
Dear authors, 

 

thank you for sumbitting your revised manuscript and responses to the reviewer reports. While 

all comments by referee #1 have been cleared, the report of referee #2 indicates that there is still 

need for clarification, especially regarding important aspects of model performance and scope. I 

invite you to respond to these comments and provide a manuscript with corresponding revisions. 

 

Kind regards, 

Daniel Viviroli 

 

Response: We thank the editor for all the help with the review and suggestions for 

improving the manuscript. Below are our responses to the reviewer comments. 

 

 

Reviewer 1 

 

Response: We thank the reviewer for the helpful comments on the manuscript and the 

positive feedback. 

 

 

Reviewer 2 

 

The manuscript has been improved according to the comments in round 1. Especially, the 

climate projection sections read more reasonable now. But (there is a but), the model 

rationationty part, as indicated in my first comment of last round, is still not convincing. This is 

the basis for whatever outcomes of the future projection investigations in this work. Because 

ROS is such an interesting research topic and this work could be beneficial for the community, I 

dig into the methodology paper (Myers et al., 2021b) that this manuscript is based on. To make it 

clear, let me zoom into the specific points: 

 

Response: We thank the reviewer for providing helpful comments to improve those 

sections, and for providing constructive feedback for what still needs improvement. We 

hope our responses can satisfactorily address the remaining concerns. 

 

 

1. Low average NSE for discharge simulation. “The SWAT ROS model for the Great Lakes 

Basin simulated historic streamflow at the daily time step with an average NSE of 0.38 (with 

29% of stations greater than 0.5, 48% greater than 0.4, and a maximum NSE of 0.71)”. It is not 

acceptable, in particular, the author wants to address the effects on extreme high water yield (as 

defined by the authors: “Finally, the SWAT model outputs for water yield represent the area-

averaged water export through the outlet in mm.”). with such a definition, streamflow is more or 

less equivalent to or contributes a lot to the water yield of this work. Mathematically, NSE is 

highly affected by peak flow which is highly relevant to extreme high water yield. Low NSE 



largely indicates a bad fitting of the peaks. Thus, it is not reasonable to discuss the implications 

on extreme water yield, if the model cannot represent them properly. 

 

Response: Following the reviewer’s feedback and further research, we removed the 

analysis regarding extreme winter and spring water yields from the results, as well as its 

mention in the methods and conclusions sections. We now introduce it as a potential 

avenue for further research. We also elaborated on how the model performance guides 

the scope of investigations to only those most reliable and representative. 

 

“Stations with streamflow NSE > 0.50 at the daily time step were spread throughout the 

Great Lakes Basin, suggesting that the model was representative of the spatial tendencies 

in climate forcings and hydrological responses (Figure 2a). Stations that performed well 

with dr > 0.60 were also distributed across the Basin, which is important because dr is 

not as influenced by extremes as NSE (Willmott et al., 2012) and can be a more 

interpretable indicator of overall model performance (Willmott et al., 2015). Further, the 

presence of stations not performing as well by NSE could be at least partly explained by 

the diversity of spatially-distributed hydrological behaviors of the Basin having been 

simplified in the model’s multi-site and multi-objective calibration (Zhang et al., 2008), 

as well as uncertainties in gridded climate forcings (Maurer et al., 2010; Muche et al., 

2020; Stern et al., 2022) and snowpack calibration data (Mote et al., 2018; Hill et al., 

2019). Thus, we chose to focus on average amounts of ROS melt over different time 

periods for this study, without focusing on specific events such as extreme (e.g., 0.95 

quantile) water yields. Those extremes may not be represented as reliably in future 

climate projections given that many of the stations had lower NSE values than we deemed 

adequate for that purpose, largely because NSE values are sensitive to extremes (Legates 

and McCabe, 1999; Willmott et al., 2009). Further, projections of climate change 

impacts on hydrologic extremes are best analyzed using models that focus on extreme 

flows specifically (Willems et al., 2014).” (page 4, lines 88-100 in the revision with 

changes tracked) 

 

 

Figure 2. Evaluation statistics for simulating historic: a) streamflow using Nash Sutcliffe 

Efficiency (NSE), b) streamflow using revised Index of Agreement (dr), and c) snowpack 

using mean absolute error (MAE) at the daily time step. Adapted from Myers et al., 

(2021b). 

 



“Investigations projecting the response of extreme water yields to changing ROS 

conditions in future climates are an additional avenue for future research with meaningful 

implications for water resources management.” (page 22, lines 43-45) 
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Thoughts: After checking the methodology paper (Myers et al., 2021b), it seems that the model 

simulated somehow descent streamflow in winter/spring period but performed bad in summer 

period. If ROS is more important for winter/spring period (I am not a snow scientist. This 

statement should be double checked), perhaps calculating the metrics and proving the reasonable 

representation of streamflow in these seasons is a breakthrough point. 

 

Response: We appreciate the reviewer for the constructive and helpful idea. We explored 

the impact of using only winter and spring data in our evaluations. However, the 

evaluation statistics were similar to before, with a streamflow NSE of 0.35, streamflow dr 

of 0.64, and snowpack MAE of 37 mm. Thus, we decided to stick with the evaluations as 

reported in the Myers et al., 2021b study. 

 

 

Minor suggestion: higher temporal resolution does not necessarily mean using a lower criterion 

for evaluating the model performance. And the spatial side should not be ignored. In this work, 

the spatial resolution is coarse. I suggest to remove the statement “for instance that an NSE 

between 0.3 and 0.5 could fit criteria for satisfactory model performance in some contexts”. 

 

Response: We removed the statement as suggested. 

 

 

2. High MAE for daily SWE. The authors added some descriptions of snow melt performance as 

supporting references of reasonable snow simulations. However, acceptable MAE snowmelt 

simulations do not mean reasonable performance of SWE outputs. It may indicate the melt 

module works, and something has to be improved in the snow accumulation module. The authors 

should clarify this point: is 26 mm MAE for daily SWE is an acceptable bias in the study region 

or not? Particularly, as shown in Figure 5, the median SWE value of many winter months is 

around 50 mm or lower. As a reader, I will interpreter 26 mm MAE as a large error. 

 



Response: We now add more clarification about our snowpack SWE errors and how they 

were distributed across the Basin, with larger absolute errors in stations that had larger 

historic snowpack amounts, and errors less than the mean of 26 mm MAE in stations with 

smaller historic snowpack amounts. 

 

“Daily snowpack SWE error across the Basin ranged from <20 mm MAE throughout the 

southwest subbasins to approximately 40-70 mm MAE in the northeast (Figure 2c). This 

spatial variation in MAE scaled with the average observed daily snowpack SWE during 

winter and spring across the Basin, which ranged from approximately 50-100 mm in the 

southwest subbasins to over 150 mm in the northeast, described in Section 3.4. Thus, 

subbasins with lower amounts of observed SWE would also have smaller errors than the 

average of 26 mm. We find this measure of absolute error to be acceptable, particularly 

considering the errors inherent to the gridded snowpack data we compare against (e.g., 

spatial averaging and simplification of accumulation and ablation processes during 

conversion from snow depth; Myers et al., 2021b; Ensor and Robeson, 2008; Hill et al., 

2019). Mean absolute errors in modeling the gridded snowpack SWE have been found to 

vary temporally as well, for instance being 12.7 mm MAE on January 1, 45.1 mm MAE 

on February 1, 26.8 mm MAE on March 1, and 9.6 mm MAE for April 1, 1978, across the 

Great Lakes Basin in comparison with station measurements, and proportional to the 

amount of snowpack on the ground during those days (Myers et al., 2021b).” (page 4, 

line 101 to page 5, line 112) 
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3. The authors added some information about the modified ROS-SWAT in this manuscript. 

“simulates ROS melt based on a function of air temperature, precipitation, wind, saturated vapor 

pressure, and atmospheric pressure”. In your current descriptions, it means wind, saturated vapor 

pressure, and atmospheric pressure datasets are required. It could indicate your method cannot 



work in many snow process dominated remote areas due to data scarcity. But I found the 

answers in your supplementary source code snom.f, those variables are simulated internally 

based on elevation (atmospheric pressure), air temperature (saturated vapor pressure) and fixed 

value of 0.15 (for wind variable UADJ). To avoid misleading, please clarify briefly what exactly 

is needed as inputs for your module in the manuscript. 

 

Response: We added the following sentence to clarify that no additional data inputs are 

required for the SWAT ROS model. 

 

“For the SWAT ROS model, air temperature and precipitation are based on existing 

SWAT model inputs, wind effects on ROS are simulated using an average function for 

ROS melt from turbulent energy transfer, saturation vapor pressure is based on air 

temperature, and atmospheric pressure is based on elevation, so no additional data 

inputs are required.” (page 3, lines 70-73) 

 

 

Many thanks to the editors for sharing me the methodology literature: Myers, D. T., Ficklin, D. 

L., and Robeson, S. M.: Incorporating rain-on-snow into the SWAT model results in more 

accurate simulations of hydrologic extremes, J. Hydrol., 603, 

126972, https://doi.org/10.1016/J.JHYDROL.2021.126972, 2021b. 
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