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Abstract 5 

6 

Quantification of uncertainty in fluxes of energy, water, and CO2 simulated by land surface 7 

models (LSMs) remains a challenge. LSMs are typically driven with, and tuned for, a specified 8 

meteorological forcing data set and a specified set of geophysical fields. Here, using two data sets 9 

each for meteorological forcing and land cover representation (in which the increase in crop area 10 

over the historical period is implemented in the same way), as well as two model structures (with 11 

and without coupling of carbon and nitrogen cycles), the uncertainty in simulated results over 12 

the historical period is quantified for the Canadian Land Surface Scheme Including 13 

Biogeochemical Cycles (CLASSIC) model. The resulting eight (2 x 2 x 2) model simulations are 14 

evaluated using an in-house model evaluation framework that uses multiple observations-based 15 

data sets for a range of quantities. The simulated area burned, fire CO2 emissions, soil carbon 16 

mass, vegetation carbon mass, runoff, heterotrophic respiration, gross primary productivity, and 17 

sensible heat flux show the largest spread across the eight simulations relative to their mean. 18 

Simulated net atmosphere-land CO2 flux, a critical determinant of the performance of LSMs, is 19 

found to be largely independent of the simulated pre-industrial vegetation and soil carbon mass20 

although our framework represents the historical increase in crop area in the same way in both 21 

land cover representations. This indicates that models can provide reliable estimates of the 22 

strength of the land carbon sink despite some biases in carbon stocks. Results show that 23 

evaluating an ensemble of model results against multiple observations disentangles model 24 

deficiencies from uncertainties in model inputs, observation-based data, and model 25 

configuration. 26 

27 
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1. Introduction 43 

The current generation land surface models (LSMs) explicitly simulate the fluxes of 44 

energy, water, momentum, and trace gases (including CO2, CH4, and N2O) between the 45 

atmosphere and the land surface. These models have become an essential tool in understanding 46 

what role the land surface plays in the global climate system under current and projected future 47 

changes in environmental conditions, including atmospheric CO2 concentration (Bonan and 48 

Doney, 2018). LSMs are also an essential component of climate and Earth system models (ESMs), 49 

together with their ocean and atmosphere components. Within the framework of ESMs, LSMs 50 

are coupled interactively to their atmospheric components through the fluxes of energy, 51 

momentum, and matter. 52 

The complexity of LSMs has increased over time as more physical and biogeochemical 53 

processes have been included in their framework (Fisher and Koven, 2020; Kyker-Snowman et 54 

al., 2022). This increased complexity combined with the uncertainty in our understanding of 55 

physical and biogeochemical processes implies that different models respond differently even 56 

when driven with the same external forcings.  One estimate of the uncertainty in our 57 

understanding of land surface physical and biogeochemical processes is obtained by evaluating 58 

the inter-model spread in a given quantity when models are forced in the same manner. Other 59 

than the uncertainty among models due to differences in their model structures and 60 

parameterizations of various processes, uncertainty also exists due to at least three other 61 
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reasons. These include uncertainty 1) in parameter values1 of represented processes, 2) in driving 66 

meteorological data, and 3) in the specification of the geophysical fields. LSMs are typically driven 67 

with meteorological data consisting of seven primary variables (incoming long and shortwave 68 

radiation, temperature, precipitation, specific humidity, wind speed, and pressure).  In addition, 69 

the geophysical fields of land cover, soil texture, and soil permeable depth are also required. 70 

Driving data for LSMs also consist of atmospheric CO2 concentration and other model-specific 71 

external forcings such as nitrogen deposition and fertilizer application rates for models that 72 

include a representation of the terrestrial nitrogen cycle, and lightning, population density, and 73 

gross domestic product (GDP) for models that simulate wildfires.  74 

Every year more than 15 land surface modelling groups participate in the TRENDY (trends 75 

in net land-atmosphere carbon exchanges) project where they perform a set of simulations that 76 

are driven with specified external forcings. The simulations are performed from the year 1700 to 77 

the present day. These simulations contribute to the annual Global Carbon Project’s (GCP) 78 

analysis of the land carbon sink together with its analysis of anthropogenic CO2 emissions and 79 

the ocean carbon sink (Friedlingstein et al., 2019). The external forcings used to drive LSMs in the 80 

TRENDY intercomparison include, 1) six hourly meteorological data from 1901 to the present day 81 

(the most recent 2020 TRENDY intercomparison used the CRU-JRA forcing obtained by blending 82 

the climate research unit (CRU) monthly data and the Japanese reanalysis (JRA)); 2) atmospheric 83 

CO2 concentration; and 3) information about changes in crop area and other land use changes 84 

(LUC) from the land use harmonization (LUH) product (Hurtt et al., 2020a). The information about 85 

1 Changes in parameter values do not constitute different parameterizations. For example, two models may use 
the same parameterization, say y=mx+b, but different values of its parameters m and b. However, y=mx + b and y = 
mx2 are considered to be two different parameterizations. 
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changes in crop area and other LUC is used by land surface modelling groups to reconstruct 86 

historical land cover from the year 1700 to the present day consistent with the number of the 87 

plant functional types (PFTs) a given model represents. The protocol also provides nitrogen 88 

deposition and fertilization application rates for models including nitrogen cycling. 89 

Models participating in the TRENDY simulations are thus driven with common 90 

meteorological and LUC forcings as part of its protocol. The resulting spread across models 91 

participating in the TRENDY project thus provides a measure of inter-model uncertainty, as 92 

mentioned earlier. Traditionally the uncertainty associated with model structure has gained the 93 

most attention and the scientific community has responded to this by performing model 94 

intercomparison projects (MIPs) where models are driven according to a common protocol. The 95 

coupled model intercomparison project (CMIP) in the climate community together with its 96 

various sub-projects (Eyring et al., 2016) is another prominent example. MIPs now routinely form 97 

the basis of evaluating models against observations and multi-model means of various quantities. 98 

Multi-model means are also considered the best estimate for a given quantity (Tebaldi and 99 

Knutti, 2007).  100 

The modelling community has been long aware of the uncertainty associated with 101 

parameter values, since a large fraction of physical and biogeochemical model processes are 102 

parameterized, and such uncertainty analysis dates back to the early hydrological models (e.g. 103 

Hornberger and Spear, 1981; Beven and Binley, 1992). More recent examples of parameter value 104 

uncertainty in the context of a given LSM include Poulter et al. (2010), Booth et al. (2012), and Li 105 

et al. (2018a). The land surface modelling community, however, has only recently begun to 106 

address and quantify uncertainty related with driving meteorological data. Wu et al. (2017), for 107 
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example, illustrate the uncertainty in gross primary productivity (GPP) simulated by the Lund-110 

Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) model when driven by six different 111 

meteorological data sets. Bonan et al. (2019) analyze the uncertainty in simulated carbon cycle 112 

related variables using three versions of the Community Land Model (CLM) when driven with two 113 

meteorological data sets over the historical period. Slevin et al. (2017) assess the uncertainty in 114 

simulated GPP by the JULES land model when driven by three different meteorological data sets. 115 

Studies that evaluate the effect of different land cover representations on model performance 116 

are even fewer. Tian et al. (2004) and Lawrence and Chase (2007) study the effect of new land 117 

surface boundary conditions, including leaf area index and fractional vegetation cover, based on 118 

the MODIS satellite data as implemented in CLM2 in the Community Atmosphere Model (CAM2) 119 

and CLM3 in the Community Climate System Model (CCSM 3.0), respectively.  120 

Here, we drive the Canadian Land Surface Scheme Including Biogeochemical Cycles 121 

(CLASSIC) with two sets of historical meteorological forcings and also two land cover 122 

representations to quantify the uncertainty associated with both these forcings. Other than 123 

these, we also use two versions of the CLASSIC model: one that represents the interactions 124 

between the carbon (C) and nitrogen (N) cycles and the other in which these interactions are 125 

turned off. CLASSIC has contributed to the simulations for the TRENDY intercomparison, and the 126 

GCP, since 2016 (formerly under the CLASS-CTEM name). Seiler et al. (2021a) have evaluated how 127 

well the CLASSIC model performs when forced with three different meteorological data sets using 128 

the model version without the N cycle. Using the two meteorological forcing data sets, two 129 

representations of land cover, and two versions of the model we perform eight simulations over 130 

the historical period since 1700. All of these simulations may be considered equally likely 131 
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representations of the modelled state of the land surface over the historical period. Yet, they all 149 

have their own distinct biases since simulated land surface states and fluxes are different. We 150 

use these simulations to illustrate the uncertainty associated with meteorological forcing and the 151 

two different representations of land cover that are used to drive the model. We also use an in-152 

house open-source benchmarking system (see code/data availability section) to evaluate these 153 

different simulations against observations-based data sets: AMBER (Automated Benchmarking R 154 

Package) (Seiler et al., 2021b) uses gridded and in-situ observation-based estimates of 19 energy, 155 

water, and C cycle related variables to evaluate LSMs.  156 

Section 2 of this paper describes the framework of the CLASSIC land model and the forcing 157 

data that are required to drive the model. Section 3 describes the two meteorological data sets, 158 

the two representations of land cover that are used to drive the model, and the simulations 159 

performed for this study. Section 4 analyses the results from the simulations to illustrate their 160 

different states and reports results from the AMBER benchmarking exercise. Finally, the 161 

discussion and conclusions are presented in Section 5. The use of more than one meteorological 162 

forcing data sets and land cover representation yields a conundrum since tuning model 163 

parameters for a given forcing data set is not a useful exercise anymore. We also report a new 164 

finding that despite different land C states (characterized in terms of vegetation and soil C mass) 165 

in the eight simulations considered here, the net atmosphere-land CO2 flux over the historical 166 

period in these simulations is consistent with estimates from the GCP. This and the discussion 167 

about the broader question of model tuning are also presented in Section 5.  168 

2. The CLASSIC land modelling framework 169 
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2.1 The physical and carbon biogeochemical processes  176 

The CLASSIC land model is the successor to, and based on, the coupled Canadian Land 177 

Surface Scheme (CLASS; (Verseghy, 1991; Verseghy et al., 1993)) and the Canadian Terrestrial 178 

Ecosystem Model (CTEM; (Arora and Boer, 2005; Melton and Arora, 2016b). CLASSIC also serves 179 

as the land component in the family of Canadian Earth System Models (Arora et al., 2009, 2011; 180 

Swart et al., 2019). Melton et al. (2019) provide an overview of the CLASSIC land model and 181 

launched it as a community model. The basis of the modelling of physical and biogeochemical 182 

processes in CLASSIC comes from CLASS and CTEM, respectively, both of which have a long 183 

history of development. CLASSIC simulates land-atmosphere fluxes of water, energy, and 184 

momentum based on its physics, and fluxes of CO2, CH4, N2O, NOx, and NH3 based on its 185 

biogeochemical process. The representation of the terrestrial N cycle is a new addition to CLASSIC 186 

(Asaadi and Arora, 2021; Kou-Giesbrecht and Arora, 2022) and allows for the simulation of the187 

interactions between the C and N cycles explicitly.  188 

The CLASSIC model simulations can be performed over a spatial domain, which may be 189 

global or regional, using gridded data or at a point scale, e.g. using meteorological and 190 

geophysical data from a FluxNet site. The primary physical and biogeochemical processes of 191 

CLASSIC are briefly summarized in the next two sections.  192 

2.1.1 Physical processes 193 

The calculations for physical processes in CLASSIC are performed over vegetated, snow, 194 

and bare fractions at a time step of 30 minutes. In the version used here, the fractional coverage 195 

of the four plant functional types (PFTs) (needleleaf trees, broadleaf trees, crops, and grasses) 196 
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characterizes vegetation for each grid cell. The fractional coverage of these four PFTs is specified 201 

over the historical period in this study. The structure of vegetation is characterized by leaf area 202 

index (LAI), vegetation height, canopy mass, and rooting distribution through the soil layers all of 203 

which are dynamically simulated by the biogeochemical module of CLASSIC. Twenty ground 204 

layers represent the soil profile, starting with 10 layers of 0.1 m thickness. The thickness of layers 205 

gradually increases to 30 m for a total ground depth of over 61 m. The depth of permeable soil 206 

layers and thus the depth to bedrock varies geographically and is specified based on the 207 

SoilGrids250m data set (Hengl et al., 2017). Liquid and frozen soil moisture contents, and soil 208 

temperature, are determined prognostically for permeable soil layers. The temperature, albedo, 209 

mass, and density of a single-layer snow pack (when the climate permits snow to exist) are also 210 

prognostically modelled. The result of physics calculations yields fluxes of energy (primarily net 211 

radiation, ground heat flux, and latent and sensible heat fluxes) and water (primarily 212 

evapotranspiration and runoff) at the land-atmosphere boundary.  213 

2.1.2 Biogeochemical processes 214 

The biogeochemical processes in CLASSIC, based on CTEM, are described in detail in the 215 

appendix of Melton and Arora (2016). The biogeochemical processes simulate the land-216 

atmosphere exchange of CO2 and as a result simulate vegetation as a dynamic component 217 

depending on the environmental conditions.  218 

The biogeochemical module of CLASSIC prognostically calculates the amount of C in the 219 

model’s three live (leaves, stem, and root) and two dead (litter and soil) C pools for each PFT. The 220 

live vegetation pools are separated into their structural and non-structural components. The C 221 
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amount in these pools is represented per unit land area (kg C/m2). The amount of C in the live 225 

and dead C pools and all terrestrial ecosystem processes in the biogeochemical module in this 226 

study are modelled for nine PFTs that map directly onto the four base PFTs used in the physics 227 

module of CLASSIC. Needleleaf trees are divided into their deciduous and evergreen phenotypes, 228 

broadleaf trees are divided into cold deciduous, drought deciduous, and evergreen phenotypes, 229 

and crops and grasses are divided based on their photosynthetic pathways into C3 and C4230 

versions. The sub-division of PFTs is essential for modelling biogeochemical processes. For 231 

instance, simulating the onset and offset of leaves is different between evergreen and deciduous 232 

phenotypes of needleleaf and broadleaf trees. However, once the leaf area index (LAI) is known,233 

a physical process does not need information about the underlying deciduous or evergreen 234 

nature of leaf phenology. For example, the interception of rain and snow by canopy leaves (that 235 

is typically modelled as a function of LAI and a PFT-dependent parameter that accounts for leaf 236 

orientation and shape) does not depend on the underlying evergreen or deciduous nature of the 237 

leaf phenology. In general, biogeochemical processes benefit more in terms of realism than 238 

physical processes when the number of PFTs is increased. For example, in CLASSIC, large changes 239 

in leaf area index (LAI) do not change total latent heat flux considerably since the partitioning of 240 

evapotranspiration into its sub-components (transpiration, soil evaporation, and 241 

evaporation/sublimation of intercepted rain/snow) adjusts. A decrease in transpiration and 242 

evaporation of intercepted precipitation, due to a decrease in LAI, is compensated by an increase 243 

in soil evaporation. This is expected since water and energy fluxes are determined largely by 244 

available energy and precipitation. 245 
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The litter and soil C pools are tracked for each soil layer but the movement of C between 251 

the soil layers is not yet modelled. Other than photosynthesis and leaf respiration which are 252 

modelled at a time step of 30 minutes all other biogeochemical processes are modelled at a daily 253 

time step. These include: 1) allocation of C from leaves to stem and roots, 2) autotrophic 254 

respiration from the live C pools and heterotrophic respirations from the dead C pools, 3) leaf 255 

phenology, 4) turnover of live vegetation components that generates litter, 5) mortality, 6) LUC, 256 

and 7) fire (Arora and Melton, 2018). Competition between PFTs for space is not modelled in this 257 

study and fractional coverage of the nine PFTs is specified based on the representation of the 258 

land cover as explained in the next section. 259 

When the N cycle is turned on, land-atmosphere fluxes of N2O, NOx, and NH3, and N 260 

leaching are also modelled in response to biological N fixation, N fertilizer inputs, and N 261 

deposition from the atmosphere. In particular, when the N cycle interacts with the C cycle, the 262 

maximum photosynthetic capacities of model PFTs (Vc,max) are determined prognostically as a 263 

function of their leaf N content (Asaadi and Arora, 2021; Kou-Giesbrecht and Arora, 2022). When 264 

the N cycle is turned off, prescribed PFT-specific Vc,max rates are used (Melton and Arora, 2016a) 265 

and an empirical downregulation parameterization is used to emulate the effect of nutrient 266 

constraints as atmospheric CO2 increases (Arora et al., 2009). N in all model components (leaves, 267 

stem, roots, litter, and soil organic matter) is prognostically tracked, and therefore C:N ratio of 268 

all components is prognostically modelled except for soil organic matter for which a C:N ratio of 269 

13 is specified. In addition, N in the soil mineral pools of nitrate (NO3
–) and ammonium (NH4

+) is 270 

also prognostically modelled.  271 

3. Driving data for CLASSIC and model simulations 272 
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3.1 Land cover  280 

Land cover is one of the most important geophysical fields that is required by LSMs and 281 

at its most basic level provides information about fractional vegetation cover in each grid cell for 282 

a given regional or global domain. Vegetation in LSMs is typically represented in terms of PFTs. 283 

Models may choose to represent a basic set of a few PFTs (trees, grasses, shrubs, and crops) or a 284 

more elaborate set that distinguishes PFTs based on their stature (trees, grasses, or shrubs), leaf 285 

form (needleleaf or broadleaf), leaf phenology (evergreen or deciduous), photosynthetic 286 

pathway (C3 or C4), and geographical location (tropical, temperate, or boreal). The version of 287 

CLASSIC in this study uses a somewhat smaller set of nine PFTs for biogeochemical processes as 288 

described in the previous section. The fractional coverage of PFTs in a model may be dynamically 289 

simulated based on competition between PFTs or prescribed based on observation-based land 290 

cover information. While CLASSIC does have a parameterization of competition between its PFTs 291 

(Arora and Boer, 2006; Melton and Arora, 2016b), for the historical simulations considered here 292 

and for the simulations that contribute to the TRENDY ensemble, prescribed fractional coverage 293 

of PFTs is used.  294 

For the process of generating a historical reconstruction of land cover, consisting of time-295 

varying fractional coverage of a model’s PFTs, two types of observation-based data sets are used. 296 

The first is a remotely-sensed land cover product that represents the geographical distribution of 297 

land cover for the present day for a short period. Examples of this include the GLC 2000 land 298 

cover product which represents the November 1999 to December 2000 period 299 

(https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php) and the more recent European 300 

Space Agency (ESA) Climate Change Initiative (CCI) land cover product for the period 1992-2018 301 
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(ESA, 2017). The second type of data set required to reconstruct historical land cover is that of a 308 

spatially and temporally varying cropland (and pasture) area for a much longer period, which in 309 

this case is based on the data set provided by the land use harmonization (LUH) product as part 310 

of the TRENDY protocol for the period 850-2018. The LUH product is comprehensive (Hurtt et al., 311 

2020b). For example, not all models use the pasture area and other information provided in the 312 

LUH product.  313 

The process of generating land cover for a given model’s PFTs is a three-step process. 314 

First, the fractional coverage of model PFTs is obtained from a remotely sensed land cover 315 

product that represents the snapshot of land cover for the present day. This requires typically 316 

mapping 20 – 40 land cover classes that exist in a remotely-sensed land cover product to a given 317 

model’s PFTs. This step introduces the largest uncertainty in the entire process. The original land 318 

cover in the CLASSIC model is based on the GLC 2000 land cover product. Table 2 of Wang et al. 319 

(2006) summarizes the mapping/reclassification of the 22 GLC 2000 land cover categories to the 320 

nine PFTs used in CLASSIC. Each land cover class was split into one or more of the nine CLASSIC 321 

PFTs based on the class description and knowledge of global biomes. For example, the discrete 322 

“broadleaf deciduous open tree cover” category of the GLC 2000 product is assumed to consist 323 

of 60% broadleaf deciduous trees, 20% grasses, and 20% bare ground. This first step yields a 324 

snapshot of land cover expressed in terms of the fractional coverage of CLASSIC’s nine PFTs. The 325 

second step of generating fractional coverage of PFTs for a given snapshot in time requires 326 

replacing the fractional area of crop categories with values from the LUH data set for the same 327 

year. For example, when using the GLC 2000 land cover product, the area of C3 and C4 crops from 328 

the LUH data set for the year 2000 are used, and the fractional coverage of the other seven non-329 
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crop CLASSIC PFTs is adjusted such that the total vegetation fraction in each grid cell stays the 339 

same. Finally, in the last step, the temporally varying crop area from the LUH product is used to 340 

go backward in time to 1700 from the year 2000 with typically decreasing crop area while the 341 

area of other non-crop PFTs is adjusted in proportion to their existing fractional coverage such 342 

that the total vegetation fraction in each grid cell stays the same. Similarly, the area of C3 and C4343 

crops from the LUH product is used from the year 2000 onwards to the present day. All these 344 

steps yield a reconstruction of historical land cover, expressed in terms of fractional coverage of 345 

CLASSIC’s nine PFTs (as interpreted from the GLC 2000 land cover product), from 1700 to 2018, 346 

in which crop area changes spatially and temporally according to the LUH product. 347 

GLC 2000 is an older land cover product and more recent land cover products are now 348 

available. Here, in addition to the GLC 2000 based land cover, we also use the European Space 349 

Agency (ESA) Climate Change Initiative (CCI) land cover product. The ESA CCI land cover product 350 

is available at 300 m spatial resolution for the period 1992-2018 and contains 37 land cover 351 

categories (ESA, 2017). We use the land cover from the year 1992 to create a snapshot of CLASSIC 352 

PFTs for the present day. Although there is some interannual variability overall the total 353 

vegetated area doesn’t change substantially from 1992-2018 in the ESA-CCI land cover. A default 354 

mapping/reclassification table for converting the ESA CCI classes into PFTs is provided in its user 355 

guide (ESA, 2017). However, it overestimates tree cover along the taiga-tundra transition zone 356 

and underestimates it elsewhere in Canada (Wang et al., 2018, 2019). Wang et al. (2022) have 357 

developed a new reclassification table for converting the 37 ESA CCI land cover categories to 358 

CLASSIC’s nine PFTs which is used in this study. A high-resolution land cover map over Canada 359 

and a tree cover fraction data at 30 m resolution are used to compute the sub-pixel fractional 360 
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composition of each class in the ESA CCI dataset, which is then used to inform the cross-walking 372 

reclassification procedure (Wang et al., 2022). 373 

374 

375 

376 

377 

Figure 1: Comparison of zonally summed areas of total vegetation (a), grass (b), and tree (c) cover used 378 

in the CLASSIC model based on GLC 2000 (blue line) and ESA CCI (dark red line) land cover products to 379 

each other, to selected other models that participated in the 2020 TRENDY intercomparison (grey lines) 380 

for which land cover information was available, and to Li et al. (2018) (dotted black line) who analyzed 381 

the ESA CCI data. All data correspond to the 1992-2018 period. CLASSIC does not yet explicitly 382 

represents shrub PFTs. Tall shrubs are merged into tree PFTs in CLASSIC. For the Li et al. (2018) data 383 

plotted here, the shrub PFTs are combined with the tree PFTs for a consistent comparison to CLASSIC. 384 

385 

386 

The above process yields two representations of land cover in which the geographical 387 

distribution of CLASSIC PFTs is based on GLC 2000 and ESA CCI land cover products. Both these 388 

TRENDY models CCI-Li et al. (2018)
ESA CCI GLC 2000
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representations include the same reconstruction of crop area over the historical period. Figure 1 392 

illustrates the uncertainty in land cover by comparing zonally summed areas of total vegetation, 393 

tree, and grass cover in CLASSIC, averaged over the period 1992-2018, when model land cover is 394 

based on the GLC 2000 (blue line) and ESA CCI (dark red line) land cover products. These two 395 

estimates are also compared to selected other models that participated in the 2020 TRENDY 396 

intercomparison (grey lines), also for the period 1992-2018, for which land cover information was 397 

available, and to Li et al. (2018b) (dotted black line) who analyzed the ESA CCI data based on the 398 

default reclassification table from the ESA CCI user guide. Figure 1 shows while there is relatively 399 

good agreement across TRENDY models in terms of total vegetation cover there’s a much larger 400 

uncertainty in its split between tree and grass PFTs. There are two reasons for the spread in total 401 

vegetated, treed, and grassed areas across TRENDY models. First, modelling groups use different 402 

remotely sensed land cover products for obtaining fractional cover of their model PFTs. Second, 403 

the current process of mapping/reclassifying 20-40 land cover classes of a land cover product to 404 

a model’s PFTs is mainly based on the class description and expert judgment which introduces 405 

subjectiveness in the process. Compared to the GLC 2000 based land cover in the CLASSIC model, 406 

the newer ESA CCI based land cover yields a somewhat higher total vegetation cover, a higher 407 

grass cover, and a somewhat lower tree cover area. Unlike the older GLC 2000 based land cover 408 

used in CLASSIC, the newer ESA CCI based grass and tree cover area are within the range of the 409 

TRENDY models reported here. Finally, Figure 1 also allows us to compare the results from the 410 

analysis of Li et al. (2018b) for the ESA CCI land cover (dotted black line) to the ESA CCI 411 

reclassification for CLASSIC (dark red line) by (Wang et al., 2022). Li et al. (2018b) used the default 412 

mapping/reclassification table for converting the ESA CCI classes into PFTs. This comparison 413 

Deleted:  ¶

Deleted: This is because 

Deleted: that 

Deleted: some 

Deleted: Wang et al. (2022, in preparation)



17

Deleted: ¶

illustrates that the remapping of the ESA CCI land cover classes to CLASSIC’s PFTs yields total 419 

vegetation, tree, and grass coverage that is broadly comparable to Li et al. (2018b) although some 420 

differences remain for the grasses. 421 

Our framework accounts for the uncertainty in land cover representation. However, since 422 

both land cover representations in our study account for the increase in crop area over the 423 

historical period in the same way by adjusting the area of non-crop PFTs in proportion to their 424 

existing coverage using the LUH product, our framework is unable to account for the uncertainty 425 

associated with the implementation of LUC. Di Vittorio et al. (2018) quantify this uncertainty by 426 

implementing several approaches to account for the increase in crop area over the historical 427 

period in the framework of an integrated assessment model: by preferentially converting grasses 428 

and shrubs, by preferentially converting forests, and by proportionally adjusting areas of non-429 

crop PFTs in a way similar to ours. LUC emissions are higher if the increase in crop area is 430 

preferentially obtained by converting forests. A similar uncertainty analysis for LUC emissions is 431 

performed by Peng et al. (2017) using the ORCHIDEE land model who analyze the effect of using 432 

different rules to incorporate the changes in crop and pasture area over the historical period. The 433 

uncertainty related to incorporating LUC information to modify a model’s land cover is further 434 

illustrated in Di Vittorio et al. (2014) and Meiyappan and Jain (2012).  435 

436 

3.2 Meteorological data 437 

As a land surface component of an ESM, CLASSIC requires meteorological forcing at a sub-438 

daily temporal resolution. In the offline simulations reported here, the model is run with half-439 
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hourly values of meteorological data (incoming long and shortwave radiation, temperature, 450 

precipitation, specific humidity, wind speed, and pressure). The first meteorological data set used 451 

to drive CLASSIC is from the TRENDY protocol for the year 2020, CRU-JRA v2.1.5, which provides 452 

6 hourly values of the seven variables from the Japanese reanalysis (JRA) with monthly values 453 

adjusted to the climate research unit’s data (CRU, https://crudata.uea.ac.uk/cru/data/hrg/). This 454 

yields a blended product from year January 1901 to December 2019 with the 6-hourly temporal 455 

resolution of a reanalysis but without the biases that may be present in reanalysis data (Harris, 456 

2020). The second meteorological data set used here to drive CLASSIC is from the Global Soil 457 

Wetness Project 3 (GSWP3). The GSWP3 forcing data are based on a dynamical downscaling of 458 

the 20th century reanalysis (Compo et al., 2011) using a Global Spectral Model (GSM) run at about 459 

50 km resolution. GSM is nudged towards the vertical structures of 20th century (20CR) zonal and 460 

meridional air temperature and winds so that the synoptic features are retained at their higher 461 

spatial resolution. Additional bias corrections are also performed as explained in van den Hurk et 462 

al. (2016). The GSWP3 forcing is available for the 1901-2016 period. The 6-hourly values from 463 

both the CRU-JRA and GSWP3 forcings are further disaggregated to half-hourly values for use by 464 

CLASSIC.  465 

Figure A1 compares the two meteorological forcings data sets, over the 1997-2016 466 

period, to illustrate that although these two data sets are very similar there are differences 467 

between the two. Global precipitation over land (excluding Greenland and Antarctica) in the 468 

GSWP3 data set (857 mm/year) is somewhat higher than in the CRU-JRA data set (820 mm/year). 469 

The global near-surface air temperature over land (excluding Greenland and Antarctica) is also 470 

slightly higher in the GSWP3 data set (14.22 °C) compared to the CRU-JRA data set (14.08 °C). The 471 
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largest temperature difference occurs between the two data sets over the northern tropics 474 

(panel h) where the GSWP3 data set is about 0.93 °C warmer than the CRU-JRA data set. The 475 

geographical distribution of mean annual temperature is very similar between the two data sets 476 

but there are some differences in the geographical distribution of precipitation (not shown). 477 

Despite very similar total precipitation amounts and their seasonality over large global regions in 478 

the two data sets, differences exist in the frequency distribution of precipitation. Figure A2479 

illustrates this over three broad regions, the Amazon, the Sahel, and the Midwest United States, 480 

which shows the frequency distribution of daily precipitation amounts (mm/day) over the 1997-481 

2016 period from the two data sets. Figure A2 shows that the frequency of precipitation events 482 

greater than about 5-10 mm/day is higher in the GSWP3 data set compared to the CRU-JRA data 483 

set for the Amazonian, the Sahel, and the Midwest United States regions. 484 

3.3 Other forcings 485 

Other than the land cover and meteorological forcings CLASSIC requires globally averaged 486 

atmospheric CO2 concentration, geographically varying time-invariant soil texture and soil 487 

permeable depth, population density, time-invariant monthly lightning, and geographically and 488 

time-varying N fertilizer application rates and atmospheric N deposition rates. The atmospheric 489 

CO2 concentration values are provided by the TRENDY protocol. The soil texture information 490 

consists of the percentage of sand, clay, and organic matter and is derived from Shangguan et 491 

al. (2014). N fertilizer is specified according to the TRENDY protocol and based on Lu and Tian 492 

(2017). N deposition is also specified according to the TRENDY protocol and based on model 493 

forcings provided for the sixth phase of CMIP (CMIP6) through input4MIPs (Hegglin et al., 494 

2016). N deposition for the historical (1850-2014) period is used as is provided while that for 495 
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the period 2015-2018 is specified based on N deposition from the SSP5-85 scenario. For the 500 

period 1700-1849, N deposition values from the year 1850 are used.501 

502 

Table 1: Summary of simulations performed with two representations of the historical land 503 

cover, two sets of meteorological data, and two versions of the CLASSIC land model. 504 

505 

Simulation Land cover 
reconstruction 

Meteorological forcing N cycle interactions 
with the C cycle

A based on GLC 2000 CRU-JRA v2.1.5 On

B based on GLC 2000 GSWP3 On

C based on GLC 2000 CRU-JRA v2.1.5 Off

D based on GLC 2000 GSWP3 Off

E based on ESA CCI CRU-JRA v2.1.5 On

F based on ESA CCI GSWP3 On

G based on ESA CCI CRU-JRA v2.1.5 Off
H based on ESA CCI GSWP3 Off

506 

507 

508 

3.4 Model simulations 509 

Using the two representations of the historical land cover (based on the GLC 2000 and ESA CCI 510 

land cover products), the two sets of meteorological data (CRU-JRA and GSWP3), and the two 511 

versions of the CLASSIC model (with and without interactions between the C and N cycles) we 512 

perform eight sets of pre-industrial and historical simulations as summarized in Table 1. Pre-513 

industrial simulations that correspond to the year 1700 are required before doing the historical 514 

simulations (from which we analyze the model results) so that model pools can be spun up to 515 

near equilibrium for each combination of land cover, meteorological forcing, and model 516 

version. The pre-industrial simulations use 1901-1925 meteorological data repeatedly since this 517 

period shows little trends in meteorological variables. Global thresholds of net atmosphere-518 

land C flux of 0.05 Pg/yr and net atmosphere-land N flux of 0.5 Tg N/yr, in simulations with the 519 
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N cycle turned on, are used to ensure the model pools have reached equilibrium. Each historical 522 

simulation is then initialized from its corresponding pre-industrial simulation after it has 523 

reached equilibrium. Simulations driven with the CRU-JRA meteorological data are performed 524 

for the period 1701-2018, and the period 1701-2016 for simulations driven with the GSWP3 525 

meteorological data. Similar to the pre-industrial simulations, meteorological data from 1901-526 

1925 is used repeatedly for the period 1701-1900. The global model simulations are performed 527 

at a spatial resolution of about 2.81° (about 312 km at the equator) and the size of the spatial 528 

longitude-latitude grid is 128  64. All model forcings are regridded to this common spatial 529 

resolution. The model is run over about 1900 land grid cells at this resolution excluding glacial 530 

cells in Greenland and Antarctica. 531 

532 

3.5 Automated benchmarking 533 

The results from the eight CLASSIC simulations reported here are evaluated using an in-534 

house model benchmarking system called the Automated Model Benchmarking R package 535 

(AMBER) (Seiler et al., 2021b). AMBER is based on a skill score system originally developed by 536 

(Collier et al., 2018) which is used to quantify model performance and explained in detail in the 537 

appendix. Five scores are used that assess a model’s bias (Sbias), root-mean-square error (Srmse), 538 

seasonality (Sphase), interannual variability (Siav), and spatial distribution (Sdist) against globally 539 

gridded and in-situ data set(s) of observation-based estimates for a given quantity. A score is 540 

computed by first calculating a dimensionless statistical metric, which is then scaled onto a unit 541 

interval, and finally calculating its spatial mean. Scores range from 0 to 1 and are dimensionless. 542 
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Higher values indicate better performance. Finally, an overall score Soverall is calculated as follows 546 

by giving twice as much weight to Srmse547 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑆𝑏𝑖𝑎𝑠+2𝑆𝑟𝑚𝑠𝑒+𝑆𝑝ℎ𝑎𝑠𝑒+𝑆𝑖𝑎𝑣+𝑆𝑑𝑖𝑠𝑡

1+2+1+1+1
.                                                     (1)548 

The decision to give extra weight to Srmse is entirely subjective but follows Collier et al. (2018). 549 

The scores are calculated by comparing gridded and in-situ observation-based estimates, 550 

referred to as reference data sets in Seiler et al. (2021b), for 19 energy (surface albedo, net 551 

shortwave and longwave radiation, total net radiation, latent heat flux, sensible heat flux, ground 552 

heat flux), water (soil moisture, snow, and runoff), and C cycle (GPP, net ecosystem exchange, 553 

net biome productivity, aboveground biomass, soil C, LAI, area burnt, and fire CO2 emissions) 554 

related variables to model simulated quantities. Table 2 summarizes the source of these 555 

observation-based data sets. The resulting model scores express to what extent simulated and 556 

observation-based data agree. A low score does not necessarily indicate poor model 557 

performance. Uncertainties in the meteorological forcing data and geophysical fields used to 558 

drive the model, and/or in the observation-based data itself are possible reasons for the lack of 559 

agreement. One way to assess uncertainties in observation-based data sets is to quantify the skill 560 

score by comparing two independently-derived observation-based data sets (Seiler et al., 2022). 561 

The resulting scores are referred to as benchmark scores and quantify the level of agreement 562 

among the observation-based data sets themselves provided, of course, there are at least two 563 

sets of observation-based data for a given quantity. The comparison of model scores against 564 

benchmark scores then shows how well a model-simulated quantity compares to the reference 565 

data sets relative to the agreement between the observation-based data sets themselves.566 
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Table 2: Observation-based data sets used for model evaluation in AMBER. 571 

572 

573 

4. Results  574 

Globally gridded variable(s) Source Approach used Reference 

Leaf area index AVHRR Artificial neural network Claverie et al. (2016) 

Net biome productivity CAMS Atmospheric inversion Agustí-Panareda et al. (2019) 

Net biome productivity Carboscope Atmospheric inversion Rödenbeck et al. (2018) 

Surface albedo, net shortwave and 
longwave radiation, net radiation 

CERES Radiative transfer model Kato et al. (2013) 

Net radiation, latent and sensible heat 
flux, ground heat flux, runoff 

CLASSr Blended product Hobeichi et al. (2019)

Leaf area index Copernicus Artificial neural network Verger et al. (2014) 

Net biome productivity CT2019 Atmospheric inversion Jacobson et al. (2020) 

Snow amount ECCC Blended product Mudryk (2020) 

Liquid soil moisture ESA Land surface model Liu et al. (2011) 

Area burnt ESA CCI Burned area mapping Chuvieco et al. (2018) 

Latent and sensible heat flux, gross 
primary productivity 

FLUXCOM Machine learning Jung et al. (2019, 2020)

Above ground biomass GEOCARBON Machine learning Avitabile et al. (2016); Santoro 
et al. (2015) 

Surface albedo, net shortwave and 
longwave radiation, net radiation 

GEWEXSRB Radiative transfer model Stackhouse et al. (2011) 

Area burnt GFED 4s Burned area mapping Giglio et al. (2010)

Gross primary productivity GOSIF Statistical model Li and Xiao (2019) 

Soil carbon HWSD Soil inventory Wieder (2014); Todd-Brown et 
al. (2013) 

Surface albedo MODIS Bidirectional Reflectance 
Distribution Function 

Strahler et al. (1999) 

Gross primary productivity MODIS Light use efficiency model Zhang et al. (2017)

Leaf area index MODIS Radiative transfer model Myneni et al. (2002) 

Soil carbon SGS250m Machine learning Hengl et al. (2017) 

Above ground biomass Zhang Data fusion Zhang and Liang (2020) 

In situ variable(s) Source Approach used (number of 
sites)

Reference

Leaf area index CEOS Transfer function (141) Garrigues et al. (2008)

Latent, sensible, and ground heat flux, 
gross primary productivity, ecosystem 
respiration, net ecosystem exchange  

FLUXNET 2015 Eddy covariance (204) Pastorello et al. (2020)

Above ground biomass FOS Allometry (274) Schepaschenko et al. (2019) 

Runoff GRDC Gauge records (50) Dai and Trenberth (2002) 

Snow amount Mortimer Gravimetry (3271) Mortimer et al. (2020)

Above ground biomass Xue Allometry (1974) Xue et al. (2017)
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 Figures 2 through 9 show the time series and/or zonally-averaged values of annual values 575 

of a variable of interest when averaged across four ensemble members each according to 576 

whether the N cycle is turned on or not, whether the GLC 2000 or ESA CCI based land cover is 577 

used, and whether model simulations are driven by the CRU-JRA or GSWP3 meteorological data. 578 

Figures A3, A4, A6, A7, A9, and A11 in the appendix, which are complementary to the above-579 

mentioned figures, show the physical and biogeochemical states of the land surface and primary 580 

physical fluxes of water and energy, and primary biogeochemical fluxes of CO2 simulated by 581 

CLASSIC at the land-atmosphere boundary for all the eight simulations considered here. While 582 

the figures in the appendix illustrate the range in simulated physical and biogeochemical states 583 

and fluxes across the eight simulations, Figures 2 through 9 evaluate the effect of model 584 

structure, meteorological forcing, and land cover on a given quantity. We also quantify the spread 585 

across the eight simulations using the coefficient of variation (cv= standard deviation/mean) 586 

calculated using annual global values for a given quantity averaged over the 1997-2016 20-year 587 

period of each simulation. This time period is also used for other reported results.588 

4.1 Physical land surface state and fluxes 589 

Figure A3, panels a and b, shows the globally-averaged simulated soil moisture and 590 

temperature in the top 1 m soil layer. While simulated soil temperature in the top 1 m is fairly 591 

similar across the eight simulations, the simulated soil moisture is distinctly separated into two 592 

groups. The separation into these two groups is caused by the driving meteorological data as 593 

shown in Figure 2. The coefficient of variation for soil moisture and temperature values averaged 594 

over the 1997-2016 period of each simulation are 0.02 and 0.004, respectively, indicating that 595 

overall the variation in these quantities is relatively small compared to their means. The use of 596 
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the GSWP3 meteorological dataset yields slightly higher (~4%) globally-averaged soil moisture 618 

compared to the CRU-JRA meteorological data set (236.5 mm vs. 227.1 mm, Figure 2c). 619 

620 

621 

Figure 2: Time series of annual globally-averaged soil moisture in the top 1m averaged over the 622 

four ensemble members that are driven with and without an interactive N cycle (panel a), 623 

driven with the GLC 2000 and ESA CCI based land cover representations (panel b), and driven 624 

with the GSWP3 and CRU-JRA meteorological data (panel c). The thin lines show the individual 625 

years and the thick lines show their 11-year moving average. Model values averaged over the 626 

pre-industrial (1851-1860) and present-day (1997-2016) time periods, and their difference, for 627 

each ensemble averaged over its set of four simulations are also shown. 628 
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638 

Figure 3: Time series of annual global evapotranspiration and runoff (over all land area excluding 639 

Greenland and Antarctica) averaged over the four ensemble members that are driven with and 640 

without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land 641 

cover (panels c, d), and driven with the GSWP3 and CRU-JRA meteorological data (panels e, f).642 

The thin lines show the individual years and the thick lines show their 11-year moving average. 643 

Model values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time 644 

periods, and their difference, for each ensemble averaged over its set of four simulations are also 645 

shown.646 

647 

Deleted: A4

Deleted: Comparison of t

Deleted: each 

Deleted: b



27

Deleted: ¶

Figure A3, panels c and d, shows the simulated fluxes of global evapotranspiration and 652 

runoff across the eight simulations. Similar to soil moisture, evapotranspiration and runoff also 653 

fall broadly into two groups and the reason for this again is the driving meteorological data. 654 

Figure 3 shows that while the biggest factor that affects evapotranspiration and runoff is the 655 

difference in driving meteorological data the interactive N cycle also affects these water fluxes. 656 

Neither evapotranspiration nor runoff is significantly affected by the choice of land cover. The 657 

reason an interactive N cycle affects evapotranspiration is that the N cycle in CLASSIC affects the 658 

rate of photosynthesis through the prognostic determination of leaf N content. Photosynthesis 659 

in turn affects canopy conductance, which affects transpiration through the canopy leaves. 660 

Average evapotranspiration over the 1997-2016 period of the simulations driven with GSWP3 661 

meteorological data is about 9% lower than in simulations driven with CRU-JRA meteorological 662 

data (65.8 vs. 72.1 ×1000 km3/year, Figure 3, panel e). An interactive N cycle reduces 663 

evapotranspiration by about 2% due to lower photosynthesis rates as shown later (Figure 3, panel 664 

a). Average runoff is about 27% higher in simulations driven with GSWP3 compared to 665 

simulations driven with CRU-JRA meteorological data (52.6 vs 41.3 ×1000 km3/year, Figure 3, 666 

panel f). This is due to slightly high precipitation in the GSWP3 meteorological data set (Figure 667 

A1) but is more so due to the simulated lower evapotranspiration when using the GSWP3 data 668 

(Figure 3, panel e). The coefficient of variation for evapotranspiration and runoff values averaged 669 

over the last 20 years of each simulation are 0.05 and 0.13, respectively.670 
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691 

Figure 4: Time series of annual global latent and sensible heat fluxes (over all land area excluding 692 

Greenland and Antarctica) averaged over the four ensemble members that are driven with and 693 

without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land 694 

cover (panels c, d), and driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The 695 

thin lines show the individual years and the thick lines show their 11-year moving average. Model 696 

values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time periods, 697 

and their difference, for each ensemble averaged over its set of four simulations are also shown.698 

699 

Deleted: ¶

Deleted: each 



29

Deleted: ¶

Figure A4 shows the primary energy fluxes from the eight simulations. These include net 702 

downward shortwave and longwave radiation, and latent and sensible heat fluxes. Incoming 703 

shortwave and longwave radiation are part of the driving meteorological data. Similar to water 704 

fluxes, the differences in energy fluxes in CLASSIC are also primarily driven by differences in 705 

meteorological data (Figure A4, A5, and Figure 4). Net shortwave radiation (Figure A4, panel a) is 706 

equal to incoming shortwave radiation minus the fraction that is reflected back. Net longwave 707 

radiation (Figure A4, panel b) is equal to incoming longwave radiation minus the longwave 708 

radiation emitted by the land based on its surface temperature following the Stefan-Boltzmann 709 

law. The difference in net shortwave radiation is also affected by simulated vegetation biomass 710 

and leaf area index. The latter affects surface albedo which determines what fraction of incoming 711 

shortwave radiation is reflected. This is the reason why an interactive N cycle affects net712 

shortwave radiation since the N cycle affects photosynthesis, and in turn, simulated vegetation 713 

biomass and leaf area index (Figure A5, panel b). Latent heat flux is affected primarily by 714 

meteorological data (Figure 4) but also if the N cycle is interactive or not since it is essentially 715 

evapotranspiration but in energy units. Finally, differences in sensible heat fluxes are strongly 716 

affected by differences in driving meteorological data (Figure 4). Globally-averaged sensible heat 717 

flux in the simulations driven with GSWP3 data is ~14% higher compared to CRU-JRA driven 718 

simulations (40.2 vs. 35.0 W/m2). The coefficient of variation for latent and sensible heat flux 719 

values averaged over the last 20 years of each simulation are 0.05 and  0.07, respectively. Net 720 

shortwave (cv=0.006) and longwave (cv=0.03) radiative fluxes vary little across the eight 721 

simulations.  722 
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736 

Figure 5: Time series of annual global vegetation C mass (over all land area excluding Greenland 737 

and Antarctica) (panels a, c, and e) and zonally-averaged values of vegetation C mass over land 738 

(panels b, d, and f) averaged over the four ensemble members that are driven with and without 739 

an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land cover 740 

(panels c, d), and driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The thin 741 

lines for the time series show the individual years and the thick lines show their 11-year moving 742 

average. Model values averaged over the pre-industrial (1851-1860) and present-day (1997-743 

2016) time periods, and their difference, are also shown in panels a, c, and e.744 

745 
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4.2 Biogeochemical land surface state and fluxes 751 

4.2.1 Primary CO2 fluxes and C pools 752 

Figure A6 shows the simulated C state of the land surface expressed in terms of vegetation 753 

and soil C pools. Panels a and b show the annual time series of global vegetation and soil C mass 754 

from the eight simulations, and panels c and d show their zonally-averaged distributions 755 

averaged over the last 20 years of each simulation. The biggest difference in the time series of 756 

global vegetation (cv=0.16) and soil (cv=0.21) C mass compared to soil moisture and 757 

temperature, which characterized the physical land surface state, is the large spread across the 758 

eight simulations as indicated by their high cv values. The zonally-averaged values further provide 759 

insight into the reasons for this spread and show that the largest differences between simulated 760 

vegetation and soil C occur at northern high latitudes (north of about 40°N). Panels c and d of 761 

Figure A6 also show observation-based zonally-averaged values of vegetation and soil C mass 762 

based on the Reusch and Gibbs (2008) and the Harmonized World Soils Database (v1.2) (Fischer 763 

et al., 2008), respectively, to provide a reference. A more thorough comparison with observations 764 

is provided in Section 4.3. 765 

Differences in vegetation C mass are caused primarily when the N cycle is interactive or 766 

not (Figure 5). Both land cover and the driving meteorological data play a smaller role in the 767 

simulated spread of vegetation C mass (Figure 5). The ESA CCI based land cover has a larger 768 

vegetated area but most of this increase comes from an increase in the area of grasses that do 769 

not store a lot of C in their vegetation C mass. The spread in simulated soil C is caused due to the770 
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782 

783 

Figure 6: Time series of annual global soil carbon mass (over all land area excluding Greenland 784 

and Antarctica) (panels a, c, and e) and zonally-averaged values of soil carbon mass over land 785 

(panels b, d, and f) averaged over the four ensemble members that are driven with and without 786 

an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land cover (panels 787 

c, d), and driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The thin lines for the 788 

time series show the individual years and the thick lines show their 11-year moving average. 789 

Model values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time 790 

periods, and their difference, are also shown in panels a, c, and e. 791 
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799 

Figure 7: Time series of annual global gross primary productivity (over all land area excluding 800 

Greenland and Antarctica) (panels a, c, and e) and zonally-averaged values of gross primary 801 

productivity over land (panels b, d, and f) averaged over the four ensemble members that are 802 

driven with and without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA 803 

CCI based land cover (panels c, d), and driven with GSWP3 and CRU-JRA meteorological data 804 

(panels e, f). The thin lines for the time series show the individual years and the thick lines show 805 

their 11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 806 

present-day (1997-2016) time periods, and their difference, are also shown in panels a, c, and e. 807 
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the magnitude of simulated globally-summed soil C mass 
significantly but does affect its change over the historical 
period. In Figure A7 (panel c) the decrease in soil C mass over 
the 1700-2016 historical period is higher when using the 
GSWP3 (28 Pg C) compared to when using the CRU-JRA (12 
Pg C) meteorological data. ¶

Deleted: each 



34

Deleted: ¶

N cycle but also the choice of land cover (Figure 6). Since CLASSIC assumes that litter from grasses 816 

is more recalcitrant than that from trees, the choice of ESA CCI based land cover leads to a higher 817 

soil C mass because it has a higher grass area than the GLC 2000 based land cover (Figure 6, 818 

panels c and d). The choice of meteorological data does not affect the magnitude of simulated 819 

globally-summed soil C mass significantly but does affect its change over the historical period. In 820 

Figure 6 (panel c) the decrease in soil C mass from the 1851-1860 period to the 1997-2016 period 821 

is higher when using the GSWP3 (29.9 Pg C) compared to when using the CRU-JRA (14.8 Pg C) 822 

meteorological data.  823 

The reason why an interactive N cycle in CLASSIC affects vegetation C and soil C mass, and 824 

why the ESA CCI based land cover yields high soil C, is seen in Figures A7 and 7. Figure A7 shows 825 

the spread of primary C fluxes including gross primary productivity (GPP) (cv=0.07), and 826 

autotrophic (cv=0.04) and heterotrophic (cv=0.10) respiratory fluxes, across the eight 827 

simulations.  Since GPP is lower in the runs with the N cycle, both vegetation (Figure 5a) and soil 828 

C mass (Figure 6a) are also lower. The lower GPP in the runs with the N cycle is due primarily to 829 

lower GPP at high latitudes (Figure 7b) which yields low vegetation C mass at high latitudes 830 

(Figure 5b). Low GPP at high latitudes translates to even larger relative differences in soil C given 831 

the longer turnover time scales of soil C at high latitudes (Figure 6b). The use of the ESA CCI based 832 

land cover which has a higher grass area than the GLC 2000 based land cover leads to higher GPP 833 

(Figure 7d) and therefore higher soil C at all latitudes (Figure 6d). In Figure A8, global 834 

heterotrophic and autotrophic respiratory fluxes are most affected by land cover and the 835 

inclusion or absence of an interactive N cycle but not by the driving meteorological data. 836 
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855 

Figure 8: Time series of annual area burned (over all land area excluding Greenland and 856 

Antarctica) (panels a, c, and e) and zonally-averaged values of area burned (panels b, d, and f) 857 

averaged over the four ensemble members that are driven with and without an interactive N 858 

cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land cover (panels c, d), and 859 

driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The thin lines for the time 860 

series show the individual years and the thick lines show their 11-year moving average in panels 861 

(a), (c), and (e). Model values averaged over the pre-industrial (1851-1860) and present-day 862 

(1997-2016) time periods, and their difference, are also shown for panels (a), (c), and (e). 863 

864 
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Overall, while the primary biogeochemical fluxes (cv values vary from 0.04 to 0.10) vary 865 

as much as the water and energy fluxes, the resulting spread in vegetation C mass (cv=0.16) and 866 

soil C mass (cv=0.21) across the eight simulations is much larger and driven primarily by the 867 

inclusion or absence of an interactive N cycle and the difference in land cover.  868 

869 

4.2.2 Area burned and fire CO2 emissions870 

Figure A9 shows the time series of global area burned and global fire CO2 emissions, and 871 

their zonally-averaged values. We chose the area burned (cv=0.24) and fire CO2 emissions 872 

(cv=0.21) in addition to the primary biogeochemical fluxes since fire shows large variability both 873 

in space and in time, and both these variables yield the largest spread across the eight 874 

simulations, among all the fluxes and simulated quantities considered here. Figures A9 (panels c 875 

and d) also show observation-based estimates for area burned and fire CO2 emissions based on 876 

GFED 4s (Giglio et al., 2013) to provide an observation-based context. Figures 8 and A10 help us 877 

understand which factors contribute to this large variability. The variability in the area burned is 878 

caused primarily by the choice of land cover and meteorological data and the variability is higher 879 

in the southern hemisphere (Figure 8, panels d and f). An interactive N cycle does not affect the 880 

zonal distribution of area burned and fire CO2 emissions (Figures 8 and A10) as much. The reason 881 

both area burned and fire CO2 emissions are affected by the choice of land cover is because the 882 

ESA CCI land cover has higher grass area and, as a result, it yields higher area burned and fire CO2883 

emissions since a larger area is burned for grasses than for trees in the model. The choice of 884 

driving meteorological data is a factor in the area burned and our simulations show that the use 885 

of GSWP3 meteorological forcing yields a higher area burned than the CRU-JRA data. In particular 886 
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wind speed, which determines the rate of spread of fire in CLASSIC, is much higher in the GWSP3 904 

than in the CRU-JRA meteorological data. Globally-averaged land wind speed (excluding 905 

Greenland and Antarctica) in GSWP3 data is 6.1 m/s compared to 3.4 m/s in the CRU-JRA data 906 

for the period 2000-2016. 907 

Table 3: Simulated energy, water, and carbon cycle quantities considered in this study sorted 908 

according to their coefficient of variation. The quantities are listed from the most variable at 909 

the top to the least variable at the bottom. The coefficient of variation is based on annual 910 

values averaged over the 1997-2016 period across the eight simulations. The last column shows 911 

the dominant source of variability for each model simulated quantity. 912 

913 

Energy, water, or carbon cycle quantities Coefficient 
of variation 

Dominant source of variability 

Area burned (million km2) 0.24 Land cover 

Fire CO2 emissions (Pg C/year) 0.21 Land cover 

Soil carbon mass (Pg C) 0.21 The inclusion or the absence of 
the N cycle 

Vegetation carbon mass (Pg C) 0.16 The inclusion or the absence of 
the N cycle 

Runoff (1000 km3/year) 0.13 Meteorological forcing 

Leaf area index (m2/m2) 0.11 The inclusion or the absence of 
the N cycle 

Heterotrophic respiration (Pg C/year) 0.10 Land cover 

Gross primary productivity (Pg C/year) 0.07 Land cover 

Sensible heat flux (W/m2) 0.07 Meteorological forcing 

Autotrophic respiration (Pg C/year) 0.04 Land cover 

Latent heat flux (W/m2) / Evapotranspiration 
(1000 km3/year) 

0.05 Meteorological forcing 

Net longwave radiation (W/m2) 0.03 Meteorological forcing 

Soil moisture in the top 1m soil layer (mm) 0.02 Meteorological forcing 

Albedo for shortwave radiation (fraction) 0.008 The inclusion or the absence of 
the N cycle 

Net shortwave radiation (W/m2) 0.006 Meteorological forcing 

Soil temperature in the top 1m soil layer (°C) 0.004 Meteorological forcing 

914 

4.2.3 Coefficient of variation summary915 
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Table 3 shows the energy, water, and C-related quantities considered so far but also leaf 917 

area index and albedo and lists them from the most variable at the top to the least variable at 918 

the bottom according to their coefficient of variation. The area burned is found to be the most 919 

variable quantity and soil temperature is the least variable quantity. Table 3 also shows the most 920 

dominant source of variability for each simulated quantity: land cover, meteorological forcings, 921 

or the inclusion or absence of an interactive N cycle.  Net atmosphere-land CO2 flux (or net biome 922 

productivity) and ground heat flux are not included in Table 3 because these fluxes are calculated 923 

as the difference of larger fluxes and as a result, their values are closer to zero which yields a 924 

large value of the coefficient of variation. 925 

Overall, the results presented so far illustrate that different model simulated quantities 926 

are sensitive to different forcings and model versions. As such it is not advisable to tune a model 927 

to match observations when driven with a specific forcing data set.  928 

4.2.4 Net biome productivity 929 

Figure A11 shows the spread in the time series of annual global net atmosphere-land CO2930 

flux and their zonally-averaged values across the eight simulations averaged over the 1995-2016 931 

period from each simulation. The global net atmosphere-land CO2 flux or net biome productivity 932 

(NBP) is considered a critical determinant of the performance of LSMs, and is treated as such by 933 

TRENDY, because this flux ultimately affects the changes in the atmospheric CO2 burden. TRENDY 934 

requires that LSMs simulate a terrestrial C sink for the decades of the 1990s to the present to be 935 

considered for inclusion in the TRENDY ensemble. 936 
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Figure 9: Time series of global net atmosphere-land CO2 flux (over all land area excluding 957 

Greenland and Antarctica) (panels a, c, and e) and its zonally-averaged values (panels b, d, and f) 958 

averaged over the four ensemble members that are driven with and without an interactive N 959 

cycle (panels a, b), driven with the GLC 2000 and ESA CCI based land cover (panels c, d), and 960 

driven with GSWP3 and CRU-JRA meteorological data (panels e, f). The thin lines for the time 961 

series show the individual years and the thick lines show their 11-year moving average. Model 962 

values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time periods, 963 

and their difference, are also shown for panels (a), (c), and (e). 964 
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Figure A11 also shows the estimates of global net atmosphere-land CO2 flux from the 966 

participating TRENDY models in grey boxes with mean and shaded ranges for the decades from 967 

the 1960s to 2010s from the Global Carbon Project (Friedlingstein et al., 2022). Positive values in 968 

Figure A11 indicate a C sink over land and negative values a C source to the atmosphere. In Figure 969 

A11a, all eight simulations reported here would qualify for inclusion in the TRENDY ensemble 970 

since they all simulate a terrestrial C sink from the 1990s to the present day. Before 1960, since 971 

the atmospheric CO2 concentration is not high enough,  the model yields both a land C sink and 972 

source in response to interannual variability in meteorological data. In addition, the time series 973 

of global NBP from all eight simulations lie within the uncertainty range of reported estimates 974 

from the Global Carbon Project. Figure A11a suggests that based on global NBP, at least, it is not 975 

possible to exclude any of the eight simulations. In Figure A11b, zonally-averaged NBP averaged 976 

over the 1997-2016 period from each of the eight simulations mostly lie within the range of NBP 977 

simulated by models that participated in TRENDY 2020. CLASSIC simulates a C sink at northern 978 

high latitudes consistent with TRENDY models but it simulates a C sink on the stronger side of 979 

TRENDY models in the southern tropics (0° - 20°S). This is likely because CLASSIC is known to 980 

simulate low C emissions associated with LUC most of which are generated in tropical regions 981 

(Asaadi and Arora, 2021).  982 

Figure 9 provides additional insights into the effect of different forcings on the simulated 983 

NBP. In Figure 9, averaged over the 1997-2016 period, an interactive N cycle leads to a somewhat 984 

weaker C sink (panel a, 0.98 vs. 1.11 Pg C/yr), the choice of the ESA CCI based land cover leads to 985 

a somewhat stronger C sink (panel c, 1.14 vs 0.94 Pg C/yr), and the choice of the GSWP3 986 

meteorological data leads to a much weaker C sink (panel e, 0.74 vs 1.33 Pg C/yr) than the CRU-987 
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JRA meteorological data. In Figure 9, panels a and b, the largest difference between the model 1002 

versions with and without the N cycle occurs in the tropics (~ 5°N - 20°S) where an interactive N 1003 

cycle leads to a weaker C sink. There are differences in zonally-averaged NBP with and without 1004 

the N cycle south of 45°S but the land area below this latitude is small so the averages are 1005 

calculated over only a few grid cells. The choice of the land cover (Figure 9, panels c and d) does1006 

not substantially change the distribution of the zonally-averaged values of NBP although, as 1007 

noted above, the choice of ESA CCI based land cover leads to a somewhat stronger C sink. Finally, 1008 

the choice of the GSWP3 meteorological forcing leads to a weaker C sink at most latitudes (Figure 1009 

9, panels e and f).  1010 

4.3 Automated benchmarking 1011 

Figure 10 plots the overall score, Soverall, against benchmark scores for several of the energy, 1012 

water, and C cycle related variables. AMBER does not yet evaluate N cycle related variables for 1013 

which observations are more scarce than for C cycle related variables. The whiskers show the 1014 

range in the overall score both for the benchmark and model scores. The vertical whiskers show 1015 

the range of eight model scores when a given variable from all eight model simulations is 1016 

compared to an observation-based data set. The horizontal whiskers show the range when three 1017 

or more observation-based datasets are compared to each other. When only two observation-1018 

based data sets are compared to each other there is only one benchmark score, and therefore 1019 

there is no range. The range in model scores comes from the eight simulations, and the range in 1020 

benchmark scores comes from the different observation-based data sets. Figure 10 shows that 1021 

typically as the benchmark scores increase so do the overall model scores for a given quantity. 1022 
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This indicates that uncertainty in observation-based estimates themselves leads to a poor 1033 

agreement between observations and model-simulated quantities. 1034 

1035 

Figure 10: Comparison of benchmark scores with model overall scores for a range of energy-, 1036 

water-, and carbon-related quantities. The whiskers indicate the range for benchmark scores 1037 

across different observation-based data sets and the range across the eight model simulations 1038 

for the overall model scores. The quantities in panel (a) are ALBS (surface albedo), RSS (net 1039 

shortwave radiation), RLS (net longwave radiation), and RNS (net radiation). Quantities in panel 1040 

(b) are HFLS (latent heat flux), HFSS (sensible heat flux), HFG (ground heat flux), MRRO (runoff), 1041 

and SNW (snow water equivalent). Quantities in panel (c) are GPP (gross primary productivity), 1042 

NEE (net ecosystem exchange), NBP (net biome productivity), AGB (aboveground biomass), CSOIL 1043 

(soil carbon mass), BURNT (area burned), and LAI (leaf area index). 1044 

1045 

For energy and water fluxes scores (panels a and b) the model overall scores lie around the 1:1 1046 

line indicating that model scores are generally as good as the benchmark scores, except for 1047 
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surface albedo (ALBS), runoff (MRRO), ground heat flux (HFG), and comparison against one 1048 

observation-based estimate of snow water equivalent which lie below the 1:1 line. For C cycle 1049 

related variables most scores lie somewhat below the 1:1 line indicating that simulated quantities 1050 

do not agree as well with observations as observations agree among themselves. The lower 1051 

benchmark score for soil C  (panel c) is because the SoilGrids250m (SG250m) data and the 1052 

Harmonized World Soil Database (HWSD) do not agree well amongst themselves because the 1053 

SG250m soil C data includes peatlands and permafrost C at high latitudes while the HWSD data 1054 

does not (see Figure 11b). Since the version of CLASSIC used here does not represent peatlands 1055 

and permafrost C it compares better with the HWSD data than with the SG250m data. In the case 1056 

of soil C, the choice of HSWD data for comparison against model values is obvious. However, for 1057 

other variables, it may not always be obvious which observation-based estimate is more 1058 

appropriate or better for comparison against model results.  The uncertainty in forcing data sets 1059 

and in observation-based estimates, against which model results are evaluated, implies that even 1060 

a perfect model cannot be evaluated to its fullest extent. 1061 

Figure 11 shows the zonal distribution of vegetation C mass, LAI, area burnt, GPP, and fire 1062 

CO2 emissions (which constitute standard output from AMBER) and illustrates how AMBER 1063 

compares the spread across the simulations indicated by 50%, 80%, and 100% shading against 1064 

observation-based estimates. The black and shades of grey indicate the model mean and the 1065 

spread across the eight model simulations, respectively, and the thick lines in other colours show 1066 

the mean values of observation-based estimates. The time period over which observations and 1067 

model quantities are averaged is chosen to be the same. In Figure 11a, for aboveground biomass, 1068 

the GEOCARBON data set uses one product for the extratropics and another for the tropics to 1069 
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create a global aboveground biomass product. The Zhang product (Zhang and Liang, 2020) is 1075 

based on the fusion of multiple gridded biomass datasets for generating a global product. Both 1076 

products are described in detail in Seiler et al. (2022). The model results generally compare better 1077 

with the Zhang product outside the 10N to 10S region but with the GEOCARBON product within 1078 

this region. The values to the south of 40S are generally less reliable because of the little 1079 

vegetated land area below this latitude. In Figure 11b, the model simulated values for soil organic 1080 

C compare better with the HWSD dataset compared to the SG250m data for reasons mentioned 1081 

in the previous paragraph. Simulated leaf area index (Figure 11c) and gross primary productivity 1082 

(Figure 11e) generally compare well their observation-based estimates. The simulated area 1083 

burned (Figure 11d) and fire emissions (Figure 11f) also compare well with observation-based 1084 

estimates except that the model is not able to capture the small area burned and emissions at 1085 

northern high latitudes between around 50N to 70N. Figures A12 and A13 compare zonally 1086 

averaged values of other simulated quantities with observation-based estimates used in the 1087 

AMBER framework. Together Figures 11, A12, and A13  illustrate that the model is overall able 1088 

to capture the latitudinal distribution of most land surface quantities. 1089 
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1096 

1097 

Figure 11: Zonally-averaged values of aboveground biomass (a), soil carbon mass (b), leaf area 1098 

index (c), fractional area burnt (d), gross primary productivity (e), and fire CO2 emissions (f) from 1099 

the eight simulations summarized in Table 1. The model results are shown as their mean (black) 1100 

and the spread across the eight simulations indicated by 50%, 80%, and 100% ranges in different 1101 

shades of grey. The observation-based estimates used in AMBER to calculate scores are shown 1102 

in coloured lines. 1103 
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1104 

Figure 12: Summary of difference in overall scores for model simulated quantities and 1105 

combinations for which the differences are statistically significant. The scores in parentheses for 1106 

each quantity are the average scores across the eight simulations and provide context. The error 1107 

bars denote the 95% confidence interval as explained in the text.  1108 

1109 

Since overall scores are available for all eight simulations for model quantities that are 1110 

compared to observations it is possible to evaluate how an interactive N cycle, and the choice of 1111 

meteorological data and land cover data affect model performance. Figure 12 summarizes the 1112 

difference in overall scores for model quantities and combinations for which the differences are 1113 

statistically significant at the 5% level based on Tukey’s test (Tukey, 1977). The score indicated in 1114 

parentheses for each quantity is the average score across the eight simulations and provides 1115 

context. For example, when evaluating the effect of change in land cover for NEE the use of the 1116 

GLC 2000 based land cover, compared to the use of the ESA CCI based land cover, degrades the 1117 

average score for net ecosystem exchange by about 0.02 given that the average score for net 1118 
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ecosystem exchange in 0.53. The error bars on the value 0.02 denote the 95% confidence interval 1121 

and in this case are calculated by differencing four simulations that use the GLC 2000 based land 1122 

cover versus four simulations that use the ESA CCI based land cover. The use of the GLC 2000 1123 

based land cover on the other hand slightly improves scores for ecosystem respiration and liquid 1124 

soil moisture. The use of GSWP3 data improves model scores for net shortwave, longwave, and 1125 

total radiation, for sensible and ground heat flux but degrades the overall score for area burned, 1126 

soil moisture, and more so for snow water equivalent. Finally, an interactive N cycle slightly 1127 

improves model performance for area burned and fire CO2 emissions (due to improved 1128 

aboveground biomass in the tropics) but degrades it for ecosystem respiration, GPP, and net 1129 

ecosystem exchange. The inclusion of an interactive N cycle changes Vc,max to a prognostic 1130 

variable for each PFT as opposed to being specified based on observations. This is analogous to 1131 

running an atmospheric model with a fully dynamic 3-dimensional ocean as opposed to using 1132 

specified sea surface temperatures (SST) and sea ice concentrations (SIC). Using a dynamic ocean 1133 

allows future projections (since future SSTs and SICs are not known) but invariably degrades a 1134 

model’s performance for the present day since simulated SSTs and SICs will have their biases. 1135 

Similarly, using an interactive N cycle allows to project future changes in Vc,max (based on changes 1136 

in N availability) but also degrades CLASSIC’s performance for the present day since simulated 1137 

Vc,max has its own biases. Overall, the model performance is most affected by the choice of the 1138 

driving meteorological data for water and energy fluxes, and by the inclusion or absence of an N 1139 

cycle and by the choice of land  cover for carbon-cycle related state variables and fluxes.  1140 
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5. Conclusions 1145 

The response of the terrestrial biosphere over the historical period has been driven 1146 

primarily by four global change drivers – increasing atmospheric CO2, changing climate, LUC, and 1147 

N deposition and fertilizer application. Our framework allows us to evaluate how a land surface1148 

model responds to increasing atmospheric CO2, changing climate, and anthropogenic N additions 1149 

to the coupled soil-vegetation system is dependent on two driving meteorological data sets, two 1150 

land cover representations, and the two model variations (with and without an interactive N 1151 

cycle). However, the framework used here does not quantify the uncertainty associated with LUC 1152 

over the historical period since we use only one reconstruction of increasing crop area over the 1153 

historical period. These results help draw three primary conclusions. First, even if the 1154 

observations and models were perfect (including their structure and their parameterizations) the 1155 

uncertainty associated with driving meteorological data and geophysical fields makes it difficult 1156 

to evaluate LSMs. The uncertainty in global scale driving data implies that a model can never be 1157 

truly evaluated to its fullest extent. Model results can only be as good as the data that are used 1158 

to force them and therefore even a perfect model cannot yield perfect results. 1159 

Second, model tuning when driving the model with a single set of forcings and evaluating 1160 

it against a single set of observations is likely not a fruitful exercise. Models should not be tuned 1161 

to a single set of driving data and rather their performance must be evaluated against a range of 1162 

available observations in light of the uncertainty associated with driving data and the uncertainty 1163 

associated with observations. A model’s ability to reproduce a given single set of observations 1164 

when driven with a single set of driving data is not a true measure of its success. Here again, a 1165 
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perfect model driven by perfect forcing data cannot be truly evaluated to its fullest extent since 1179 

observations themselves have uncertainties. 1180 

Third, with the caveat that our framework uses only one reconstruction of increase in 1181 

crop area over the historical period, the response of a model expressed in terms of net 1182 

atmosphere-land CO2 flux to perturbation in meteorological, CO2, and LUC forcing over the 1183 

historical period appears to be largely independent of its pre-industrial state as simulated here. 1184 

The pre-industrial soil and vegetation C mass for the eight simulations considered here vary 1185 

between 1035 ± 195 Pg C and 405 ± 58 Pg C (mean ± standard deviation), respectively. Both pre-1186 

industrial and present-day vegetation and soil C pools explain only about 2% to 7% of the 1187 

variability in simulated net atmosphere-land CO2 flux (Figure A11) over the 1997-2016 period of 1188 

each of the eight simulations. The net atmosphere-CO2 flux from all eight simulations for the 1189 

period the 1960s to 2000s is found to lie within the uncertainty range provided by the GCP 1190 

(Friedlingstein et al., 2022). Given the current uncertainty in net atmosphere-land CO2 flux, it is 1191 

therefore not possible to exclude any of the eight simulations at least on this basis. The finding 1192 

that a transient response of a model is independent of its pre-industrial state is also consistent 1193 

with land components of CMIP6 models. Arora et al. (2020) analyzed results from CMIP6 1194 

simulations in which atmospheric CO2 increases at a rate of 1% per year from the year 1850 until 1195 

CO2 quadruples from ~285 to ~1140 ppm. They found that the C-concentration and C-climate 1196 

feedback parameters for the land component of CMIP6 models do not depend on the absolute 1197 

values of their vegetation and soil C pools but rather how a given model responds to changes in 1198 

atmospheric CO2 and the associated change in temperature. This conclusion is perhaps 1199 

somewhat comforting in that while pre-industrial states of LSMs may be different from their true 1200 
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observed states they still have the ability to reproduce net atmosphere-land CO2 flux over the 1211 

historical period that is consistent with current observation-based estimates. Clearly, this 1212 

reasoning does not apply if pre-industrial vegetation or soil C mass are zero. One reason why 1213 

present day net atmosphere-land CO2 flux is independent of a LSM’s pre-industrial state is 1214 

because the model is first spun up to equilibrium conditions and then forced with time-variant 1215 

forcings. However, successful reproduction of atmosphere-land CO2 fluxes over the historical 1216 

period is no guarantee that future projections from LSMs are reliable. 1217 

The ensemble-based approach used here also allows for the evaluation of the effect of a 1218 

given meteorological forcing and land cover, and the effect of an interactive N cycle on model 1219 

simulated quantities in a robust manner. Ensemble averages of simulations that use the CRU-JRA 1220 

and GSWP3 meteorological forcing show that the use of the GSWP3 meteorological forcing yields 1221 

lower evapotranspiration (latent heat flux), higher runoff, higher sensible heat flux, higher 1222 

burned area, and a weaker land C sink for the present day compared to when the CRU-JRA 1223 

meteorological forcing is used. The use of the ESA CCI land cover leads to higher soil C, higher 1224 

GPP, and higher area burned primarily because of the larger grass area when land cover is based 1225 

on the ESA CCI product compared to the GLC 2000 product. The use of the ESA CCI based land 1226 

cover also leads to a slightly weaker land C sink for the present day. Finally, the comparison of 1227 

simulations with and without the N cycle averaged over all meteorological data and land cover 1228 

combinations allows us to identify the effect of the N cycle. Simulated vegetation C mass and GPP 1229 

are lower in the model version with the interactive N cycle. In particular, we found that the 1230 

somewhat low productivity at high latitudes, when the N cycle is turned on, leads to relatively 1231 

large differences in soil C at high latitudes regardless of the meteorological data or land cover 1232 

Deleted: model

Deleted: land model

Deleted: ¶

Deleted: carbon

Deleted: more

Deleted: carbon

Deleted: more

Deleted: more

Deleted: carbon

Deleted: By comparing 

Deleted: we can 

Deleted: biomass

Deleted: carbon 



51

Deleted: ¶

being used to drive the model. Although, this is not the reason for differences in net atmosphere-1246 

land CO2 flux between models with and without N cycling: as mentioned above present-day net 1247 

atmosphere-land CO2 flux is independent of both the pre-industrial and present-day vegetation 1248 

and soil C pools. Given the knowledge about the effect of N cycling on model behaviour, the 1249 

reasons can now be investigated to further improve the N cycle component of CLASSIC. 1250 

It is logical to assume that the results presented here are sensitive to the horizontal 1251 

resolution of the model. Both forcing data that are used to drive the model, and observations 1252 

against which model results are compared, are regridded to be consistent with the model’s 1253 

spatial resolution. For example, at the scale of a few meters, meteorological variables measured 1254 

at a given site will indeed be less uncertain than their spatially-averaged values say for a 2.81°1255 

grid cell. Similarly, observations at a scale of a few meters for soil C and/or vegetation C mass will 1256 

also likely be more certain than their values at large spatial scales. This is one reason why AMBER 1257 

uses both gridded and in-situ observation-based estimates to calculate its scores. Fluxes of latent 1258 

and sensible heat, on the other hand, may not be any more certain at a given site than over large 1259 

spatial scales. This is because of the problems associated with energy budget closure (Mauder et 1260 

al., 2020) which, at the point scale, prevent the sum of annual latent and sensible heat flux to be 1261 

equal to net radiation (average of ground heat fluxes is close to zero at an annual time scale). 1262 

LSMs have become increasingly complex over the years and so has the requirement for 1263 

forcing data to drive these models. The evaluation of LSMs has also become complex as the 1264 

models now generate a multitude of variables that must be evaluated against their observation-1265 

based estimates. Estimates of observation-based data to evaluate models, and the availability of 1266 

forcing data, have also increased. Given the uncertainties associated with model inputs, model 1267 
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structure, and observation-based data, it is unrealistic to expect LSMs to perfectly reproduce 1273 

observations for large-scale global simulations. It is not known a priori which model structure, 1274 

forcing data sets, and observation data sets are better. Driving data including meteorological data 1275 

sets and land cover representations may be more realistic in some parts of world and less in 1276 

others. Observation-based data sets also have their limitations and attributes which may make 1277 

them better or ill-suited for comparison with a given model.  A more robust model evaluation 1278 

must therefore take into account the uncertainties both in the forcing and observation-based 1279 

data. A comprehensive and robust model evaluation can be performed by comparing multiple 1280 

model realizations against multiple observation-based data sets.  1281 
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Appendix1627 

1628 
A1: Automated Model Benchmarking R Package (AMBER) 1629 

1630 

The Automated Model Benchmarking R package quantifies model performance using five scores 1631 

that assess a model's bias (Sbias), root-mean-square-error (Srmse), seasonality (Sphase), inter-annual 1632 

variability (Siav), and spatial distribution (Sdist). All scores are dimensionless and range from zero 1633 

to one, where increasing values imply better performance. The exact definition of each skill score 1634 

is provided below. 1635 

A1.1 Bias Score (Sbias) 1636 

The bias is defined as the difference between the time-mean values of model and reference data:  1637 

𝑏𝑖𝑎𝑠(𝜆,𝜙) = 𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆,𝜙) − 𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆,𝜙),                                                   (A1) 1638 

where  𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆,𝜙) and  𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆,𝜙) are the mean values in time (t) of a variable v as a function of 1639 

longitude λ and latitude ϕ for model and reference data, respectively. Nondimensionalization is 1640 

achieved by dividing the bias by the standard deviation of the reference data (σref):  1641 

𝜀𝑏𝑖𝑎𝑠(𝜆,𝜙) =
|𝑏𝑖𝑎𝑠(𝜆,𝜙)|

𝜎𝑟𝑒𝑓(𝜆,𝜙)
                                                                        (A2) 1642 

Note that ɛbias is always positive, as it uses the absolute value of the bias. For evaluations against 1643 

stream flow measurements, the bias is divided by the annual mean rather than the standard 1644 

deviation of the reference data. This is because we assess streamflow on an annual rather than 1645 

monthly basis, implying that the corresponding standard deviation is small. The same approach 1646 

is applied to soil C and vegetation C mass, whose reference data provide a static snapshot in time. 1647 

For both of these cases, ɛbias(λ, ϕ) becomes:  1648 

Deleted: carbon
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𝜀𝑏𝑖𝑎𝑠(𝜆,𝜙) =
|𝑏𝑖𝑎𝑠(𝜆,𝜙)|

𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅̅ (𝜆,𝜙)
                                                                        (A3) 1651 

1652 

A bias score that ranges from zero to one is calculated next:  1653 

𝑠𝑏𝑖𝑎𝑠(𝜆,𝜙) = 𝑒−𝜀𝑏𝑖𝑎𝑠(𝜆,𝜙)                                            (A4) 1654 

While small relative errors yield score values close to one, large relative errors cause score values 1655 

to approach zero. Taking the mean of sbias across all latitudes and longitudes, denoted by a double 1656 

bar over a variable, leads to the scalar score:  1657 

𝑆𝑏𝑖𝑎𝑠 = 𝑠𝑏𝚤𝑎𝑠(𝜆,𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿                                                          (A5) 1658 

1659 

A1.2 Root-Mean-Square-Error Score (Srmse) 1660 

While the bias assesses the difference between time-mean values, the root-mean-square-error 1661 

(rmse) is concerned with the residuals of the modeled and observed time series:  1662 

𝑟𝑚𝑠𝑒(𝜆,𝜙) = √
1

𝑡𝑓−𝑡0
∫ (𝜐𝑚𝑜𝑑(𝑡, 𝜆,𝜙) − 𝜐𝑟𝑒𝑓(𝑡, 𝜆,𝜙))

2

𝑑𝑡
𝑡𝑓
𝑡0

                           (A6) 1663 

1664 

where t0 and tf are the initial and final time steps, respectively. A similar metric is the centralized 1665 

rmse (crmse), which is based on the residuals of the anomalies:  1666 

1667 

𝑐𝑟𝑚𝑠𝑒(𝜆,𝜙) = √
1

𝑡𝑓−𝑡0
∫ [(𝜐𝑚𝑜𝑑(𝑡, 𝜆,𝜙) − 𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆,𝜙))− (𝜐𝑟𝑒𝑓(𝑡, 𝜆,𝜙) − 𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆,𝜙))]

2
𝑑𝑡

𝑡𝑓
𝑡0

 (A7) 1668 
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1669 

The crmse, therefore, assesses residuals that have been bias-corrected. Since we already 1670 

assessed the model's bias through Sbias, it is convenient to assess the residuals using crmse rather 1671 

than rmse. In a similar fashion to the bias, we then compute a relative error:  1672 

𝜀𝑟𝑚𝑠𝑒(𝜆,𝜙) =
𝑐𝑟𝑚𝑠𝑒(𝜆,𝜙)

𝜎𝑟𝑒𝑓(𝜆,𝜙)
                                                       (A8) 1673 

scale this error onto a unit interval:  1674 

𝑠𝑟𝑚𝑠𝑒(𝜆,𝜙) = 𝑒−𝜀𝑟𝑚𝑠𝑒(𝜆,𝜙)                                                  (A9) 1675 

and compute the spatial mean:  1676 

𝑆𝑟𝑚𝑠𝑒 = 𝑠𝑟𝑚𝑠𝑒(𝜆,𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿                                                                (A10) 1677 

A3 Phase Score (Sphase) 1678 

The skill score Sphase assesses how well the model reproduces the seasonality of a variable by 1679 

computing the time difference 𝜃(𝜆,𝜙) between modeled and observed maxima of the 1680 

climatological mean cycle:  1681 

𝜃(𝜆,𝜙) = max(𝑐𝑚𝑜𝑑(𝑡, 𝜆,𝜙))−max (𝑐𝑟𝑒𝑓(𝑡, 𝜆,𝜙))                        (A11) 1682 

where cmod and cref are the climatological mean cycle of the model and reference data, 1683 

respectively. This time difference is then scaled from zero to one based on the consideration that 1684 

the maximum possible time difference is 6 months:  1685 

𝑠𝑝ℎ𝑎𝑠𝑒(𝜆,𝜙) =
1

2
[1 + cos(

2𝜋 𝜃(𝜆,𝜙)

365
)]                                                (A12) 1686 

The spatial mean of sphase then leads to the scalar score:  1687 

𝑆𝑝ℎ𝑎𝑠𝑒 = 𝑠𝑝ℎ𝑎𝑠𝑒(𝜆,𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿                                                               (A13) 1688 
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1689 

A4 Inter-Annual Variability Score (Siav) 1690 

The skill score Siav quantifies how well the model reproduces patterns of inter-annual variability. 1691 

This score is based on data where the seasonal cycle (cmod and cref) has been removed:  1692 

𝑖𝑎𝑣𝑚𝑜𝑑(𝜆,𝜙) = √
1

𝑡𝑓−𝑡0
∫ (𝑣𝑚𝑜𝑑(𝑡, 𝜆,𝜙) − 𝑐𝑚𝑜𝑑(𝑡, 𝜆,𝜙))

2
𝑑𝑡

𝑡𝑓
𝑡0

                                     (A14) 1693 

𝑖𝑎𝑣𝑟𝑒𝑓(𝜆,𝜙) = √
1

𝑡𝑓−𝑡0
∫ (𝑣𝑟𝑒𝑓(𝑡, 𝜆,𝜙) − 𝑐𝑟𝑒𝑓(𝑡, 𝜆,𝜙))

2

𝑑𝑡
𝑡𝑓
𝑡0

 .                                    (A15) 1694 

1695 

The relative error, nondimensionalization, and spatial mean are computed next:  1696 

𝜀𝑖𝑎𝑣(𝜆,𝜙) = |𝑖𝑎𝑣𝑚𝑜𝑑(𝜆,𝜙) − 𝑖𝑎𝑣𝑟𝑒𝑓(𝜆,𝜙)|/𝑖𝑎𝑣𝑟𝑒𝑓(𝜆,𝜙)                                         (A16) 1697 

𝑠𝑖𝑎𝑣(𝜆,𝜙) = 𝑒−𝜀𝑖𝑎𝑣(𝜆,𝜙)                                                                  (A17) 1698 

𝑆𝑖𝑎𝑣 = 𝑠𝚤𝑎𝑣(𝜆,𝜙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿                                                                            (A13) 1699 

A5 Spatial Distribution Score (Sdist) 1700 

The spatial distribution score Sdist assesses how well the model reproduces the spatial pattern of 1701 

a variable. The score considers the correlation coefficient R and the relative standard deviation σ1702 

between 𝜐𝑚𝑜𝑑̅̅ ̅̅ ̅̅ (𝜆,𝜙) and  𝜐𝑟𝑒𝑓̅̅ ̅̅ ̅(𝜆,𝜙). The score Sdist increases from zero to one, the closer R and 1703 

σ approach a value of one. No spatial integration is required as this calculation yields a single 1704 

value:  1705 

𝑆𝑑𝑖𝑠𝑡 = 2(1 + 𝑅) (𝜎 +
1

𝜎
)
−2

                                                    (A19) 1706 
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where σ is the ratio between the standard deviation of the model and reference data:  1707 

𝜎 = 𝜎𝑣𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅̅  /𝜎𝑣𝑟𝑒𝑓̅̅ ̅̅ ̅̅                                                                     (A20) 1708 

and 𝜎𝑣𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅̅  and 𝜎𝑣𝑟𝑒𝑓̅̅ ̅̅ ̅̅  are the standard deviations of the annual mean values from the model and 1709 

reference/observation-based data, respectively, and therefore are scalars.   1710 

A6 Overall Score (Soverall) 1711 

As a final step, scores are averaged to obtain an overall score:  1712 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑆𝑏𝑖𝑎𝑠 + 2 𝑆𝑟𝑚𝑠𝑒 + 𝑆𝑝ℎ𝑎𝑠𝑒 + 𝑆𝑖𝑎𝑣 + 𝑆𝑑𝑖𝑠𝑡

1+2+1+1+1
                                  (A21) 1713 

Note that Srmse is weighted by a factor of two and is an entirely subjective decision but follows 1714 

Collier et al. (2018). 1715 

1716 
1717 
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Figure A1: Comparison of monthly precipitation (upper panel) and temperature (lower panel) 1718 

for five global regions (global, north of 25 °N, northern and southern tropics, and south of 25 °S) 1719 

from the CRU-JRA and GSWP3 meteorological forcing data sets that are used to drive the 1720 

CLASSIC model. The global and regional averages exclude Greenland and Antarctica. The legend 1721 

entries show the annual mean values averaged over the 1997-2016 period. The thin lines show 1722 

individual years and the thick line is their average.1723 

1724 

1725 
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1728 

1729 

1730 
1731 
1732 

Figure A2: Comparison of the frequency distribution of daily precipitation between the CRU-JRA 1733 

and GSWP3 meteorological data sets for three broad regions and the period 1997-2016: a) the 1734 

Amazonian region, b) the Sahel region, and c) the Midwest United States. The frequency is 1735 

represented as a percentage of time daily precipitation is between x and x+1 mm/day, where x 1736 

is the value on the x-axis. Panel (d) shows the location of these broad regions. The underlying 1737 

map in panel (d) is from Google Maps.  1738 
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1748 
1749 

1750 

1751 

Figure A3: Time series of simulated globally-averaged annual soil moisture (a) and soil 1752 

temperature (b) in the top 1m, global annual evapotranspiration (c), and runoff (d) from the 1753 

eight simulations summarized in Table 1. The thin lines show the individual years and the thick 1754 

lines show their 11-year moving average. Model values averaged over the pre-industrial (1851-1755 

1860) and present-day (1997-2016) time periods, and their difference, are also shown.1756 
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1764 

1765 

1766 

1767 

Figure A4: Time series of simulated globally-averaged annual energy fluxes from the eight 1768 

simulations summarized in Table 1. Panel (a) shows net downward shortwave radiation, panel 1769 

(b) shows net downward longwave radiation, panel (c) shows latent heat flux, and panel (d) 1770 

shows sensible heat flux. The thin lines show the individual years and the thick lines show their 1771 

11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 1772 

present-day (1997-2016) time periods, and their difference, are also shown for individual 1773 

simulations.1774 
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1781 

Figure A5: Time series of globally-averaged annual net downward longwave and shortwave 1782 

radiation (over all land area excluding Greenland and Antarctica) averaged over the four 1783 

ensemble members each that are driven with and without N cycle (panels a, b), driven with GLC 1784 

2000 and ESA CCI based land cover (panels c, d), and driven with GSWP3 and CRU-JRA 1785 

meteorological data (panels e, f). The thin lines show the individual years and the thick lines show 1786 

their 11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 1787 

present-day (1997-2016) time periods, and their difference, are also shown.1788 
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1791 

1792 

1793 

1794 

Figure A6: Time series of simulated global annual vegetation carbon mass (a) and soil carbon (b) 1795 

from the eight simulations summarized in Table 1. The global totals exclude Greenland and 1796 

Antarctica. Panels (c) and (d) show the zonally-averaged values of vegetation carbon mass and 1797 

soil carbon mass over land from the eight simulations averaged over the 1997-2016 period. The 1798 

thin lines show the individual years and the thick lines show their 11-year moving average in 1799 

panels (a) and (b). Model values averaged over the pre-industrial (1851-1860) and present-day 1800 

(1997-2016) time periods, and their difference, are also shown in panels (a) and (b).1801 
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1808 

1809 

1810 

Figure A7: Time series of simulated global annual gross primary productivity (GPP) (a), 1811 

autotrophic respiration (b), and heterotrophic respiration (c) from the eight simulations 1812 

summarized in Table 1. Panel (d) shows the zonally-averaged values of GPP from the eight 1813 

simulations averaged over the 1997-2016 period for each simulation. The thin lines show the 1814 

individual years and the thick lines show their 11-year moving average in panels (a) to (c). Model 1815 

values averaged over the pre-industrial (1851-1860) and present-day (1997-2016) time periods, 1816 

and their difference, are also shown in panels (a) to (c).1817 

1818 
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1820 
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Figure A8: Time series of global heterotrophic and autotrophic respiration (over all land area 1822 

excluding Greenland and Antarctica) averaged over the four ensemble members each that are 1823 

driven with and without an interactive N cycle (panels a, b), driven with the GLC 2000 and ESA 1824 

CCI based land cover (panels c, d), and driven the with GSWP3 and CRU-JRA meteorological 1825 

data (panels e, f). The thin lines show the individual years and the thick lines show their 11-year 1826 

moving average. Model values averaged over the pre-industrial (1851-1860) and present-day 1827 

(1997-2016) time periods, and their difference, are also shown.1828 

1829 
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1830 

1831 

1832 

Figure A9: Time series of simulated global annual area burned (a) and fire CO2 emissions (b) 1833 

from the eight simulations summarized in Table 1. Panels (c) and (d) show the zonally-averaged 1834 

area burned and fire CO2 emissions from the eight simulations averaged over the 1997-2016 1835 

period. The thin lines for the time series show the individual years and the thick lines show their 1836 

11-year moving average. Model values averaged over the pre-industrial (1851-1860) and 1837 

present-day (1997-2016) time periods, and their difference, are also shown for panels (a) and 1838 

(b).1839 
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1843 

Figure A10: Time series of global fire CO2 emissions (over all land area excluding Greenland and 1844 

Antarctica) (panels a, c, and e) and their zonally-averaged values (panels b, d, and f) averaged 1845 

over the four ensemble members each that are driven with and without an interactive N cycle 1846 

(panels a, b), driven with the GLC 2000 and ESA CCI based land cover (panels c, d), and driven 1847 

with GSWP3 and CRU-JRA meteorological data (panels e,f). The thin lines for the time series 1848 

show the individual years and the thick lines show their 11-year moving average in panels (a), 1849 

(c), and (e). Model values averaged over the pre-industrial (1851-1860) and present-day (1997-1850 

2016) time periods, and their difference, are also shown for panels (a), (c), and (e).1851 
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1852 

1853 

1854 

1855 

Figure A11: Time series of simulated global annual net atmosphere-land CO2 flux (a) and its 1856 

zonally-averaged values from the eight simulations summarized in Table 1 averaged over the 1857 

1997-2016 period. In panel (a) simulated annual net atmosphere-land CO2 flux values are 1858 

compared to the estimates from the Global Carbon Project (Friedlingstein et al., 2022). The thin 1859 

lines for the time series in panel (a) show the individual years and the thick lines show their 11-1860 

year moving average. In panel (b) the simulated zonally-averaged values are compared to the 1861 

range from 11 models that contributed to the TRENDY 2020 intercomparison. 1862 
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1870 

1871 

1872 

1873 

1874 

1875 

Figure A12: Zonally-averaged values of soil moisture (a), runoff (b), latent heat flux (c), and 1876 

sensible heat flux (d) from the eight simulations summarized in Table 1. The model results are 1877 

shown as their mean (black) and the spread across the eight simulations indicated by 50%, 80%, 1878 

and 100% ranges in different shades of grey. The observation-based estimates used in AMBER to 1879 

calculate scores are shown in coloured lines. 1880 

1881 



79

Deleted: ¶

1882 

1883 

1884 

Figure A13: Zonally-averaged values of surface albedo (a), snow water equivalent (b), net surface 1885 

radiation (c), net longwave radiation (d), and net shortwave radiation (e) from the eight 1886 

simulations summarized in Table 1. The model results are shown as their mean (black) and the 1887 

spread across the eight simulations indicated by 50%, 80%, and 100% ranges in different shades 1888 

of grey. The observation-based estimates used in AMBER to calculate scores are shown in 1889 

coloured lines. 1890 

1891 

1892 Formatted: Justified, Line spacing:  single


