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     Abstract 1 

In the Arctic, the sea surface salinity (SSS) plays a key role in processes related to 2 
water mixing and sea ice. However, the lack of salinity observations causes large 3 
uncertainties in Arctic Ocean forecasts and reanalysis. Recently the Soil Moisture and Ocean 4 
Salinity (SMOS) satellite mission was used by the Barcelona Expert Centre to propose an 5 
Arctic SSS product.  6 
In this study, we evaluate the impact of assimilating this data in a coupled ocean-ice data 7 
assimilation system. Using the Ensemble Kalman filter from July to December 2016, two 8 
assimilation runs assimilated two successive versions of the SMOS SSS product, on top of a 9 
pre-existing reanalysis run. The runs were validated against independent in situ salinity 10 
profiles in the Arctic. The results show that the biases and the Root Mean Squared 11 
Differences (RMSD) of SSS are reduced by 10% to 50% depending on areas and put the 12 
latest product to its advantage. The time series of Freshwater Content (FWC) further show 13 
that its seasonal cycle can be adjusted by assimilation of the SSS products, which is 14 
encouraging for its use in a long-time reanalysis to monitor the Arctic water cycle.  15 
 16 
Keywords: Arctic Ocean; Sea Surface Salinity; FWC; SMOS;  17 
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1. Introduction 18 

The Arctic Ocean is undergoing a dramatic warming, causing the loss of sea ice area 19 
coverage visible on satellite data (Johannessen et al., 1999; Stroeve and Notz, 2018). The 20 
sea ice melt contributes freshwater to the Arctic Ocean, together with other sources and has 21 
far-reaching effects on the Arctic Ocean environment, as reviewed in Carmack et al. (2016). 22 
A recent update of the review paper showed a stabilization of the Freshwater Content (FWC) 23 
of the Arctic Basin, although observations indicate that the Beaufort Gyre keeps freshening 24 
(Solomon et al., 2021). The Arctic observing system, contrary to other oceans, lacks the 25 
capability to provide a complete picture of the ocean salinity, particularly because of 26 
obstruction by sea ice.  27 
A complete reconstruction of Arctic environmental variables requires a data assimilative 28 
numerical model capable of propagating information below sea ice during the winter as 29 
practiced by ocean operational forecast systems (Dombrowsky, 2009; Fujii et al., 2019). As 30 
for other ocean data assimilation (DA) applications, the Arctic reanalysis products of ocean 31 
and sea ice play an important role in understanding climate change and its mechanisms. In 32 
recent years, many studies (Storto et al., 2019; Uotila et al., 2019) evaluated the quality of 33 
the Arctic reanalysis products and recommended experiments maximizing the usefulness of 34 
new available observations, such as done in Kaminski et al. (2015) or Xie et al. (2018) 35 
among others. However, there are no impact studies of salinity observations in the Arctic to 36 
our knowledge.  37 
Ocean salinity has been used to study the water cycle for the last 20 years (e.g., Curry et al., 38 
2003; Boyer et al., 2005; Yu, 2011; Yu et al., 2017). The salinity variations have far-reaching 39 
implications for ocean mixing, water mass formation, and ocean general circulation, but still 40 
suffer from large uncertainties, mainly due to sparse observations and the lack of a steady-41 
state reference time period (e.g., Stroh et al., 2015; Xie et al., 2019). Measuring sea surface 42 
salinity (SSS) from passive microwave remote sensing is a comparatively new but promising 43 
way to reduce the uncertainty in salinity. Launched in November 2009, the Microwave 44 
Imaging Radiometer using Aperture Synthesis (MIRAS) instrument of the European Space 45 
Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission measures the brightness 46 
temperature (TB) on the sea surface. The passive 2-D interferometric radiometer on the 47 
satellite operating in L-band (1.4 GHz) is sensitive to water salinity and sufficiently free from 48 
electromagnetic interference (e.g., Font et al., 2010; Kerr et al., 2010). Since May 2010, 49 
SMOS operationally provides SSS records over the global ocean (Mecklenburg et al., 2012).  50 
Furthermore, the assimilation of satellite derived SSS products using an ensemble DA 51 
method has been found to significantly improve the surface and subsurface salinity fields in 52 
the tropics (Lu et al. 2016). The advantages of assimilating three SSS products from SMOS, 53 
Aquarius (ref., Lee et al, 2012), and Soil Moisture Active Passive Mission (SMAP; e.g., Tang 54 
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et al., 2017) into a global ocean forecast system using 3D-Var DA method have also been 55 
demonstrated by Martin et al (2019). Their results show benefits of assimilating both the 56 
SMOS and SMAP datasets in the intertropical convergence zone in the tropical Pacific. 57 
However, there are very few studies to investigate the impacts of assimilating SSS products 58 
in Arctic or high latitudes. There are three main reasons for this: i) the lower sensitivity of TB  59 
in cold waters leading to larger SSS error (Yueh et al., 2001) (e.g, the sensitivity drops from 60 

0.5 to 0.3 K PSU!" when the sea surface temperature decreases from 15 to 5°C); ii) Land-61 

sea and ice-sea contaminations resulting from the abrupt changes of  of TB values across 62 
these two interfaces, combined with the large ground footprint of SMOS; and iii) The removal 63 
of biases ideally requires a well-observed steady-state period, from which climate change 64 
has deprived us. Addressing these challenges in the SMOS salinity retrieval approach, 65 
Olmedo et al. (2017) introduced a non-Bayesian retrieval method to debias the Level 1 66 
baseline (L1B) salinity against the reference SSS from Argo data.  67 
Starting from ESA L1B (v620) product of TB from SMOS, the Barcelona Expert Centre (BEC) 68 
released the version 2 Arctic gridded SSS product with a regular grid by 25 km resolution 69 
(e.g., Olmedo et al., 2018) via their portal (http://bec.icm.csic.es/; last accessed March 2019). 70 
The V2 SSS regional product was produced for the Arctic domain during the time-period 71 
2011-2016. Xie et al. (2019) evaluated this earlier SSS product and found considerable 72 
discrepancies among the six SSS products in the Arctic, especially in the freshest seawater 73 
(<24 psu). The intercomparison of these Arctic SSS products shows room for improvement 74 
of the SMOS-based SSS in the Arctic.  75 
Recently, under the framework of the ESA project Arctic+Salinity and further developing the 76 
non-Bayesian scheme, the effective resolutions were enhanced both in space and time. The 77 
new version of SSS product (V3.1) shows advantages for monitoring the mesoscale 78 
structures and the river discharges (e.g., Martínez et al., 2022), and was released through 79 
the BEC portal (also at doi: 10.20350/digitalCSIC/12620; last accessed May 2022). It also 80 
provides daily maps of 9-days averages in the Arctic on the regular 25 km grid and covers a 81 
longer time-period 2011-2019. The major differences in the estimation of the two SSS 82 
products (V2.0 and V3.1) are detailed in the Algorithm Theoretical Baseline Document 83 
(ATBD) of the Arctic+Salinity project (Martínez et al., 2020). Another SMOS-based Arctic 84 
surface salinity product from LOCEAN (Supply et al. 2020, Boutin et al., 2022) has been 85 
released posterior to Xie et al. (2019), but not assimilated in this study.  86 
The two successive versions of the BEC SMOS SSS products are assimilated in the 87 
TOPAZ4 Arctic reanalysis system during the summer 2016, and compared to the Arctic 88 
reanalysis without assimilation of satellite SSS data, which consistes the Arctic reanalysis in 89 
the Copernicus Marine Services at that time. The model validation against independent 90 
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observations will show the differences stemming from these two products, although they are 91 
originating from the same initial data source (SMOS). Their effect once assimilated in an 92 
Arctic coupled ice-ocean model shows large differences, thereby also motivating further 93 
efforts to improve SSS retrievals in the cold Arctic.    94 
The paper is organized as follows: Section 2 describes briefly the coupled ocean and sea ice 95 
data assimilation system and the assimilation experiments; Section 3 describes the in situ 96 
observations and the validation metrics; The results are presented in Section 4 which 97 
includes the validation using independent SSS observations, separated into different ocean 98 
basins. Section 4 also analyses the impact of the assimilation using the regional SSS 99 
assimilation increments, and explores the integrated effect on the freshwater contents in the 100 
model. In Section 5, the findings of this study and future perspectives are summarized.  101 

 102 

2. Assimilation system and experimental design 103 

2.1 The Arctic ocean and sea-ice coupled data assimilation system 104 
TOPAZ was built as a coupled ocean and sea ice data assimilation system, using the 105 

ensemble Kalman filter method (EnKF; Evensen 2003) to assimilate consistently multiple 106 
types of observations in the ocean and sea ice (Xie et al., 2017). The ocean model in this 107 
system uses the version 2.2 of the Hybrid Coordinate Ocean Model (HYCOM; Chassignet et 108 
al., 2003) with a low-distortion square grid of horizontal resolution of 12-16 km. The coupled 109 
sea ice model uses a single category thermodynamic model (Drange and Simonsen, 1996) 110 
combined with the dynamics of the modified elastic-viscous-plastic rheology (Bouillon et al., 111 
2013).  The model covers the whole Arctic basin excluding the Pacific Ocean. A seasonal 112 
inflow is imposed across Bering Strait, based on observed transports (Woodgate et al., 113 
2012). At all lateral boundaries, the temperature and salinity stratifications are relaxed to a 114 
climatology combining the 2013 World Ocean Atlas (version 2.0 of WOA13; Zweng et al., 115 
2013) and the Polar science ceter Hydrographic Climatology version 3.0 (PHC; Steele et al., 116 
2001) with a 20-grid cells buffer zone. To avoid a potential model drift, the surface salinity is 117 
relaxed to the same climatology with a 30-day timescale, and the relaxation is turned off 118 
wherever the difference from climatology exceeds 0.5 psu. The salinity flux from the SSS 119 
relaxation thus spreads evenly into the mixed layer depth without creating a new stable fresh 120 
layer at the surface.  121 

The TOPAZ model runs an ensemble of 100 members. On a weekly basis, the 122 
Deterministic Ensemble Kalman Filter (DEnKF; Sakov et al., 2012) then assimilates different 123 
types of ocean and ice observations, including along-track sea level anomaly (SLA), sea 124 
surface temperature (SST), in situ profiles of temperature and salinity, sea ice concentrations 125 
(SIC) and sea ice drift products all sourced from the Copernicus Marine Environment 126 
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Monitoring Services (CMEMS). The two steps of the assimilation system can be simply 127 
translated by the following expressions (update and model propagation): 128 

  𝑋! = 𝑋" + 𝐾%𝑦 − 𝐻𝑋")                                                                    (1) 129 

𝑋" = 𝑀(𝑋!)                                                                                     (2) 130 

Where the matrix X represents the model states with all 3-D and 2-D variables needed by 131 
the model forward integration, represented by the operator M. The subscripts ‘a’ and ‘f’ 132 
respectively indicate the analyzed model state obtained through optimization after DA, and 133 
the model forecast. The vector y is composed of the quality-checked observations during the 134 
weekly cycle, the observation operator H gives the model equivalent matching the 135 
observations. The innovation term (in parenthesis in Eq.1) represents the differences 136 
between the model and the various observations on the observation space. The K matrix 137 
(Kalman gain), is calculated as in Sakov et al. (2012) and updated in Xie et al. (2017). The 138 
same TOPAZ4 system provides a 10-days’ forecast of ocean physics and biogeochemistry in 139 
the Arctic everyday via the CMEMS portal.  140 

 141 

2.2 The assimilation experiments and the observation error estimate for SSS   142 
To evaluate the impact of  the two versions of the SSS products, a control assimilation 143 
experiment (Exp0) and two parallel assimilation experiments (ExpV2, ExpV3) were 144 
performed in the time period from July to December 2016. Exp0 assimilates all available 145 
ocean and sea ice data, except the satellite SSS product. On the other hand, ExpV2 and 146 
ExpV3 additionally assimilate the BEC SSS product V2.0 and V3.1 respectively. The main 147 
differences of the three assimilation runs of ExpV2 and ExpV3 are detailed in Table 1.  148 
Since the salinity errors from Passive Microwaves are higher in high latitudes than 149 
elsewhere, the zonal average of standard errors north of 60°N were previously estimated  150 
around 0.6 psu (Vinogradova et al., 2014). Later on, the intercomparison of different SSS 151 
products including the climatology, satellite, and the Exp0 reanalysis showed that the 152 
discrepancies were a decreasing function of salinity (Xie et al., 2019). This relationship 153 
seems qualitatively reasonable as the spatio-temporal variability and representativity errors 154 
are often higher in areas of fresher water, but quantitatively they combine the errors of the 155 
remote sensing products, models and climatologies and may be larger than the remote 156 
sensing errors alone. Still, we use an error function for ExpV2 and ExpV3 adjusted to the 157 
discrepancies as shown in Eq. 3: 158 

𝛿### = 𝑚𝑎𝑥	{𝛿$%& , [0.6 +
'

()*+,	-!!!"#$% .	
]/}                                            (3) 159 

Where 𝛿$%& is the instrumental error variance estimated by the data provider. In ExpV2, it is 160 
set to zero due to their absence. Eq. 3 yields more conservative error estimates than the 161 
providers, which also reduce the inconsistencies caused by strong assimilation updates. 162 
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Other such precautions are applied following Sakov et al. (2012). By construction, the 163 
observation errors are always larger for the V3.1 than the V2 product, but in fresh waters 164 
they are identical. This implies that the assimilation may pull the analysis closer to the V2 165 
than the V3.1 product in the more saline waters but are otherwise treated on equal footing, 166 
ignoring that the more recent product is a priori expected to be more reliable. 167 
 168 

3. In situ SSS observations for validation 169 
All in situ salinity profiles were collected from various repositories and cruises (as shown in 170 
Fig. 1). The salinity measurements were extracted near the surface over the Arctic domain 171 
during the experimental time period and sanity-checked. Since the model does not reproduce 172 
local gradients of the vertical salinity profiles shown in Supply et al. (2020), all the salinity 173 
profiles are averaged over the upper 8 meters below the surface. This also avoids the loss of 174 
the profiles that do not reach the surface.  175 

● Data from the Beaufort Gyre Experiment Project (BGEP) 176 
 The BGEP has maintained an observing system in the Canadian Basin since 2003 and 177 
provides in-situ observations over the Beaufort Gyre every summer. Although the BGEP has 178 
maintained three bottom-tethered moorings since 2003, the shallowest depth of the 179 
measured profiles for temperature and salinity is below 50 m. Hence, in this study, we only 180 
use the Conductivity Temperature Depth (CTD) dataset from the cruise in 2016  181 
(https://www2.whoi.edu/site/beaufortgyre/data/ctd-and-geochemistry/, last access: 14th 182 
February 2022). SSS observations from these CTD profiles in the time-period from 13th Sep 183 
to 10th Oct 2016 are represented by the red triangles in Fig.1.  184 

● Data from Oceans Melting Greenland (OMG) 185 

The project Oceans Melting Greenland was funded by NASA to understand the role of the 186 
ocean in melting Greenland’s glaciers. Over a five-year campaign, this project collected 187 
temperature and salinity profiles by Airborne eXpendable Conductivity Temperature Depth 188 
(AXCTD) launched from an aircraft (e.g., Fenty, et al, 2016). The deployed probe can sink to 189 
a depth of 1000 meters, connected with a float by a wire. The measured temperature and 190 
conductivity are then sent back to the aircraft. These salinity profiles collected during the first 191 
OMG campaign in 2016, are downloaded from 192 
https://podaac.jpl.nasa.gov/dataset/OMG_L2_AXCTD/ (last access: 10th February 2022). The 193 
SSS from OMG distributed around Greenland, from 13th Sep to 10th Oct 2016 are shown as 194 
the inverted red-triangles in Fig. 1. 195 

● Data  from the International Council for the Exploration of the Sea (ICES) 196 
Salinity profiles were also obtained from the ICES portal (https://www.ices.dk). Shown as 197 
blue squares in Fig. 1, the locations of the profiles during the last 6 months of 2016 are 198 
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dense in the Nordic Seas, and restricted to the north of 58°N for this study. Valid salinity 199 
profiles from ICES (last access: 9th February 2022), are obtained from 6th July to 23rd Nov in 200 
2016.  201 

● Data from other cruises at the Arctic Data Center (ADC) 202 
      Surface salinity observations from scientific cruises are obtained from the Arctic Data 203 
Center portal (https://arcticdata.io/catalog/data; last access: 17th Feb 2022). During the 204 
model experiment, the first relevant cruise in ADC was SKQ201612S which was operated by 205 
University of Alaska Fairbanks with the RV Sikuliaq. This cruise collected data from Nome, 206 
Alaska on 3rd September, to the northeast Chukchi Sea, and then back to Nome at the end of 207 
September 2016. The temperature and salinity profiles were collected by a Sea-Bird 911 208 
CTD instrument package. All measurements at each station were done both down- and up-209 
cast ways. To produce water column profiles at each station, the down-cast data were 210 
binned at 1 m intervals (Goñi et al.,2021).  Besides the CTD profiles of SKQ201612S, more 211 
seawater samples were collected via the surface underway system on the RV Sikuliaq. 212 
Through a sea chest below the waterline (eg., 4-8 m), the uncontaminated seawater was 213 
pumped into the ship and the corresponding filtration system supplies samples every 3 hours 214 
to the sensors (More details in Goñi et al., 2019). These SSS observations were obtained 215 
from 9th to 27th September, indicated as blue crosses in Fig. 1.  216 
Moreover, SSS measurements were also collected from the Seabird CTD on board Sir 217 
Wilfrid Laurier (SWL) vessel but only in July 2016. This cruise is part of the annual monitoring 218 
from the Canadian Coast Guard Service (Cooper et al., 2019). The SSS observations are 219 
obtained near the Bering Strait close to the Pacific boundary of our model.  220 
After removing the effect of diurnal cycle in observed surface salinity, all valid SSS 221 
measurements from the above data sources are compared with the daily average SSS of the 222 
three assimilation experiments listed in Table 1. All the assimilation runs use a weekly 223 
assimilation cycle: the model runs forward 7 days after each assimilation step and provides 224 
daily averages for each day from the ensemble mean, which we refer to as “forecast” even 225 
when using delayed-mode observations and atmospheric forcings. The model data has been 226 
collocated with the observations for validation. To estimate the forecast differences to 227 
observations, we use the standard statistical moments:  228 

  𝐵𝑖𝑎𝑠 = "
#
∑ (𝐻𝑋+$ − 𝑦$)#
$%" 	                                                                 (4), 229 

   𝑅𝑀𝑆𝐷 = "
#
∑ (𝐻𝑋+$ − 𝑦$)&#
$%"                                                               (5), 230 

Where i is the ith day, N represents the total number of days depending on the      231 
observations, and Xi represents the model daily average at the time of the observation yi. 232 
The Xi bar denotes the ensemble mean using 100 model members here, and the operator H 233 

https://doi.org/10.5194/egusphere-2022-660
Preprint. Discussion started: 20 July 2022
c© Author(s) 2022. CC BY 4.0 License.



 
 
8 

extracts the model SSS at the observed location. The model performance can then be 234 
quantitatively compared among the three assimilation runs. 235 
 236 
4. Results 237 

4.1 Diagnosing using assimilation statistics 238 
The SSS innovations in the two assimilation runs, ExpV2 and ExpV3, are shown in Fig. 2, 239 
together with the number of assimilated SSS observations and the ensemble spread of SSS 240 
calculated by the ensemble standard deviation. The total number of observations is 241 
maximum in September when the sea ice cover is minimal. Since both versions of the SSS 242 
product share the same time frequency (9 days average) and gridded format, the number of 243 
assimilated observations in the two runs are identical (gray lines in Fig. 2). For ExpV2, the 244 
Root Mean Square (RMS) of the innovation varies between 0.4 and 1.2 psu, but the mean of 245 
innovation which is the opposite of the bias (Eq. 1) shows a positive salinity bias, especially 246 
during September, when the saline bias is around 0.4 psu. However in ExpV3 the salinity 247 
bias quickly disappears after a few data assimilation cycles. The RMS of the innovation are 248 
larger in ExpV3 between 0.6 and 1.6 psu, which can partly be explained by the higher 249 
effective resolution of the V3.1 product. In ExpV3, the RMS of the SSS innovation (the red 250 
line) jumps down after the first SSS assimilation step. The RMS of innovations and the 251 
observation errors both decrease from summer to winter, following a yearly cycle as the 252 
areas of fresher water get gradually ice-covered. The domain-averaged observation errors 253 
are only slightly larger in ExpV3 than in ExpV2, as explained above, and the RMS of 254 
innovations become lower than the observation errors near the end of the run, which 255 
indicates that the observations errors sound overestimated.    256 
Figure 3 shows SSS maps from the two SSS assimilation runs (ExpV2 and ExpV3) and the 257 
control run (Exp0) during August and September 2016. For Exp0 in August, low salinity 258 
waters are found In the Beaufort Sea near the Mackenzie River and along the East Siberian 259 
coast. In September, the low saline waters below 30 psu bridge the two areas in Exp0 260 
probably due to sea ice melt, although the lowest salinity near the Siberian coast remains 261 
unchanged from August to September (as indicated by the 28 psu isoline).  Both in ExpV2 262 
and ExpV3, the low salinity areas are even fresher during the two months compared to Exp0. 263 
Notably, the areas of salinity lower than 28 psu are broader in ExpV3. On the European side 264 
of the Arctic, the characteristics of the saline Atlantic water are very similar in all the three 265 
runs (as shown by the isolines of 34 and 35 psu in Fig. 3). This is an indication that the 266 
model ensemble has a lower standard deviation of SSS and thus less sensitivity to the SSS 267 
assimilation in high salinity areas. Furthermore, clear salinity differences are observed in all 268 
Arctic marginal seas. The relatively saline tongue in the northwest Laptev Sea indicated by 269 
the 32 psu isoline is found in various locations in all three runs. In the Laptev Sea, due to the 270 
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significant effects of river runoff and ice melt, the salinity shows a strong gradient from the 271 
southeast to the northern part. During winter, the salinity increases to 34 psu, and decreases 272 
in summer near to 30 psu (Janout et al., 2017). In Exp0, the 32 psu salinity tongue extends 273 
eastward to Taymyr Peninsula (TP). In ExpV2, the salinity tongue extends eastwards but is 274 
narrower, but in ExpV3 it remains to the West of Severnaya Zemlya. North of the TP, the 275 
Kara Sea freshwater meets with the Atlantic Water pathways from the Fram Strait and 276 
Barents Sea (shown in Figure 1 of Janout et al., 2017). Close to TP, the observations at the 277 
mooring profiles in Janout et al. (2017) show much fresher surface salinity (29 psu) than the 278 
subsurface salinity (32 psu) in summer. This motivates the assimilation of the SSS products 279 
to compensate for the paucity of in-situ observations.  280 
   The 32 psu isoline in ExpV3 extends hundreds of kilometers further South along east 281 
Greenland in comparison to Exp0 and ExpV2. The change between simulations is larger 282 
than the differences between August and September. Another area of notable differences is 283 
in the northern Baffin Bay. In ExpV3, the area above 32 psu is shrunken  to the South of 284 
Nares Strait  under the assimilation of the V3.1 SSS product, which may compensate for the 285 
lack of mass loss from the Greenland ice sheet in the model. 286 

In the above comparisons of SSS maps, the central Arctic is excluded, since the region is 287 
covered by sea ice and the effect of assimilation can only be indirect.   288 

 289 
4.2 Comparison with independent in situ observations 290 

Valid observations in the Central Arctic are very unevenly distributed. When pooling all 291 
observation types together, we further investigate the SSS misfits separated into six 292 
subregions of the Arctic (Fig. 1 and Table 2). This section will present statistics of differences 293 
to independent in situ observations considering marginal seas separately.  294 
 295 
Beaufort Sea: Figure 4 shows the scatterplots of SSS in the three runs against in situ 296 
observations which are respectively obtained from BGEP, OMG, and ICES. In the Beaufort 297 
Sea (top panel in Fig. 4), the observed SSS varies in a range of 26-29 psu. The range of 298 
SSS in Exp0 is much smaller, between 29-31 psu with a saline bias of 2.6 psu and an RMSD 299 
of 2.7 psu, but otherwise show a reasonably linear relationship. The SSS bias in Exp0 has 300 
the same value as in Xie et al. (2019), although estimated using the BGEP observations in a 301 
different time period of 2011-2013. The range of SSS in ExpV2 is slightly improved to 28-302 
30.5 psu, a bias reduction by around 0.5 psu, corresponding to bias and RMSD reductions of 303 
respectively 13.5% and 10.5% with respect to Exp0. In ExpV3, the SSS range is much 304 
closer, between 26.5 and 30.5 psu, so the bias and RMSD reductions in ExpV3 are 305 
respectively 26.3% and 17.3% with respect to Exp0. Furthermore, compared with the 306 
combined SSS observations shown in the upper of Fig. 6, the SSS misfits in ExpV3 have a 307 
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robust reduction of 26.0% for bias and 20.6% for RMSD. There is also a reduction in ExpV2 308 
of 13.5% for bias and 11.5% for RMSD, but smaller in comparison with ExpV3. These results 309 
clearly indicate that assimilating the new version of the SSS is more efficient to improve the 310 
SSS in the Beaufort Sea.     311 
   312 
Chukchi Sea: Fig. 5 shows the SSS deviations as a function of time during the SKQ cruise 313 
route. Relative to CTD observations, the SSS deviation in the runs are shown as the curves 314 
in Fig. 5a. The saline bias (2.8 psu) is more pronounced than in the Beaufort Sea, for which 315 
we blame to the climatology relaxation in the Bering Strait where the interannual variability of 316 
the Pacific water is not included. After assimilating both SSS products, a gradual reduction of 317 
the bias is observed during September, by 15.5% in ExpV2 and up to 22,2% in ExpV3. By 318 
the meantime, the comparison to underway surface water samples (Fig. 5b) also shows the 319 
error reductions errors around 15%, though less differences between V2 and V3.  320 
Furthermore, compared with the combined SSS observations in CS (Fig. 6; bottom panels), 321 
the SSS in Exp0 shows a very narrow varied range with a saline bias about 2.3 psu and the 322 
RMSD 2.6 psu. A recent observational study by Goñi et al. (2021) shows that the surface 323 
salinity of CS during late summer varies around 28-30 psu during 2016-2017 time period. In 324 
our analysis for the year 2016, the SSS observations in the region vary around 27-32 psu. 325 
through the assimilation of SSS products, the two runs of Exp V2 and ExpV3, show reduced 326 
misfits (bias and RMSD). And as expected, the SSS in ExpV3 has more significant 327 
reductions in bias (17.7%) and RMSD (16.4%). After assimilation, the deviations are in the 328 
same range as found in the BS.   329 
 330 
Greenland Sea: Around Greenland, most SSS observations are from OMG shown as the red 331 
downward triangles in Fig. 1, distributed around both of the western and easter coastlines. 332 
Firstly, compared with all SSS observations from OMG, the SSS misfits in the three runs 333 
(shown in the middle panels of Fig. 4 show smaller bias and RMSD if relative to these values 334 
in BS and CS. However, the SSS in ExpV3 still shows significant error reductions where the 335 
saline bias/RMSD has a reduction of 32.6%/9.4% compared to that in Exp0. Notably, the 336 
SSS misfits in ExpV2 are almost the same as in Exp0, which suggests that the V2.0 SSS 337 
product loses the benefit around there by DA in this system. 338 
To better understand the changes caused by the SSS assimilation and the potential 339 
dependence on the localization, we further respectively evaluate the SSS deviations in GS 340 
and BB where the involved observations are shown in Fig. 1 (also these two regions are 341 
listed as S5 and S6 in Table 2). As shown in the top panel of Fig. 7, the SSS observations in 342 
GS vary between 27 and 35 psu. This large SSS variation reflects the real condition: where 343 
the fresh Arctic water and the fresh coast water converge with the saltier Atlantic Water. The 344 
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three assimilation runs show different saline biases, especially for salinities less than 30 psu. 345 
While in observations the minimum salinity is lower than 28 psu, it is around 30 psu in 346 
ExpV3, and 31 psu in Exp0 and ExpV2. Correspondingly, the bias reduction in ExpV3 is over 347 
50% with the RMSD decreased about 10.5% in GS. Notably, no clear changes for SSS in 348 
ExpV2 are found in comparison with Exp0. As indicated from SSS scatterplots of the three 349 
runs in BB (S6 in Table 1, also shown in bottom panels of Fig. 7), there are no clear 350 
differences between ExpV2 and Exp0 (less than 0.02 psu). On the other hand, w.r.t ExpV2 351 
and Exp0, ExpV3 registers a reduction of the SSS bias, even has no significant reduction of 352 
the RMSD in GS.  353 
 354 
Next, we focus on the Barents Sea region (S3 in Table 2) and the Norwegian Sea (S4 in 355 
Table 2). The SSS bias and RMSD are the lowest in ExpV3 in Table 2, even though the 356 
reductions are not so significant as in the above basins. Compared to the ICES observations 357 
distributed in the North Atlantic and extended in Nordic Seas (blue squares in Fig. 1), the 358 
scatterplots of Exp0 and ExpV2 are almost similar in the bottom panels of Fig. 4. The 359 
minimum salinity in these two runs is higher than 32 psu. The SSS bias and RMSD in both 360 
runs are also similar (differences less than 0.01 psu). In contrast, lower saline values in 361 
ExpV3, are below 32 psu, although the saline bias remains still around 0.5 psu on average. 362 
Notably, the SSS in ExpV3 shows this assimilation brings a bias reduction of 15% compared 363 
to Exp0, but the RMSD only reduced about 0.03 psu. It further suggests how to improve the 364 
fresh salinity measurements near the coastline around the Nordic Seas will be the next 365 
challenge for the SSS retrieve after the V3.1 SSS product. 366 

  367 
4.3 Impact analysis of the SSS assimilation 368 

     Above quantitative validation of SSS against various observations, shows that the 369 
assimilation of these two satellite products brings many positive benefits to constrain the 370 
simulated SSS not too far from real conditions, although the improvements are quite 371 
dependent on the locations. Surface salinity changes in the three runs (Fig. 8) contrasts the 372 
averaged increment of SSS in 2016. The increment means the difference between the 373 
analysis model state and the previous forecast model state, and represents the model 374 
correction of SSS by DA. As a control reference, the SSS increment in Exp0 is mainly in the 375 
river mouths, such as those around the Lena River (LR) and the Yenisey River (YR), while in 376 
open ocean it is extremely small. This is an indication that the presently assimilated 377 
observations in Exp0 are not able to correct the surface salinity very much. Assimilation of 378 
version 2.0 SSS product (Fig. 8b) shows four dominant areas around the central Arctic with 379 
negative increment in SSS. Two of them are in the Kara Sea (KS) and the East Siberian Sea 380 
(ESS). These are regions where the model has an underestimation for the affected extent of 381 
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the freshwater impulse around rivers. The third region, the southern Laptev Sea (LS), is 382 
found to be further separated into two small areas. The fourth region is along the coastline in 383 
Beaufort Sea. On the contrary, a positive increment in SSS is found in the Hudson Bay (HB), 384 
outside the central Arctic 385 
In comparison to ExpV2, except for the wide negative SSS increment area around ESS, 386 
much more areas are found with the different incremental patterns in ExpV3 (Fig. 8c). Two 387 
strong positive SSS increment centers appear around the Kara Sea and the north of LS, 388 
which is clearly different from the increment pattern in ExpV2. The difference is likely due to 389 
the processing of the two versions of the SSS products using different climatologies 390 
(Martínez et al., 2022). The two nearby regions (BS coast and HB) with negative SSS 391 
increment regions in ExpV2 are found to form a dipole of negative and positive increment 392 
regions in ExpV3. This pattern is likely due to the benefits of the increase in the horizontal 393 
resolution in the newest version of SSS products. In addition, some regions with positive 394 
increment (around 0.1 psu) are also visualized in Fig. 8c, significantly different to that in 395 
Exp0:  region extending from south of Fram Strait and to north of Denmark Strait; northern 396 
Baffin Bay; Chukchi Sea shelf. These spatial features of positive and negative SSS 397 
increments in ExpV3 indicate the impact of DA in the Arctic basins. On the other hand, the 398 
Barents Sea, Norwegian Sea, and the north Atlantic don’t show significant changes due to 399 
the SSS assimilation for both runs, which is also consistent with the SSS scatterplots shown 400 
in Fig. 4 (bottom panels).  401 
 402 
Since the water salinity near the surface are changed by the SSS DA, it is natural to further 403 
investigate how big the impact on the freshwater in the Arctic Ocean. Based on these 404 
assimilation runs, the changes in the Freshwater Content (FWC) in the Arctic are calculated 405 
according to the method by Proshutinsky et al. (2009), although this method was proposed 406 
initially to diagnose the FWC anomalies in the BS:   407 

        𝐹𝑊𝐶𝐿 = ∫
!"!"##"$$
"!"#

𝑑𝑧%%
%&

                                                                         (6) 408 

Where the reference salinity value Sref is taken at 34.8 psu and the vertical integral is 409 
computed from surface on all the waters fresher than Sref. Recently, applying the same 410 
methodology on optimized interpolation on the collected in-situ observations, Proshutinsky et 411 
al. (2020) estimated the time-averaged summer freshwater content in the Beaufort Gyre 412 
region for two time-period (1950s-1980s and 2013-2018). They show the FWC centre in BS 413 
is located around (150°W, 75°N) and the 20-m isoline covers more than 5 degrees of latitude 414 
and nearly 30 degrees of longitude on average. During the recent years (2013-2018), the 415 
FWC in BS has an obvious increase compared with before and its centre has a westward 416 
shift. 417 
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Correspondingly, referring to Eq. 6, the FWC of the water column has been computed from 418 
surface until the depth reaching to 34.8 psu. Figure 9 shows the FWC around the Arctic on 419 
20th September and 20th October 2016, respectively. In Exp0, the reanalysis reproduces the 420 
FWC spread in the Arctic region and a dominant centre located in the Beaufort Sea. Tracking 421 
of the 20 m FWCL isolines in Fig. 9a and 9d, it shows an increase in its spatial coverage 422 
during October, which verifies the variability due to winds, sea ice conditions, and ocean 423 
mixing processes. After assimilation of the V2.0 SSS product, the FWC spatial maximum in 424 
BS is found to show a different distribution in Fig. 9b and 9e in comparison to that in Exp0. 425 
An increase in FWC is noted outside the BS, north of Canada (indicated by the 16-m isoline). 426 
Another noticeable change is the FWCL extending (shown as the 8-m isoline) along the East 427 
Siberian shelf and near the coast in the Laptev Sea (LS). It indicates that the SSS 428 
assimilation is able to correct the possible fresh bias related to the river fluxes in the model 429 
near the coastal regions in ESS and LS. In ExpV3, the FWC on the shelf region of ESS is 430 
higher compared to that in ExpV2, but lower near the southwest coast of LS. These results 431 
suggest that the SSS assimilation of both versions of satellite products will redistribute the 432 
freshwater in the Arctic, and the freshwater budget will be adjusted in the end. However, so 433 
far with the limited amount of in-situ data, it is not fair to conclude whether this is a change 434 
for the better or the worse. Significantly different from sparse in-situ observations in the 435 
Arctic, the reanalysis product can better represent the characteristics of FWC variations in 436 
space and time.  437 
Further, we intercompare the daily time series of FWCL from the three runs averaged over 438 
north of 70°N (Fig. 10). The averaged FWCL clearly shows a sharp increase till October-439 
November to reach the maximum, and gradually decreases thereafter. The impact of weekly 440 
data assimilation cycles is visible as instantaneous jumps on the three curves of the time 441 
series. The summer FWC is found to increase substantially due to SSS assimilations in 442 
ExpV2 and ExpV3. Notably the assimilation of version 3.1 SSS brings faster increase during 443 
the first two months. Since there is not enough ground truth data in 2016, the above 444 
comparison can only be qualitative, but the timing is in better agreement with the ITP data 445 
presented by Rosenblum et al. (2021, their Fig. 4), although the amplitude of the seasonal 446 
FWC seems too small in all experiments, which can be related to insufficient thick ice in 447 
TOPAZ4 (Uotila et al., 2019). More concrete evidence about the changed FWC will be 448 
provided, after when the longer assimilation of the satellite-based SSS product is finished in 449 
near future. 450 

 451 

5. Summary and discussions. 452 
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SSS plays a key role to track the water property in the global water cycle and the ocean 453 
dynamics, but hindered by the extreme paucity of in situ data, the Arctic SSS still has high 454 
uncertainty. As a promising tool to measure the SSS changes in Arctic at basin scale, the 455 
grided SSS products from SMOS undoubtedly provide a way constraining the salinity 456 
deviations, especially for the ocean forecast systems. However, due to the limits of the 457 
previous SSS products, there have not been any previous studies to investigate the real 458 
benefits or challenges for assimilation of SMOS SSS in the Arctic reanalysis. In this study, 459 
based on the coupled ice-ocean data assimilative system, three assimilation runs have done. 460 
Exp0 assimilated all available altimeter data, SST, sea ice concentration, sea ice drift, T/S 461 
profiles, sea ice thickness, except any SMOS SSS products. ExpV2 and ExpV3 additionally 462 
assimilated V2.0 and V3.1 of SSS products from BEC, which were tested and retrieved by a 463 
series of algorithms considering the low temperature and sea ice cover in the Arctic (Olmedo 464 
et al., 2017; Martínez et al., 2022).  465 
Evaluated by the independent SSS observations from CTD and surface water samples along 466 
the cruise underway, the quantitative misfits in ExpV2 and ExpV3 have been significantly 467 
reduced relative to that in Exp0. In the Beaufort Sea, the SSS bias and RMSD in ExpV3 is 468 
reduced respectively by 26.0% and 20.6%, and if validated only against the observations 469 
from BGEP, the reduction is up to 26.3% and 17.3% respectively (Fig. 4). For ExpV2, the 470 
RMSD is reduced by 11.5% (if validated against the BGEP CTD profiles about 10.5% in Fig. 471 
4). In the Chukchi Sea, the reduction in SSS misfits in ExpV3 (bias:17.7%; RMSD: 16.4%) is 472 
more than that in ExpV2 (bias: 15.5%; RMSD: 13.7%). Around Greenland, validated by the 473 
SSS observations from OMG, a significant reduction in the SSS bias (32.6%) and RMSD 474 
(9.4%) is found in ExpV3, while there is no notable improvement in ExpV2. Furthermore, 475 
dividing the observations around Greenland into two regions, S5 and S6 (Table 2 and Fig. 7) 476 
show a larger reduction in the bias (52%) and RMSD (10.5%) in the Greenland Sea (S5) in 477 
ExpV3 SSS relative to that in Exp0. Notably in the Baffin Bay (S6), only the SSS bias in 478 
ExpV3 shows an obvious reduction compared with Exp0. It is consistent with the markable 479 
adjustment along the 34 psu isoline near the ice edge in GS (shown in Fig. 3).  Increments of 480 
SSS (in Fig. 8) also clearly show the wide salty features located in the GS in ExpV3, which is 481 
clearly different to that in Exp0 and ExpV2. In addition, the increments for other variables 482 
such as SST, SIC and so on are diagnosed, but their spatial features during the same time 483 
(figures not shown) have no clear differences as in Exp0. It further verifies the surface salinity 484 
is dominantly constrained by the direct observations from SMOS, other than the weak 485 
constraints through the error covariance from other observed variables. This finding also is 486 
consistent with the conclusions in SSS assimilation experiments in the tropics (Chakraborty 487 
et al.,2015; Tranchant et al.,2019).  488 
 489 
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Furthermore, this study shows that the error reduction of SSS will be benefited from the 490 
assimilation of the V3.1 product from SMOS, even outside of the central Arctic. A remarkable 491 
improvement is also achieved around GS (S5 in Fig. 1), a clear advantage compared to the 492 
other version of SSS product. Moreover, our analysis shows different spatial distributions of 493 
Arctic FWC as a result from assimilating the two SMOS products respectively. The mean 494 
FWCL north of 70°N shows that the FWC in the whole central Arctic can be corrected by the 495 
SSS innovations though DA, although the FWCL time series shows a clear step jump for 496 
each assimilation cycle. Assimilation experiments show that the Arctic FWC can be 497 
redistributed by assimilation, but how the seasonal cycle varies with time still needs a longer 498 
assimilation time. Clearly, these novel results are not only useful for the developing of the 499 
Arctic reanalysis and the operational ocean forecast system, but also provides insights for 500 
understanding the differences of these two SSS products although they have a certain 501 
degree of similarity. These results are also expected to guide the future upgrade of the SSS 502 
products.  503 
 504 
Using the quantitative SSS misfits (Table 2), the impact indexes at each subregion (S1 to S6) 505 
further indicates whether the misfits are significantly decreased or not. Outside of the central 506 
Arctic, the v2.0 SSS product loses the impacts in this system, but the V3.1 SSS brings more 507 
wider significant impacts around the Arctic, which clearly benefits from the related retrieval 508 
algorithms for the refined effective resolution (Martínez et al., 2022). However, in the region 509 
S6, the SSS in ExpV3 has no significant constraint on the misfits and only brings a reduction 510 
in the bias. It may be related with the movement of the sea ice edge more northward in 511 
summer and indicates that both the SSS products have low impacts over the open water in 512 
the north Atlantic. It is also verified by the validation results in the Barents Sea and the 513 
Norwegian Sea, as shown in bottom panels of Fig. 4 and Table 2. This defect partly reflects 514 
the mesoscale eddy features (<50 km which is about 4 times the model resolution in 515 
TOPAZ4) having no clear benefits from this assimilation using the 9-days SSS. In fact, the 516 
V3.1 SSS also provides a 3-days product that needs to be tested by DA for quantifying the 517 
impact on the north Atlantic. Meanwhile, considering the coarse footprint of the SMOS 518 
radiometer (about 40 km in diameter), minimal sampling densities (e.g., Lv et al., 2020) is 519 
required to resolve the mesoscale eddy features. But in real conditions the gridded SSS 520 
products still have a gap for more precisely measuring the SSS changes near the Nordic 521 
coast regions. Using the same L-band frequency (e.g., Lee et al, 2012), Aquarius used three 522 
radiometers at fixed angles and had a 350 km wide swath that covered earth's surface in 523 
seven days. Whereas SMAP scans earth using a spinning antenna, with a wider swath about 524 
1000 km every three days to provide global coverage (e.g., Tang et al., 2017; Reul et al., 525 
2020). To combine all the SSS retrieves along the satellite tracks will provide the 526 
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contemporaneous data coverage with the greatest extent, which should be helpful in Arctic 527 
and high-latitudes for further improvements of the reanalysis and the ocean forecasting. 528 
 529 
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Caption and figures: 
 
 
Table 1. Settings of the three assimilation runs in 2016 with and without SSS. 
 

 Assimilated obs. Initial model 
states 

End date of 
assimilation 

SSS Observation 
Errors 

Exp0 SST, SLA, T/S profile, 
SIC, SIT, and SID 

6th July 28th Dec. N/A 

ExpV2 SSS V2.0 + obs. used 
in Exp0 

6th July 28th Dec. Eq. 3 

ExpV3 SSS V3.1 + obs. used 
in Exp0 

6th July 28th Dec. Eq. 3 

 
 
 

 
 

Table 2. Evaluation of SSS misfits (unit: psu) in the three assimilation runs according to 

the 6 sub-regions indicated by the blue dashed lines in Fig. 1. The bold fonts indicate 

the minimal misfits in the runs with a significant reduction (> 9% with respect to Exp0). 

The overall score is defined by whether the reductions of bias and RMSD are 

significant or not. If both reductions are significant, the index equals 1, but 2 if only one 

of them is reduced, and otherwise equals 3. 

 
     
Regio
n 

Areas in 
Fig. 1 

Numbe
r of 
obs.  

Bias (psu) RMSD (psu) Overall score 

Exp
0 

ExpV
2 

ExpV
3 

Exp
0 

ExpV
2 

ExpV
3 

ExpV
2 

ExpV3 

S1 BS 98 2.81 2.43 2.08 2.87 2.54 2.28 1 1 
S2 CS 137 2.32 1.96 1.91 2.62 2.26 2.19 1 1 
S3 BSS 189 1.35 1.34 1.30 2.50 2.49 2.47 3 3 
S4 NS 669 0.43 0.44 0.37 1.19 1.19 1.16 3 2 
S5 GS 254 0.50 0.51 0.24 1.43 1.43 1.28 3 1 
S6 BB 89 0.35 0.37 0.12 1.22 1.20 1.22 3 2 
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Fig. 1 Locations of the observed SSS from in-situ profiles and surface samples by 

cruises from July to December 2016. There are 6 observation sources noted by the 

marks, see the details in Section 2.3. The marginal seas delineated are the Beaufort 

Sea (BS), Chukchi Sea (CS), East Siberian Sea (ESS), Laptev Sea (LS), Kara Sea 

(KS), Barents Sea (BSS), Greenland Sea (GS), Norwegian Sea (NS), and Baffin Bay 

(BB). The main rivers around the Arctic region are the Mackenzie River (MR), 

Pechora (PR), the Ob (OB), Yenisey River (YR), Lena River (LR), and Indigirka River 

(IR). TP indicates the Taymyr Peninsula.  
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Fig 2. Innovations of SSS in both weekly assimilation runs ExpV2 (a) and ExpV3 (b). 

The line with red triangles is the root mean squared innovation, and the blue dotted 

line shows the mean of innovations north of 60°N. The gray line represents the 

number of observations assimilated, and the line with inverted triangles is the 

observation error standard deviation in the two runs.  

 
 
 
 
 
 

  

(a) 

(b) 
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Fig. 3 Monthly simulated SSS (unit: psu) in August (left column) and September 

(right column) 2016 from Exp0 (top line), ExpV2 (middle line), and ExpV3 (bottom 

line). The black isolines indicate the 28, 30, 32, 34 and 35 psu isolines. 
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ExpV3 

Exp0 
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Fig. 4 Scatterplots of SSS in the TOPAZ assimilation runs against in-situ profiles 

(Upper: from BGEP in the Beaufort Sea; Middle: from OMG in both Greenland Seas; 

Bottom: from ICES in the Nordic Seas as indicated in Fig.1 and descriptions in 2.1). 

The statistics of SSS misfits are indicated in each panel with the bias and the RMSD 

respectively, the number of observations is given between parentheses, and the dark 

dashed line represents the linear regression.  
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Fig. 5 Model-minus-observations SSS differences in the three assimilation runs 

against the SSS recorded in the Beaufort Sea and the Chukchi Sea along the SKQ 

cruise in 2016: a) from CTD profiles; b) from surface water samples underway in the 

same cruise. The biases are indicated in the same order and the corresponding 

RMSD between parentheses. 
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Fig. 6 Scatterplots of SSS (unit: psu) in the three assimilation runs of Exp0, ExpV2 

and ExpV3 against the observations from the CTD profiles collected by different 

cruises in 2016. Upper: in the Beaufort Sea; Bottom: in the Chukchi Sea as shown 

in Fig.1. 
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Fig. 7 Scatterplots of SSS (unit: psu) in the three assimilation runs of Exp0, ExpV2 

and ExpV3 against the collected observations with the CTD profiles from OMG and 

ICES in 2016. Upper: in the Greenland East Sea; Bottom: in Baffin Bay as shown in 

Fig.1. 
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Fig 8. Averaged increment of SSS in Exp0 (a), ExpV2 (b) and ExpV3 (c). The 

obvious changes of SSS (±0.1 psu) are highlighted by isolines. 
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Fig 9. Daily freshwater content depths (unit: m) on 20th September and 20th October 

2016 in Arctic Ocean from the three assimilation runs: Exp0 (a; d), ExpV2 (b; e), and 

ExpV3 (c; f). The interval of isolines is 4 meters. 
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Fig 10. Mean freshwater content depths (unit: m) in the central Arctic (>70°N) during 

the period from July to December 2016 for Exp0 (dark dashed), ExpV2 (blue 

dashed), and ExpV3 (red dotted).
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