to 𝑟, coefficients 𝑦𝑖(𝑟; 𝑛,𝑚), 𝑖 = 1,… ,6 for specific problems 95 

(not confined to tide) can be determined using the boundary conditions by substituting Equations (4) - (6) and (10) into 

Equations (1) - (3), as shown in Appendix A. 

Gravity variations ∆g(𝑟, 𝜃, 𝜙) consist of the radial derivative of potential changes 𝛹 and the contribution of displacement. 

On the free surface: 

∆g(𝑎, 𝜃, 𝜙) = −
𝜕𝛹

𝜕𝑟
|
𝑎
− 𝛽𝑢𝑟(𝑎, 𝜃, 𝜙)                                                                                                                                                     (11) 100 

In Equation (11), 𝛽 denotes the free-air gravity gradient, 𝑎 is the surface radius, and 𝑢𝑟(𝑎, 𝜃, 𝜙) is the radial displacement. 

According to Sun and Okubo (1993): 

−
𝜕𝛹

𝜕𝑟
|
𝑎
=
𝑔0𝑈𝑑𝑆

𝑎3
∑ ∑ [(𝑛 + 1)𝑦5(𝑎; 𝑛,𝑚)]𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                                                                               (12) 

𝑔0 denotes the gravity on the Earth’s surface, 𝑈 denotes the unit displacement or dislocation, and 𝑑𝑆 denotes an infinitesimal 

surface. Although Equation (12) is proposed for dislocation issues, it’s suitable for tidal issues as well since the numerator is 105 

normalized later. Equation (11) may be rewritten as: 

∆g(𝑎, 𝜃, 𝜙) =
𝑔0𝑈𝑑𝑆

𝑎3
∑ ∑ [(𝑛 + 1)𝑦5(𝑎; 𝑛,𝑚)]𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

−
𝛽𝑈𝑑𝑆

𝑎2
∑ ∑ [𝑦1(𝑎; 𝑛,𝑚)]𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

                             (13) 

for 𝛽 =
2𝑔0

𝑎
, Equation (13) becomes: 

∆g(𝑎, 𝜃, 𝜙) =
𝑔0𝑈𝑑𝑆

𝑎3
∑ ∑ [(𝑛 + 1)𝑦5(𝑎; 𝑛,𝑚)]𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

−
2𝑔0𝑈𝑑𝑆

𝑎3
∑ ∑ [𝑦1(𝑎; 𝑛,𝑚)]𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

                         (14) 

Using the unit of 𝑔0𝑈𝑑𝑆 = 1 and 𝑎 = 1, Equation (14) is simplified as: 110 

∆g(𝑎, 𝜃, 𝜙) = ∑ ∑ [(𝑛 + 1)𝑦5(1; 𝑛,𝑚) − 2𝑦1(1; 𝑛,𝑚)]𝑌𝑛
𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                                                          (15) 

Equation (15) shows that variations in gravity resulting from the tide can be computed by coefficients 𝑦1 and 𝑦5. 

3 Tidal Theory for a Three-Dimensional Earth Model 

Since the Earth is in reality not spherically-symmetrical, the effects of lateral inhomogeneity must be considered. The most 

significant effect is that adding the asymmetric increments δ𝜆(𝑟, 𝜃, 𝜙) , δ𝜇(𝑟, 𝜃, 𝜙) , and δ𝜌(𝑟, 𝜃, 𝜙)  to the spherically-115 
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symmetrical model increases the difficulty in expanding 𝒖 and 𝛹. Consequently, the variations in gravity cannot be directly 

computed. Molodenskiy (1977) resolved this problem based on the perturbation method by separating the effects of 

asymmetrical increments from those of the spherically-symmetrical model, and presented analytical expressions for 

computing the effects of asymmetrical increments on tidal gravity using auxiliary solutions. According to this method: 

𝒖 = 𝒖0 + δ𝒖                                                                                                                                                                                                  (16) 120 

𝛹 = 𝛹0 + δ𝛹                                                                                                                                                                                                (17) 

In Equations (16) and (17), 𝒖0 and 𝛹0 are the unperturbed solutions for the spherically-symmetrical model, δ𝒖 and δ𝛹 are 

the perturbed solutions for asymmetrical increments. 

Similar to Equations (4) and (6): 

δ𝒖 = ∑ ∑ δ𝒖𝑛𝑚
𝑛

𝑚=−𝑛

∞

𝑛=0

=∑ ∑ [𝑦1
∗(𝑟; 𝑛,𝑚)𝑹𝑛

𝑚(𝜃, 𝜙) + 𝑦3
∗(𝑟; 𝑛,𝑚)𝑺𝑛

𝑚(𝜃, 𝜙)]

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                                       (18) 125 

δ𝛹 = ∑ ∑ δ𝛹𝑛𝑚
𝑛

𝑚=−𝑛

∞

𝑛=0

= ∑ ∑ 𝑦5
∗(𝑟; 𝑛,𝑚)𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                                                                                   (19) 

In Equations (18) and (19), 𝑦𝑖
∗(𝑟; 𝑛,𝑚)  are the expanded coefficients of perturbed solutions. The effects of lateral 

inhomogeneity on gravity can be obtained once the coefficients are determined and substituted into Equation (15). In 

contrast to the coefficients of unperturbed solutions, those of perturbed solutions cannot be directly computed using the 

method shown in Appendix A, since the boundary conditions of the coefficients are uncertain. In classical approach, 130 

researchers solved this problem by establishing differential equations (Lau and Faul, 2019; Lau et al., 2015; Métivier et al., 

2006, 2007). Molodenskiy (1977) proposed an analytical method to determine the coefficients basing on the Betti Reciprocal 

theorem, assuming that the effects of lateral inhomogeneity can be replaced by simple external forces on an unperturbed 

Earth. Consequently, the boundary conditions become determinable. By reformulating and perturbating Equations (1) and 

(3): 135 

𝐿𝑖(δ𝒖, δ𝛹) + δ𝐿𝑖(𝒖
0, 𝛹0) = 0                                                                                                                                                                  (20) 

Δ(δ𝛹) = 4𝜋𝐺∇ ∙ (δ𝜌𝒖 + 𝜌δ𝒖)                                                                                                                                                                 (21) 

In Equations (20) and (21), the subscripts 𝑖 = 1,2,3 are the three components of the coordinate system. Here, the auxiliary 

solutions 𝒖𝑖
𝑗
 and 𝛹𝑗 , 𝑗 = 1,2,3 are defined, which are displacement and potential changes of the unperturbed Earth resulting 

from external forces, respectively. These auxiliary solutions have no physical significance, although their forms are similar 140 

to those of pressure (𝑗 = 1), shear (𝑗 = 2), and tidal attraction (𝑗 = 3), since they are purely defined to determine the 

perturbed solutions. The auxiliary solutions satisfy the following equations: 

𝐿𝑖(𝒖
𝑗 , 𝛹𝑗) = 0                                                                                                                                                                                               (22) 

∆𝛹𝑗 = 4𝜋𝐺∇ ∙ (𝜌𝒖𝑗)                                                                                                                                                                                   (23) 

By multiplying Equations (20) and (22) by 𝑢𝑖
𝑗
 and −δ𝑢𝑖, the results over three directions of 𝑖 = 1,2,3 are summarized, and 145 

by integrating the result over the volume: 
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∭𝑢𝑖
𝑗
δ𝐿𝑖(𝒖

0, 𝛹0)𝑑𝜐 + 𝐼 = 0                                                                                                                                                                  (24) 

Therein: 

δ𝐿𝑖(𝒖
0, 𝛹0) = δ𝜌{−∇𝑖𝑉(∇ ∙ 𝒖

0) + ∇𝑖[𝛹
0 + (𝒖0, ∇𝑉)]} + 𝜌[−∇𝑖δ𝑉(∇ ∙ 𝒖

0) + ∇𝑖(𝒖
0, ∇δ𝑉)] + ∇𝑘δ𝜏𝑖𝑘                                 (25) 

𝐼 =∭[𝑢𝑖
𝑗
𝐿𝑖(δ𝒖, δ𝛹) − δ𝑢𝑖𝐿𝑖(𝒖

𝑗, 𝛹𝑗)]𝑑𝜐                                                                                                                                          (26) 150 

In Equations (25) and (26), 𝑉 is the gravitational potential, δ𝑉 is the disturbance of potential resulting from δ𝜌, δ𝜏𝑖𝑘 denotes 

disturbance of stress tensor. In Equation (25), (𝒖0, ∇𝑉) is the inner product.  Note that 𝑔𝒆𝑟 (Equation 1) is replaced with ∇𝑖𝑉 

for the reason that the Earth model is no more spherically symmetric, thus the gravity is no more radially oriented. With 

mathematical work (see details in Appendix B), Equation (26) becomes: 

𝐼 =
4𝜋(𝑛 + 𝑚)!

𝜀𝑚(2𝑛 + 1)(𝑛 − 𝑚)!
∙ {−𝑦1

∗(1; 𝑛,𝑚)𝑦2
𝑗(1) − 𝑛(𝑛 + 1)𝑦3

∗(1; 𝑛,𝑚)𝑦4
𝑗(1) −

1

4𝜋𝐺
𝑦5
∗(1; 𝑛,𝑚)[𝑦6

𝑗(1) + (𝑛 + 1)𝑦5
1(1)]}155 

−∭𝛹𝑗∇ ∙ (δ𝜌𝒖0) 𝑑𝜐 +∬(𝑢𝑖
𝑗
δ𝜏𝑖𝑘 +𝛹

𝑗𝑢𝑘
0δ𝜌)𝑑𝑆𝑘                                                                                        (27) 

therein: 

𝜀𝑚 = {
1   𝑚 = 0
2   𝑚 ≠ 0

                                                                                                                                                                                                     

δ𝜏𝑖𝑘|𝑆 = − [δ𝜇 (
𝜕𝑢𝑖

0

𝜕𝑥𝑘
+
𝜕𝑢𝑘

0

𝜕𝑥𝑖
) + δ𝜆∇ ∙ (𝒖0)δ𝑖𝑘]|

𝑆

                                                                                                                                          

𝑑𝑆𝑘 =
𝑥𝑘
𝑟
𝑑𝑆                                                                                                                                                                                                             160 

According to the divergence theorem, the last term on the right-hand side of Equation (27) becomes: 

∬(𝑢𝑖
𝑗
δ𝜏𝑖𝑘 + 𝛹

𝑗𝑢𝑘
0δ𝜌)𝑑𝑆𝑘 =∭∇𝑘 ∙ (𝑢𝑖

𝑗
δ𝜏𝑖𝑘 + 𝛹

𝑗𝑢𝑘
0δ𝜌) 𝑑𝜐

=∭{−
𝜕𝑢𝑖

𝑗

𝜕𝑥𝑘
[δ𝜇 (

𝜕𝑢𝑖
0

𝜕𝑥𝑘
+
𝜕𝑢𝑘

0

𝜕𝑥𝑖
) + δ𝜆∇ ∙ (𝒖0)δ𝑖𝑘] − 𝑢𝑖

𝑗
∇𝑘δ𝜏𝑖𝑘 + 𝛹

𝑗∇ ∙ (δ𝜌𝒖0) + δ𝜌(𝒖0, ∇𝛹𝑗)} 𝑑𝜐    (28) 

By substituting Equations (25), (27), and (28) into Equation (24) through simple manipulations: 

𝐹𝑗(δ𝜌, δ𝜇, δ𝜆) =
4𝜋(𝑛 + 𝑚)!

𝜀𝑚(2𝑛 + 1)(𝑛 − 𝑚)!
165 

∙ [𝑦1
∗(1; 𝑛,𝑚)𝑦2

𝑗(1) + 𝑛(𝑛 + 1)𝑦3
∗(1; 𝑛,𝑚)𝑦4

𝑗(1) +
1

4𝜋𝐺
𝑦5
∗(1; 𝑛,𝑚)[𝑦6

𝑗(1) + (𝑛 + 1)𝑦5
1(1)]]             (29) 

where: 

𝐹𝑗(δ𝜌, δ𝜇, δ𝜆) =∭

[
 
 
 
 

δ𝜌(𝒖0, ∇𝛹𝑗) + 𝑢𝑖
𝑗
δ𝐿𝑖𝜌(𝒖

0, 𝛹0)
⏞                    

δ𝜌

−δ𝜇 (
𝜕𝑢𝑖

0

𝜕𝑥𝑘
+
𝜕𝑢𝑘

0

𝜕𝑥𝑖
)
𝜕𝑢𝑖

𝑗

𝜕𝑥𝑘

⏞              
δ𝜇

−δ𝜆∇ ∙ (𝒖0)∇ ∙ (𝒖𝑗)⏟            
δ𝜆

]
 
 
 
 

𝑑𝜐                              (30) 

δ𝐿𝑖𝜌(𝒖
0, 𝛹0) = δ𝜌{−∇𝑖𝑉(∇ ∙ 𝒖

0) + ∇𝑖[𝛹
0 + (𝒖0, ∇𝑉)]} + 𝜌[−∇𝑖𝛿𝑉(∇ ∙ 𝒖

0) + ∇𝑖(𝒖
0, ∇δ𝑉)]                                                (31) 
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In Equation (30), the first two terms on the right-hand side are related to δ𝜌 (Fu and Sun, 2007; Wang, 1991). The third and 170 

fourth term are related to δ𝜇 and δ𝜆, respectively (Molodenskiy, 1980). 

According to Equation (29), the following expressions can be considered as boundary conditions for auxiliary solutions to 

calculate the perturbed solutions 𝑦𝑖
∗(1; 𝑛,𝑚). 

1)  𝑗 = 1   𝑦2
1(1) = 1          𝑦4

1(1) = 0          𝑦6
1(1) + (𝑛 + 1)𝑦5

1(1) = 0

2)  𝑗 = 2  𝑦2
2(1) = 0   𝑦4

2(1) =
1

𝑛(𝑛 + 1)
   𝑦6

1(1) + (𝑛 + 1)𝑦5
1(1) = 0

3)  𝑗 = 3    𝑦2
3(1) = 0       𝑦4

3(1) = 0       𝑦6
1(1) + (𝑛 + 1)𝑦5

1(1) = 4𝜋𝐺

                                                                                       (32) 

Note that the above boundary conditions are different from Fu and Sun (2007) because the definitions of 𝑦6 are not the same. 175 

Both unperturbed solutions and auxiliary solutions are determined by integrating the differential equations by Runge-Kutta 

method. The specific treatments on external core and integrating method have been presented by Longman (1963) and Wang 

et al. (2012). 

The following can be derived: 

𝐹𝑗(δ𝜌, δ𝜇, δ𝜆) = 𝑐(𝑛,𝑚) {

𝑦1
∗(1; 𝑛,𝑚), 𝑗 = 1

𝑦3
∗(1; 𝑛,𝑚), 𝑗 = 2

𝑦5
∗(1; 𝑛,𝑚), 𝑗 = 3

                                                                                                                              (33) 180 

𝑐(𝑛,𝑚) = ∬(𝑌𝑛
𝑚(𝜃, 𝜙))

2
𝑑𝑆 =

4𝜋(𝑛 + 𝑚)!

𝜀𝑚(2𝑛 + 1)(𝑛 − 𝑚)!
                                                                                                                      (34) 

The boundary conditions shown in Equation (32) are similar to those of pressure, shear, and tide problems, respectively. But 

actually auxiliary solutions have no physical significance. For the right-hand side of Equation (33), only 𝑦1
∗(1; 𝑛,𝑚) and 

𝑦5
∗(1; 𝑛,𝑚) affect gravity. Once these two terms are determined and substituted into Equation (15), the effects of lateral 

inhomogeneity on surface gravity can be obtained. It should be noted that the special cases of 𝑛 = 0 and 𝑛 = 1 require 185 

further treatment, with a more detailed description in relative studies (Fu and Sun, 2007; Wang, 1991). 

4 Expressions of the Quadrature 𝑭𝒋(𝛅𝝆, 𝛅𝝁, 𝛅𝝀) 

As mentioned above, obtaining the quadrature 𝐹𝑗(δ𝜌, δ𝜇, δ𝜆) is crucial to determine 𝑦𝑖
∗(1; 𝑛,𝑚). 𝐹𝑗(δ𝜌, δ𝜇, δ𝜆)  can be 

decomposed into three parts as: 

𝐹𝑗(δ𝜌, δ𝜇, δ𝜆) = 𝐹𝑗(δ𝜌) + 𝐹𝑗(δ𝜇) + 𝐹𝑗(δ𝜆)                                                                                                                                       (35) 190 

In Equation (35), 𝐹𝑗(δ𝜌), 𝐹𝑗(δ𝜇), and 𝐹𝑗(δ𝜆) correspond to the effects of δ𝜌, δ𝜇, and δ𝜆, respectively. These terms on the 

right-hand side of Equation (35) have been meticulously defined by Fu and Sun (2007), Molodenskiy (1980), and Wang 

(1991). The present study addresses the expressions for the three terms on the right-hand side directly as below: 

𝐹𝑛𝑚
𝑗 (δ𝜆) = −∑ ∑ 𝐴𝑙𝑝𝑛𝑚𝑛0𝑚0

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

∫ 𝜆𝑙𝑝(𝑟)𝑥𝑛𝑛0
(1)(𝑗)(𝑟)𝑑𝑟

1

0

                                                                                                                    (36) 
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𝐹𝑛𝑚
𝑗 (δ𝜇) = −∑ ∑ 𝐴𝑙𝑝𝑛𝑚𝑛0𝑚0

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

∫ 𝑟𝑛+𝑛0𝜇𝑙𝑝(𝑟) [𝑥𝑛𝑛0
(2)(𝑗)(𝑟) + 𝑛𝑛0𝑥𝑛𝑛0

(3)(𝑗)(𝑟) + 𝑛𝑛0(𝑛𝑛0 − 𝑛0 − 𝑛 + 3)𝑥𝑛𝑛0
(4)(𝑗)(𝑟)] 𝑑𝑟

1

0

  (37) 195 

𝐹𝑛𝑚
𝑗 (δ𝜌) = −∑ ∑ 𝐴𝑙𝑝𝑛𝑚𝑛0𝑚0

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

∫ 𝜌(𝑟) {𝛾𝑙𝑝
1 (𝑟) [𝑥𝑛𝑛0

(5)(𝑗)(𝑟) + 𝑛𝑛0𝑥𝑛𝑛0
(6)(𝑗)(𝑟)]

1

0

+ 𝛾𝑙𝑝
2 (𝑟) [𝑥𝑛𝑛0

(7)(𝑗)(𝑟) − 𝑙𝑥𝑛𝑛0
(8)(𝑗)(𝑟) + 𝑛𝑛0𝑥𝑛𝑛0

(9)(𝑗)(𝑟) + 𝑙𝑛𝑥𝑛𝑛0
(10)(𝑗)(𝑟)] + 𝛾𝑙𝑝

3 (𝑟)𝑥𝑛𝑛0
(11)(𝑗)(𝑟)} 𝑑𝑟                     (38) 

𝐴𝑙𝑝𝑛𝑚𝑛0𝑚0 =∬𝑌𝑙
𝑝(𝜃, 𝜙)𝑌𝑛

𝑚(𝜃, 𝜙)𝑌𝑛0
𝑚0(𝜃, 𝜙)𝑑𝑆                                                                                                                                (39) 

{

𝛾1 = δ𝜌/𝜌

𝛾2 = δ𝑔/𝑔

𝛾3 = δ𝑔̇/𝑔̇

                                                                                                                                                                                                   (40) 

In Equations (36) - (38), 𝜆𝑙𝑝(𝑟), 𝜇𝑙𝑝(𝑟), 𝛾𝑙𝑝
1 (𝑟), 𝛾𝑙𝑝

2 (𝑟), and 𝛾𝑙𝑝
3 (𝑟) are spherical harmonic expansion coefficients for δ𝜆, δ𝜇, 200 

δ𝜌/𝜌, δ𝑔/𝑔, and δ𝑔̇/𝑔̇, respectively, 𝑁𝑒 is the convergent degree of the three-dimensional Earth model, 𝑛 and 𝑚 are the 

expansion degree and order for auxiliary solutions, respectively, and 𝑛0  and 𝑚0  are the degree and order for the tidal 

component of interest, respectively. The treatment of 𝐴𝑙𝑝𝑛𝑚𝑛0𝑚0  is shown in Appendix C and definitions of coefficients 

𝑥𝑛𝑛0
(𝑖)(𝑗)(𝑟) can be found in Appendix D. 

Note that Equations (36) - (38) do not contain the effect of non-hydrostatic pre-stress, which arises from transition from a 205 

one-dimensional Earth model to a three-dimensional one. The majority of previous studies considered the effects of non-

hydrostatic pre-stress to be negligible. Molodenskii and Kramer (1980) and Vermeersen and Vlaar (1991) concluded that the 

effects of non-hydrostatic pre-stress resulting from density disturbance together with the effects of density disturbance can be 

neglected since they considered the density disturbance to be much smaller than seismic wave velocity disturbance. Since 

Geller (1988) and Fu and Sun (2007) assumed that the time scales of tidal deformation are much lower than those of 210 

dynamic processes, they considered the Earth to be in a quasi-equilibrium state and that incremental stress is negligible. 

Besides, other results suggest that the effect of non-hydrostatic pre-stress on gravity can be neglected. Wang (1991) 

calculated the perturbation of generalized hydrostatic pressure and considered that it should represent the main contribution 

of non-hydrostatic pre-stress, and the effect is not comparable with those of rotation or ellipticity. Métivier et al. (2007) 

computed the effects of non-hydrostatic pre-stress based on the spectral element method and argued that the effects can be 215 

neglected. Consequently, basing on the above discussion and the fact that non-hydrostatic pre-stress effect cannot be 

determined uniquely by density perturbation for the existence of dynamic topography and plate movement, the non-

hydrostatic pre-stress is not included in this paper. 
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5 Final Formulae for Tidal Gravimetric Factors in a Three-Dimensional Inhomogeneous Earth Model 

Since the expressions for 𝐹𝑗(δ𝜌, δ𝜇, δ𝜆) are determined, the final formulae for the effects of lateral inhomogeneity on 220 

gravity can be obtained using Equations (15) and (33). These effects can be regarded as gravity changes ∆g resulting from 

lateral inhomogeneity respective to the layered Earth. In purpose of decomposing the effects as shown in Equation (35), 

elastic parameters δ𝜆 and δ𝜇 are linked with seismic wave velocities 𝛼 and 𝛽 and density 𝛾1 through a linear relation that 

assumes a kind of thermal relationship (Fu and Sun, 2007): 

δ𝜆 = 2(𝜆 + 2𝜇)𝛼 − 4𝜇𝛽 + 𝜆𝛾1                                                                                                                                                                (41) 225 

δ𝜇 = 2𝜇𝛽 + 𝜇𝛾1                                                                                                                                                                                           (42) 

In above equations, 𝛼 = δ𝑣𝑝/𝑣𝑝, 𝛽 = δ𝑣𝑠/𝑣𝑠, and 𝛾1 = δ𝜌/𝜌. δ𝑣𝑝, δ𝑣𝑠, and δ𝜌 are the spherically-asymmetrical increments 

for P-wave velocity, S-wave velocity, and density, respectively. 𝑣𝑝, 𝑣𝑠, and 𝜌 are mean values of the angle variables with 

regard to 𝑟  for P-wave velocity, S-wave velocity, and density, respectively. As shown in Appendix E, with some 

manipulations, the following is obtained: 230 

∆g(𝜃, 𝜙) =∑ ∑{[∆g𝑝1(𝜃, 𝜙) + ∆g𝑠1(𝜃, 𝜙) + ∆g𝜌1(𝜃, 𝜙)] cos𝑚0𝜙

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

+ [∆g𝑝2(𝜃, 𝜙) + ∆g𝑠2(𝜃, 𝜙) + ∆g𝜌2(𝜃, 𝜙)] sin𝑚0𝜙}                                                                                        (43) 

where, 

∆g𝑝1(𝜃, 𝜙) = ∑
𝐸𝑙𝑝𝑛(𝑝±𝑚0)𝑛0𝑚0
𝑐(𝑛, 𝑝 ± 𝑚0)

𝐼(𝑝, 𝑝 ± 𝑚0, 𝑚0)𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙)∫ 2(𝜆 + 2𝜇)𝑦𝑛(𝑟)𝛼𝑙𝑝(𝑟)𝑑𝑟

1

𝑏

𝑙+𝑛0

𝑛=|𝑙−𝑛0|

                                        (44) 

∆g𝑠1(𝜃, 𝜙) = ∑
𝐸𝑙𝑝𝑛(𝑝±𝑚0)𝑛0𝑚0
𝑐(𝑛, 𝑝 ± 𝑚0)

𝐼(𝑝, 𝑝 ± 𝑚0, 𝑚0)𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙)∫ {2𝜇[𝑧𝑛(𝑟) − 2𝑦𝑛(𝑟)]𝛽𝑙𝑝(𝑟)}𝑑𝑟

1

𝑏

𝑙+𝑛0

𝑛=|𝑙−𝑛0|

                              (45) 235 

∆g𝜌1(𝜃, 𝜙) = ∑
𝐸𝑙𝑝𝑛(𝑝±𝑚0)𝑛0𝑚0
𝑐(𝑛, 𝑝 ± 𝑚0)

𝐼(𝑝, 𝑝

𝑙+𝑛0

𝑛=|𝑙−𝑛0|

±𝑚0, 𝑚0)𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙)∫ 𝜌(𝑟){[𝑞𝑛

1(𝑟) + 𝜆𝑦𝑛(𝑟) + 𝜇𝑧𝑛(𝑟)]𝛾𝑙𝑝
1 (𝑟) + 𝑞𝑛

2(𝑟)𝛾𝑙𝑝
2 (𝑟) + 𝑞𝑛

3(𝑟)𝛾𝑙𝑝
3 (𝑟)}𝑑𝑟

1

𝑏

 (46) 

In Equation (44), ∆g𝑝1(𝜃, 𝜙) is the summation of ∆g𝑝1
+ (𝜃, 𝜙) and ∆g𝑝1

− (𝜃, 𝜙), which correspond to replacing “±” with “+” 

and “−”, respectively. The same treatment is also applied to Equations (45) and (46). The expressions of 𝑦𝑛(𝑟), 𝑧𝑛(𝑟), and 

𝑞𝑛
𝑖 (𝑟), 𝑖 = 1,… ,7 are shown in Appendix E. 240 

As a variational approach is used to transfer volumetric integrals of elastogravitational equations towards simple surface 

integrals (Equations 20, 21, and Appendix B), which means that the Lame’s parameters and density are assumed to be 

continuous within the volume. Yet within the Earth which composes of various interfaces, the parameters are usually 

https://doi.org/10.5194/egusphere-2022-661
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



10 

 

discontinuous. To handle this issue, Equations (44) - (46) are integrated layer by layer. Besides, the core-mantle boundary is 

dealt with the approach of Longman (1963). 245 

In Equations (44) - (46): 

𝐼(𝑝, 𝑝 ± 𝑚,𝑚0) = ∫ cos𝑚0𝜙 {
cos 𝑝𝜙
sin 𝑝𝜙

{
cos(𝑝 ± 𝑚0)𝜙

sin(𝑝 ± 𝑚0)𝜙
𝑑𝜙

2𝜋

0

                                                                                                          (47) 

𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙) = 𝑃𝑛

𝑝±𝑚0(cos 𝜃) {
cos(𝑝 ±𝑚0)𝜙

sin(𝑝 ± 𝑚0)𝜙
                                                                                                                                     (48) 

The expressions of ∆g𝑝2(𝜃, 𝜙), ∆g𝑠2(𝜃, 𝜙), and ∆g𝜌2(𝜃, 𝜙) are the same as those of ∆g𝑝1(𝜃, 𝜙), ∆g𝑠1(𝜃, 𝜙), and ∆g𝜌1(𝜃, 𝜙), 

with the only difference being the replacement of cos𝑚0𝜙 in Equation (47) with sin𝑚0𝜙. The use of the sine and cosine in 250 

the last two terms of Equations (47) and (48) is determined as follows: 

(1) The second factor in Equation (47) is cos 𝑝𝜙 when 𝛼𝑙𝑝(𝑟), 𝛽𝑙𝑝(𝑟), and 𝛾𝑙𝑝
1 (𝑟) are the coefficients of cos 𝑝𝜙, whereas the 

second factor is sin 𝑝𝜙 when 𝛼𝑙𝑝(𝑟), 𝛽𝑙𝑝(𝑟), and 𝛾𝑙𝑝
1 (𝑟) are the coefficients of sin 𝑝𝜙; 

(2) The third factor in Equation (47) is cos(𝑝 ±𝑚0)𝜙 when the first two factors in Equation (47) are both sines or both 

cosines, otherwise the third factor is sin(𝑝 ± 𝑚0)𝜙; 255 

(3) When the third factor in Equation (47) is cos(𝑝 ±𝑚0)𝜙, Equation (48) is written as: 

𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙) = 𝑃𝑛

𝑝±𝑚0(cos 𝜃) cos(𝑝 ± 𝑚0)𝜙                                                                                                                                                 

When the third factor in Equation (47) is sin(𝑝 ± 𝑚0)𝜙, Equation (48) is written as: 

𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙) = 𝑃𝑛

𝑝±𝑚0(cos 𝜃) sin(𝑝 ± 𝑚0)𝜙                                                                                                                                                  

Finally, the changes of gravimetric factor 𝛿1 and phase Φ1 are obtained: 260 

𝛿1(𝜃, 𝜙) =
1

𝛿𝑛0𝑃𝑛0
𝑚0(cos 𝜃)

∑ ∑{∆g1(𝜃, 𝜙) cos𝑚0𝜙 + ∆g2(𝜃, 𝜙) sin𝑚0𝜙}

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

                                                                                     

Φ1(𝜃, 𝜙) =
1

𝛿𝑛0𝑃𝑛0
𝑚0(cos 𝜃)

∑ ∑{∆g2(𝜃, 𝜙) cos𝑚0𝜙 − ∆g1(𝜃, 𝜙) sin𝑚0𝜙}

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

                                                                         (49) 

In Equation (49), ∆g1(𝜃, 𝜙) is the summation of ∆g𝑝1(𝜃, 𝜙), ∆g𝑠1(𝜃, 𝜙), and ∆g𝜌1(𝜃, 𝜙). ∆g2(𝜃, 𝜙) is the summation of 

∆g𝑝2(𝜃, 𝜙), ∆g𝑠2(𝜃, 𝜙), and ∆g𝜌2(𝜃, 𝜙). The gravimetric factor is written as: 

𝛿𝑛0 = 1 −
𝑛0 + 1

𝑛0
𝑘𝑛0 +

2

𝑛0
ℎ𝑛0                                                                                                                                                                 (50) 265 

In Equation (50), ℎ𝑛0 and 𝑘𝑛0 are tidal Love numbers of degree 𝑛0, describing the variations in vertical displacement and 

gravitational potential at the surface, respectively. 
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6 Numerical Results: Effects of Lateral Inhomogeneity 

6.1 Global Distribution of the Theoretical Semidiurnal Tidal Gravimetric Factor 

With the above sections have introduced the analytical solution for determining the effects of lateral inhomogeneity, this 270 

section display the numerical results. The current study adopts the three-dimensional Earth model GyPSuM (Simmons et al., 

2010) to determine the effects of lateral inhomogeneity. The model is developed through simultaneous inversion of seismic 

wave travel times and geodynamic observations. GyPSuM incorporates models of P-wave velocity, S-wave velocity, and 

density, which can be downloaded from the Incorporated Research Institutions for Seismology (IRIS) website 

(http://ds.iris.edu/ds/products/emc-Earthmodels/, Trabant et al., 2012). As mentioned above, the current study also requires 275 

the three-dimensional gravity model and its derivatives for computing. The approaches to obtain gravity model vary between 

different researches. In this study, in light of that the contribution of gravity model is much smaller than those of the seismic 

wave velocity model and density model (Fu and Sun, 2007), the gravity model is determined by directly integrating the 

density model. 

Once the Earth model is identified, the effects of lateral inhomogeneity on semidiurnal gravimetric factors can be computed 280 

with the use of Equation (49). It should be noted that the polar effects are observable in the results, e.g., the values in the 

north and south poles are dramatically larger than other regions. Because the denominator approaches 0 with an increase in 

latitude, the numerical error at polar regions may be amplified. This error has little influence on middle-low latitude regions 

which is the focus of the current study and is hard to avoid. Therefore, the current study shows the results from 75°S to 75°N 

only. 285 

Fig. 1 shows the changes in the semidiurnal gravimetric factors calculated using the GyPSuM P-wave model, S-wave model, 

and density model, which range from −0.24% to 0.32%, −0.33% to 0.21%, and −0.12% to 0.09%, respectively. Fig. 1a and 

1b show similar patterns with generally opposite signs, and this feature is also evident in the results for the previous studies 

(Fu and Sun, 2007; Molodenskii and Kramer, 1980; Wang, 1991). The effects of P-wave velocity disturbance are generally 

positive (negative) under continents (oceans), whereas S-wave velocity disturbance has the opposite effects. Although the 290 

patterns of density disturbance effects are similar with those of S-wave velocity disturbance, the magnitude of the former is 

notably smaller than the later, with a factor of about 0.3. Generally, the gravity is tightly related to density, so the density 

disturbance is supposed to be the most dominant factor. But it seems not the case illustrated by the numerical result. This 

apparently paradox can be attributed to the fact that density disturbance is lower than that of seismic velocity by a factor of 

approximately 0.2 to 0.5 (Karato, 1993). That also partly explains why Molodenskii and Kramer (1980) ignored the density 295 

disturbance effect. The current results suggest that although the density effects are smaller than those of seismic waves, they 

are of the same level (Fu and Sun, 2007). 

Since the effects of density disturbance are smaller than those of velocity disturbances in the condition that the former’s 

input model is smaller than the latter’s, what if the three input models share the same model? To verify this, a simple ocean-

land model is constructed and then used for evaluating the effects of disturbances, based on an ocean function. The ocean 300 
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function is a delta function with values of 1 and 0 for under the ocean and under the continent, respectively (Balmino et al., 

1973). The properties (i.e., seismic wave velocities and densities) under the ocean in the model are 5% higher than those 

under the continent (Fig. 2d). The pattern in Fig. 2d does not strictly show a delta function for the reason that the function 

has been developed in spherical harmonics up to 8 degree before being plotted. 

Figs. 2a-2c illustrate the effects of P-wave velocity disturbance, S-wave velocity disturbance, and density disturbance on 305 

semidiurnal gravimetric factors calculated for the ocean-land model. The patterns are principally consistent with the ocean-

land model as the value under the ocean is distinct from that under the continent. The effects of P-wave velocity, S-wave 

velocity, and density range from −1.2% to 1.1%, −0.5% to 0.8%, and −0.9% to 1.6%, respectively. The numerical results 

demonstrate that when the models are the same, the effects of density disturbance on semidiurnal gravimetric factors are 

larger than those of seismic wave velocity disturbances. 310 

The three kinds of effects as shown in Figs. 1a-1c can then be summed to obtain the total changes in semidiurnal gravimetric 

factor resulting from lateral inhomogeneity (Fig. 1d). The change magnitudes range from −0.18% to 0.09%, similar to those 

calculated by the density model and smaller than those calculated by the seismic wave models. This further confirms that the 

density disturbance is not the negligible contributors to total changes. This is because the effects of the two kinds of seismic 

wave velocity disturbance offset each other as while they have similar distributions with opposite signs. Consequently, 315 

density disturbance has a non-negligible influence on tidal gravity. The total changes are negative in the central Pacific, 

central Eurasia, Australia, South America, North America, and west Africa, while they are positive in east Africa, southeast 

Asia, and northeast Pacific. The largest negative change is in west Africa, whereas the largest positive change is in northeast 

Pacific (Hawaii). The magnitude of the lateral inhomogeneity effect does not exceed 0.5%, which is the maximum effect of 

ellipticity on the gravimetric factor and is considered as the limit of three-dimensional effect (Wang, 1997). The pattern 320 

shows very good consistency with the two large low shear velocity provinces beneath the Africa and the Pacific (Ritsema et 

al., 2011). 

To further research the effects of lateral inhomogeneity on semidiurnal gravimetric factors, other four three-dimensional 

Earth models, i.e., SPani (Tesoniero et al., 2015), SEISGLOB2 (Durand et al., 2017), SGLOBE-rani (Chang et al., 2015), 

and SAW642ANb (Panning et al., 2010) are adopted. Note that some of these models do not contain density model. 325 

Consequently, it’s necessary to convert the seismic wave velocity disturbances to density disturbance. The approach of Fu 

and Sun (2007) is followed to derive the density structure. With the same manipulation as that on GyPSuM, the changes in 

gravimetric factors calculated by other models are obtained (Fig. 3). 

Considering the results shown in Figs. 1d and 3, it can be concluded that both the magnitudes and the overall patterns of the 

changes calculated by various three-dimensional Earth models are very similar. But in light of that the tidal theory is based 330 

on perturbation method, even subtle discrepancies between the three-dimensional Earth models may result in remarkable 

changes of gravimetric factors. Differences are found at few regions (the east Africa, southeast Pacific, south Indian Ocean, 

and Tibetan Plateau). For instance, the magnitude at the Tibetan Plateau calculated by the SPani (Fig. 3a) is much larger than 

that calculated by the GyPSuM (Fig. 1d). Sun et al. (2019) found that the special tectonic setting in the Tibetan Plateau has a 
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significant influence on tidal gravimetric factors, which means that the result calculated by SPani is more convincible. The 335 

lithosphere stresses evaluated by Wang et al. (2015) also confirm that the SPani has a better fitness with observations than 

the GyPSuM in the Tibetan Plateau. Furthermore, maximum negative values are found at Africa and the Pacific (Fig. 3a), 

where the two large low shear velocity provinces might locate. The results indicate that tidal tomography contribute to 

constrain Earth’s deep structure (Lau et al., 2017; Wang, 1991). Despite the fact that Fu and Sun (2007) used a relatively old 

Earth model, close agreement between the current results and Fu and Sun’s (2007) results are found (Appendix F). 340 

Compared to the results of Fu and Sun (2007), the pattern of this study is more consistent with the distribution of tectonic 

zones. In particular, relatively large magnitudes are found at major subduction belts (the southeast Asia and west North 

America) and seismic wave low-velocity anomalies (Africa and the Pacific). Besides, the pattern of this study, to a certain 

extent, is consistent with the upper mantle results of Métivier and Conrad (2008). The total results of Métivier and Conrad 

(2008) are more closely related to the large-scale geodynamics activities because they considered dynamic topography. 345 

6.2 Global Distribution of the Theoretical Semidiurnal Tidal Gravity 

In order to explore the effects of lateral inhomogeneity on tidal gravity (rather than gravimetric factors), the semidiurnal 

gravity changes are computed with one-dimensional tidal theory and three-dimensional theory, respectively. In one-

dimensional tidal theory, the gravity change caused by tide-generating potential can be presented by the following 

expression. 350 

∆𝑔0(𝜃, 𝜙, 𝑡) =
2𝑉0
𝑎
𝛿𝑛0𝑃𝑛0

𝑚0(cos 𝜃) cos(𝜎𝑡 − 𝑚0𝜙)                                                                                                                            (51) 

In three-dimensional tidal theory, the gravity change caused by seismic wave velocity disturbance and density disturbance 

can be written as 

∆𝑔3−𝐷(𝜃, 𝜙, 𝑡) =
2𝑉0
𝑎
∑ ∑{∆g1(𝜃, 𝜙) cos𝑚0𝜙 + ∆g2(𝜃, 𝜙) sin𝑚0𝜙}

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

cos(𝜎𝑡 − 𝑚0𝜙)                                                      (52) 

where, ∆g1(𝜃, 𝜙) and ∆g2(𝜃, 𝜙) are defined in Equation (49). To observe the maximum effects of lateral inhomogeneity, 355 

let’s take cos(𝜎𝑡 − 𝑚0𝜙) = 1, then Equation (52) is simplified as 

∆𝑔3−𝐷(𝜃, 𝜙) =
2𝑉0
𝑎
∑ ∑{∆g1(𝜃, 𝜙) cos𝑚0𝜙 + ∆g2(𝜃, 𝜙) sin𝑚0𝜙}

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

                                                                                       (53) 

Aiming at comparing the differences between the ∆𝑔0 and ∆𝑔3−𝐷, it’s assumed that 
2𝑉0

𝑎
= 1 and 𝑡 = 0 for simplicity in the 

numerical process. Basing on the PREM and the GyPSuM, semi-diurnal tidal gravity changes resulted from tide-generating 

potential and lateral inhomogeneity are calculated, respectively (Fig. 4). The results indicate that the gravity variations 360 

attributed to the disturbance are about 0.16% compared with those attributed to the one-dimensional tide-generating potential. 

Both current and Wang’s (1991) results show negative values at the central Pacific and positive values at the east Africa and 
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southeast Asia. Whereas discrepancies between the two studies exist at the South America and Atlantic, resulted by different 

Earth models and Wang’s (1991) consideration of other factors which may affect the tidal gravity. 

Analogous to the research on gravimetric factors, the gravity changes are calculated with uses of different three-dimensional 365 

Earth models as well (Fig. 5). Basically, the results calculated by all five three-dimensional Earth models are characterized 

by positive values at the east Africa, southeast Asia, northeast Pacific, and north Atlantic, and negative values at the west 

Africa, Australia, and South America. Besides the patterns, the magnitudes of the results calculated by different models are 

very close as well, varying from -0.0048 to 0.0037. Métivier and Conrad (2008) stated that the effects of mantle 

heterogeneities on body tides are of order 1‰, consistent with the current result (no more than 2‰). The deviation may be 370 

resulted from the lack of dynamic topography, which would partly diminish the effects of laterally-inhomogeneous density. 

The effects of dynamic topography shall be considered in further research. 

7 Relative Contributions of Lateral Inhomogeneity and Other Effects 

Besides the lateral inhomogeneity, inertia and ellipticity, inelasticity, and ocean tide loading contribute to the Earth tide as 

well. This study tests the importance of these factors on the M2 tidal gravimetric factor. To achieve this, the measurements 375 

of 15 superconducting gravimeters located at Boulder (America), Cantley (Canada), Canberra (Australia), Esashi (Japan), 

Matsushiro (Japan), Syowa (Antarctica), Wuhan (China), Membach (Belgium), Metsahovi (Finland), Potsdam (Germany), 

Strasbourg (France), Vienna (Austria), Lhasa (China), Lijiang (China), Djougou (Benin) are collected (Boy et al., 2003; 

Hinderer et al., 2020; Sun et al., 2019). The station information and corresponding M2 factors are listed in Table 1. 

𝛿𝑚 in Table 1 is the measured M2 tidal gravimetric factor. All of these measurements are extracted from gravity records 380 

longer than two years. Δ𝛿𝑒 is the M2 factor’s change resulting from rotation and ellipticity respective to the layered Earth, 

corresponds to the latitude dependence of the gravimetric factor (Dehant et al., 1999). The Δ𝛿𝑒 results are in good agreement 

with Wang’s (1994) quasi-constant effect of inertia and ellipticity on Earth tides, which is 0.00395. Δ𝛿3𝐷, namely, 𝛿1 in 

Equation (49), is the M2 factor’s change resulting from three-dimensional lateral inhomogeneity, calculated by the GyPSuM 

model. 385 

According to Table 1, Δ𝛿3𝐷 at most stations are one magnitude larger than the errors, indicates that these effects can be 

detected by superconducting gravimeters and tidal analysis, without considering the poorly understood noise. Δ𝛿3𝐷  at 

European stations are generally very small, consistent with the small tide anomalies reported by Métivier and Conrad (2008), 

especially for Membach and Metsahovi, where the Δ𝛿3𝐷 are basically at the same level with error. Djougou and Syowa show 

the largest Δ𝛿3𝐷. The former may be affected by the large low shear velocity province beneath the Africa, whereas the latter 390 

may be partly resulted from polar effects. The largest Δ𝛿3𝐷  value is about 1/3 of Δ𝛿𝑒 , indicates that the rotation and 

ellipticity on semidiurnal gravimetric factor should be the major factor to be considered, and the lateral inhomogeneity is the 

minor but not negligible factor. 
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Besides the tidal gravity changes for a single instant in time (Figs. 4 and 5), evolution of tidal signals are presented to 

compare the relative contributions of lateral inhomogeneity and other effects (Fig. 6). The time evolution of four stations are 395 

predicted with the use of Tsoft tide-generating program (Van Camp and Vauterin, 2005). These selected stations are Boulder 

(central North America, the first column in Fig. 6), Syowa (Antarctica, the second column in Fig. 6), Lhasa (Tibetan Plateau, 

the third column in Fig. 6), and Djougou (west Africa, the forth column in Fig. 6). The time evolution is from September 1st 

to 16th, close to the equinox, when the tidal gravity is supposed to be the maximum. The tidal gravity shown in the first row 

in Fig. 6 is synthetized by the observed gravimetric factors reported by previous studies (Boy et al., 2003; Hinderer et al., 400 

2020; Sun et al., 2019). The second row in Fig. 6 presents the gravity difference between DDW99 theoretical tide (Dehant et 

al., 1999) and a spherical non-rotating elastic isotropic Earth’s tide (PREM), corresponds to the effects of rotation, ellipticity, 

inelasticity, non-hydrostatic structure, and other relative effects. The third row in Fig. 6 presents the ocean tide loading effect 

calculated by the latest version of the TPXO9-atlas model (https://www.tpxo.net/global/tpxo9-atlas). The fourth row in Fig. 

6 illustrates the lateral inhomogeneity effect calculated by the SPani model. 405 

The observed tidal gravity basically varies from -1200 to 1000 nm/s-2. The Syowa and Djougou, where locate in the polar 

and equatorial band, respectively, have the smallest and largest amplitudes (Figs. 6b and 6d). The effects of rotation, 

ellipticity, inelasticity, and non-hydrostatic structure are about tens of nm/s-2. Attributed to the very high latitude, the Syowa 

has the most significant rotation and ellipticity effect (Fig. 6f). Besides, Syowa is the station most affected by the ocean tide 

loading (Fig. 6j), the effect is up to nearly 70 nm/s-2. Conversely, Lhasa is almost unaffected by the ocean tide (Fig. 6k), 410 

compared with the other stations, the effect is only several nm/s-2. As for the lateral inhomogeneity effect, Figs. 6m and 6n 

suggest that the effect is about 0.05% of the total tidal signal in regions where seismic wave velocity and density anomalies 

are not very large, such as Boulder and Syowa. For Lhasa and Djougou, where has very special tectonic setting and 

significantly laterally-inhomogeneous structure, the effect is about 0.1% of the total magnitude (Figs. 6o and 6p). The 

amplitudes of lateral inhomogeneity are in good coherence of the <1‰ result of Métivier and Conrad (2008), although the 415 

current study excludes the effect of dynamic topography. The results shown in Fig. 6 indicate that the rotation, ellipticity, 

inelasticity, and non-hydrostatic structure on tidal gravity are the most dominant factors, the ocean tide loading should be a 

moderate factor, and the lateral inhomogeneity is the least but not negligible factor, for the reason that the lateral 

inhomogeneity effect is comparable with ocean tide loading at some locations. Moreover, the amplitude of tidal gravity 

caused by lateral inhomogeneity is noticeable larger than the precision of superconducting gravimeters (Rosat and Hinderer, 420 

2018). 

8 Conclusions 

Three-dimensional tidal theory has been well developed in analytical approach by Fu and Sun (2007), Molodenskiy (1980), 

Wang (1991), and others. The present study develops the theory by reformulating the expressions and supplementing some 

critical derivation process. The present study calculates changes to semidiurnal tidal gravimetric factors using the three-425 
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dimensional Earth models (GyPSuM, SPani, SEISGLOB2, SGLOBE-rani, and SAW64ANb). The results calculated by the 

ocean-land model indicate that the effects of seismic wave velocity disturbance, and density disturbance are at the same level 

when the same input Earth model is used. Within the results of GyPSuM, the changes to the gravimetric factor resulting from 

the lateral inhomogeneity of P-wave velocity, S-wave velocity, and density are in the ranges of −0.24% to 0.32%, −0.33% to 

0.21%, and −0.12% to 0.09%, respectively. When adding the three kinds of contributions, the total changes to the 430 

gravimetric factor are obtained. The total changes are negative in the central Pacific, central Eurasia, Australia, North 

America, South America, and Africa, and positive in east Africa, southeast Asia, and northeast Pacific. The changes vary 

from −0.18% to 0.09% (-0.22% to 0.17% for other three-dimensional Earth models) compared with the values of a one-

dimensional Earth model. The effects of P-wave velocity disturbance and S-wave velocity disturbance offset each other as 

while they have similar distributions with opposite signs. Consequently, density disturbance has a non-negligible influence 435 

on tidal gravimetric factor. 

Besides the gravimetric factor, this work studies the tidal gravity change caused by laterally-inhomogeneous disturbance as 

well. The results indicate that the maximum gravity variations attributed to the disturbance are about 0.16% compared with 

those attributed to the one-dimensional tide-generating potential. The gravity change results show positive values at the east 

Africa, southeast Asia, northeast Pacific, and north Atlantic, and negative values at the west Africa, Australia, and South 440 

America. Although the magnitude of the gravity change is similar to that of Métivier and Conrad (2008), the pattern cannot 

be all the same with their result. The lack of dynamic topography in this study may account for the difference, and it shall be 

taken into consideration in further research. 

Furthermore, this study tests the importance of lateral inhomogeneity and other factors, namely, inertia and ellipticity, 

inelasticity, and ocean tide loading, on the M2 tidal gravimetric factor and tidal gravity. The maximum M2 factor variation 445 

caused by perturbation is about 1/3 of the ellipticity’s effect, indicates that the rotation and ellipticity on semidiurnal 

gravimetric factor should be the major factor, and the lateral inhomogeneity is the minor but not negligible factor. The tidal 

gravity variations due to lateral inhomogeneity are about 0.05% to 0.1% of the observed signal, namely, about 0.5 to 2 nm/s-2, 

significantly larger than the precision of superconducting gravimeters. 
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Appendix A: Algorithms for Coefficients 𝒚𝒊(𝒓) 465 

Determining coefficients 𝑦𝑖(𝑟), 𝑖 = 1,… ,6 is the key process to obtain the solutions of Love numbers and Green’s functions. 

The explicit expressions for calculating 𝑦𝑖(𝑟) have been presented by many researchers (Longman, 1963; Sun and Okubo, 

1993; Wang et al., 2012). Although deviations of definitions and treatments exist in different papers, the final results are 

basically the same. Here the expressions proposed by Longman (1963) are addressed. According to definition, 𝑦𝑖(𝑟) satisfies: 

𝑦̇1(𝑟) = −
2𝜆

𝜆 + 2𝜇

𝑦1(𝑟)

𝑟
+
𝑦2(𝑟)

𝜆 + 2𝜇
+ 𝑛(𝑛 + 1)

𝜆

𝜆 + 2𝜇

𝑦3(𝑟)

𝑟
                                                                                                           (A1) 470 

𝑦̇2(𝑟) = [−4𝐶𝜌𝑔𝑟 +
4𝜇(3𝜆 + 2𝜇)

𝜆 + 2𝜇
]
𝑦1(𝑟)

𝑟2
−

4𝜇

𝜆 + 2𝜇

𝑦2(𝑟)

𝑟
+ 𝑛(𝑛 + 1) [𝐶𝜌𝑔𝑟 −

2𝜇(3𝜆 + 2𝜇)

𝜆 + 2𝜇
]
𝑦3(𝑟)

𝑟2
+ 𝑛(𝑛 + 1)

𝑦4(𝑟)

𝑟

− 𝐶𝜌𝑦6(𝑟)                                                                                                                                                                     (A2) 

𝑦̇3(𝑟) = −
𝑦1(𝑟)

𝑟
+
𝑦3(𝑟)

𝑟
+
𝑦4(𝑟)

𝜇
                                                                                                                                                           (A3) 

𝑦̇4(𝑟) = [𝐶𝜌𝑔𝑟 −
2𝜇(3𝜆 + 2𝜇)

𝜆 + 2𝜇
]
𝑦1(𝑟)

𝑟2
−

𝜆

𝜆 + 2𝜇

𝑦2(𝑟)

𝑟
+

2𝜇

𝜆 + 2𝜇
[𝜆(2𝑛2 + 2𝑛 − 1) + 2𝜇(2𝑛2 + 2𝑛 − 1)]

𝑦3(𝑟)

𝑟2
− 3

𝑦4(𝑟)

𝑟

− 𝐶𝜌
𝑦5(𝑟)

𝑟
                                                                                                                                                                    (A4) 475 

𝑦̇5(𝑟) = 𝐵𝜌𝑦1(𝑟) + 𝑦6(𝑟)                                                                                                                                                                          (A5) 

𝑦̇6(𝑟) = −𝑛(𝑛 + 1)𝐵𝜌
𝑦3(𝑟)

𝑟
+ 𝑛(𝑛 + 1)𝐵𝜌

𝑦5(𝑟)

𝑟2
− 2

𝑦6(𝑟)

𝑟
                                                                                                         (A6) 

In Equations (A1) - (A6), 
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{
𝐵 = 4𝜋𝐺𝜌0𝑎/𝑔0
𝐶 = 𝜌0𝑔0𝑎/𝜆0

                                                                                                                                                                                         (A7) 

𝐺  is Newton’s gravitational constant, 𝜌0  and 𝜆0  are density and rheology parameter at the centre of Earth, 𝑎 and 𝑔0  are 480 

radius and gravity on the surface of Earth. 𝑦𝑖(𝑟) can be determined by integrating the differential equations from initial value 

to surface by Runge-Kutta method (Longman, 1963), with the help of following boundary conditions, 

{

𝑦2(𝑎) = 0

𝑦4(𝑎) = 0

𝑦6(𝑎) + (𝑛 + 1)𝑦5(𝑎) = 2𝑛 + 1

                                                                                                                                                          (A8) 

Appendix B: Treatment of integral 𝑰 

The expression 𝐼 is an integral of combination of perturbation solution and auxiliary solution 𝑢𝑖
𝑗
𝐿𝑖(δ𝒖, δ𝛹) − δ𝑢𝑖𝐿𝑖(𝒖

𝑗, 𝛹𝑗). 485 

Equation (26) may be reduced to a surface integral by integrating by parts: 

𝐼 =∭[
𝜕

𝜕𝑥𝑘
(𝑢𝑖

𝑗
δ𝜏𝑖𝑘 − δ𝑢𝑖𝜏𝑖𝑘

𝑗
) − δ𝜏𝑖𝑘

𝜕𝑢𝑖
𝑗

𝜕𝑥𝑘
+ 𝜏𝑖𝑘

𝑗 𝜕δ𝑢𝑖
𝜕𝑥𝑘

+
𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖

𝑗
𝜓∗ − 𝜌δ𝑢𝑖𝜓

𝑗) − 𝜓∗
𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖

𝑗
) + 𝜓𝑗

𝜕

𝜕𝑥𝑖
(𝜌δ𝑢𝑖)

+ δ𝑢𝑖
𝜕

𝜕𝑥𝑖
(𝜌𝒖𝑗, ∇𝑉) − 𝑢𝑖

𝑗 𝜕

𝜕𝑥𝑖
(𝜌δ𝐮, ∇𝑉)] 𝑑𝜐

= ∬(𝑢𝑖
𝑗
δ𝜏𝑖𝑘 − δ𝑢𝑖𝜏𝑖𝑘

𝑗
+ 𝜌𝑢𝑘

𝑗
𝜓∗ − 𝜌δ𝑢𝑘𝜓

𝑗) 𝑑𝑆𝑘

+∭[𝛹𝑗(𝜌∇𝑖δ𝑢𝑖 + δ𝑢𝑖∇𝑖𝜌) − δ𝛹(𝜌∇𝑖𝑢𝑖
𝑗
+ 𝑢𝑖

𝑗
∇𝑖𝜌)] 𝑑𝜐                                                                                 (B1) 490 

where, 

δ𝜏𝑖𝑘 = 𝜇 (
𝜕δ𝑢𝑖
𝜕𝑥𝑘

+
𝜕δ𝑢𝑘
𝜕𝑥𝑖

) + 𝜆∇𝑖δ𝑢𝑖δ𝑖𝑘                                                                                                                                                                

𝜏𝑖𝑘
𝑗
= 𝜇 (

𝜕𝑢𝑖
𝑗

𝜕𝑥𝑘
+
𝜕𝑢𝑘

𝑗

𝜕𝑥𝑖
) + 𝜆∇𝑖𝑢𝑖

𝑗
δ𝑖𝑘                                                                                                                                                                       

𝜓∗ = δ𝛹 + δ𝑢𝑖∇𝑖𝑉                                                                                                                                                                                                

𝜓𝑗 = 𝛹𝑗 + 𝑢𝑖
𝑗
∇𝑖𝑉                                                                                                                                                                                                   495 

𝑑𝑆𝑘 =
𝑥𝑘
𝑟
𝑑𝑆                                                                                                                                                                                                             

By using the condition of zero stress on the surface for the initial and perturbed boundary problems, it’s obtained that 

δ𝜏𝑖𝑘|𝑆 = − [δ𝜇 (
𝜕𝑢𝑖

0

𝜕𝑥𝑘
+
𝜕𝑢𝑘

0

𝜕𝑥𝑖
) + δ𝜆∇ ∙ (𝒖0)δ𝑖𝑘]|

𝑆

                                                                                                                                          

Note that the expression of δ𝜏𝑖𝑘 here is different from δ𝜏𝑖𝑘 in a volume integration. The “∙” denotes scalar product. 

The remaining volume integral in Equation (B1) may be transformed by applying Poisson’s equation (Equation 3) for the 500 

solution 𝑢𝑖
𝑗
 and 𝛹𝑗: 
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𝜌∇𝑖𝑢𝑖
𝑗
+ (𝒖𝑗, ∇𝜌) =

1

4𝜋𝐺
∇2𝛹𝑗                                                                                                                                                                  (B2) 

and the result of varying Equation (3) 

𝜌∇𝑖δ𝑢𝑖 + (δ𝒖, ∇𝜌) =
1

4𝜋𝐺
∇2(δ𝛹) − ∇𝑖𝑢𝑖

0δ𝜌 − (𝒖0, ∇δ𝜌)                                                                                                               (B3) 

By substituting Equations (B2) and (B3) into the last term of Equation (B1), this integral transforms to 505 

∭[
1

4𝜋𝐺
(𝛹𝑗∇2(δ𝛹) − δ𝛹∇2𝛹𝑗) − 𝛹𝑗 (δ𝜌∇𝑖𝑢𝑖

0 + (𝒖0, ∇δ𝜌))] 𝑑𝜐                                                                                              (B4) 

The first term in Equation (B4) can be reduced to a surface integral by means of Green’s formula 

∭(𝛹𝑗∇2(δ𝛹) − δ𝛹∇2𝛹𝑗) 𝑑𝜐 = ∬(𝛹𝑗
𝜕(δ𝛹)

𝜕𝑛
− δ𝛹

𝜕𝛹𝑗

𝜕𝑛
)𝑑𝑆                                                                                                  (B5) 

where 
𝜕

𝜕𝑛
 indicates a derivative with regard to the external normal. The second term does not contain any variations of 

solutions and may be considered as a known quantity. 510 

Now, let’s express the remaining surface integrals in Equation (B1) in terms of variations of coefficients 𝑦𝑖(𝑟) . The 

integrand of the first term in Equation (B1) may be written as follows: 

(𝑢𝑖
𝑗
δ𝜏𝑖𝑘 − δ𝑢𝑖𝜏𝑖𝑘

𝑗
)
𝑥𝑘
𝑟
= 𝑢𝑖

𝑗 𝑥𝑘
𝑟
δ𝜏𝑖𝑘 −

δ𝑢𝑖
𝑟
{𝜇[(𝑥𝑘 , ∇𝑘𝑢𝑖

𝑗
) + ∇𝑖(𝑥𝑘 , 𝑢𝑘

𝑗
) − 𝑢𝑘

𝑗
δ𝑖𝑘] + 𝜆𝑥𝑘∇𝑖𝑢𝑖

𝑗
δ𝑖𝑘}                                              (B6) 

Let us choose the auxiliary solutions 𝑢𝑖
𝑗
 and 𝛹𝑗 of unperturbed equations (Equations 22 and 23) proportional to a spherical 

function of the degree 𝑛: 515 

𝒖𝑗 =∑ ∑ [𝑦1
𝑗(𝑟; 𝑛,𝑚)𝑹𝑛

𝑚(𝜃, 𝜙) + 𝑦3
𝑗(𝑟; 𝑛,𝑚)𝑺𝑛

𝑚(𝜃, 𝜙)]

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                                                                         (B7) 

𝛹𝑗 =∑ ∑ 𝑦5
𝑗(𝑟; 𝑛,𝑚)𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                                                                                                                      (B8) 

The index 𝑗 = 1,2,3 will give the number of the regular (toward the center) solution (Equations B7 and B8) with fixed 𝑛, 𝑚. 

By substituting Eqs (18), (19), (B7), and (B8) into Equation (B1), considering Equations (B4), (B5), and (B6), and 

integrating the terms not containing density variations and Lame’s parameters with respect to angular variables, Equation 520 

(B9) is obtained. 

𝐼 =
4𝜋(𝑛 + 𝑚)!

𝜀𝑚(2𝑛 + 1)(𝑛 − 𝑚)!

∙ {−𝑦1
∗(1; 𝑛,𝑚)𝑦2

𝑗(1) − 𝑛(𝑛 + 1)𝑦3
∗(1; 𝑛,𝑚)𝑦4

𝑗(1) +
1

4𝜋𝐺
[𝑦6
∗(1; 𝑛,𝑚)𝑦5

𝑗(1) − 𝑦5
∗(1; 𝑛,𝑚)𝑦6

𝑗(1)]}

−∭𝛹𝑗∇ ∙ (δ𝜌𝒖0) 𝑑𝜐 +∬(𝑢𝑖
𝑗
δ𝜏𝑖𝑘 + 𝛹

𝑗𝑢𝑘
0δ𝜌)𝑑𝑆𝑘                                                                                        (B9) 

where, 525 
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𝑦2
𝑗(𝑟) = (𝜆 + 2𝜇)𝑦̇1

𝑗(𝑟) +
𝜆

𝑟
[2𝑦1

𝑗(𝑟) − 𝑛(𝑛 + 1)𝑦3
𝑗(𝑟)]                                                                                                                              

𝑦4
𝑗(𝑟) =

𝜇

𝑟
[𝑦1
𝑗(𝑟) − 𝑦3

𝑗(𝑟) + 𝑟𝑦̇3
𝑗(𝑟)]                                                                                                                                                                

𝑦6
𝑗(𝑟) = 𝑦̇5

𝑗(𝑟) − 4𝜋𝐺𝜌𝑦1
𝑗(𝑟)                                                                                                                                                                              

𝑦6
∗(𝑟) = 𝑦̇5

∗(𝑟) − 4𝜋𝐺𝜌𝑦1
∗(𝑟) − 4𝜋𝐺𝛿𝜌𝑦1

0(𝑟)                                                                                                                                                 

The following orthogonality properties of the gradients of the spherical functions are taken into consideration in Equation 530 

(B9). 

∬(∇𝑖𝑌𝑛
𝑚(𝜃, 𝜙), ∇𝑖𝑌𝑘

𝑙(𝜃, 𝜙)) 𝑑𝑆 =
4𝜋(𝑛 + 𝑚)!

𝜀𝑚(2𝑛 + 1)(𝑛 − 𝑚)!
𝑛(𝑛 + 1)δ𝑛𝑘δ𝑚𝑙                                                                                 (B10) 

where, 

𝜀𝑚 = {
1   𝑚 = 0
2   𝑚 ≠ 0

                                                                                                                                                                                                     

Now let us apply the boundary conditions for the variation of the surface potential for a tide of order 𝑛 535 

(𝑛 + 1)𝑦5
0(1) + 𝑦6

0(1) = 2𝑛 + 1                                                                                                                                                           (B11) 

By varying Equation (B11) the uniform boundary conditions for solution variations are obtained 

(𝑛 + 1)𝑦5
∗(1) + 𝑦6

∗(1) = 0                                                                                                                                                                      (B12) 

𝑦6
∗(1; 𝑛,𝑚)𝑦5

𝑗(1) − 𝑦5
∗(1; 𝑛,𝑚)𝑦6

𝑗(1) = −𝑦5
∗(1; 𝑛,𝑚)[(𝑛 + 1)𝑦5

𝑗(1) + 𝑦6
𝑗(1)]                                                                       (B13) 

Substituting Equation (B13) into Equation (B9) yields Equation (27). 540 

Appendix C: Treatment of 𝑨𝒍𝒑𝒏𝒎𝒏𝟎𝒎𝟎  

Equation (39) can be written as: 

𝐴𝑙𝑝𝑛𝑚𝑛0𝑚0 =∬𝑌𝑙
𝑝(𝜃, 𝜙)𝑌𝑛

𝑚(𝜃, 𝜙)𝑌𝑛0
𝑚0(𝜃, 𝜙)𝑑𝑆 = 𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0𝐼(𝑝,𝑚,𝑚0)                                                                                 (C1) 

𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0 = ∫ 𝑃𝑙
𝑝(cos 𝜃)𝑃𝑛

𝑚(cos 𝜃)𝑃𝑛0
𝑚0(cos 𝜃)𝑑𝜃

𝜋
2

−
𝜋
2

                                                                                                                        (C2) 

𝐼(𝑝,𝑚,𝑚0) = ∫ {
cos 𝑝𝜙
sin 𝑝𝜙

{
cos𝑚𝜙
sin𝑚𝜙

{
cos𝑚0𝜙
sin𝑚0𝜙

𝑑𝜙
2𝜋

0

                                                                                                                              (C3) 545 

In light of Fu and Sun (2008), the normalized form of 𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0  is 

𝐸̅𝑙𝑝𝑛𝑚𝑛0𝑚0 = 4√2(−1)
𝑝(2𝑙 + 1)1/2(2𝑛 + 1)1/2(2𝑛0 + 1)

1/2 (
𝑙     𝑛    𝑛0
−𝑝  𝑚  𝑚0

) (
𝑙    𝑛   𝑛0
0   0    0

)                                                           (C4) 

The value of 𝐸̅𝑙𝑝𝑛𝑚𝑛0𝑚0  need to divide √2 if each of 𝑝, 𝑚, and 𝑚0 equals 0. The Wigner 3j symbol in Equation (C4) is 

defined as following. 
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(
𝑎   𝑏   𝑐
𝛼   𝛽   𝛾

) = (−1)𝑎−𝑏−𝛾 [
(𝑎 + 𝑏 − 𝑐)! (𝑎 − 𝑏 + 𝑐)! (−𝑎 + 𝑏 + 𝑐)!

(𝑎 + 𝑏 + 𝑐 + 1)!
]

1
2

[(𝑎 + 𝛼)! (𝑎 − 𝛼)! (𝑏 + 𝛽)! (𝑏 − 𝛽)! (𝑐 + 𝛾)! (𝑐550 

− 𝛾)!]
1
2∑(−1)𝑘[𝑘! (𝑎 + 𝑏 − 𝑐 − 𝑘)! (𝑎 − 𝛼 − 𝑘)! (𝑏 + 𝛽 − 𝑘)! (𝑐 − 𝑎 − 𝛽 − 𝑘)! (𝑐 − 𝑏 + 𝛼

𝑘

+ 𝑘)!]−1                                                                                                                                                                          (C5) 

The range of 𝑘 is limited to make sure that all factorials in the denominator are non-negative. 

As for 𝐼(𝑝,𝑚,𝑚0), 

∫ sin𝑚1𝜙 cos𝑚2𝜙 cos𝑚3𝜙𝑑𝜙
2𝜋

0

= 0                                                                                                                                                   (C6) 555 

∫ sin𝑚1𝜙 sin𝑚2𝜙 sin𝑚3𝜙 𝑑𝜙
2𝜋

0

= 0                                                                                                                                                    (C7) 

∫ cos𝑚1𝜙 cos𝑚2𝜙 cos𝑚3𝜙 𝑑𝜙
2𝜋

0

=
𝜋

2
[𝛿𝑚1+𝑚2,𝑚3 + 𝛿𝑚2+𝑚3,𝑚1 + 𝛿𝑚1+𝑚3,𝑚2 + 𝛿𝑚1+𝑚2,−𝑚3]                                             (C8) 

∫ sin𝑚1𝜙 cos𝑚2𝜙 sin𝑚3𝜙𝑑𝜙
2𝜋

0

=
𝜋

2
[𝛿𝑚2+𝑚3,𝑚1 − 𝛿𝑚1+𝑚3,𝑚2 + 𝛿𝑚1+𝑚2,𝑚3 − 𝛿𝑚1+𝑚2,−𝑚3]                                             (C9) 

Appendix D: Expressions of 𝒙𝒏𝒏𝟎
(𝒊)(𝒋)(𝒓) 

In Equations (36) and (37), 560 

𝑥𝑛𝑛0
(1)(𝑗)(𝑟) = 𝑟2 [𝑦̇1

0(𝑟) +
2

𝑟
𝑦1
0(𝑟) −

𝑛0(𝑛0 + 1)

𝑟
𝑦3
0(𝑟)] ∙ [𝑦̇1

𝑗(𝑟) +
2

𝑟
𝑦1
𝑗(𝑟) −

𝑛(𝑛 + 1)

𝑟
𝑦3
𝑗(𝑟)]                                              (D1) 

𝑥𝑛𝑛0
(2)(𝑗)(𝑟) = 2𝑟2 {𝑟2𝐻̇𝑛

𝑗
𝐻̇𝑛0 + 𝑟𝐻̇𝑛

𝑗
𝐻𝑛0 + 𝑟𝐻𝑛

𝑗
𝐻̇𝑛0 + 𝑛𝑟𝐻̇𝑛0 (𝐻𝑛

𝑗
+
𝑇̇𝑛
𝑗

𝑟
) + 𝑛0𝑟𝐻̇𝑛

𝑗
(𝐻𝑛0 +

𝑇̇𝑛0
𝑟
) +

𝑛(𝑛 − 1)

𝑟
𝐻̇𝑛0𝑇𝑛

𝑗

+
𝑛0(𝑛0 − 1)

𝑟
𝐻̇𝑛
𝑗
𝑇𝑛0 + 3𝐻𝑛

𝑗
𝐻𝑛0 + 𝑛𝐻𝑛0 (𝐻𝑛

𝑗
+
𝑇̇𝑛
𝑗

𝑟
) + 𝑛0𝐻𝑛

𝑗
(𝐻𝑛0 +

𝑇̇𝑛0
𝑟
)

+
𝑛𝑛0
2
(𝐻𝑛0 +

𝑇̇𝑛0
𝑟
)(𝐻𝑛

𝑗
+
𝑇̇𝑛
𝑗

𝑟
)}                                                                                                                             (D2) 

𝑥𝑛𝑛0
(3)(𝑗)(𝑟) = {𝑟2 (𝐻𝑛0 +

𝑇̇𝑛0
𝑟
)(𝐻𝑛

𝑗
+
𝑇̇𝑛
𝑗

𝑟
) + 2(𝑛 − 1)𝑇𝑛

𝑗
(𝐻𝑛0 +

𝑇̇𝑛0
𝑟
) + 2(𝑛0 − 1)𝑇𝑛0 (𝐻𝑛

𝑗
+
𝑇̇𝑛
𝑗

𝑟
)}                                   (D3) 565 

𝑥𝑛𝑛0
(4)(𝑗)(𝑟) =

2

𝑟2
𝑇𝑛
𝑗
𝑇𝑛0                                                                                                                                                                                   (D4) 

In Equations (D2) - (D4): 

𝐻𝑛
𝑗
=
𝑦1
𝑗(𝑟)

𝑟𝑛+1
−
𝑛𝑦3

𝑗(𝑟)

𝑟𝑛+1
;  𝑇𝑛

𝑗
=
𝑦3
𝑗(𝑟)

𝑟𝑛−1
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𝐻𝑛0(𝑟) =
𝑦1
0(𝑟)

𝑟𝑛0+1
−
𝑛0𝑦3

0(𝑟)

𝑟𝑛0+1
;  𝑇𝑛0(𝑟) =

𝑦3
0(𝑟)

𝑟𝑛0−1
                                                                                                                                      (D5) 

In Equation (38), 570 

𝑥𝑛𝑛0
(5)(𝑗)(𝑟) = 𝑟𝑛+𝑛0+2[ℎ𝑛0

0 (𝑟)ℎ𝑛
1(𝑟) + ℎ𝑛

𝑗 (𝑟)ℎ𝑛0
4 (𝑟) + 𝑔(𝑟)ℎ𝑛

𝑗 (𝑟)ℎ𝑛0
2 (𝑟)] − 𝑔(𝑟)𝑟2𝑦1

𝑗(𝑟)𝐷𝑛0(𝑟)                                            (D6) 

𝑥𝑛𝑛0
(6)(𝑗)(𝑟) = 𝑟𝑛+𝑛0[𝑡𝑛0

0 (𝑟)𝑡𝑛
1(𝑟) + 𝑡𝑛

𝑗 (𝑟)𝑡𝑛0
4 (𝑟) + 𝑔(𝑟)𝑡𝑛

𝑗 (𝑟)𝑡𝑛0
2 (𝑟)]                                                                                               (D7) 

𝑥𝑛𝑛0
(7)(𝑗)(𝑟) = 𝑟𝑛+𝑛0+2𝑔(𝑟)ℎ𝑛

𝑗 (𝑟)ℎ𝑛0
2 (𝑟) − 𝑔(𝑟)𝑟2𝑦1

𝑗(𝑟)𝐷𝑛0(𝑟)                                                                                                         (D8) 

𝑥𝑛𝑛0
(8)(𝑗)(𝑟) = 𝑟𝑛+1𝑔(𝑟)ℎ𝑛

𝑗 (𝑟)𝑦1
0(𝑟)                                                                                                                                                           (D9) 

𝑥𝑛𝑛0
(9)(𝑗)(𝑟) = 𝑟𝑛+𝑛0𝑔(𝑟)𝑡𝑛

𝑗 (𝑟)𝑡𝑛0
2 (𝑟)                                                                                                                                                       (D10) 575 

𝑥𝑛𝑛0
(10)(𝑗)(𝑟) = 𝑟𝑛𝑔(𝑟)𝑡𝑛

𝑗 (𝑟)𝑦1
0(𝑟)                                                                                                                                                            (D11) 

𝑥𝑛𝑛0
(11)(𝑗)(𝑟) = 𝑟𝑛+2𝑔̇(𝑟)ℎ𝑛

𝑗 (𝑟)𝑦1
0(𝑟)                                                                                                                                                       (D12) 

where, 

𝐷𝑛0(𝑟) = 𝑦̇1
0(𝑟) +

2

𝑟
𝑦1
0(𝑟) −

𝑛0(𝑛0 + 1)

𝑟
𝑦3
0(𝑟)                                                                                                                                (D13) 

ℎ𝑛0
0 (𝑟) =

𝑦1
0(𝑟)

𝑟𝑛0
−
𝑛0𝑦3

0(𝑟)

𝑟𝑛0
;  𝑡𝑛0

0 (𝑟) =
𝑦3
0(𝑟)

𝑟𝑛0−1
                                                                                                                                    (D14) 580 

ℎ𝑛
𝑗 (𝑟) =

𝑦1
𝑗(𝑟)

𝑟𝑛
−
𝑛𝑦3

𝑗(𝑟)

𝑟𝑛
;  𝑡𝑛

𝑗 (𝑟) =
𝑦3
𝑗(𝑟)

𝑟𝑛−1
                                                                                                                                          (D15) 

ℎ𝑛
1 (𝑟) =

𝑦̇5
𝑗(𝑟)

𝑟𝑛
−
𝑛𝑦5

𝑗(𝑟)

𝑟𝑛+1
;  𝑡𝑛

1(𝑟) =
𝑦5
𝑗(𝑟)

𝑟𝑛
                                                                                                                                          (D16) 

ℎ𝑛0
2 (𝑟) =

𝑦̇1
0(𝑟)

𝑟𝑛0
−
𝑛0𝑦1

0(𝑟)

𝑟𝑛0+1
;  𝑡𝑛0

2 (𝑟) =
𝑦1
0(𝑟)

𝑟𝑛0
                                                                                                                                    (D17) 

ℎ𝑛0
4 (𝑟) =

𝑦̇5
0(𝑟)

𝑟𝑛0
−
𝑛0𝑦5

0(𝑟)

𝑟𝑛0+1
;  𝑡𝑛0

4 (𝑟) =
𝑦5
0(𝑟)

𝑟𝑛0
                                                                                                                                    (D18) 

Appendix E: Final Formulae for Effects of Lateral Inhomogeneity 585 

By substituting Equation (33) into Equation (15): 

∆g(𝜃, 𝜙) = ∑ ∑
1

𝑐(𝑛,𝑚)
[(𝑛 + 1)𝐹𝑗=3(δ𝜌, δ𝜇, δ𝜆) − 2𝐹𝑗=1(δ𝜌, δ𝜇, δ𝜆)]𝑌𝑛

𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                          (E1) 

The disturbance of 𝜆 is taken for example. By substituting Equation (36) into Equation (E1), 

∆g𝜆(𝜃, 𝜙) = −∑ ∑ ∑ ∑
𝐴𝑙𝑝𝑛𝑚𝑛0𝑚0
𝑐(𝑛,𝑚)

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

𝑌𝑛
𝑚(𝜃, 𝜙)∫ 𝜆𝑙𝑝(𝑟) [(𝑛 + 1)𝑥𝑛𝑛0

(1)(𝑗=3)(𝑟) − 2𝑥𝑛𝑛0
(1)(𝑗=1)(𝑟)] 𝑑𝑟

1

0

𝑛

𝑚=−𝑛

∞

𝑛=0

=∑ ∑ ∑ ∑
𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0
𝑐(𝑛,𝑚)

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

𝐼(𝑝,𝑚,𝑚0)𝑌𝑛
𝑚(𝜃, 𝜙)∫ 𝜆𝑙𝑝(𝑟)𝑦𝑛(𝑟)𝑑𝑟

1

0

𝑛

𝑚=−𝑛

∞

𝑛=0

                                                       (E2) 590 
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𝑦𝑛(𝑟) = 2𝑥𝑛𝑛0
(1)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0

(1)(𝑗=3)(𝑟)                                                                                                                                        (E3) 

Therein, the treatments on 𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0  and 𝐼(𝑝,𝑚,𝑚0) can be found in Appendix C. 

As discussed by Molodenskii and Kramer (1980), 𝐼(𝑝,𝑚,𝑚0) ≠ 0 only when 𝑝 = 𝑚 ±𝑚0. Besides, 𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0 = 0 if 𝑙, 𝑛, 

and 𝑛0 do not satisfy a triangle inequality. The integration of 𝑑𝑟 start from the core-mantle boundary, rather than the core of 

Earth, to the surface, layer by layer. So the Equation (E2) simplifies as, 595 

∆g𝜆(𝜃, 𝜙) =∑ ∑ ∑
𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0
𝑐(𝑛, 𝑝 ± 𝑚0)

𝑙+𝑛0

𝑛=|𝑙−𝑛0|

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

𝐼(𝑝, 𝑝 ± 𝑚0, 𝑚0)𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙)∫ 𝜆𝑙𝑝(𝑟)𝑦𝑛(𝑟)𝑑𝑟

1

𝑏

                                                             

By replacing 𝜆𝑙𝑝(𝑟) with 𝛼𝑙𝑝(𝑟), 𝛽𝑙𝑝(𝑟), and 𝛾𝑙𝑝
1 (𝑟) with the help of Equation (41): 

∆g𝜆(𝜃, 𝜙) =∑ ∑ ∑
𝐸𝑙𝑝𝑛(𝑝±𝑚0)𝑛0𝑚0
𝑐(𝑛, 𝑝 ± 𝑚0)

𝐼(𝑝, 𝑝 ± 𝑚0, 𝑚0)𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙)

𝑙+𝑛0

𝑛=|𝑙−𝑛0|

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

∫ 𝑦𝑛(𝑟)[2(𝜆 + 2𝜇)𝛼𝑙𝑝(𝑟) − 4𝜇𝛽𝑙𝑝(𝑟)
1

𝑏

+ 𝜆𝛾𝑙𝑝
1 (𝑟)]𝑑𝑟                                                                                                                                                                 (E4) 

Similarly, the expressions for δ𝜇 and δ𝜌 are, 600 

∆g𝜇(𝜃, 𝜙) =∑ ∑ ∑
𝐸𝑙𝑝𝑛(𝑝±𝑚0)𝑛0𝑚0
𝑐(𝑛, 𝑝 ± 𝑚0)

𝑙+𝑛0

𝑛=|𝑙−𝑛0|

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

𝐼(𝑝, 𝑝 ± 𝑚0, 𝑚0)𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙)∫ 𝑧𝑛(𝑟)[2𝜇𝛽𝑙𝑝(𝑟) + 𝜇𝛾𝑙𝑝

1 (𝑟)]𝑑𝑟
1

𝑏

                  (E5) 

∆g𝜌(𝜃, 𝜙) =∑ ∑ ∑
𝐸𝑙𝑝𝑛(𝑝±𝑚0)𝑛0𝑚0
𝑐(𝑛, 𝑝 ± 𝑚0)

𝑙+𝑛0

𝑛=|𝑙−𝑛0|

𝑙

𝑝=−𝑙

𝑁𝑒

𝑙=0

𝐼(𝑝, 𝑝

± 𝑚0, 𝑚0)𝑌𝑛
𝑝±𝑚0(𝜃, 𝜙)∫ 𝜌(𝑟)[𝑞𝑛

1(𝑟)𝛾𝑙𝑝
1 (𝑟) + 𝑞𝑛

2(𝑟)𝛾𝑙𝑝
2 (𝑟) + 𝑞𝑛

3(𝑟)𝛾𝑙𝑝
3 (𝑟)]𝑑𝑟

1

𝑏

                                         (E6) 

In Equations (E5) and (E6), 

𝑧𝑛(𝑟) = 𝑟
𝑛+𝑛0 [2𝑥𝑛𝑛0

(2)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0
(2)(𝑗=3)(𝑟) + 𝑛𝑛0 (2𝑥𝑛𝑛0

(3)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0
(3)(𝑗=3)(𝑟))605 

+ 𝑛𝑛0(𝑛𝑛0 − 𝑛0 − 𝑛 + 3) (2𝑥𝑛𝑛0
(4)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0

(4)(𝑗=3)(𝑟))]                                                               (E7) 

𝑞𝑛
1(𝑟) = 2𝑥𝑛𝑛0

(5)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0
(5)(𝑗=3)(𝑟) + 𝑛𝑛0 (2𝑥𝑛𝑛0

(6)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0
(6)(𝑗=3)(𝑟))                                                    (E8) 

𝑞𝑛
2(𝑟) = 2𝑥𝑛𝑛0

(7)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0
(7)(𝑗=3)(𝑟) − 𝑙 (2𝑥𝑛𝑛0

(8)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0
(8)(𝑗=3)(𝑟))

+ 𝑛𝑛0 (2𝑥𝑛𝑛0
(9)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0

(9)(𝑗=3)(𝑟)) + 𝑛𝑙 (2𝑥𝑛𝑛0
(10)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0

(10)(𝑗=3)(𝑟))                  (E9) 

𝑞𝑛
3(𝑟) = 2𝑥𝑛𝑛0

(11)(𝑗=1)(𝑟) − (𝑛 + 1)𝑥𝑛𝑛0
(11)(𝑗=3)(𝑟)                                                                                                                                  (E10) 610 

Equations (E4) and (E5) can be transformed into the forms relating to seismic wave velocity disturbance, namely Equations 

(44) and (45). 

Appendix F: Comparison with the Results of Fu and Sun (2007) 
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Fu and Sun (2007) modified the solution presented by Molodenskii and Kramer (1980) and Wang (1991), with the 

consideration of density disturbance. Compared with the current study, Fu and Sun (2007) adopted a relatively old Earth 615 

model with resolution of 5 degree (Zhao, 2001) and directly integrated the product of three Legendre functions to compute 

𝐸𝑙𝑝𝑛𝑚𝑛0𝑚0 , but not the analytical solution (Equation C4, Fu and Sun, 2008). 

As Fig. F1 shows, the changes derived from P-wave velocity disturbance, S-wave velocity disturbance, density disturbance, 

and total effects are −0.28% to 0.25%, −0.29% to 0.26%, −0.09% to 0.12%, and −0.13% to 0.12%, respectively. The results 

of Fu and Sun (2007) are generally consistent with the present study (Fig. 1 and Fig. 3) on a global scale. Furthermore, the 620 

results calculated by new Earth models show more details. 

References 

Miller, B. B. and Carter, C.: The test article, J. Sci. Res., 12, 135–147, doi:10.1234/56789, 2015. 

Smith, A. A., Carter, C., and Miller, B. B.: More test articles, J. Adv. Res., 35, 13–28, doi:10.2345/67890, 2014. 

 625 

Balmino, G., Lambeck, K., and Kaula, W. M.: A spherical harmonic analysis of the Earth's topography, Journal of 

Geophysical Research, 78(2), 478-481, https://doi.org/10.1029/JB078i002p00478, 1973. 

Chang, S. J., Ferreira, A. M., Ritsema, J., van Heijst, H. J., and Woodhouse, J. H.: Joint inversion for global isotropic and 

radially anisotropic mantle structure including crustal thickness perturbations, Journal of Geophysical Research: Solid Earth, 

120(6), 4278-4300, https://doi.org/10.1002/2014JB011824, 2015. 630 

Dahlen, F. A.: Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field, 

Geophysical Journal International, 28(4), 357-383, https://doi.org/10.1111/j.1365-246X.1972.tb06798.x, 1972. 

Dahlen, F. and Tromp, J.: Theoretical global seismology, Princeton university press, 2021. 

Dehant, V.: Tidal parameters for an inelastic Earth, Physics of the Earth and Planetary Interiors, 49(1-2), 97-116, 

https://doi.org/10.1016/0031-9201(87)90134-8, 1987. 635 

Dehant, V., Defraigne, P., and Wahr, J. M.: Tides for a convective Earth, Journal of Geophysical Research: Solid Earth, 

104(B1), 1035-1058, https://doi.org/10.1029/1998JB900051, 1999. 

de Vries, D. and Wahr, J. M.: The effects of the solid inner core and non-hydrostatic structure on the Earth's forced nutations 

and Earth tides, Journal of Geophysical Research: Solid Earth, 96(B5), 8275-8293, https://doi.org/10.1029/90JB01958, 1991. 

Durand, S., Debayle, E., Ricard, Y., Zaroli, C., and Lambotte, S.: Confirmation of a change in the global shear velocity 640 

pattern at around 1000 km depth, Geophysical Journal International, 211(3), 1628-1639, https://doi.org/10.1093/gji/ggx405, 

2017. 

Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, 

25(4), 297-356, doi: 10.1016/0031- 9201(81)90046-7, 1981. 

https://doi.org/10.5194/egusphere-2022-661
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



25 

 

Farrell, W. E.: Deformation of the Earth by surface loads, Reviews of Geophysics, 10(3), 761-797, 645 

https://doi.org/10.1029/RG010i003p00761, 1972. 

Fu, G. and Sun, W.: Effects of lateral inhomogeneity in a spherical Earth on gravity Earth tides, Journal of Geophysical 

Research: Solid Earth, 112(B6), https://doi.org/10.1029/2006JB004512, 2007. 

Fu, G. and Sun, W.: Surface coseismic gravity changes caused by dislocations in a three-dimensional heterogeneous Earth, 

Geophysical Journal International, 172(2), 479-503, https://doi.org/10.1111/j.1365-246X.2007.03684.x, 2008. 650 

Geller, R. J.: Elastodynamics in a laterally heterogeneous, self-gravitating body, Geophysical Journal International, 94(2), 

271-283, https://doi.org/10.1111/j.1365-246X.1988.tb05901.x, 1988. 

Karato, S. I.: Importance of anelasticity in the interpretation of seismic tomography, Geophysical Research Letters, 20(15), 

1623-1626, https://doi.org/10.1029/93GL01767, 1993. 

Lau, H. C. and Faul, U. H.: Anelasticity from seismic to tidal timescales: Theory and observations, Earth and Planetary 655 

Science Letters, 508, 18-29, https://doi.org/10.1016/j.epsl.2018.12.009, 2019. 

Lau, H. C., Mitrovica, J. X., Davis, J. L., Tromp, J., Yang, H. Y., and Al-Attar, D.: Tidal tomography constrains Earth’s 

deep-mantle buoyancy, Nature, 551(7680), 321-326, https://doi.org/10.1038/nature24452, 2017. 

Lau, H. C., Yang, H. Y., Tromp, J., Mitrovica, J. X., Latychev, K., and Al-Attar, D.: A normal mode treatment of semi-

diurnal body tides on an aspherical, rotating and anelastic Earth, Geophysical Journal International, 202(2), 1392-1406, doi: 660 

10.1093/gji/ggv227, 2015. 

Longman, I. M.: A Green's function for determining the deformation of the Earth under surface mass loads: 2. computations 

and numerical results, Journal of Geophysical Research, 68(2), 485-496, https://doi.org/10.1029/JZ068i002p00485, 1963. 

Love, A. E. H.: The yielding of the Earth to disturbing forces, Proceedings of the Royal Society A, Mathematical, Physical 

and Engineering Sciences, 82(551), 73-88, https://doi.org/10.1098/rspa.1909.0008, 1909. 665 

Métivier, L. and Conrad, C. P.: Body tides of a convecting, laterally heterogeneous, and aspherical Earth, Journal of 

Geophysical Research: Solid Earth, 113(B11), https://doi.org/10.1029/2007JB005448, 2008. 

Métivier, L., Greff-Lefftz, M., and Diament, M.: Mantle lateral variations and elastogravitational deformations–I. Numerical 

modelling, Geophysical Journal International, 167(3), 1060-1076, https://doi.org/10.1111/j.1365-246X.2006.03159.x, 2006. 

Métivier, L., Greff-Lefftz, M., and Diament, M.: Mantle lateral variations and elastogravitational deformations–II. Possible 670 

effects of a superplume on body tides, Geophysical Journal International, 168(3), 897-903, https://doi.org/10.1111/j.1365-

246X.2006.03309.x, 2007. 

Molodenskiy, S. M.: The influence of horizontal inhomogeneities in the mantle on the amplitude of tidal oscillations, 

Izvestiya, Physics of the Solid Earth, 13, 77-80, 1977. 

Molodenskiy, S. M.: The effect of lateral heterogeneities upon the tides, BIM Fevrier, 80, 4833-4850, 1980. 675 

Molodenskii, S. M. and Kramer, M. V.: The influence of large-scale horizontal inhomogeneities in the mantle on Earth tides, 

Izvestiya, Earth Physics, 16, 1-11, 1980. 

https://doi.org/10.5194/egusphere-2022-661
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



26 

 

Panning, M. P., Lekić, V., and Romanowicz, B. A.: Importance of crustal corrections in the development of a new global 

model of radial anisotropy, Journal of Geophysical Research: Solid Earth, 115(B12), https://doi.org/10.1029/2010JB007520, 

2010. 680 

Petrov, L. and Boy, J. P.: Study of the atmospheric pressure loading signal in very long baseline interferometry observations, 

Journal of Geophysical Research: Solid Earth, 109(B3), https://doi.org/10.1029/2003JB002500, 2004. 

Qin, C., Zhong, S., and Wahr, J.: A perturbation method and its application: elastic tidal response of a laterally 

heterogeneous planet, Geophysical Journal International, 199(2), 631-647, https://doi.org/10.1093/gji/ggu279, 2014. 

Ritsema, J., Deuss, A., Van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a degree-40 shear-velocity model for the mantle 685 

from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophysical 

Journal International, 184(3), 1223-1236, https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011. 

Rosat, S. and Hinderer, J.: Limits of detection of gravimetric signals on Earth, Scientific reports, 8(1), 1-8, 

https://doi.org/10.1038/s41598-018-33717-z, 2018. 

Saito, M.: Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous Earth, Journal of 690 

Geophysical Research, 72(14), 3689-3699, https://doi.org/10.1029/JZ072i014p03689, 1967. 

Simmons, N. A., Forte, A. M., Boschi, L., and Grand, S. P.: GyPSuM: A joint tomographic model of mantle density and 

seismic wave speeds, Journal of Geophysical Research: Solid Earth, 115(B12), https://doi.org/10.1029/2010JB007631, 2010. 

Sun, H., Zhang, H., Xu, J., Chen, X., Zhou, J., and Zhang, M.: Influences of the Tibetan plateau on tidal gravity detected by 

using SGs at Lhasa, Lijiang and Wuhan Stations in China, Terrestrial, Atmospheric and Oceanic Sciences, 30(1), 139-149, 695 

doi: 10.3319/TAO.2019.02.14.01, 2019. 

Sun, W. and Okubo, S.: Surface potential and gravity changes due to internal dislocations in a spherical Earth—I. Theory for 

a point dislocation, Geophysical Journal International, 114(3), 569-592, https://doi.org/10.1111/j.1365-246X.1993.tb06988.x, 

1993. 

Takeuchi, H. and Saito, M.: Seismic surface waves, Methods in Computational Physics: Advances in Research and 700 

Applications, 11, 217-295, https://doi.org/10.1016/B978-0-12-460811-5.50010-6, 1972. 

Tesoniero, A., Auer, L., Boschi, L., and Cammarano, F.: Hydration of marginal basins and compositional variations within 

the continental lithospheric mantle inferred from a new global model of shear and compressional velocity, Journal of 

Geophysical Research: Solid Earth, 120(11), 7789-7813, https://doi.org/10.1002/2015JB012026, 2015. 

Trabant, C., Hutko, A. R., Bahavar, M., Karstens, R., Ahern, T., and Aster, R.: Data products at the IRIS DMC: Stepping 705 

stones for research and other applications, Seismological Research Letters, 83(5), 846-854, 

https://doi.org/10.1785/0220120032, 2012. 

Tromp, J. and Trampert, J.: Effects of induced stress on seismic forward modelling and inversion, Geophysical Journal 

International, 213(2), 851-867, https://doi.org/10.1093/gji/ggy020, 2018. 

Vermeersen, L. L. A. and Vlaar, N. J.: The gravito-elastodynamics of a pre-stressed elastic Earth, Geophysical Journal 710 

International, 104(3), 555-563, https://doi.org/10.1111/j.1365-246X.1991.tb05701.x, 1991. 

https://doi.org/10.5194/egusphere-2022-661
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



27 

 

Van Camp, M. and Vauterin, P.: Tsoft: graphical and interactive software for the analysis of time series and Earth tides, 

Computers & Geosciences, 31(5), 631-640, https://doi.org/10.1016/j.cageo.2004.11.015, 2005. 

Wahr, J. M.: Body tides on an elliptical, rotating, elastic and oceanless Earth, Geophysical Journal International, 64(3), 677-

703, https://doi.org/10.1111/j.1365-246X.1981.tb02690.x, 1981. 715 

Wahr, J. and Bergen, Z.: The effects of mantle anelasticity on nutations, Earth tides, and tidal variations in rotation rate, 

Geophysical Journal International, 87(2), 633-668, https://doi.org/10.1111/j.1365-246X.1986.tb06642.x, 1986. 

Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., and Gao, P.: Load Love numbers and Green's functions for elastic 

Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0, Computers & 

Geosciences, 49, 190-199, https://doi.org/10.1016/j.cageo.2012.06.022, 2012. 720 

Wang, R.: Tidal Deformations on a Rotating, Spherically Asymmetric, Viscoelastic and Laterally Heterogeneous Earth, 

(Doctoral dissertation), Retrieved from Peter Lang, Frankfurt am Main, 1991. 

Wang, R.: Effect of rotation and ellipticity on Earth tides, Geophysical Journal International, 117(2), 562-565, 

https://doi.org/10.1111/j.1365-246X.1994.tb03953.x, 1994. 

Wang, R.: Tidal response of the solid Earth, Tidal phenomena, 27-57, doi: 10.1007/BFb0011456, 1997. 725 

Wang, X., Holt, W. E., and Ghosh, A.: Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints from 

global tomography models, Journal of Geophysical Research: Solid Earth, 120(12), 8633-8655, 

https://doi.org/10.1002/2015JB012188, 2015. 

Yuan, L., Chao, B. F., Ding, X., and Zhong, P.: The tidal displacement field at Earth’s surface determined using global GPS 

observations, Journal of Geophysical Research: Solid Earth, 118(5), 2618-2632, http://doi.org/10.1002/jgrb.50159, 2013. 730 

Zhao, D.: Seismic structure and origin of hotspots and mantle plumes, Earth and Planetary Science Letters, 192(3), 251-265, 

https://doi.org/10.1016/S0012-821X(01)00465-4, 2001. 

https://doi.org/10.5194/egusphere-2022-661
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



28 

 

 

Figure 1: Changes in the semidiurnal gravimetric factor resulting from a) the P-wave velocity disturbance, b) the S-wave velocity 

disturbance, c) density disturbance, and d) total changes, i.e., identical to the summation of a), b), and c). Results illustrated in a) 735 
are calculated by the GyPSuM P-wave model and in b) are calculated by the GyPSuM S-wave model. Results in c) are calculated 

by the GyPSuM density model, gravity model and its derivative. The influences of the density model are much larger than those of 

gravity model and its deriavative, and as a result, it can be stated for convenience that the changes result from density disturbance. 

Results in d) are changes as calculated by the three-dimensional Earth model GyPSuM respective to the spherically-symmetrical 

Earth model PREM (Dziewonski and Anderson, 1981). 740 
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Figure 2: Changes in semidiurnal gravimetric factors calculated for the ocean-land model. Effects of a) the P-wave velocity 

disturbance, b) the S-wave velocity disturbance, c) the density disturbance, and d) the input ocean-land model are illustrated. All 

patterns of the a), b), and c) are consistent with the ocean-land model d) to some extent. The value under the ocean is generally 

positive whereas the value under the continent is generally negative in a), and vice versa in b) and c). The three kinds of effects are 745 

almost at the same level. 
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Figure 3: Total changes in the semidiurnal gravimetric factors calculated by the three-dimensional Earth models. a) SPani, b) 

SEISGLOB2, c) SGLOBE-rani, and d) SAW64ANb. 

 750 

Figure 4: Gravity changes for a) ∆𝒈𝟎(𝜽,𝝓, 𝒕 = 𝟎)  resulted from semi-diurnal tide-generating potential  and b) ∆𝒈𝟑−𝑫(𝜽,𝝓) 

resulted from laterally-inhomogeneous disturbance. The three-dimensional Earth model GyPSuM is used for calculating 

∆𝒈𝟑−𝑫(𝜽,𝝓). 
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Figure 5: Changes in the semidiurnal tidal gravity calculated by the three-dimensional Earth models. a) SPani, b) SEISGLOB2, c) 755 

SGLOBE-rani, and d) SAW64ANb. 

 

Figure 6: Prediction of tidal gravity variations in Boulder (the first column), Syowa (the second column), Lhasa (the third column), 

and Djougou (the fourth column). The first row shows the total tidal signal calculated by the observed gravimetric factors. The 

second row shows the effects of rotation, ellipticity, inelasticity, and non-hydrostatic structure. The third row shows the ocean tide 760 

loading effect. The fourth row shows the lateral inhomogeneity effect. 
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Figure F1: Same as Figure 1 but calculated by Zhao’s (2001) three-dimensional Earth model. 

 

Table 1: Information for superconducting gravimeters and M2 factors 765 

Location Latitude (°) Longitude (°) Altitude (m) 𝛿𝑚 Δ𝛿𝑒 Δ𝛿3𝐷 

Boulder 40.131 254.767 1682 1.15944±0.00010 0.0039 -0.00025 

Cantley 45.585 284.193 269 1.20349±0.00005 0.0039 -0.00063 

Canberra -35.321 149.008 762 1.18585±0.00004 0.0038 -0.00049 

Esashi 39.151 141.332 434 1.19300±0.00009 0.0039 0.00025 

Matsushiro 36.544 138.203 451 1.19098±0.00007 0.0038 0.00022 

Syowa -69.007 39.595 24 1.40054±0.00051 0.0041 0.00134 

Wuhan 30.516 114.490 89 1.17159±0.00006 0.0038 0.00000 

Membach 50.609 6.007 250 1.18824±0.00012 0.0040 0.00014 

Metsahovi 60.217 24.396 56 1.18187±0.00022 0.0041 0.00012 
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Potsdam 52.381 13.068 81 1.18585±0.00004 0.0040 0.00057 

Strasbourg 48.622 7.684 180 1.18710±0.00008 0.0040 -0.00042 

Vienna 48.249 16.358 80 1.18170±0.00003 0.0039 -0.00013 

Lhasa 29.645 91.035 3632 1.16289±0.00002 0.0038 -0.00026 

Lijiang 26.896 100.232 2435 1.16575±0.00004 0.0037 -0.00023 

Djougou 9.842 1.606 483 1.17265±0.00002 0.0036 -0.00127 
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