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Abstract 5 

 6 

Quantification of uncertainty in fluxes of energy, water, and CO2 simulated by land surface 7 

models (LSMs) remains a challenge. LSMs are typically driven with, and tuned for, a specified 8 

meteorological forcing data set and a specified set of geophysical fields. Here, using two data sets 9 

each for meteorological forcing and land cover representation (in which the increase in crop area 10 

over the historical period is implemented in the same way), as well as two model structures (with 11 

and without coupling of carbon and nitrogen cycles), the uncertainty in simulated results over 12 

the historical period is quantified for the Canadian Land Surface Scheme Including 13 

Biogeochemical Cycles (CLASSIC) model. The resulting eight (2 x 2 x 2) model simulations are 14 

evaluated using an in-house model evaluation framework that uses multiple observations-based 15 

data sets for a range of quantities. The simulated area burned, fire CO2 emissions, soil carbon 16 

mass, vegetation carbon mass, runoff, heterotrophic respiration, gross primary productivity, and 17 

sensible heat flux show the largest spread across the eight simulations relative to their global 18 

ensemble mean values. Simulated net atmosphere-land CO2 flux, a critical determinant of the 19 

performance of LSMs, is found to be largely independent of the simulated pre-industrial 20 

vegetation and soil carbon mass although our framework represents the historical increase in 21 

crop area in the same way in both land cover representations. This indicates that models can 22 

provide reliable estimates of the strength of the land carbon sink despite some biases in carbon 23 

stocks. Results show that evaluating an ensemble of model results against multiple observations 24 

disentangles model deficiencies from uncertainties in model inputs, observation-based data, and 25 

model configuration. 26 

  27 
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1. Introduction 28 

The current generation land surface models (LSMs) explicitly simulate the fluxes of 29 

energy, water, momentum, and trace gases (including CO2, CH4, and N2O) between the 30 

atmosphere and the land surface. These models have become an essential tool in understanding 31 

what role the land surface plays in the global climate system under current and projected future 32 

changes in environmental conditions, including atmospheric CO2 concentration (Bonan and 33 

Doney, 2018). LSMs are also an essential component of climate and Earth system models (ESMs), 34 

together with their ocean and atmosphere components. Within the framework of ESMs, LSMs 35 

are coupled interactively to their atmospheric components through the fluxes of energy, 36 

momentum, and matter. 37 

The complexity of LSMs has increased over time as more physical and biogeochemical 38 

processes have been included in their framework (Fisher and Koven, 2020; Kyker-Snowman et 39 

al., 2022). This increased complexity combined with the uncertainty in our understanding of 40 

physical and biogeochemical processes implies that different models respond differently even 41 

when driven with the same external forcings.  One estimate of the uncertainty in our 42 

understanding of land surface physical and biogeochemical processes is obtained by evaluating 43 

the inter-model spread in a given quantity when models are forced in the same manner. Other 44 

than the uncertainty among models due to differences in their model structures and 45 

parameterizations of various processes, uncertainty also exists due to at least three other 46 
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reasons. These include uncertainty 1) in parameter values1 of represented processes, 2) in driving 47 

meteorological data, and 3) in the specification of the geophysical fields. LSMs are typically driven 48 

with meteorological data consisting of seven primary variables (incoming long and shortwave 49 

radiation, temperature, precipitation, specific humidity, wind speed, and pressure).  In addition, 50 

the geophysical fields of land cover, soil texture, and soil permeable depth are also required. 51 

Driving data for LSMs also consist of atmospheric CO2 concentration and other model-specific 52 

external forcings such as nitrogen deposition and fertilizer application rates for models that 53 

include a representation of the terrestrial nitrogen cycle, and lightning, population density, and 54 

gross domestic product (GDP) for models that simulate wildfires.  55 

Every year more than 15 land surface modelling groups participate in the TRENDY (trends 56 

in net land-atmosphere carbon exchanges) project where they perform a set of simulations that 57 

are driven with specified external forcings. The simulations are performed from the year 1700 to 58 

the present day. These simulations contribute to the annual Global Carbon Project’s (GCP) 59 

analysis of the land carbon sink together with its analysis of anthropogenic CO2 emissions and 60 

the ocean carbon sink (Friedlingstein et al., 2019). The external forcings used to drive LSMs in the 61 

TRENDY intercomparison include, 1) six hourly meteorological data from 1901 to the present day 62 

(the most recent 2020 TRENDY intercomparison used the CRU-JRA forcing obtained by blending 63 

the climate research unit (CRU) monthly data and the Japanese reanalysis (JRA)); 2) atmospheric 64 

CO2 concentration; and 3) information about changes in crop area and other land use changes 65 

(LUC) from the land use harmonization (LUH) product (Hurtt et al., 2020a). The information about 66 

                                                           
1 Changes in parameter values do not constitute different parameterizations. For example, two models may use 
the same parameterization, say y=mx+b, but different values of its parameters m and b. However, y=mx + b and y = 
mx2 are considered to be two different parameterizations. 
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changes in crop area and other LUC is used by land surface modelling groups to reconstruct 67 

historical land cover from the year 1700 to the present day consistent with the number of the 68 

plant functional types (PFTs) a given model represents. The protocol also provides nitrogen 69 

deposition and fertilization application rates for models including nitrogen cycling. 70 

Models participating in the TRENDY simulations are thus driven with common 71 

meteorological and LUC forcings as part of its protocol. The resulting spread across models 72 

participating in the TRENDY project thus provides a measure of inter-model uncertainty, as 73 

mentioned earlier. Traditionally the uncertainty associated with model structure has gained the 74 

most attention and the scientific community has responded to this by performing model 75 

intercomparison projects (MIPs) where models are driven according to a common protocol. The 76 

coupled model intercomparison project (CMIP) in the climate community together with its 77 

various sub-projects (Eyring et al., 2016) is another prominent example. MIPs now routinely form 78 

the basis of evaluating models against observations and multi-model means of various quantities. 79 

Multi-model means are also considered the best estimate for a given quantity (Tebaldi and 80 

Knutti, 2007).  81 

The modelling community has been long aware of the uncertainty associated with 82 

parameter values, since a large fraction of physical and biogeochemical model processes are 83 

parameterized, and such uncertainty analysis dates back to the early hydrological models (e.g. 84 

Hornberger and Spear, 1981; Beven and Binley, 1992). More recent examples of parameter value 85 

uncertainty in the context of a given LSM include Poulter et al. (2010), Booth et al. (2012), and Li 86 

et al. (2018a). The land surface modelling community, however, has only recently begun to 87 

address and quantify uncertainty related with driving meteorological data. Wu et al. (2017), for 88 
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example, illustrate the uncertainty in gross primary productivity (GPP) simulated by the Lund-89 

Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) model when driven by six different 90 

meteorological data sets. Bonan et al. (2019) analyze the uncertainty in simulated carbon cycle 91 

related variables using three versions of the Community Land Model (CLM) when driven with two 92 

meteorological data sets over the historical period. Slevin et al. (2017) assess the uncertainty in 93 

simulated GPP by the JULES land model when driven by three different meteorological data sets. 94 

Studies that evaluate the effect of different land cover representations on model performance 95 

are even fewer. Tian et al. (2004) and Lawrence and Chase (2007) study the effect of new land 96 

surface boundary conditions, including leaf area index and fractional vegetation cover, based on 97 

the MODIS satellite data as implemented in CLM2 in the Community Atmosphere Model (CAM2) 98 

and CLM3 in the Community Climate System Model (CCSM 3.0), respectively.  99 

Here, we drive the Canadian Land Surface Scheme Including Biogeochemical Cycles 100 

(CLASSIC) with two sets of historical meteorological forcings and also two land cover 101 

representations to quantify the uncertainty associated with both these forcings. Other than 102 

these, we also use two versions of the CLASSIC model: one that represents the interactions 103 

between the carbon (C) and nitrogen (N) cycles and the other in which these interactions are 104 

turned off. CLASSIC has contributed to the simulations for the TRENDY intercomparison, and the 105 

GCP, since 2016 (formerly under the CLASS-CTEM name). Seiler et al. (2021a) have evaluated how 106 

well the CLASSIC model performs when forced with three different meteorological data sets using 107 

the model version without the N cycle. Using the two meteorological forcing data sets, two 108 

representations of land cover, and two versions of the model we perform eight simulations over 109 

the historical period since 1700. All of these simulations may be considered equally likely 110 
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representations of the modelled state of the land surface over the historical period. Yet, they all 111 

have their own distinct biases since simulated land surface states and fluxes are different. We 112 

use these simulations to illustrate the uncertainty associated with meteorological forcing and the 113 

two different representations of land cover that are used to drive the model. We also use an in-114 

house open-source benchmarking system (see code/data availability section) to evaluate these 115 

different simulations against observations-based data sets: AMBER (Automated Benchmarking R 116 

Package) (Seiler et al., 2021b) uses gridded and in-situ observation-based estimates of 19 energy, 117 

water, and C cycle related variables to evaluate LSMs.  118 

Section 2 of this paper describes the framework of the CLASSIC land model and the forcing 119 

data that are required to drive the model. Section 3 describes the two meteorological data sets, 120 

the two representations of land cover that are used to drive the model, and the simulations 121 

performed for this study. Section 4 analyses the results from the simulations to illustrate their 122 

different states and reports results from the AMBER benchmarking exercise. Finally, the 123 

discussion and conclusions are presented in Section 5. The use of more than one meteorological 124 

forcing data sets and land cover representation yields a conundrum since tuning model 125 

parameters for a given forcing data set is not a useful exercise anymore. We also report a new 126 

finding that despite different land C states (characterized in terms of vegetation and soil C mass) 127 

in the eight simulations considered here, the net atmosphere-land CO2 flux over the historical 128 

period in these simulations is consistent with estimates from the GCP. This and the discussion 129 

about the broader question of model tuning are also presented in Section 5.  130 

2. The CLASSIC land modelling framework 131 
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2.1 The physical and carbon biogeochemical processes  132 

The CLASSIC land model is the successor to, and based on, the coupled Canadian Land 133 

Surface Scheme (CLASS; (Verseghy, 1991; Verseghy et al., 1993)) and the Canadian Terrestrial 134 

Ecosystem Model (CTEM; (Arora and Boer, 2005; Melton and Arora, 2016b). CLASSIC also serves 135 

as the land component in the family of Canadian Earth System Models (Arora et al., 2009, 2011; 136 

Swart et al., 2019). Melton et al. (2019) provide an overview of the CLASSIC land model and 137 

launched it as a community model. The basis of the modelling of physical and biogeochemical 138 

processes in CLASSIC comes from CLASS and CTEM, respectively, both of which have a long 139 

history of development. CLASSIC simulates land-atmosphere fluxes of water, energy, and 140 

momentum based on its physics, and fluxes of CO2, CH4, N2O, NOx, and NH3 based on its 141 

biogeochemical process. The representation of the terrestrial N cycle is a new addition to CLASSIC 142 

(Asaadi and Arora, 2021; Kou-Giesbrecht and Arora, 2022) and allows for the simulation of the 143 

interactions between the C and N cycles explicitly.  144 

The CLASSIC model simulations can be performed over a spatial domain, which may be 145 

global or regional, using gridded data or at a point scale, e.g. using meteorological and 146 

geophysical data from a FluxNet site. The primary physical and biogeochemical processes of 147 

CLASSIC are briefly summarized in the next two sections.  148 

2.1.1 Physical processes 149 

The calculations for physical processes in CLASSIC are performed over vegetated, snow, 150 

and bare fractions at a time step of 30 minutes. In the version used here, the fractional coverage 151 

of the four plant functional types (PFTs) (needleleaf trees, broadleaf trees, crops, and grasses) 152 
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characterizes vegetation for each grid cell. The fractional coverage of these four PFTs is specified 153 

over the historical period in this study. The structure of vegetation is characterized by leaf area 154 

index (LAI), vegetation height, canopy mass, and rooting distribution through the soil layers all of 155 

which are dynamically simulated by the biogeochemical module of CLASSIC. Twenty ground 156 

layers represent the soil profile, starting with 10 layers of 0.1 m thickness. The thickness of layers 157 

gradually increases to 30 m for a total ground depth of over 61 m. The depth of permeable soil 158 

layers and thus the depth to bedrock varies geographically and is specified based on the 159 

SoilGrids250m data set (Hengl et al., 2017). Liquid and frozen soil moisture contents, and soil 160 

temperature, are determined prognostically for permeable soil layers. The temperature, albedo, 161 

mass, and density of a single-layer snow pack (when the climate permits snow to exist) are also 162 

prognostically modelled. The result of physics calculations yields fluxes of energy (primarily net 163 

radiation, ground heat flux, and latent and sensible heat fluxes) and water (primarily 164 

evapotranspiration and runoff) at the land-atmosphere boundary.  165 

2.1.2 Biogeochemical processes 166 

The biogeochemical processes in CLASSIC, based on CTEM, are described in detail in the 167 

appendix of Melton and Arora (2016). The biogeochemical processes simulate the land-168 

atmosphere exchange of CO2 and as a result simulate vegetation as a dynamic component 169 

depending on the environmental conditions.  170 

The biogeochemical module of CLASSIC prognostically calculates the amount of C in the 171 

model’s three live (leaves, stem, and root) and two dead (litter and soil) C pools for each PFT. The 172 

live vegetation pools are separated into their structural and non-structural components. The C 173 
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amount in these pools is represented per unit land area (kg C/m2). The amount of C in the live 174 

and dead C pools and all terrestrial ecosystem processes in the biogeochemical module in this 175 

study are modelled for nine PFTs that map directly onto the four base PFTs used in the physics 176 

module of CLASSIC. Needleleaf trees are divided into their deciduous and evergreen phenotypes, 177 

broadleaf trees are divided into cold deciduous, drought deciduous, and evergreen phenotypes, 178 

and crops and grasses are divided based on their photosynthetic pathways into C3 and C4 179 

versions. The physical process in CLASSIC are less sensitive to this sub-division of PFTs which is 180 

essential for modelling biogeochemical processes. For instance, simulating the onset and offset 181 

of leaves is different between evergreen and deciduous phenotypes of needleleaf and broadleaf 182 

trees and this is simulated in the biogeochemical module of the model. However, once the leaf 183 

area index (LAI) is known, the physical processes in CLASSIC do not need information about the 184 

underlying deciduous or evergreen nature of leaf phenology. For example, the interception of 185 

rain and snow by canopy leaves (that is typically modelled as a function of LAI and a PFT-186 

dependent parameter that accounts for leaf orientation and shape) does not depend on the 187 

underlying evergreen or deciduous nature of the leaf phenology. In general, biogeochemical 188 

processes benefit more in terms of realism than physical processes when the number of PFTs is 189 

increased. For example, in offline CLASSIC simulations, large changes in leaf area index (LAI) do 190 

not change total latent heat flux considerably since the partitioning of evapotranspiration into its 191 

sub-components (transpiration, soil evaporation, and evaporation/sublimation of intercepted 192 

rain/snow) adjusts. A decrease in transpiration and evaporation of intercepted precipitation, due 193 

to a decrease in LAI, is compensated by an increase in soil evaporation. This is expected since 194 

water and energy fluxes are determined largely by available energy and precipitation.  195 
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The litter and soil C pools are tracked for each soil layer but the movement of C between 196 

the soil layers is not yet modelled. Other than photosynthesis and leaf respiration which are 197 

modelled at a time step of 30 minutes all other biogeochemical processes are modelled at a daily 198 

time step. These include: 1) allocation of C from leaves to stem and roots, 2) autotrophic 199 

respiration from the live C pools and heterotrophic respirations from the dead C pools, 3) leaf 200 

phenology, 4) turnover of live vegetation components that generates litter, 5) mortality, 6) LUC, 201 

and 7) fire (Arora and Melton, 2018). Competition between PFTs for space is not modelled in this 202 

study and fractional coverage of the nine PFTs is specified based on the representation of the 203 

land cover as explained in the next section. 204 

When the N cycle is turned on, land-atmosphere fluxes of N2O, NOx, and NH3, and N 205 

leaching are also modelled in response to biological N fixation, N fertilizer inputs, and N 206 

deposition from the atmosphere. In particular, when the N cycle interacts with the C cycle, the 207 

maximum photosynthetic capacities of model PFTs (Vc,max) are determined prognostically as a 208 

function of their leaf N content (Asaadi and Arora, 2021; Kou-Giesbrecht and Arora, 2022). When 209 

the N cycle is turned off, prescribed PFT-specific Vc,max rates are used (Melton and Arora, 2016a) 210 

and an empirical downregulation parameterization is used to emulate the effect of nutrient 211 

constraints as atmospheric CO2 increases (Arora et al., 2009). N in all model components (leaves, 212 

stem, roots, litter, and soil organic matter) is prognostically tracked, and therefore C:N ratio of 213 

all components is prognostically modelled except for soil organic matter for which a C:N ratio of 214 

13 is specified. In addition, N in the soil mineral pools of nitrate (NO3
–) and ammonium (NH4

+) is 215 

also prognostically modelled.  216 

3. Driving data for CLASSIC and model simulations 217 
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3.1 Land cover  218 

Land cover is one of the most important geophysical fields that is required by LSMs and 219 

at its most basic level provides information about fractional vegetation cover in each grid cell for 220 

a given regional or global domain. Vegetation in LSMs is typically represented in terms of PFTs. 221 

Models may choose to represent a basic set of a few PFTs (trees, grasses, shrubs, and crops) or a 222 

more elaborate set that distinguishes PFTs based on their stature (trees, grasses, or shrubs), leaf 223 

form (needleleaf or broadleaf), leaf phenology (evergreen or deciduous), photosynthetic 224 

pathway (C3 or C4), and geographical location (tropical, temperate, or boreal). The version of 225 

CLASSIC in this study uses a somewhat smaller set of nine PFTs for biogeochemical processes as 226 

described in the previous section. The fractional coverage of PFTs in a model may be dynamically 227 

simulated based on competition between PFTs or prescribed based on observation-based land 228 

cover information. While CLASSIC does have a parameterization of competition between its PFTs 229 

(Arora and Boer, 2006; Melton and Arora, 2016b), for the historical simulations considered here 230 

and for the simulations that contribute to the TRENDY ensemble, prescribed fractional coverage 231 

of PFTs is used.  232 

For the process of generating a historical reconstruction of land cover, consisting of time-233 

varying fractional coverage of a model’s PFTs, two types of observation-based data sets are used. 234 

The first is a remotely-sensed land cover product that represents the geographical distribution of 235 

land cover for the present day for a short period. Examples of this include the GLC 2000 land 236 

cover product which represents November 1999 to December 2000 period 237 

(https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php) and the more recent European 238 

Space Agency (ESA) Climate Change Initiative (CCI) land cover product for the period 1992-2018 239 
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(ESA, 2017). The second type of data set required to reconstruct historical land cover is that of a 240 

spatially and temporally varying cropland (and pasture) area for a much longer period, which in 241 

this case is based on the data set provided by the land use harmonization (LUH) product as part 242 

of the TRENDY protocol for the period 850-2018. The LUH product is comprehensive (Hurtt et al., 243 

2020b). For example, not all models use the pasture area and other information provided in the 244 

LUH product.  245 

The process of generating land cover for a given model’s PFTs is a three-step process. 246 

First, the fractional coverage of model PFTs is obtained from a remotely sensed land cover 247 

product that represents the snapshot of land cover for the present day. This requires typically 248 

mapping 20 – 40 land cover classes that exist in a remotely-sensed land cover product to a given 249 

model’s PFTs. This step introduces the largest uncertainty in the entire process. The original land 250 

cover in the CLASSIC model is based on the GLC 2000 land cover product. Table 2 of Wang et al. 251 

(2006) summarizes the mapping/reclassification of the 22 GLC 2000 land cover categories to the 252 

nine PFTs used in CLASSIC. Each land cover class was split into one or more of the nine CLASSIC 253 

PFTs based on the class description and knowledge of global biomes. For example, the discrete 254 

“broadleaf deciduous open tree cover” category of the GLC 2000 product is assumed to consist 255 

of 60% broadleaf deciduous trees, 20% grasses, and 20% bare ground. This first step yields a 256 

snapshot of land cover expressed in terms of the fractional coverage of CLASSIC’s nine PFTs 257 

corresponding to the time associated with the land cover product (e.g. for year 2000 for the GLC 258 

2000 land cover product). The second step of generating fractional coverage of PFTs for a given 259 

snapshot in time requires replacing the fractional area of crop categories with values from the 260 

LUH data set for the same year. For example, when using the GLC 2000 land cover product, the 261 
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area of C3 and C4 crops from the LUH data set for the year 2000 are used, and the fractional 262 

coverage of the other seven non-crop CLASSIC PFTs is adjusted such that the total vegetation 263 

fraction in each grid cell stays the same. Finally, in the last step, the temporally varying crop area 264 

from the LUH product is used to go backward in time to 1700 from the year 2000 with typically 265 

decreasing crop area while the area of other non-crop PFTs is adjusted in proportion to their 266 

existing fractional coverage such that the total vegetation fraction in each grid cell stays the 267 

same. Similarly, the area of C3 and C4 crops from the LUH product is used from the year 2000 268 

onwards to the present day with changing crop area and the area of non-crop PFTs is adjusted 269 

such that the total vegetation fraction in each grid cell stays the same. All these steps yield a 270 

reconstruction of historical land cover, expressed in terms of fractional coverage of CLASSIC’s 271 

nine PFTs (as interpreted from the GLC 2000 land cover product), from 1700 to 2018, in which 272 

crop area changes spatially and temporally according to the LUH product. 273 

GLC 2000 is an older land cover product and more recent land cover products are now 274 

available. Here, in addition to the GLC 2000 based land cover, we also use the European Space 275 

Agency (ESA) Climate Change Initiative (CCI) land cover product. The ESA CCI land cover product 276 

is available at 300 m spatial resolution for the period 1992-2018 and contains 37 land cover 277 

categories (ESA, 2017). We use the land cover from the year 1992 to create a snapshot of CLASSIC 278 

PFTs for the present day. Although there is some interannual variability overall the total 279 

vegetated area doesn’t change substantially from 1992-2018 in the ESA-CCI land cover. A default 280 

mapping/reclassification table for converting the ESA CCI classes into PFTs is provided in its user 281 

guide (ESA, 2017). However, it overestimates tree cover along the taiga-tundra transition zone 282 

and underestimates it elsewhere in Canada (Wang et al., 2018, 2019). Wang et al. (2022) have 283 



 

15 

developed a new reclassification table for converting the 37 ESA CCI land cover categories to 284 

CLASSIC’s nine PFTs which is used in this study. A high-resolution land cover map over Canada 285 

and a tree cover fraction data at 30 m resolution are used to compute the sub-pixel fractional 286 

composition of each class in the ESA CCI dataset, which is then used to inform the cross-walking 287 

reclassification procedure (Wang et al., 2022). 288 

 289 

 290 

 291 

 292 

Figure 1: Comparison of zonally summed areas of total vegetation (a), grass (b), and tree (c) cover used 293 

in the CLASSIC model based on GLC 2000 (blue line) and ESA CCI (dark red line) land cover products to 294 

each other, to selected other models that participated in the 2020 TRENDY intercomparison (grey lines) 295 

for which land cover information was available, and to Li et al. (2018) (dotted black line) who analyzed 296 

the ESA CCI data. All data correspond to the 1992-2018 period. CLASSIC does not yet explicitly 297 

represents shrub PFTs. Tall shrubs are merged into tree PFTs in CLASSIC. For the Li et al. (2018) data 298 

plotted here, the shrub PFTs are combined with the tree PFTs for a consistent comparison to CLASSIC. 299 
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 301 

The above process yields two representations of land cover in which the geographical 302 

distribution of CLASSIC PFTs is based on GLC 2000 and ESA CCI land cover products. Both these 303 

representations include the same reconstruction of crop area over the historical period. Figure 1 304 

illustrates the uncertainty in land cover by comparing zonally summed areas of total vegetation, 305 

tree, and grass cover in CLASSIC, averaged over the period 1992-2018, when model land cover is 306 

based on the GLC 2000 (blue line) and ESA CCI (dark red line) land cover products. These two 307 

estimates are also compared to selected other models that participated in the 2020 TRENDY 308 

intercomparison (grey lines), also for the period 1992-2018, for which land cover information was 309 

available, and to Li et al. (2018b) (dotted black line) who analyzed the ESA CCI data based on the 310 

default reclassification table from the ESA CCI user guide. Figure 1 shows while there is relatively 311 

good agreement across TRENDY models in terms of total vegetation cover there’s a much larger 312 

uncertainty in its split between tree and grass PFTs. There are two reasons for the spread in total 313 

vegetated, treed, and grassed areas across TRENDY models. First, modelling groups use different 314 

remotely sensed land cover products for obtaining fractional cover of their model PFTs. Second, 315 

the current process of mapping/reclassifying 20-40 land cover classes of a land cover product to 316 

a model’s PFTs is mainly based on the class description and expert judgment which introduces 317 

subjectiveness in the process. Compared to the GLC 2000 based land cover in the CLASSIC model, 318 

the newer ESA CCI based land cover yields a somewhat higher total vegetation cover, a higher 319 

grass cover, and a somewhat lower tree cover area. Unlike the older GLC 2000 based land cover 320 

used in CLASSIC, the newer ESA CCI based grass and tree cover area are within the range of the 321 

TRENDY models reported here. Finally, Figure 1 also allows us to compare the results from the 322 
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analysis of Li et al. (2018b) for the ESA CCI land cover (dotted black line) to the ESA CCI 323 

reclassification for CLASSIC (dark red line) by (Wang et al., 2022). Li et al. (2018b) used the default 324 

mapping/reclassification table for converting the ESA CCI classes into PFTs. This comparison 325 

illustrates that the remapping of the ESA CCI land cover classes to CLASSIC’s PFTs yields total 326 

vegetation, tree, and grass coverage that is broadly comparable to Li et al. (2018b) although some 327 

differences remain for the grasses.  328 

Our framework accounts for the uncertainty in land cover representation. However, since 329 

both land cover representations in our study account for the increase in crop area over the 330 

historical period in the same way by adjusting the area of non-crop PFTs in proportion to their 331 

existing coverage using the LUH product, our framework is unable to account for the uncertainty 332 

associated with the implementation of LUC. Di Vittorio et al. (2018) quantify this uncertainty by 333 

implementing several approaches to account for the increase in crop area over the historical 334 

period in the framework of an integrated assessment model: by preferentially converting grasses 335 

and shrubs, by preferentially converting forests, and by proportionally adjusting areas of non-336 

crop PFTs in a way similar to ours. LUC emissions are higher if the increase in crop area is 337 

preferentially obtained by converting forests. A similar uncertainty analysis for LUC emissions is 338 

performed by Peng et al. (2017) using the ORCHIDEE land model who analyze the effect of using 339 

different rules to incorporate the changes in crop and pasture area over the historical period. The 340 

uncertainty related to incorporating LUC information to modify a model’s land cover is further 341 

illustrated in Di Vittorio et al. (2014) and Meiyappan and Jain (2012).  342 

 343 

 3.2 Meteorological data 344 
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As a land surface component of an ESM, CLASSIC requires meteorological forcing at a sub-345 

daily temporal resolution. In the offline simulations reported here, the model is run with half-346 

hourly values of meteorological data (incoming long and shortwave radiation, temperature, 347 

precipitation, specific humidity, wind speed, and pressure). The first meteorological data set used 348 

to drive CLASSIC is from the TRENDY protocol for the year 2020, CRU-JRA v2.1.5, which provides 349 

6 hourly values of the seven variables from the Japanese reanalysis (JRA) with monthly values 350 

adjusted to the climate research unit’s data (CRU, https://crudata.uea.ac.uk/cru/data/hrg/). This 351 

yields a blended product from year January 1901 to December 2018 with the 6-hourly temporal 352 

resolution of a reanalysis but without the biases that may be present in reanalysis data (Harris, 353 

2020). The second meteorological data set used here to drive CLASSIC is from the Global Soil 354 

Wetness Project 3 (GSWP3). The GSWP3 forcing data are based on a dynamical downscaling of 355 

the 20th century reanalysis (Compo et al., 2011) using a Global Spectral Model (GSM) run at about 356 

50 km resolution. GSM is nudged towards the vertical structures of 20th century (20CR) zonal and 357 

meridional air temperature and winds so that the synoptic features are retained at their higher 358 

spatial resolution. Additional bias corrections are also performed as explained in van den Hurk et 359 

al. (2016). The GSWP3 forcing is available for the 1901-2016 period. The 6-hourly values from 360 

both the CRU-JRA and GSWP3 forcings are further disaggregated to half-hourly values for use by 361 

CLASSIC.  362 

Figure A1 compares the two meteorological forcings data sets, over the 1997-2016 363 

period, to illustrate that although these two data sets are very similar there are differences 364 

between the two. Mean annual global precipitation over land (excluding Greenland and 365 

Antarctica) in the GSWP3 data set (71.4 mm/month, 857 mm/year) is somewhat higher than in 366 



 

19 

the CRU-JRA data set (68.3 mm/month, 820 mm/year). The global near-surface air temperature 367 

over land (excluding Greenland and Antarctica) is also slightly higher in the GSWP3 data set (14.22 368 

°C) compared to the CRU-JRA data set (14.08 °C). The largest temperature difference occurs 369 

between the two data sets over the northern tropics (panel h) where the GSWP3 data set is about 370 

0.93 °C warmer than the CRU-JRA data set. The geographical distribution of mean annual 371 

temperature is very similar between the two data sets but there are some differences in the 372 

geographical distribution of precipitation (not shown). Despite very similar total precipitation 373 

amounts and their seasonality over large global regions in the two data sets, differences exist in 374 

the frequency distribution of precipitation. Figure A2 illustrates this over three broad regions, the 375 

Amazon, the Sahel, and the Midwest United States, which shows the frequency distribution of 376 

daily precipitation amounts (mm/day) over the 1997-2016 period from the two data sets. Figure 377 

A2 shows that the frequency of precipitation events greater than about 5-10 mm/day is higher 378 

in the GSWP3 data set compared to the CRU-JRA data set for the Amazonian, the Sahel, and the 379 

Midwest United States regions. 380 

3.3 Other forcings 381 

Other than the land cover and meteorological forcings CLASSIC requires globally averaged 382 

atmospheric CO2 concentration, geographically varying time-invariant soil texture and soil 383 

permeable depth, population density, monthly climatological lightning, and geographically and 384 

time-varying N fertilizer application rates and atmospheric N deposition rates. The atmospheric 385 

CO2 concentration values are provided by the TRENDY protocol. The soil texture information 386 

consists of the percentage of sand, clay, and organic matter and is derived from Shangguan et 387 

al. (2014). N fertilizer is specified according to the TRENDY protocol and based on Lu and Tian 388 
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(2017). N deposition is also specified according to the TRENDY protocol and based on model 389 

forcings provided for the sixth phase of CMIP (CMIP6) through input4MIPs (Hegglin et al., 390 

2016). N deposition for the historical (1850-2014) period is used as is provided while that for 391 

the period 2015-2018 is specified based on N deposition from the SSP5-85 scenario. For the 392 

period 1700-1849, N deposition values from the year 1850 are used. 393 

 394 

Table 1: Summary of simulations performed with two representations of the historical land 395 

cover, two sets of meteorological data, and two versions of the CLASSIC land model. 396 

 397 

Simulation Land cover 
reconstruction  

Meteorological forcing N cycle interactions 
with the C cycle 

1 based on GLC 2000 CRU-JRA v2.1.5 On 

2 based on GLC 2000 GSWP3 On 

3 based on GLC 2000 CRU-JRA v2.1.5 Off 

4 based on GLC 2000 GSWP3 Off 

5 based on ESA CCI CRU-JRA v2.1.5 On 

6 based on ESA CCI GSWP3 On 

7 based on ESA CCI CRU-JRA v2.1.5 Off 

8 based on ESA CCI GSWP3 Off 

 398 

 399 

 400 

3.4 Model simulations 401 

Using the two representations of the historical land cover (based on the GLC 2000 and ESA CCI 402 

land cover products), the two sets of meteorological data (CRU-JRA and GSWP3), and the two 403 

versions of the CLASSIC model (with and without interactions between the C and N cycles) we 404 

perform eight sets of pre-industrial and historical simulations as summarized in Table 1. Pre-405 

industrial simulations that correspond to the year 1700 are required before doing the historical 406 

simulations (from which we analyze the model results) so that model pools can be spun up to 407 

near equilibrium for each combination of land cover, meteorological forcing, and model 408 
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version. The pre-industrial simulations use 1901-1925 meteorological data repeatedly since this 409 

period shows little trends in meteorological variables. Global thresholds of net atmosphere-410 

land C flux of 0.05 Pg/yr and net atmosphere-land N flux of 0.5 Tg N/yr, in simulations with the 411 

N cycle turned on, are used to ensure the model pools have reached equilibrium. Each historical 412 

simulation is then initialized from its corresponding pre-industrial simulation after it has 413 

reached equilibrium. Simulations driven with the CRU-JRA meteorological data are performed 414 

for the period 1701-2018, and the period 1701-2016 for simulations driven with the GSWP3 415 

meteorological data, although results are reported for the period 1997-2016 which is common 416 

to both simulations. Similar to the pre-industrial simulations, meteorological data from 1901-417 

1925 is used repeatedly for the period 1701-1900. The global model simulations are performed 418 

at a spatial resolution of about 2.81° (about 312 km at the equator) and the size of the spatial 419 

longitude-latitude grid is 128  64 grid cells. All model forcings are regridded to this common 420 

spatial resolution. The model is run over about 1900 land grid cells at this resolution excluding 421 

glacial cells in Greenland and Antarctica.  422 

 423 

3.5 Automated benchmarking 424 

The results from the eight CLASSIC simulations reported here are evaluated using an in-425 

house model benchmarking system called the Automated Model Benchmarking R package 426 

(AMBER) (Seiler et al., 2021b). AMBER is based on a skill score system originally developed by 427 

(Collier et al., 2018) which is used to quantify model performance and explained in detail in the 428 

appendix. Five scores are used that assess a model’s bias (Sbias), root-mean-square error (Srmse), 429 

seasonality (Sphase), interannual variability (Siav), and spatial distribution (Sdist) against globally 430 
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gridded and in-situ data set(s) of observation-based estimates for a given quantity. A score is 431 

computed by first calculating a dimensionless statistical metric, which is then scaled onto a unit 432 

interval, and finally calculating its spatial mean. Scores range from 0 to 1 and are dimensionless. 433 

Higher values indicate better performance. Finally, an overall score Soverall is calculated as follows 434 

by giving twice as much weight to Srmse  435 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑆𝑏𝑖𝑎𝑠+2𝑆𝑟𝑚𝑠𝑒+𝑆𝑝ℎ𝑎𝑠𝑒+𝑆𝑖𝑎𝑣+𝑆𝑑𝑖𝑠𝑡

1+2+1+1+1
.                                                     (1) 436 

The decision to give extra weight to Srmse is entirely subjective but follows Collier et al. (2018). 437 

The scores are calculated by comparing gridded and in-situ observation-based estimates, 438 

referred to as reference data sets in Seiler et al. (2021b), for 19 energy (surface albedo, net 439 

shortwave and longwave radiation, total net radiation, latent heat flux, sensible heat flux, ground 440 

heat flux), water (soil moisture, snow, and runoff), and C cycle (GPP, ecosystem respiration, net 441 

ecosystem exchange, net biome productivity, aboveground biomass, soil C, LAI, area burnt, and 442 

fire CO2 emissions) related variables to model simulated quantities. Table 2 summarizes the 443 

source of these observation-based data sets. The resulting model scores express to what extent 444 

simulated and observation-based data agree. A low score does not necessarily indicate poor 445 

model performance. Uncertainties in the meteorological forcing data and geophysical fields used 446 

to drive the model, and/or in the observation-based data itself are possible reasons for the lack 447 

of agreement. One way to assess uncertainties in observation-based data sets is to quantify the 448 

skill score by comparing two independently-derived observation-based data sets (Seiler et al., 449 

2022). The resulting scores are referred to as benchmark scores and quantify the level of 450 

agreement among the observation-based data sets themselves provided, of course, there are at  451 
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Table 2: Observation-based data sets used for model evaluation in AMBER. 452 

 453 

least two sets of observation-based data for a given quantity. The comparison of model scores 454 

against benchmark scores then shows how well a model-simulated quantity compares to the 455 

Globally gridded variable(s) Source Approach used Reference 

Leaf area index AVHRR Artificial neural network Claverie et al. (2016) 

Net biome productivity CAMS Atmospheric inversion Agustí-Panareda et al. (2019) 

Net biome productivity Carboscope Atmospheric inversion Rödenbeck et al. (2018) 

Surface albedo, net shortwave and 
longwave radiation, net radiation 

CERES Radiative transfer model Kato et al. (2013) 

Net radiation, latent and sensible heat 
flux, ground heat flux, runoff 

CLASSr Blended product Hobeichi et al. (2019) 

Leaf area index Copernicus Artificial neural network Verger et al. (2014) 

Net biome productivity CT2019 Atmospheric inversion Jacobson et al. (2020) 

Fire CO2 emissions CT2019 Atmospheric inversion Jacobson et al. (2020) 

Snow amount ECCC Blended product Mudryk (2020) 

Liquid soil moisture ESA Land surface model Liu et al. (2011) 

Area burnt ESA CCI Burned area mapping Chuvieco et al. (2018) 

Latent and sensible heat flux, gross 
primary productivity 

FLUXCOM Machine learning Jung et al. (2019, 2020)  

Above ground biomass GEOCARBON Machine learning Avitabile et al. (2016); Santoro 
et al. (2015) 

Surface albedo, net shortwave and 
longwave radiation, net radiation 

GEWEXSRB Radiative transfer model Stackhouse et al. (2011) 

Area burnt GFED 4s Burned area mapping Giglio et al. (2010) 

Gross primary productivity GOSIF Statistical model Li and Xiao (2019) 

Soil carbon HWSD Soil inventory Wieder (2014); Todd-Brown et 
al. (2013) 

Surface albedo MODIS Bidirectional Reflectance 
Distribution Function 

Strahler et al. (1999) 

Gross primary productivity MODIS Light use efficiency model Zhang et al. (2017) 

Leaf area index MODIS Radiative transfer model Myneni et al. (2002) 

Soil carbon SGS250m Machine learning Hengl et al. (2017) 

Above ground biomass Zhang Data fusion Zhang and Liang (2020) 

 

In situ variable(s) Source Approach used (number of 
sites) 

Reference 

Leaf area index CEOS Transfer function (141) Garrigues et al. (2008) 

Latent, sensible, and ground heat flux, 
gross primary productivity, ecosystem 
respiration, net ecosystem exchange  

FLUXNET 2015 Eddy covariance (204) Pastorello et al. (2020) 

Above ground biomass FOS Allometry (274) Schepaschenko et al. (2019) 

Runoff GRDC Gauge records (50) Dai and Trenberth (2002) 

Snow amount Mortimer Gravimetry (3271) Mortimer et al. (2020) 

Above ground biomass Xue Allometry (1974) Xue et al. (2017) 
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reference data sets relative to the agreement between the observation-based data sets 456 

themselves. 457 

 458 

4. Results  459 

 Figures 2 through 9 show the time series and/or zonally-averaged values of annual values 460 

of a variable of interest when averaged across four ensemble members each according to 461 

whether the N cycle is turned on or not, whether the GLC 2000 or ESA CCI based land cover is 462 

used, and whether model simulations are driven by the CRU-JRA or GSWP3 meteorological data. 463 

Figures A3, A4, A6, A7, A9, and A11 in the appendix, which are complementary to the above-464 

mentioned figures, show the physical and biogeochemical states of the land surface and primary 465 

physical fluxes of water and energy, and primary biogeochemical fluxes of CO2 simulated by 466 

CLASSIC at the land-atmosphere boundary for all the eight simulations considered here. While 467 

the figures in the appendix illustrate the range in simulated physical and biogeochemical states 468 

and fluxes across the eight simulations, Figures 2 through 9 evaluate the effect of model 469 

structure, meteorological forcing, and land cover on a given quantity. We also quantify the spread 470 

across the eight simulations in Table 3 using the coefficient of variation (cv= standard 471 

deviation/mean) calculated using annual global values for a given quantity averaged over the 472 

1997-2016 20-year period of each simulation. This time period is also used for other reported 473 

results. 474 

4.1 Physical land surface state and fluxes 475 

 476 
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Figure 2: Time series of annual globally-averaged soil moisture in the top 1m averaged over the 477 

four ensemble members that are driven with and without an interactive N cycle (panel a), 478 

driven with the GLC 2000 and ESA CCI based land cover representations (panel b), and driven 479 

with the GSWP3 and CRU-JRA meteorological data (panel c). The thin lines show the individual 480 

years and the thick lines show their 11-year moving average. Model values averaged over the 481 

pre-industrial (1851-1860) and present-day (1997-2016) time periods, and their difference, for 482 

each ensemble averaged over its set of four simulations are also shown. 483 

Figure A3, panels a and b, shows the globally-averaged simulated soil moisture and 484 

temperature in the top 1 m soil layer. While simulated soil temperature in the top 1 m is fairly 485 

similar across the eight simulations, the simulated soil moisture is distinctly separated into two 486 

groups. The separation into these two groups is caused by the driving meteorological data as 487 

shown in Figure 2. The coefficient of variation for soil moisture and temperature values averaged 488 

over the 1997-2016 period of each simulation are 0.02 and 0.004, respectively, indicating that 489 

overall the variation in these quantities is relatively small compared to their means. The use of 490 
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the GSWP3 meteorological dataset yields slightly higher (~4%) globally-averaged soil moisture 491 

compared to the CRU-JRA meteorological data set (236.5 mm vs. 227.1 mm, Figure 2c) for the 492 

1997-2016 period.  493 

Figure A3, panels c and d, shows the simulated fluxes of global evapotranspiration and 494 

runoff across the eight simulations. Similar to soil moisture, evapotranspiration and runoff also 495 

fall broadly into two groups and the reason for this again is the driving meteorological data. 496 

Figure 3 shows that while the biggest factor that affects evapotranspiration and runoff is the 497 

difference in driving meteorological data the interactive N cycle also affects these water fluxes. 498 

Neither evapotranspiration nor runoff is significantly affected by the choice of land cover. The 499 

reason an interactive N cycle affects evapotranspiration is that the N cycle in CLASSIC affects the 500 

rate of photosynthesis through the prognostic determination of leaf N content. Photosynthesis 501 

in turn affects canopy conductance, which affects transpiration through the canopy leaves. 502 

Average evapotranspiration over the 1997-2016 period of the simulations driven with GSWP3 503 

meteorological data is about 9% lower than in simulations driven with CRU-JRA meteorological 504 

data (65.8 vs. 72.1 ×1000 km3/year, Figure 3, panel e). An interactive N cycle reduces 505 

evapotranspiration by about 2% due to lower photosynthesis rates as shown later (Figure 3, panel 506 

a). Average runoff is about 27% higher in simulations driven with GSWP3 compared to 507 

simulations driven with CRU-JRA meteorological data (52.6 vs 41.3 ×1000 km3/year, Figure 3, 508 

panel f). This is due to slightly high precipitation in the GSWP3 meteorological data set (Figure 509 

A1) but is more so due to the simulated lower evapotranspiration when using the GSWP3 data 510 

(Figure 3, panel e). The coefficient of variation for evapotranspiration and runoff values averaged 511 

over the last 20 years of each simulation are 0.05 and 0.13, respectively. 512 
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 513 

Figure 3: Time series of annual global evapotranspiration and runoff (over all land area excluding 514 

Greenland and Antarctica) averaged over the four ensemble members that are driven with and 515 

without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land 516 

cover (panels c, d), and driven with the GSWP3 and CRU-JRA meteorological data (panels e, f). 517 

The thin lines show the individual years and the thick lines show their 11-year moving average. 518 

Model values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time 519 

periods, and their difference, for each ensemble averaged over its set of four simulations are also 520 

shown. 521 
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 522 

Figure 4: Time series of annual global latent and sensible heat fluxes (over all land area excluding 523 

Greenland and Antarctica) averaged over the four ensemble members that are driven with and 524 

without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land 525 

cover (panels c, d), and driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The 526 

thin lines show the individual years and the thick lines show their 11-year moving average. Model 527 

values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time periods, 528 

and their difference, for each ensemble averaged over its set of four simulations are also shown. 529 
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Figure A4 shows the primary energy fluxes from the eight simulations. These include net 530 

downward shortwave and longwave radiation, and latent and sensible heat fluxes. Incoming 531 

shortwave and longwave radiation are part of the driving meteorological data. Similar to water 532 

fluxes, the differences in energy fluxes in CLASSIC are also primarily driven by differences in 533 

meteorological data (Figure A4, A5, and Figure 4). Net shortwave radiation (Figure A4, panel a) is 534 

equal to incoming shortwave radiation minus the fraction that is reflected back. Net longwave 535 

radiation (Figure A4, panel b) is equal to incoming longwave radiation minus the longwave 536 

radiation emitted by the land based on its surface temperature following the Stefan-Boltzmann 537 

law. The difference in net shortwave radiation is also affected by simulated vegetation biomass 538 

and leaf area index. The latter affects surface albedo which determines what fraction of incoming 539 

shortwave radiation is reflected. This is the reason why an interactive N cycle affects net 540 

shortwave radiation since the N cycle affects photosynthesis, and in turn, simulated vegetation 541 

biomass and leaf area index (Figure A5, panel b). Latent heat flux is affected primarily by 542 

meteorological data (Figure 4) but also if the N cycle is interactive or not since it is essentially 543 

evapotranspiration but in energy units. Finally, differences in sensible heat fluxes are strongly 544 

affected by differences in driving meteorological data (Figure 4). Globally-averaged sensible heat 545 

flux in the simulations driven with GSWP3 data is ~14% higher compared to CRU-JRA driven 546 

simulations (40.2 vs. 35.0 W/m2). The coefficient of variation for latent and sensible heat flux 547 

values averaged over the last 20 years of each simulation are 0.05 and  0.07, respectively. Net 548 

shortwave (cv=0.006) and longwave (cv=0.03) radiative fluxes vary little across the eight 549 

simulations.  550 
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 551 

Figure 5: Time series of annual global vegetation C mass (over all land area excluding Greenland 552 

and Antarctica) (panels a, c, and e) and zonally-averaged values of vegetation C mass over land 553 

(panels b, d, and f) averaged over the four ensemble members, for the period 1997-2016, that 554 

are driven with and without an interactive N cycle (panels a, b), driven with the GLC 2000 and 555 

ESA CCI based land cover (panels c, d), and driven with GSWP3 and CRU-JRA meteorological 556 

data (panels e, f). The thin lines for the time series show the individual years and the thick lines 557 

show their 11-year moving average. Model values averaged over the pre-industrial (1851-1860) 558 

and present-day (1997-2016) time periods, and their difference, are also shown in panels a, c, 559 

and e. 560 
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 561 

4.2 Biogeochemical land surface state and fluxes 562 

4.2.1 Primary CO2 fluxes and C pools 563 

Figure A6 shows the simulated C state of the land surface expressed in terms of vegetation 564 

and soil C pools. Panels a and b show the annual time series of global vegetation and soil C mass 565 

from the eight simulations, and panels c and d show their zonally-averaged distributions 566 

averaged over the last 20 years of each simulation. The biggest difference in the time series of 567 

global vegetation (cv=0.16) and soil (cv=0.21) C mass compared to soil moisture and 568 

temperature, which characterized the physical land surface state, is the large spread across the 569 

eight simulations as indicated by their high cv values. The zonally-averaged values further provide 570 

insight into the reasons for this spread and show that the largest differences between simulated 571 

vegetation and soil C occur at northern high latitudes (north of about 40°N). Panels c and d of 572 

Figure A6 also show observation-based zonally-averaged values of vegetation and soil C mass 573 

based on the Reusch and Gibbs (2008) and the Harmonized World Soils Database (v1.2) (Fischer 574 

et al., 2008), respectively, to provide a reference. A more thorough comparison with observations 575 

is provided in Section 4.3. 576 

Differences in vegetation C mass are caused primarily when the N cycle is interactive or 577 

not (Figure 5). Both land cover and the driving meteorological data play a smaller role in the 578 

simulated spread of vegetation C mass (Figure 5). The ESA CCI based land cover has a larger 579 

vegetated area but most of this increase comes from an increase in the area of grasses that do 580 

not store a lot of C in their vegetation C mass. The spread in simulated soil C is caused due to the  581 
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 582 

 583 

Figure 6: Time series of annual global soil carbon mass (over all land area excluding Greenland 584 

and Antarctica) (panels a, c, and e) and zonally-averaged values of soil carbon mass over land 585 

(panels b, d, and f) averaged over the four ensemble members, for the period 1997-2016, that 586 

are driven with and without an interactive N cycle (panels a, b), driven with the GLC 2000 and 587 

ESA CCI based land cover (panels c, d), and driven with GSWP3 and CRU-JRA meteorological data 588 

(panels e, f). The thin lines for the time series show the individual years and the thick lines show 589 

their 11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 590 

present-day (1997-2016) time periods, and their difference, are also shown in panels a, c, and e. 591 
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Figure 7: Time series of annual global gross primary productivity (over all land area excluding 592 

Greenland and Antarctica) (panels a, c, and e) and zonally-averaged values of gross primary 593 

productivity over land (panels b, d, and f) averaged over the four ensemble members, for the 594 

period 1997-2016, that are driven with and without an interactive N cycle (panels a, b), driven 595 

with the GLC 2000 and ESA CCI based land cover (panels c, d), and driven with GSWP3 and CRU-596 

JRA meteorological data (panels e, f). The thin lines for the time series show the individual years 597 

and the thick lines show their 11-year moving average. Model values averaged over the pre-598 

industrial (1851-1860) and present-day (1997-2016) time periods, and their difference, are also 599 

shown in panels a, c, and e. 600 
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N cycle but also the choice of land cover (Figure 6). Since CLASSIC assumes that litter from grasses 601 

is more recalcitrant than that from trees, the choice of ESA CCI based land cover leads to a higher 602 

soil C mass because it has a higher grass area than the GLC 2000 based land cover (Figure 6, 603 

panels c and d). The choice of meteorological data does not affect the magnitude of simulated 604 

globally-summed soil C mass significantly but does affect its change over the historical period. In 605 

Figure 6 (panel c) the decrease in soil C mass from the 1851-1860 period to the 1997-2016 period 606 

is higher when using the GSWP3 (29.9 Pg C) compared to when using the CRU-JRA (14.8 Pg C) 607 

meteorological data.  608 

The reason why an interactive N cycle in CLASSIC affects vegetation C and soil C mass, and 609 

why the ESA CCI based land cover yields high soil C, is seen in Figures A7 and 7. Figure A7 shows 610 

the spread of primary C fluxes including gross primary productivity (GPP) (cv=0.07), and 611 

autotrophic (cv=0.04) and heterotrophic (cv=0.10) respiratory fluxes, across the eight 612 

simulations.  Since GPP is lower in the runs with the N cycle, both vegetation (Figure 5a) and soil 613 

C mass (Figure 6a) are also lower. The lower GPP in the runs with the N cycle is due primarily to 614 

lower GPP at high latitudes (Figure 7b) which yields low vegetation C mass at high latitudes 615 

(Figure 5b). Low GPP at high latitudes translates to even larger relative differences in soil C given 616 

the longer turnover time scales of soil C at high latitudes (Figure 6b). The use of the ESA CCI based 617 

land cover which has a higher grass area than the GLC 2000 based land cover leads to higher GPP 618 

(Figure 7d) and therefore higher soil C at all latitudes (Figure 6d). In Figure A8, global 619 

heterotrophic and autotrophic respiratory fluxes are most affected by land cover and the 620 

inclusion or absence of an interactive N cycle but not as much by the driving meteorological data.  621 
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 622 

Figure 8: Time series of annual area burned (over all land area excluding Greenland and 623 

Antarctica) (panels a, c, and e) and zonally-averaged values of area burned (panels b, d, and f) 624 

averaged over the four ensemble members, for the period 1997-2016, that are driven with and 625 

without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land 626 

cover (panels c, d), and driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The 627 

thin lines for the time series show the individual years and the thick lines show their 11-year 628 

moving average in panels (a), (c), and (e). Model values averaged over the pre-industrial (1851-629 

1860) and present-day (1997-2016) time periods, and their difference, are also shown for 630 

panels (a), (c), and (e). 631 

 632 
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The transient behaviour of heterotrophic respiration over the historical period is not affected by 633 

meteorological data, although the effect of meteorological data on autrotrophic respiration 634 

varies over time. 635 

4.2.2 Area burned and fire CO2 emissions  636 

Figure A9 shows the time series of global area burned and global fire CO2 emissions, and 637 

their zonally-averaged values. We chose the area burned (cv=0.24) and fire CO2 emissions 638 

(cv=0.21) in addition to the primary biogeochemical fluxes since fire shows large variability both 639 

in space and in time, and both these variables yield the largest spread across the eight 640 

simulations, among all the fluxes and simulated quantities considered here. Figures A9 (panels c 641 

and d) also show observation-based estimates for area burned and fire CO2 emissions based on 642 

GFED 4s (Giglio et al., 2013) to provide an observation-based context. Figures 8 and A10 help us 643 

understand which factors contribute to this large variability. The variability in the area burned is 644 

caused primarily by the choice of land cover and meteorological data and the variability is higher 645 

in the southern hemisphere (Figure 8, panels d and f). An interactive N cycle does not affect the 646 

zonal distribution of area burned and fire CO2 emissions (Figures 8 and A10) as much. The reason 647 

both area burned and fire CO2 emissions are affected by the choice of land cover is because the 648 

ESA CCI land cover has higher grass area and, as a result, it yields higher area burned and fire CO2 649 

emissions since a larger area is burned for grasses than for trees in the model. The choice of 650 

driving meteorological data is a factor in the area burned and our simulations show that the use 651 

of GSWP3 meteorological forcing yields a higher area burned than the CRU-JRA data. In particular 652 

wind speed, which determines the rate of spread of fire in CLASSIC, is much higher in the GWSP3 653 

than in the CRU-JRA meteorological data. Globally-averaged land wind speed (excluding 654 
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Greenland and Antarctica) in GSWP3 data is 6.1 m/s compared to 3.4 m/s in the CRU-JRA data 655 

for the period 2000-2016. 656 

Table 3: Simulated energy, water, and carbon cycle quantities considered in this study sorted 657 

according to their coefficient of variation. The quantities are listed from the most variable at 658 

the top to the least variable at the bottom. The coefficient of variation is based on annual 659 

values averaged over the 1997-2016 period across the eight simulations. The last column shows 660 

the dominant source of variability for each model simulated quantity. 661 

 662 

Energy, water, or carbon cycle quantities Coefficient 
of variation 

Dominant source of variability 

Area burned (million km2) 0.24 Land cover 

Fire CO2 emissions (Pg C/year) 0.21 Land cover 

Soil carbon mass (Pg C) 0.21 The inclusion or the absence of 
the N cycle 

Vegetation carbon mass (Pg C) 0.16 The inclusion or the absence of 
the N cycle 

Runoff (1000 km3/year) 0.13 Meteorological forcing 

Leaf area index (m2/m2) 0.11 The inclusion or the absence of 
the N cycle 

Heterotrophic respiration (Pg C/year) 0.10 Land cover 

Gross primary productivity (Pg C/year) 0.07 Land cover 

Sensible heat flux (W/m2) 0.07 Meteorological forcing 

Autotrophic respiration (Pg C/year) 0.04 Land cover 

Latent heat flux (W/m2) / Evapotranspiration 
(1000 km3/year) 

0.05 Meteorological forcing 

Net longwave radiation (W/m2) 0.03 Meteorological forcing 

Soil moisture in the top 1m soil layer (mm) 0.02 Meteorological forcing 

Albedo for shortwave radiation (fraction) 0.008 The inclusion or the absence of 
the N cycle 

Net shortwave radiation (W/m2) 0.006 Meteorological forcing 

Soil temperature in the top 1m soil layer (°C) 0.004 Meteorological forcing 

 663 

4.2.3 Coefficient of variation summary 664 

Table 3 shows the energy, water, and C-related quantities considered so far but also leaf 665 

area index and albedo and lists them from the most variable at the top to the least variable at 666 
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the bottom according to their coefficient of variation. The area burned is found to be the most 667 

variable quantity and soil temperature is the least variable quantity. Table 3 also shows the most 668 

dominant source of variability for each simulated quantity: land cover, meteorological forcings, 669 

or the inclusion or absence of an interactive N cycle.  Net atmosphere-land CO2 flux (or net biome 670 

productivity), net ecosystem exchange, and ground heat flux are not included in Table 3 because 671 

these fluxes are calculated as the difference of larger fluxes and as a result, their values are closer 672 

to zero which yields a large value of the coefficient of variation. Net surface radiation is the sum 673 

of net shortwave and longwave radiation and both of them exhibit low coefficient of variability 674 

across the eight simulations (Table 3). 675 

4.2.4 Model tuning 676 

Overall, the results presented so far illustrate that different model simulated quantities 677 

are sensitive to different forcings and model versions. The use of more than one meteorological 678 

forcing data sets and land cover representation, and the use of two model versions (with and 679 

without N cycle), yields a dilemma since it is no longer possible to tune model parameters without 680 

choosing a preferred meteorological data set, land cover representation, and model version. As 681 

such it seems logical that rather than tuning the model for a preferred forcing or model version, 682 

model results from an ensemble of simulations be compared against an ensemble of 683 

observations in so long as it is possible. This is the approach taken in Section 4.3 with automated 684 

benchmarking. 685 

4.2.5 Net biome productivity 686 
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Figure 9: Time series of global net atmosphere-land CO2 flux (over all land area excluding 687 

Greenland and Antarctica) (panels a, c, and e) and its zonally-averaged values (panels b, d, and f) 688 

averaged over the four ensemble members, for the period 1997-2016, that are driven with and 689 

without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land 690 

cover (panels c, d), and driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The 691 

thin lines for the time series show the individual years and the thick lines show their 11-year 692 

moving average. Model values averaged over the pre-industrial (1851-1860) and present-day 693 

(1997-2016) time periods, and their difference, are also shown for panels (a), (c), and (e). 694 
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Figure A11 shows the spread in the time series of annual global net atmosphere-land CO2 695 

flux and their zonally-averaged values across the eight simulations averaged over the 1997-2016 696 

period from each simulation. The global net atmosphere-land CO2 flux or net biome productivity 697 

(NBP) is considered a critical determinant of the performance of LSMs, and is treated as such by 698 

TRENDY, because this flux ultimately affects the changes in the atmospheric CO2 burden. TRENDY 699 

requires that LSMs simulate a terrestrial C sink for the decades of the 1990s to the present to be 700 

considered for inclusion in the TRENDY ensemble.  701 

Figure A11 also shows the estimates of global net atmosphere-land CO2 flux from the 702 

participating TRENDY models in grey boxes with mean and shaded ranges for the decades from 703 

the 1960s to 2010s from the Global Carbon Project (Friedlingstein et al., 2022). Positive values in 704 

Figure A11 indicate a C sink over land and negative values a C source to the atmosphere. In Figure 705 

A11a, all eight simulations reported here would qualify for inclusion in the TRENDY ensemble 706 

since they all simulate a terrestrial C sink from the 1990s to the present day. Before 1960, since 707 

the atmospheric CO2 concentration is not high enough,  the model yields both a land C sink and 708 

source in response to interannual variability in meteorological data. In addition, the time series 709 

of global NBP from all eight simulations lie within the uncertainty range of reported estimates 710 

from the Global Carbon Project. Figure A11a suggests that based on global NBP, at least, it is not 711 

possible to exclude any of the eight simulations. In Figure A11b, zonally-averaged NBP averaged 712 

over the 1997-2016 period from each of the eight simulations mostly lie within the range of NBP 713 

simulated by models that participated in TRENDY 2020. CLASSIC simulates a C sink at northern 714 

high latitudes consistent with TRENDY models but it simulates a C sink on the stronger side of 715 

TRENDY models in the southern tropics (0° - 20°S). This is likely because CLASSIC is known to 716 
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simulate low C emissions associated with LUC most of which are generated in tropical regions 717 

(Asaadi and Arora, 2021).  718 

Figure 9 provides additional insights into the effect of different forcings on the simulated 719 

NBP. In Figure 9, averaged over the 1997-2016 period, an interactive N cycle leads to a somewhat 720 

weaker C sink (panel a, 0.98 vs. 1.11 Pg C/yr), the choice of the ESA CCI based land cover leads to 721 

a somewhat stronger C sink (panel c, 1.14 vs 0.94 Pg C/yr), and the choice of the GSWP3 722 

meteorological data leads to a much weaker C sink (panel e, 0.74 vs 1.33 Pg C/yr) than the CRU-723 

JRA meteorological data. In Figure 9, panels a and b, the largest difference between the model 724 

versions with and without the N cycle occurs in the tropics (~ 5°N - 20°S) where an interactive N 725 

cycle leads to a weaker C sink. There are differences in zonally-averaged NBP with and without 726 

the N cycle south of 45°S but the land area below this latitude is small so the averages are 727 

calculated over only a few grid cells. The choice of the land cover (Figure 9, panels c and d) does 728 

not substantially change the distribution of the zonally-averaged values of NBP although, as 729 

noted above, the choice of ESA CCI based land cover leads to a somewhat stronger C sink. Finally, 730 

the choice of the GSWP3 meteorological forcing leads to a weaker C sink at most latitudes (Figure 731 

9, panels e and f).  732 

4.3 Automated benchmarking 733 

Figure 10 plots the overall score, Soverall, against benchmark scores for 16 of the 19 energy, water, 734 

and C cycle related variables using which AMBER calculated model and benchmark scores. 735 

AMBER does not yet evaluate N cycle related variables for which observations are more scarce 736 

than for C cycle related variables. The range in model scores comes from the eight simulations, 737 
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and the range in benchmark scores comes from the different observation-based data sets. The 738 

whiskers show the range in the overall score both for the benchmark and model scores. The 739 

vertical whiskers show the range of eight model scores when a given variable from all eight model 740 

simulations is compared to an observation-based data set. The horizontal whiskers show the 741 

range when three or more observation-based datasets are compared to each other. When only 742 

two observation-based data sets are compared to each other there is only one benchmark score, 743 

and therefore there is no range. In Figure 10, three quantities are missing: soil moisture, 744 

ecosystem respiration, and fire CO2 emissions since there is only one observation-based 745 

reference data used for these variables and therefore a benchmark score cannot be calculated. 746 

Figure 10 shows that typically as the benchmark scores increase so do the overall model scores 747 

or a given quantity. This indicates that uncertainty in observation-based estimates themselves 748 

leads to a poor agreement between observations and model-simulated quantities.  749 

For energy and water fluxes scores (panels a and b) the model overall scores lie around 750 

the 1:1 line indicating that model scores are generally as good as the benchmark scores, except 751 

for surface albedo (ALBS), runoff (MRRO), ground heat flux (HFG), and comparison against one 752 

observation-based estimate of snow water equivalent which lie below the 1:1 line. For C cycle 753 

related variables most scores lie somewhat below the 1:1 line indicating that simulated quantities 754 

do not agree as well with observations as observations agree among themselves. The lower 755 

benchmark score for soil C  (panel c) is because the SoilGrids250m (SG250m) data and the 756 

Harmonized World Soil Database (HWSD) do not agree well amongst themselves because the 757 

SG250m soil C data includes peatlands and permafrost C at high latitudes while the HWSD data 758 

does not (see Figure 11b). Since the version of CLASSIC used here does not represent peatlands 759 



 

43 

and permafrost C it compares better with the HWSD data than with the SG250m data. In the case 760 

of soil C, the choice of HSWD data for comparison against model values is obvious. However, for 761 

other variables, it may not always be obvious which observation-based estimate is more 762 

appropriate or better for comparison against model results.  The uncertainty in forcing data sets 763 

and in observation-based estimates, against which model results are evaluated, implies that even 764 

a perfect model cannot be evaluated to its fullest extent. 765 

Figure 10: Comparison of benchmark scores with model overall scores for a range of energy-, 766 

water-, and carbon-related quantities. The whiskers indicate the range for benchmark scores 767 

across different observation-based data sets and the range across the eight model simulations 768 

for the overall model scores. The quantities in panel (a) are ALBS (surface albedo), RSS (net 769 

shortwave radiation), RLS (net longwave radiation), and RNS (net radiation). Quantities in panel 770 

(b) are HFLS (latent heat flux), HFSS (sensible heat flux), HFG (ground heat flux), MRRO (runoff), 771 

and SNW (snow water equivalent). Quantities in panel (c) are GPP (gross primary productivity), 772 

a) b)

c)
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NEE (net ecosystem exchange), NBP (net biome productivity), AGB (aboveground biomass), CSOIL 773 

(soil carbon mass), BURNT (area burned), and LAI (leaf area index). 774 

 775 

Figure 11 shows the zonal distribution of vegetation C mass, LAI, area burnt, GPP, and fire 776 

CO2 emissions (which constitute standard output from AMBER) and illustrates how AMBER 777 

compares the spread across the simulations indicated by 50%, 80%, and 100% shading against 778 

observation-based estimates. The black and shades of grey indicate the model mean and the 779 

spread across the eight model simulations, respectively, and the thick lines in other colours show 780 

the mean values of observation-based estimates. The time period over which observations and 781 

model quantities are averaged is chosen to be the same. In Figure 11a, for aboveground biomass, 782 

the GEOCARBON data set uses one product for the extratropics and another for the tropics to 783 

create a global aboveground biomass product. The Zhang product (Zhang and Liang, 2020) is 784 

based on the fusion of multiple gridded biomass datasets for generating a global product. Both 785 

products are described in detail in Seiler et al. (2022). The model results generally compare better 786 

with the Zhang product outside the 10N to 10S region but with the GEOCARBON product within 787 

this region. The values to the south of 40S are generally less reliable because of the little 788 

vegetated land area below this latitude. In Figure 11b, the model simulated values for soil organic 789 

C compare better with the HWSD dataset compared to the SG250m data for reasons mentioned 790 

in the previous paragraph. Simulated leaf area index (Figure 11c) and gross primary productivity 791 

(Figure 11e) generally compare well their observation-based estimates. The simulated area 792 

burned (Figure 11d) and fire emissions (Figure 11f) also compare well with observation-based 793 

estimates except that the model is not able to capture the small area burned and emissions at 794 

northern high latitudes between around 50N to 70N. Figures A12 and A13 compare zonally 795 



 

45 

averaged values of other simulated quantities with observation-based estimates used in the 796 

AMBER framework. Together Figures 11, A12, and A13  illustrate that the model is overall able 797 

to capture the latitudinal distribution of most land surface quantities.  798 

 799 

 800 

Figure 11: Zonally-averaged values of aboveground biomass (a), soil carbon mass (b), leaf area 801 

index (c), fractional area burnt (d), gross primary productivity (e), and fire CO2 emissions (f) from 802 

the eight simulations summarized in Table 1. The model results are shown as their mean (black) 803 

and the spread across the eight simulations indicated by 50%, 80%, and 100% ranges in different 804 

shades of grey. The observation-based estimates used in AMBER to calculate scores are shown 805 

in coloured lines. 806 
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807 
Figure 12: Summary of difference in overall scores for model simulated quantities and 808 

combinations for which the differences are statistically significant. The scores in parentheses for 809 

each quantity are the average scores across the eight simulations and provide context. The error 810 

bars denote the 95% confidence interval as explained in the text.  811 

 812 

Since overall scores are available for all eight simulations for model quantities that are 813 

compared to observations it is possible to evaluate how an interactive N cycle, and the choice of 814 

meteorological data and land cover data affect model performance. Figure 12 summarizes the 815 

difference in overall scores for model quantities and combinations for which the differences are 816 

statistically significant at the 5% level based on Tukey’s test (Tukey, 1977). The score indicated in 817 

parentheses for each quantity is the average score across the eight simulations and provides 818 

context. For example, when evaluating the effect of change in land cover for NEE the use of the 819 

GLC 2000 based land cover, compared to the use of the ESA CCI based land cover, degrades the 820 

average score for net ecosystem exchange by about 0.02 given that the average score for net 821 
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ecosystem exchange in 0.53. The error bars on the value 0.02 denote the 95% confidence interval 822 

and in this case are calculated by differencing four simulations that use the GLC 2000 based land 823 

cover versus four simulations that use the ESA CCI based land cover. The use of the GLC 2000 824 

based land cover on the other hand slightly improves scores for ecosystem respiration and liquid 825 

soil moisture. The use of GSWP3 data improves model scores for net shortwave, longwave, and 826 

total radiation, for sensible and ground heat flux but degrades the overall score for area burned, 827 

soil moisture, and more so for snow water equivalent. Finally, an interactive N cycle slightly 828 

improves model performance for area burned and fire CO2 emissions (due to improved 829 

aboveground biomass in the tropics) but degrades it for ecosystem respiration, GPP, and net 830 

ecosystem exchange. The inclusion of an interactive N cycle changes Vc,max to a prognostic 831 

variable for each PFT as opposed to being specified based on observations. This is analogous to 832 

running an atmospheric model with a fully dynamic 3-dimensional ocean as opposed to using 833 

specified sea surface temperatures (SST) and sea ice concentrations (SIC). Using a dynamic ocean 834 

allows future projections (since future SSTs and SICs are not known) but invariably degrades a 835 

model’s performance for the present day since simulated SSTs and SICs will have their biases. 836 

Similarly, using an interactive N cycle allows to project future changes in Vc,max (based on changes 837 

in N availability) but also degrades CLASSIC’s performance for the present day since simulated 838 

Vc,max has its own biases. Overall, the model performance is most affected by the choice of the 839 

driving meteorological data for water and energy fluxes, and by the inclusion or absence of an N 840 

cycle and by the choice of land cover for carbon-cycle related state variables and fluxes.  841 

 842 

 843 



 

48 

5. Conclusions 844 

The response of the terrestrial biosphere over the historical period is driven primarily by 845 

four global change drivers – increasing atmospheric CO2, changing climate, LUC, and N deposition 846 

and fertilizer application. Our framework allows us to evaluate how a land surface model 847 

responds to increasing atmospheric CO2, changing climate, and anthropogenic N additions to the 848 

coupled soil-vegetation system and how this response is dependent on two driving 849 

meteorological data sets, two land cover representations, and the two model variations (with 850 

and without an interactive N cycle). However, the framework used here does not quantify the 851 

uncertainty associated with LUC over the historical period since we use only one reconstruction 852 

of increasing crop area over the historical period. These results help draw three primary 853 

conclusions. First, even if the observations and models were perfect (including their structure 854 

and their parameterizations) the uncertainty associated with driving meteorological data and 855 

geophysical fields makes it difficult to evaluate LSMs. The uncertainty in global scale driving data 856 

implies that a model can never be truly evaluated to its fullest extent. Model results can only be 857 

as good as the data that are used to force them and therefore even a perfect model cannot yield 858 

perfect results.  859 

Second, model tuning when driving the model with a single set of forcings and evaluating 860 

it against a single set of observations is likely not a fruitful exercise. Models should not be tuned 861 

to a single set of driving data and observation-based evaluation data. Rather their performance 862 

must be evaluated against a range of available observations in light of the uncertainty associated 863 

with driving data and the uncertainty associated with observations. A model’s ability to 864 

reproduce a given single set of observations when driven with a single set of driving data is not a 865 
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true measure of its success. Here again, a perfect model driven by perfect forcing data cannot be 866 

truly evaluated to its fullest extent since observations themselves have uncertainties. 867 

Third, with the caveat that our framework uses only one reconstruction of increase in 868 

crop area over the historical period, the response of a model expressed in terms of net 869 

atmosphere-land CO2 flux to perturbation in meteorological, CO2, and LUC forcing over the 870 

historical period appears to be largely independent of its pre-industrial state as simulated here. 871 

The pre-industrial soil and vegetation C mass for the eight simulations considered here vary 872 

between 1035 ± 195 Pg C and 405 ± 58 Pg C (mean ± standard deviation), respectively. Both pre-873 

industrial and present-day vegetation and soil C pools explain only about 2% to 7% of the 874 

variability in simulated net atmosphere-land CO2 flux (Figure A11) over the 1997-2016 period of 875 

each of the eight simulations. The net atmosphere-CO2 flux from all eight simulations for the 876 

period the 1960s to 2000s is found to lie within the uncertainty range provided by the GCP 877 

(Friedlingstein et al., 2022). Given the current uncertainty in net atmosphere-land CO2 flux, it is 878 

therefore not possible to exclude any of the eight simulations at least on this basis. The finding 879 

that a transient response of a model is independent of its pre-industrial state is also consistent 880 

with land components of CMIP6 models. Arora et al. (2020) analyzed results from CMIP6 881 

simulations in which atmospheric CO2 increases at a rate of 1% per year from the year 1850 until 882 

CO2 quadruples from ~285 to ~1140 ppm. They found that the C-concentration and C-climate 883 

feedback parameters for the land component of CMIP6 models do not depend on the absolute 884 

values of their vegetation and soil C pools but rather how a given model responds to changes in 885 

atmospheric CO2 and the associated change in temperature. This conclusion is perhaps 886 

somewhat comforting in that while pre-industrial states of LSMs may be different from their true 887 
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observed states they still have the ability to reproduce net atmosphere-land CO2 flux over the 888 

historical period that is consistent with current observation-based estimates. Clearly, this 889 

reasoning does not apply if pre-industrial vegetation or soil C mass are zero. One reason why 890 

present day net atmosphere-land CO2 flux is independent of a LSM’s pre-industrial state is 891 

because the model is first spun up to equilibrium conditions and then forced with time-variant 892 

forcings. However, successful reproduction of atmosphere-land CO2 fluxes over the historical 893 

period is no guarantee that future projections from LSMs are reliable.  894 

The ensemble-based approach used here also allows for the evaluation of the effect of a 895 

given meteorological forcing and land cover, and the effect of an interactive N cycle on model 896 

simulated quantities in a robust manner. Ensemble averages of simulations that use the CRU-JRA 897 

and GSWP3 meteorological forcing show that the use of the GSWP3 meteorological forcing yields 898 

lower evapotranspiration (latent heat flux), higher runoff, higher sensible heat flux, a higher 899 

burned area, and a weaker land C sink for the present day compared to when the CRU-JRA 900 

meteorological forcing is used. Possible reasons that explain these differences when using the 901 

GSWP3 meteorological data are the higher frequency of high precipitation events (greater than 902 

~5-10 mm/day) (Figure A2) and 0.93 C higher temperature in the northern tropical region (Figure 903 

A1h) in the GSWP3 compared to the CRU-JRA meteorological data. High precipitation intensity in 904 

regions of high annual precipitation (e.g. the tropical regions) would lead to more surface runoff 905 

since less precipitation infiltrates the top soil layer, further leading to less soil moisture, less 906 

evapotranspiration, higher sensible heat flux, and more area burned. Higher temperatures in the 907 

northern tropical region in the GSWP3 meteorological data certainly contribute to all these 908 

differences (except higher runoff). While, annual globally-averaged soil moisture is about 4% 909 
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higher in the simulations driven with the GSWP meteorological data (Figure 2c), in several parts 910 

of the tropical regions annual simulated soil moisture is lower for GSWP3 simulations (not 911 

shown). The use of the ESA CCI land cover leads to higher soil C, higher GPP, and higher area 912 

burned primarily because of the larger grass area when land cover is based on the ESA CCI 913 

product compared to the GLC 2000 product. The use of the ESA CCI based land cover also leads 914 

to a slightly weaker land C sink for the present day. Finally, the comparison of simulations with 915 

and without the N cycle averaged over all meteorological data and land cover combinations 916 

allows us to identify the effect of the N cycle. Simulated vegetation C mass and GPP are lower in 917 

the model version with the interactive N cycle. In particular, we found that the somewhat low 918 

productivity at high latitudes, when the N cycle is turned on, leads to relatively large differences 919 

in soil C at high latitudes regardless of the meteorological data or land cover being used to drive 920 

the model. Although, this is not the reason for differences in net atmosphere-land CO2 flux 921 

between models with and without N cycling: as mentioned above present-day net atmosphere-922 

land CO2 flux is independent of both the pre-industrial and present-day vegetation and soil C 923 

pools. Given the knowledge about the effect of N cycling on model behaviour, the reasons can 924 

now be investigated to further improve the N cycle component of CLASSIC. 925 

It is logical to assume that the results presented here are sensitive to the horizontal 926 

resolution of the model. Both forcing data that are used to drive the model, and observations 927 

against which model results are compared, are regridded to be consistent with the model’s 928 

spatial resolution. For example, at the scale of a few meters, meteorological variables measured 929 

at a given site will indeed be less uncertain than their spatially-averaged values say for a 2.81° 930 

grid cell. Similarly, observations at a scale of a few meters for soil C and/or vegetation C mass will 931 
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also likely be more certain than their values at large spatial scales. This is one reason why AMBER 932 

uses both gridded and in-situ observation-based estimates to calculate its scores. Fluxes of latent 933 

and sensible heat, on the other hand, may not be any more certain at a given site than over large 934 

spatial scales. This is because of the problems associated with energy budget closure (Mauder et 935 

al., 2020) which, at the point scale, prevent the sum of annual latent and sensible heat flux to be 936 

equal to net radiation (average of ground heat fluxes is close to zero at an annual time scale). 937 

LSMs have become increasingly complex over the years and so has the requirement for 938 

forcing data to drive these models. The evaluation of LSMs has also become complex as the 939 

models now generate a multitude of variables that must be evaluated against their observation-940 

based estimates. Estimates of observation-based data to evaluate models, and the availability of 941 

forcing data, have also increased. Given the uncertainties associated with model inputs, model 942 

structure, and observation-based data, it is unrealistic to expect LSMs to perfectly reproduce 943 

observations for large-scale global simulations. It is not known a priori which model structure, 944 

forcing data sets, and observation data sets are better. Driving data including meteorological data 945 

sets and land cover representations may be more realistic in some parts of world and less in 946 

others. Observation-based data sets also have their limitations and attributes which may make 947 

them better or ill-suited for comparison with a given model.  A more robust model evaluation 948 

must therefore take into account the uncertainties both in the forcing and observation-based 949 

data. A comprehensive and robust model evaluation can be performed by comparing multiple 950 

model realizations against multiple observation-based data sets.  951 

  952 
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Appendix 1294 

 1295 
A1: Automated Model Benchmarking R Package (AMBER) 1296 
 1297 

The Automated Model Benchmarking R package quantifies model performance using five scores 1298 

that assess a model's bias (Sbias), root-mean-square-error (Srmse), seasonality (Sphase), inter-annual 1299 

variability (Siav), and spatial distribution (Sdist). All scores are dimensionless and range from zero 1300 

to one, where increasing values imply better performance. The exact definition of each skill score 1301 

is provided below. 1302 

A1.1 Bias Score (Sbias) 1303 

The bias is defined as the difference between the time-mean values of model and reference data:  1304 

𝑏𝑖𝑎𝑠(𝜆, 𝜙) = 𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆, 𝜙) − 𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆, 𝜙),                                                   (A1) 1305 

where  𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆, 𝜙) and  𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆, 𝜙) are the mean values in time (t) of a variable v as a function of 1306 

longitude λ and latitude ϕ for model and reference data, respectively. Nondimensionalization is 1307 

achieved by dividing the bias by the standard deviation of the reference data (σref):  1308 

𝜀𝑏𝑖𝑎𝑠(𝜆, 𝜙) =
|𝑏𝑖𝑎𝑠(𝜆,𝜙)|

𝜎𝑟𝑒𝑓(𝜆,𝜙)
                                                                        (A2) 1309 

Note that ɛbias is always positive, as it uses the absolute value of the bias. For evaluations against 1310 

stream flow measurements, the bias is divided by the annual mean rather than the standard 1311 

deviation of the reference data. This is because we assess streamflow on an annual rather than 1312 

monthly basis, implying that the corresponding standard deviation is small. The same approach 1313 

is applied to soil C and vegetation C mass, whose reference data provide a static snapshot in time. 1314 

For both of these cases, ɛbias(λ, ϕ) becomes:  1315 
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𝜀𝑏𝑖𝑎𝑠(𝜆, 𝜙) =
|𝑏𝑖𝑎𝑠(𝜆,𝜙)|

𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅̅ (𝜆,𝜙)
                                                                        (A3) 1316 

 1317 

A bias score that ranges from zero to one is calculated next:  1318 

𝑠𝑏𝑖𝑎𝑠(𝜆, 𝜙) = 𝑒−𝜀𝑏𝑖𝑎𝑠(𝜆,𝜙)                                            (A4) 1319 

While small relative errors yield score values close to one, large relative errors cause score values 1320 

to approach zero. Taking the mean of sbias across all latitudes and longitudes, denoted by a double 1321 

bar over a variable, leads to the scalar score:  1322 

𝑆𝑏𝑖𝑎𝑠 = 𝑠𝑏𝚤𝑎𝑠(𝜆, 𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿                                                          (A5) 1323 

 1324 

A1.2 Root-Mean-Square-Error Score (Srmse) 1325 

While the bias assesses the difference between time-mean values, the root-mean-square-error 1326 

(rmse) is concerned with the residuals of the modeled and observed time series:  1327 

𝑟𝑚𝑠𝑒(𝜆, 𝜙) = √
1

𝑡𝑓−𝑡0
∫ (𝜐𝑚𝑜𝑑(𝑡, 𝜆, 𝜙) − 𝜐𝑟𝑒𝑓(𝑡, 𝜆, 𝜙))

2

𝑑𝑡
𝑡𝑓

𝑡0
                           (A6) 1328 

 1329 

where t0 and tf are the initial and final time steps, respectively. A similar metric is the centralized 1330 

rmse (crmse), which is based on the residuals of the anomalies:  1331 

 1332 

𝑐𝑟𝑚𝑠𝑒(𝜆, 𝜙) = √
1

𝑡𝑓−𝑡0
∫ [(𝜐𝑚𝑜𝑑(𝑡, 𝜆, 𝜙) − 𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆, 𝜙)) − (𝜐𝑟𝑒𝑓(𝑡, 𝜆, 𝜙) − 𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆, 𝜙))]

2
𝑑𝑡

𝑡𝑓

𝑡0
 (A7) 1333 
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 1334 

The crmse, therefore, assesses residuals that have been bias-corrected. Since we already 1335 

assessed the model's bias through Sbias, it is convenient to assess the residuals using crmse rather 1336 

than rmse. In a similar fashion to the bias, we then compute a relative error:  1337 

𝜀𝑟𝑚𝑠𝑒(𝜆, 𝜙) =
𝑐𝑟𝑚𝑠𝑒(𝜆,𝜙)

𝜎𝑟𝑒𝑓(𝜆,𝜙)
                                                       (A8) 1338 

scale this error onto a unit interval:  1339 

𝑠𝑟𝑚𝑠𝑒(𝜆, 𝜙) = 𝑒−𝜀𝑟𝑚𝑠𝑒(𝜆,𝜙)                                                  (A9) 1340 

and compute the spatial mean:  1341 

𝑆𝑟𝑚𝑠𝑒 = 𝑠𝑟𝑚𝑠𝑒(𝜆, 𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿                                                                (A10) 1342 

A3 Phase Score (Sphase) 1343 

The skill score Sphase assesses how well the model reproduces the seasonality of a variable by 1344 

computing the time difference 𝜃(𝜆, 𝜙) between modeled and observed month of maxima of the 1345 

climatological mean cycle:  1346 

𝜃(𝜆, 𝜙) = maxima(𝑐𝑚𝑜𝑑(𝑡, 𝜆, 𝜙)) − maxima (𝑐𝑟𝑒𝑓(𝑡, 𝜆, 𝜙))                        (A11) 1347 

where cmod and cref are the climatological mean cycle of the model and reference data, 1348 

respectively. The operator maxima in equation A11 calculates the month in which the maximum 1349 

of a given quantity occurs. The time difference 𝜃(𝜆, 𝜙) in months is then scaled from zero to one 1350 

based on the consideration that the maximum possible time difference is 6 months:  1351 

𝑠𝑝ℎ𝑎𝑠𝑒(𝜆, 𝜙) =
1

2
[1 + cos (

2𝜋 𝜃(𝜆,𝜙)

12
)]                                                (A12) 1352 

The spatial mean of sphase then leads to the scalar score:  1353 
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𝑆𝑝ℎ𝑎𝑠𝑒 = 𝑠𝑝ℎ𝑎𝑠𝑒(𝜆, 𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿                                                               (A13) 1354 

 1355 

A4 Inter-Annual Variability Score (Siav) 1356 

The skill score Siav quantifies how well the model reproduces patterns of inter-annual variability. 1357 

This score is based on data where the seasonal cycle (cmod and cref) has been removed:  1358 

𝑖𝑎𝑣𝑚𝑜𝑑(𝜆, 𝜙) = √
1

𝑡𝑓−𝑡0
∫ (𝑣𝑚𝑜𝑑(𝑡, 𝜆, 𝜙) − 𝑐𝑚𝑜𝑑(𝑡, 𝜆, 𝜙))

2
𝑑𝑡

𝑡𝑓

𝑡0
                                     (A14) 1359 

𝑖𝑎𝑣𝑟𝑒𝑓(𝜆, 𝜙) = √
1

𝑡𝑓−𝑡0
∫ (𝑣𝑟𝑒𝑓(𝑡, 𝜆, 𝜙) − 𝑐𝑟𝑒𝑓(𝑡, 𝜆, 𝜙))

2

𝑑𝑡
𝑡𝑓

𝑡0
 .                                    (A15) 1360 

 1361 

The relative error, nondimensionalization, and spatial mean are computed next:  1362 

𝜀𝑖𝑎𝑣(𝜆, 𝜙) = |𝑖𝑎𝑣𝑚𝑜𝑑(𝜆, 𝜙) − 𝑖𝑎𝑣𝑟𝑒𝑓(𝜆, 𝜙)|/𝑖𝑎𝑣𝑟𝑒𝑓(𝜆, 𝜙)                                         (A16) 1363 

𝑠𝑖𝑎𝑣(𝜆, 𝜙) = 𝑒−𝜀𝑖𝑎𝑣(𝜆,𝜙)                                                                  (A17) 1364 

𝑆𝑖𝑎𝑣 = 𝑠𝚤𝑎𝑣(𝜆, 𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿                                                                            (A13) 1365 

A5 Spatial Distribution Score (Sdist) 1366 

The spatial distribution score Sdist assesses how well the model reproduces the spatial pattern of 1367 

a variable. The score considers the correlation coefficient R and the relative standard deviation σ 1368 

between 𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆, 𝜙) and  𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆, 𝜙). The score Sdist increases from zero to one, the closer R and 1369 

σ approach a value of one. No spatial integration is required as this calculation yields a single 1370 

value:  1371 
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𝑆𝑑𝑖𝑠𝑡 = 2(1 + 𝑅) (𝜎 +
1

𝜎
)

−2

                                                    (A19) 1372 

where σ is the ratio between the standard deviation of the model and reference data:  1373 

𝜎 = 𝜎𝑣𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅̅  /𝜎𝑣𝑟𝑒𝑓̅̅ ̅̅ ̅̅                                                                     (A20) 1374 

and 𝜎𝑣𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅̅  and 𝜎𝑣𝑟𝑒𝑓̅̅ ̅̅ ̅̅  are the standard deviations of the annual mean values from the model and 1375 

reference/observation-based data, respectively, and therefore are scalars.   1376 

A6 Overall Score (Soverall) 1377 

As a final step, scores are averaged to obtain an overall score:  1378 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑆𝑏𝑖𝑎𝑠 + 2 𝑆𝑟𝑚𝑠𝑒 + 𝑆𝑝ℎ𝑎𝑠𝑒 + 𝑆𝑖𝑎𝑣 + 𝑆𝑑𝑖𝑠𝑡

1+2+1+1+1
                                  (A21) 1379 

Note that Srmse is weighted by a factor of two and is an entirely subjective decision but follows 1380 

Collier et al. (2018). 1381 

 1382 
1383 
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Figure A1: Comparison of monthly precipitation (upper panel) and temperature (lower panel) 1384 

for five global regions (global, north of 25 °N, northern and southern tropics, and south of 25 °S) 1385 

from the CRU-JRA and GSWP3 meteorological forcing data sets that are used to drive the 1386 

CLASSIC model. The global and regional averages exclude Greenland and Antarctica. The legend 1387 

entries show the annual mean values averaged over the 1997-2016 period. The thin lines show 1388 

individual years and the thick line is their average. 1389 

 1390 

 1391 
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 1392 

 1393 

 1394 
 1395 

 1396 

Figure A2: Comparison of the frequency distribution of daily precipitation between the CRU-JRA 1397 

and GSWP3 meteorological data sets for three broad regions and the period 1997-2016: a) the 1398 

Amazonian region, b) the Sahel region, and c) the Midwest United States. The frequency is 1399 

represented as a percentage of time daily precipitation is between x and x+1 mm/day, where x 1400 

is the value on the x-axis. Panel (d) shows the location of these broad regions. The underlying 1401 

map in panel (d) is from Google Maps.  1402 
 1403 

 1404 

 1405 

c

a

b

a) Amazonian 
region

b) Sahel region
c) Midwest United 

States
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© Google Maps



 

69 

 1406 

 1407 

 1408 

 1409 
 1410 

  1411 

 1412 

Figure A3: Time series of simulated globally-averaged annual soil moisture (a) and soil 1413 

temperature (b) in the top 1m, global annual evapotranspiration (c), and runoff (d) from the 1414 

eight simulations summarized in Table 1. The thin lines show the individual years and the thick 1415 

lines show their 11-year moving average. Model values averaged over the pre-industrial (1851-1416 

1860) and present-day (1997-2016) time periods, and their difference, are also shown. 1417 
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 1418 

 1419 

 1420 

 1421 

Figure A4: Time series of simulated globally-averaged annual energy fluxes from the eight 1422 

simulations summarized in Table 1. Panel (a) shows net downward shortwave radiation, panel 1423 

(b) shows net downward longwave radiation, panel (c) shows latent heat flux, and panel (d) 1424 

shows sensible heat flux. The thin lines show the individual years and the thick lines show their 1425 

11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 1426 

present-day (1997-2016) time periods, and their difference, are also shown for individual 1427 

simulations. 1428 

 1429 

 1430 

 1431 

 1432 
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 1433 

Figure A5: Time series of globally-averaged annual net downward longwave and shortwave 1434 

radiation (over all land area excluding Greenland and Antarctica) averaged over the four 1435 

ensemble members each that are driven with and without N cycle (panels a, b), driven with GLC 1436 

2000 and ESA CCI based land cover (panels c, d), and driven with GSWP3 and CRU-JRA 1437 

meteorological data (panels e, f). The thin lines show the individual years and the thick lines show 1438 

their 11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 1439 

present-day (1997-2016) time periods, and their difference, are also shown. 1440 
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Figure A6: Time series of simulated global annual vegetation carbon mass (a) and soil carbon (b) 1446 

from the eight simulations summarized in Table 1. The global totals exclude Greenland and 1447 

Antarctica. Panels (c) and (d) show the zonally-averaged values of vegetation carbon mass and 1448 

soil carbon mass over land from the eight simulations averaged over the 1997-2016 period. The 1449 

thin lines show the individual years and the thick lines show their 11-year moving average in 1450 

panels (a) and (b). Model values averaged over the pre-industrial (1851-1860) and present-day 1451 

(1997-2016) time periods, and their difference, are also shown in panels (a) and (b). 1452 
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Figure A7: Time series of simulated global annual gross primary productivity (GPP) (a), 1460 

autotrophic respiration (b), and heterotrophic respiration (c) from the eight simulations 1461 

summarized in Table 1. Panel (d) shows the zonally-averaged values of GPP from the eight 1462 

simulations averaged over the 1997-2016 period for each simulation. The thin lines show the 1463 

individual years and the thick lines show their 11-year moving average in panels (a) to (c). Model 1464 

values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time periods, 1465 

and their difference, are also shown in panels (a) to (c). 1466 

 1467 

 1468 

 1469 
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Figure A8: Time series of global heterotrophic and autotrophic respiration (over all land area 1471 

excluding Greenland and Antarctica) averaged over the four ensemble members each that are 1472 

driven with and without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA 1473 

CCI based land cover (panels c, d), and driven the with GSWP3 and CRU-JRA meteorological 1474 

data (panels e, f). The thin lines show the individual years and the thick lines show their 11-year 1475 

moving average. Model values averaged over the pre-industrial (1851-1860) and present-day 1476 

(1997-2016) time periods, and their difference, are also shown. 1477 
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Figure A9: Time series of simulated global annual area burned (a) and fire CO2 emissions (b) 1482 

from the eight simulations summarized in Table 1. Panels (c) and (d) show the zonally-averaged 1483 

area burned and fire CO2 emissions from the eight simulations averaged over the 1997-2016 1484 

period. The thin lines for the time series show the individual years and the thick lines show their 1485 

11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 1486 

present-day (1997-2016) time periods, and their difference, are also shown for panels (a) and 1487 

(b). 1488 
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Figure A10: Time series of global fire CO2 emissions (over all land area excluding Greenland and 1492 

Antarctica) (panels a, c, and e) and their zonally-averaged values (panels b, d, and f) averaged 1493 

over the four ensemble members each that are driven with and without an interactive N cycle 1494 

(panels a, b), driven with the GLC 2000 and ESA CCI based land cover (panels c, d), and driven 1495 

with GSWP3 and CRU-JRA meteorological data (panels e,f). The thin lines for the time series 1496 

show the individual years and the thick lines show their 11-year moving average in panels (a), 1497 

(c), and (e). Model values averaged over the pre-industrial (1851-1860) and present-day (1997-1498 

2016) time periods, and their difference, are also shown for panels (a), (c), and (e). 1499 
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Figure A11: Time series of simulated global annual net atmosphere-land CO2 flux (a) and its 1504 

zonally-averaged values from the eight simulations summarized in Table 1 averaged over the 1505 

1997-2016 period. In panel (a) simulated annual net atmosphere-land CO2 flux values are 1506 

compared to the estimates from the Global Carbon Project (Friedlingstein et al., 2022). The thin 1507 

lines for the time series in panel (a) show the individual years and the thick lines show their 11-1508 

year moving average. In panel (b) the simulated zonally-averaged values are compared to the 1509 

range from 11 models that contributed to the TRENDY 2020 intercomparison and averaged 1510 

over the 1997-2016 period.  1511 
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 1520 

Figure A12: Zonally-averaged values of soil moisture (a), runoff (b), latent heat flux (c), and 1521 

sensible heat flux (d) from the eight simulations summarized in Table 1. The model results are 1522 

shown as their mean (black) and the spread across the eight simulations indicated by 50%, 80%, 1523 

and 100% ranges in different shades of grey. The observation-based estimates used in AMBER to 1524 

calculate scores are shown in coloured lines. 1525 
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Figure A13: Zonally-averaged values of surface albedo (a), snow water equivalent (b), net surface 1530 

radiation (c), net longwave radiation (d), and net shortwave radiation (e) from the eight 1531 

simulations summarized in Table 1. The model results are shown as their mean (black) and the 1532 

spread across the eight simulations indicated by 50%, 80%, and 100% ranges in different shades 1533 

of grey. The observation-based estimates used in AMBER to calculate scores are shown in 1534 

coloured lines. 1535 
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