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Abstract: An accurate estimation of vegetation Gross Primary Productivity (GPP), which is the amount of carbon 

taken up by vegetation through photosynthesis for a given time and area, is critical for understanding terrestrial-15 

atmosphere CO2 exchange processes, ecosystem functioning, and as well as ecosystem responses and adaptations 

to climate change.  Prior studies, based on ground, airborne and satellite Sun-Induced chlorophyll Fluorescence 

(SIF) observations have recently revealed close relationships with GPP at different spatial and temporal scales and 

across different plant functional types (PFT). However, questions remain regarding whether there is a unique 

relationship between SIF and GPP across different sites and PFT and how can we improve GPP estimates using 20 

solely remotely sensed data. Using concurrent measurements of daily TROPOMI (TROPOspheric Monitoring 

Instrument) SIF (daily SIFd), daily MODIS Terra and Aqua spectral reflectance, and vegetation indices (VIs, 

notably NDVI (normalized difference vegetation index), NIRv (near-infrared reflectance of vegetation) and PRI 

(photochemical reflectance index)) and daily tower-based GPP  across eight major different PFT, including mixed 

forests, deciduous broadleaf forests, croplands, evergreen broadleaf forests, evergreen needleleaf forests, 25 

grasslands, open shrubland, and wetlands, the strength of the relationships between tower-based GPP and SIFd at 

40 ICOS (Integrated Carbon Observation Systems) flux sites  was investigated. The synergy between SIFd and 

MODIS based reflectance (R) and VIs to improve GPP estimates using a data-driven modelling approach was also 

evaluated. The results revealed that the strength of the hyperbolic relationship between GPP and SIFd was strongly 

site-specific and PFT-dependent. Furthermore, the GLM (Generalized Linear Model) model, fitted between SIFd, 30 

GPP, site and vegetation type as categorical variables, further supported this site-and PFT-dependent relationship 

between GPP and SIFd. Using Random Forest Regression models (RF) with GPP as output and the aforementioned 

variables as predictors (R, SIFd and VIs), this study also showed that the spectral reflectance bands (RF-R), SIFd 

plus spectral reflectance (RF-SIF-R) models explained over 80% of the seasonal and interannual variations in GPP, 

whereas the SIFd plus VIs (RF-SIF-VI) model reproduced only 75% of the tower-based GPP variance. In addition, 35 

the relative variable importance of predictors of GPP demonstrated that the spectral reflectance bands in the near-

infrared, red and SIFd appeared as the most influential and dominant factors determining GPP predictions, 



2 
 

indicating the importance of canopy structure, biochemical properties and vegetation functioning on GPP 

estimates. Overall, this study provides insights into understanding the strength of the relationships between GPP 

and SIF and the use of the spectral reflectance and SIFd to improve estimates GPP across sites and PFT.  40 

1. Introduction 

In the context of climate change, understanding the role of terrestrial ecosystems in terms of exchanges of carbon, 

water and energy is crucial in order to fill-in the knowledge gap on climatic interactions between the biosphere 

and the atmosphere. Terrestrial ecosystems are one of the main components of the carbon cycle and are highly 

sensitive to abiotic stresses. Therefore, an accurate estimation of vegetation Gross Primary Productivity (GPP), 45 

which is the carbon flux taken up by vegetation through photosynthesis, is critical for understanding terrestrial-

atmosphere CO2 exchange processes, ecosystem functioning,  as well as ecosystem responses and adaptations to 

climate change (Gamon et al., 2019).  Eddy Covariance (EC) techniques allow the estimation of GPP locally (Falge 

et al., 2002; Moureaux et al., 2008; Chu et al., 2021). However, they have limitations when it comes to upscale 

carbon fluxes estimates at larger scales due to their restricted spatial coverage, temporal dynamics of flux 50 

footprints,  and limited distribution across different vegetation types, notably in key areas such as Africa and South 

America (X. Xiao, 2004; Gamon, 2015; J. Xiao et al., 2019). GPP can also be estimated based on physical and 

ecophysiological modelling approaches. However, for estimating GPP at larger scales, those methods are 

hampered by the lack of understanding of the underlying physiological processes (Jiang & Ryu, 2016; Y. Zhang 

et al., 2017; Madani et al., 2020). 55 

Remote sensing is widely used to upscale daily GPP to landscape, regional, and global scales using reflected 

sunlight measured by satellite sensors (Running et al., 2004; Baldocchi et al., 2020 ; Wu et al., 2020 ; Kong et al., 

2022; Wang et al., 2022). These approaches are mainly based on reflectance-based vegetation indices (VIs) such 

as Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and more recently near-

infrared reflectance of vegetation (NIRv) ((Badgley et al., 2017); Baldocchi et al., 2020). VIs are mostly sensitive 60 

to spatial and temporal variability in structural Leaf Area Index (LAI) and biochemical canopy attributes (Dechant 

et al., 2020; Pabon-Moreno et al., 2022), but they suffer from saturation in canopy dense ecosystems and are less 

sensitive to diurnal and daily variations in photosynthetic status resulting from physiological responses induced by 

rapid changes of abiotic stresses (Daumard et al., 2012; Guanter et al., 2014; Wieneke et al., 2016; Zhang, et al., 

2021). Remote sensing also provides access to variables which are related to canopy functioning such as the 65 

photochemical reflectance index (PRI) (Gamon et al., 1992; Wang et al., 2020) and Sun-Induced chlorophyll 

Fluorescence (SIF) (Porcar-Castell et al., 2014; Goulas et al., 2017; Magney et al., 2019; Yang et al., 2020; Zhang 

et al., 2022;  Li & Xiao, 2022). 

PRI is a reflectance-based  vegetation index, that has been shown to detect vegetation functioning activities under 

abiotic stress conditions that above-mentioned VIs cannot capture (Meroni et al., 2008). It is due to changes in the 70 

absorptance of leaves around 510 nm or reflectance at 531 nm that are related to the interconversion of the 

xanthophyll pigment cycles, which represents an important photoprotection mechanism (Gamon et al., 1992; 

Meroni et al., 2008). Moreover, previous studies pointed out that PRI can be used to improve canopy GPP estimates 

at the ecosystem level at daily timescale (X. Wang et al., 2020;  Hmimina et al., 2015; Soudani et al., 2014), but 

how variations in PRI at long timescales with spatial variations of vegetation types affect the relationship between 75 
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PRI and GPP remains unresolved and an area of active research (Porcar-Castell et al., 2014; Chou et al., 2017; 

Gitelson et al., 2017). 

In recent years, SIF has emerged as a promising remotely sensed tool for monitoring canopy GPP, which is 

functionally and fundamentally different from the aforementioned VIs (Damm et al., 2010; Yang et al., 2015; 

Köhler et al., 2018; Wang et al., 2021; Guanter et al., 2021). In fact, SIF does not rely on vegetation reflectance, 80 

instead it is a faint signal directly emitted by chlorophyll from the absorbed sunlight just before the occurrence of 

photochemical reaction (Porcar-Castell et al., 2014; Gu et al., 2019; (Zhang et al., 2021a)Zhang et al., 2021). SIF 

has a physical and physiological meanings, and hence SIF offers new opportunities for global assessment of canopy 

GPP (Mohammed et al., 2019; Wieneke et al., 2018; Zhang et al., 2020; Kimm et al., 2021; Dechant et al., 2022). 

Earlier studies relying on ground-based, airborne and satellite SIF data measurements at different temporal and 85 

spatial scales have indicated a strong linear site-specific and vegetation types dependent relationship between GPP 

and SIF  (Frankenberg et al., 2011; Guanter et al., 2014; Yang et al., 2017; Wood et al., 2017; Li et al., 2018; Paul-

Limoges et al., 2018; Zhang et al., 2021; Zhang et al., 2022).  In contrast, at finer temporal scales such as diurnal 

and hourly, the relationship between GPP and SIF is not as strong as at longer timescales. Instead, it appears to be 

non-linear due to rapid changes in instantaneous variations in PAR and environmental conditions (Damm et al., 90 

2015; Marrs et al., 2020; Kim et al., 2021). How and at which extent driving factors such as canopy structure, 

spatial heterogeneity and abiotic stress conditions mediate the GPP and SIF relationship remains a challenge and 

needs to be investigated  (Smith et al., 2018; Wang et al., 2021; Li & Xiao, 2022). The main drawback relates to 

the use of SIF to predict GPP at regional and global scales lies on the difficulties in the weak SIF signals retrieval 

requiring averaging over large time and spatial scales, and thus hampers detecting fine-scale dynamics needed to 95 

explain underlying processes (Gamon et al., 2019; Köhler et al., 2021).Yet, the TROPOspheric Monitoring 

Instrument (TROPOMI) sensor, which is on board Sentinel 5-Precursor,  represents a novel tool for understanding 

SIF variations as well as an opportunity to fully evaluate the potential of SIF to improve GPP estimates at the 

ecosystem scale as it provides a high temporal resolution at daily scale (Köhler et al., 2018). In addition, the future 

satellite mission FLEX (Fluorescence Explorer) will provide on a single platform SIF at an unprecedented spatial 100 

resolution (300m) together with visible reflectance in the green, red and far red spectral windows (Drusch et al., 

2017). 

The surface spectral reflectance (R), VIs and SIF can be used altogether to better characterize highly spatiotemporal 

dynamics in vegetation canopy structure, canopy biochemical properties and vegetation functioning as a response 

to frequent changes in abiotic conditions at the site and ecosystem scales. However, to the best of our knowledge, 105 

an attempt to study the synergy between those variables have not been comprehensively addressed due to the fact 

that the relationships between structural and functional components are not linear, and have complex interactions 

over time and space (Hilker et al., 2007; Sippel et al., 2018; Yazbeck et al., 2021; Pabon-Moreno et al., 2022; Kong 

et al., 2022). Therefore, a series of observations of SIF, R and VIs at the site et ecosystem scales could give insights 

about how SIF is related to GPP, and whether SIF and R, and VIs would provide additional information on 110 

understanding the dynamics of GPP at the ecosystem scale and beyond. 

The overarching objective of this work is to study the potential of SIF, R and VIs (namely NDVI, NIRv, and PRI) 

to estimate canopy GPP, and the synergy between these predictive variables. Specifically, this study primarily 

intends to evaluate at daily timescale the strength of the relationships between SIF and GPP at 40 ICOS flux sites, 

including several vegetation functional types (mixed forests, deciduous broadleaf forests, croplands, evergreen 115 
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broadleaf forests, evergreen needleleaf forests, grasslands, open shrubland, and wetland), and ultimately to 

examine the synergy between SIF, R and VIs to improve canopy GPP estimates based on data-driven modelling 

approach. 

2. Materials and Methods  

In this current section, the site characteristics and Eddy Covariance (EC) flux data are presented. Then, the remote 120 

sensing data (TROPOMI, MODIS Aqua and Terra, and Copernicus Land Cover classification) used in the study 

are described. At last, data analysis methods used in this study are presentedStudy Sites and flux tower in-situ data 

EC flux data were obtained through the Integrated Carbon Observation System (ICOS) data portal release 2018 

and 2021 (https://www.icos-cp.eu/data-services). We screened over 70 ecosystem ICOS sites relying on the 

availability of GPP data for each site with simultaneous TROPOMI SIF observations in the period from February 125 

2018 to December 2020, and maintained 40 sites for analyses. The study sites encompass from a latitude 5.27 °N 

to 67.75 °N, including a diversity of plant functional types (PFT) based on the IGBP vegetation types classification 

given by ICOS PI sites: Mixed Forests (MF, 2 sites), Croplands (CRO, 9 sites), Deciduous Broadleaf Forests (DBF, 

6 sites), Evergreen Broadleaf Forest (EBF, 2 sites), Evergreen Needleleaf Forests (ENF, 13 sites), Grasslands 

(GRA, 3 sites), Open Shrubland (OSH, 1 site, which is actually a young vineyard plantation), and Wetlands (WET, 130 

4 sites). The PFT at each site was confirmed by photointerpretation of pictures found in ICOS data portal database 

and Google Earth. Detailed information and references of these sites are provided in Supplementary Materials in 

Tab S1. Figure 1 presents the location of these study sites, except for GF-Guy site, located in French Guiana. In 

the analyses, we used daily GPP values computed as the sum of the half-hourly values estimated from each site. 

GPP data previously gap filled by ICOS PI representing for a full year, which was the case for instance at CH-135 

Dav, FR-Bil, IT-SR2, and SE-Deg, are filtered out and were not used in the analyses. 

 

Figure 1: The study area and location of the EC ICOS flux sites, except for GF-Guy site, located in French Guiana. The base 

map is the 100 m spatial resolution of the Copernicus Global Land Cover Classification map. The triangles represent the 

locations of the flux sites used for investigating the relationships between tower-based GPP and TROPOMI SIF. 140 

https://www.icos-cp.eu/data-services
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2.1 Remote Sensing data 

2.1.1 MODIS Terra and Aqua Data 

Timeseries of daily MODIS Terra and Aqua surface reflectance products (MOD09GA, MODOCGA, MYD09GA 

and MYDOCGA), centered at the location of each site, were downloaded from Google Earth Engine database. The 

quality assurance (QA) flag (ideal quality, QA = 0) and the cloud mask (clear, cloud state = 0) criteria were used.  145 

Both MODIS Terra and Aqua, used in this study, contain 16 spectral bands of which, the spatial resolution from 

band 1 to band 7 is 500 m, and 1 km for the remaining bands (8-16) (Vermote et al., 2015). A detailed information 

about the MODIS data products is given in Supplementary Materials in Tab S2. We used daily MODIS surface 

reflectance, NDVI, NIRv, and PRI. These VIs are computed according the equation given in Table 1. For PRI 

computation, we used B13 as a reference band following (Hilker et al., 2009).  150 

Table 1 : MODIS Terra and Aqua vegetation indices computations. B2 (841-876 nm) denotes surface spectral reflectance at 

band 2, B1 (620-670 nm) denotes surface spectral reflectance at band 1, B11 (526-536 nm) represents the surface spectral 

reflectance at band 11, and B13 (662-672 nm) represents the surface spectral reflectance at band 13. 

Acronym Full Name Formulation Spatial 

Resolution 

References 

NDVI Normalized Difference 

Vegetation Index 
(𝐵2 − 𝐵1)/(𝐵2

+ 𝐵1) 

500 m (Tucker, 

1979) 

PRI Photochimal 

Reflectance Index 
(𝐵11 − 𝐵13)/(𝐵11

+ 𝐵13) 

1 km (Drolet et al., 

2008; Hilker 

et al., 2009) 

NIRv Near-Infrared 

Reflectance of 

Vegetation 

𝐵2 × 𝑁𝐷𝑉𝐼 
500 m (Badgley et 

al., 2017) 

2.1.2 TROPOMI SIF and Copernicus Global Land Cover data 

TROPOMI, as a single payload of the Sentinel-5 Precursor (S-5P) satellite, was launched on October 13, 2017. 155 

TROPOMI has a near sun-synchronous orbit with a repeat cycle of 16 days and an equatorial crossing time at 

around 13:30 local time (Köhler et al., 2018), which is comparable to those of OCO-2 (Orbiting Carbon 

Observatory-2) and GOSAT (Greenhouse Gases Observing Satellite). However, the wide swath of TROPOMI 

(2600 km) is larger than that of OCO-2 (10 km), which enables TROPOMI to provide almost daily spatially 

continuous global coverage (Köhler et al., 2018). TROPOMI has a spatial resolution of 7 km along track (5 km 160 

since August 2019 owing to diminish integration time) and 3.5 to 14 km across track (based on the viewing angle) 

and covers the spectral range between 675-775 nm in the near infrared with a spectral resolution of 0.5 nm, which 

allows the retrieval of far-red SIF (Köhler et al., 2018). To decouple SIF emissions from the reflected incident 

sunlight, a statistical and data-driven approach is used, see Köhler et al. (2018) for more details. We used 

instantaneous and daily ungridded soundings of TROPOMI far-red SIF at 740 nm obtained from Caltech dataset 165 

between February, 2018 and December, 2020 (https://data.caltech.edu/records/1347). Instantaneous SIF data were 

reported in (mW m-2 sr-1 nm-1). Daily SIF (hereafter referred as SIFd) is computed by timing instantaneous SIF with 

a day length correction factor included in the dataset. 

https://data.caltech.edu/records/1347
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The TROPOMI SIF observations corresponding to each site were determined relying on the following criteria. 

Firstly, we extracted all pixels which center locations are less than 5 km away from the flux tower sites for analyses. 170 

The latter choice was motivated due to the fact that the relationship between TROPOMI SIF and tower-based GPP 

gradually weakened as the distance between sites to the center of pixels increased (data not shown). Secondly, to 

reduce the cloud effects on SIF data, SIFd observations with cloud fraction over 15% were excluded, even though, 

some findings reveal that TROPOMI SIF is less sensitive to cloud than surface reflectance values (Guanter et al., 

2012; Doughty et al., 2021). The 100 m spatial resolution of the Copernicus Global Land Cover Classification map 175 

for the year 2019 (Buchhorn et al., 2020) was used as a based map of the study sites. This land cover classification 

map was obtained from the Copernicus Global Land Service website (https://lcviewer.vito.be/download). 

3. Data Analysis  

In this study, the GPP and SIFd relationship was evaluated at the daily timescale at different spatial scales. Before 

investigating the link between GPP and SIFd, it was necessary to figure out a way to process outliers which were 180 

mostly associated with negative SIFd values. It has been shown that excluding directly negative SIF values could 

have effects on studying the relationships between satellite SIF data and GPP (Köhler et al., 2018; Köhler et al., 

2021). Thus, to handle the outliers, an exponential model was used to account for the structural relationship 

between the instantaneous SIF and the SIF error included in the dataset. A threshold of ±0.15 mW m-2 sr-1 nm-1 was 

then applied to the residual random error of the exponential model. 185 

We used a hyperbolic model to relate GPP to SIFd following (Damm et al., 2015)). This hyperbolic model 

approximates only the data behaviour and supports the theoretical argument that GPP saturates at moderate and 

high SIFd level: 𝐺𝑃𝑃 = 𝑎 ×
𝑆𝐼𝐹𝑑

𝑆𝐼𝐹𝑑+𝑏
 ; where a and b are fitted parameters. It is worth noting that a linear model 

between GPP and SIFd was also investigated, and the results are provided in supplementary materials. Before 

relating GPP to SIFd using this hyperbolic model at each site, SIF values equal or less than zero were discarded. 190 

Afterward, the same model was fitted on PFT scale by pooling all data across all sites for the same PFT. To explore 

the generalizability of the relationship between GPP and SIFd, first the hyperbolic model was adjusted on data 

pooled across all sites. Second, to test further how the year, site and PFT, as categorical variables, and their 

interactions (year*GPP, site*GPP, and PFT*GPP) influence the GPP and SIFd relationship, a Generalized Linear 

model (GLM) was used. Within the GLM model, SIFd is considered as a response variable, whereas, site, PFT, 195 

year and GPP are the explanatory variables. These aforementioned variables and their interaction effects may affect 

the changes or variations either in SIFd or GPP and consequently influence the slope and intercept of their 

relationships. 

In order to study the synergy between SIFd , R and VIs to improve GPP estimates, a Random Forest (RF)  regression 

model was used (Brieman, 2001). Briefly, a RF is a machine learning algorithm, which combines the results of 200 

several randomly ensemble decision trees to reach a final accurate output. Before setting up the RF model, the 

correlation matrix between all variables was computed. It has been shown that features importance can be affected 

by the high correlation between feature predictors (Toloşi and Lengauer, 2011), suggesting that a decrease in 

importance values is observed when the level of correlation and the number of correlated variables increases. In 

practice, a strongly predictive variable belonging to a group of correlated variables can be considered less important 205 

than an independent and less informative variable. Based on remotely sensed data inputs and one categorical 

https://lcviewer.vito.be/download
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explanatory variable (PFT), what variables are the most relevant for estimating GPP on daily data pooled altogether 

across all sites were evaluated. Four RF models were established relying on the combination of the predictive 

variables to estimate GPP: (1) only surface spectral reflectance (RF-R), (2) surface spectral reflectance plus SIFd 

(RF-SIF-R), (3) surface spectral reflectance plus SIFd and the PFT as categorical variable (RF-SIF-R-PFT), and 210 

(4) SIFd plus VIs (RF-SIF-VI) (namely NDVI, NIRv, and PRI). 80 per cent of the data were used for training and 

the remaining for testing the model. It is worth mentioning that a RandomizeSearchCV technique was used (Scikit-

learn library for Python) to tune the model and took the best parameters for each model to predict GPP and applied 

a 10-fold cross-validation and 20 iterations on the training set to avoid splitting the dataset into training, validating 

and testing sets which could affect the amount of data allocated for the training and could lead easily to model 215 

overfitting. The ensemble of decision tree models includes 200 trees for all models, but the number of splits per 

tree and the maximum depth varied. The relative importance of each variable, based on the mean decrease in 

impurity method, was used to evaluate the part of the contribution of each input variable in predicting the canopy 

GPP variability. For TROPOMI data extraction, MATLAB R2021a (The MathWorks, Inc., USA) was used and 

python version 3.9.1 was used for data analysis and visualization (sklearn, scipy, seaborn, matplotlib, pandas, and 220 

numpy libraries for Python). 

Ultimately, the strength of the relationships between SIFd and GPP were compared based on the coefficient of 

determination (R2), Root Mean Squared Error (RMSE), and the p-value metrics. The random forest models were 

evaluated and compared based on out-of-bag adjusted R² and RMSE. At last, but not least, a paired t-test is used 

to compare the performance of the RF models based on the method proposed by (Nadeau et al., 2003). A 5% 225 

significance level was used for all statistical inference. 

4. Results 

4.1 GPP vs SIFd relationships 

4.1.1  Site-specific relationships 

The first aim was to evaluate the strength of the relationships between tower-based GPP and SIFd encompassing 230 

different vegetation types at site level. To do so, a hyperbolic model was used to relate GPP to SIFd at each site.  

Figure 2 shows the relationships between GPP and SIFd at each site. Overall, the results revealed a hyperbolic 

relationship with relatively saturating GPP in presence of moderate to high SIFd. However, the relationships 

between GPP and SIFd are site-dependent, suggesting that the difference in plant functional types and spatial 

heterogeneity across sites may significantly affect the relationships between GPP and SIFd. The strongest 235 

relationships were found at DK-Sor, FR-Fon, DE-Tha, SE-Nor and BE-Bra, which are DBF, ENF and MF 

vegetation type sites, with R2 values being between 0.64 and 0.87 (p<0.0001). The weakest relationships were 

recorded at FI-Var, FR-EM2 and DE-RuW sites, and no significant relationship was found at GF-Guy, IT-Cp2 and 

FR-Mej. For each fit, the numbers of data points were between 160 and 1510, depending on the data availability 

at each site. A detailed information and statistics on the relationships between GPP and SIFd at each site is given 240 

in Supplementary Materials in Tab S3. Note that the independent assessment considering the linear model to relate 

SIFd to GPP at each site, and each PFT and on data pooled across all sites revealed a relatively consistent lower 

goodness of fit, justifying the use of a hyperbolic model (see Supplementary Material Tab S4 and S5, Figures S1, 

S2 and S3). 
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 245 

Figure 2: Site-specific tower-based GPP and SIFd relationships at daily timescale. The R2 represents the coefficient of 

determination of the relationship between GPP and SIFd for each site. The color code represents the eight different plant 

functional types encountered in the study sites: Red color stands for CRO (croplands), green for DBF (deciduous broadleaf 

forests), yellow for EBF (evergreen broadleaf forests), magenta for ENF (evergreen needleleaf forests), blue for GRA 

(grasslands), Cyan for MF (mixed forests), lime for OSH (open shrubland), and dimgrey for WET (wetland). The black dotted 250 
line represents the hyperbolic fit between GPP and SIFd. Plant functional type-specific and overall sites relationships 

To test the effects of the PFT on the relationship between GPP and SIFd at the daily timescale, data were pooled 

across sites of the same PFT (MF, CRO, ENF, DBF, EBF, GRA, OSH, and WET) and the hyperbolic model was 

applied on each PFT. Figure 3 depicts the scatterplots of the relationships between GPP and SIFd. The relationship 

between GPP and SIFd was statistically significant for all PFT (R2 = 0.06-0.61, p<0.0001), taken individually. 255 

Furthermore, the hyperbolic relationship between GPP and SIFd was strongest for OSH, DBF and MF, with R2 of 

0.61, 0.59 and 0.52, respectively, and the lowest for EBF with R2 of 0.06. This result suggests that the relationships 

between GPP and SIFd were clearly PFT-specific, as shown in Table 2.  
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Figure 3: Relationships between tower-based GPP and SIFd in eight plant functional types: MF, CRO, ENF, DBF, EBF, GRA, 260 
OSH, and WET at daily timescale. The R2 represents the coefficient of determination of the relationship between GPP and SIFd. 

All pairwise relationships between GPP vs SIFd were statistically significant with p<0.0001. The black dotted line represents 

the hyperbolic fit between GPP and SIFd. 

Table 2: Summary statistics of plant functional type-specific GPP and SIFd relationship in eight major PFT. All pairwise 

relationships between GPP and SIFd were statistically significant with p<0.0001. a and b denote the fitted parameters from the 265 
hyperbolic model. The unit of RMSE is in (gC m-2 d-1).  

PFT Sites R2 a b RMSE N 

CRO 9 0.20 15.74 0.52 5.29 5538 

DBF 6 0.59 26.59 1.09 3.61 3566 

EBF 2 0.06 12.31 0.03 2.66 956 

ENF 13 0.32 9.30 0.10 2.94 6440 

GRA 3 0.39 12.21 0.27 3.32 1658 

MF 2 0.52 16.46 0.33 2.79 620 

OSH 1 0.61 13.44 0.50 2.10 1510 

WET 4 0.31 12.35 0.75 2.50 2710 

ALL 40 0.36 15.33 0.45 3.93 22998 

 

Moreover, the generalizability of the relationship between GPP and SIFd was first tested on data pooled together 

across all sites (Figure 4). A significant but weak relationship between GPP and SIFd was found across all sites 

with R2 of 0.36 (p<0.0001) and RMSE of 3.93 gC m-2 d-1. However, when the variations between the year, site and 270 

PFT as inputs variables were included in a GLM model, along with GPP, the results showed a strong significant 

relationship between SIFd, year, site, PFT and GPP (p<0.001). Furthermore, the interactions between year and 

GPP, PFT and GPP were found to have statistically substantial effect on SIFd and GPP relationship, while the 

interaction between site and GPP was not significant (see Supplementary Material in Tab S5). These findings 

support that the GPP and SIFd relationship is considerably influenced by the site PFT and the interannual variations 275 

in SIFd. 
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Figure 4: Scatterplots of the relationships between tower-based GPP and SIFd in eight PFT pooled together across all sites. 

The black dotted line represents the hyperbolic fit between GPP and SIFd. The color code represents the plant functional types 

encountered in the study sites: Red color stands for CRO (croplands), green for DBF (deciduous broadleaf forests), yellow for 280 
EBF (evergreen broadleaf forests), magenta for ENF (evergreen needleleaf forests), blue for GRA (grasslands), Cyan for MF 

(mixed forests), lime for OSH (open shrubland), and dimgrey for WET (wetland). 

4.2  Synergy between SIFd, R and VIs to quantify GPP 

In order to optimise the inputs for the Random Forest (RF) regression and avoid the effects of high correlated 

explanatory variables on the model performance, the correlation matrix was computed. The correlation matrix 285 

(supplied in Supplementary Materials Figure S4) revealed a strong dependency between predictive variables 

(notably B9 vs B10, B11 vs B12 and B13 vs B14), indicating that using a RF model built in these variables could be 

affected by those high correlations. Based on these observations, the R of B10, B12 and B14 were excluded from the 

explanatory variables of RF regression models. 

4.2.1  Performance of GPP estimates using Random Forest regression 290 

In Figure 5, it is represented tower-based GPP against the four RF GPP models across all sites. Overall, all the RF 

models predicted GPP show a high agreement with tower-based GPP. Yet, the RF-R model has the strongest 

relationship with tower-based GPP with an adjusted R2 of 0.86 and RMSE of 1.72 gC m-2 d-1, while the RF-SIF-

VI model presents the lowest predictions of GPP as the adjusted R2 and RMSE were 0.75 and 2.29 gC m-2 d-1, 

respectively. Furthermore, the RF-SIF-R and RF-SIF-R-PFT model performed similarly well on estimating GPP 295 

as they could explain 82% and 83% of the variations in GPP across all sites, respectively. A paired t-test realized 

between the four models based on the adjusted R2 performance revealed that the difference in adjusted R² between 

RF-R and RF-SIF-R, RF-R and RF-SIF-R-PFT, and RF-SIF-R and RF-SIF-R-PFT models was not statistically 

significant. In other words, these three RF models have statistically the same performance. 

 300 
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Figure 5: scatterplots of the observed GPP against the RF predicted GPP across all sites. The N denotes the number of 

data points used for the RF model’s testing, adj. R2 represents the adjusted coefficient of determination of the relationship 

between observed GPP and predicted GPP, and the RMSE is the Root Mean Squared Error between observed GPP and 

RF model predicted GPP. The dash diagonal line depicts the 1:1 line. RF-R denotes GPP prediction using only surface 

spectral reflectance, RF-SIF-R includes R and SIFd as inputs to predict GPP, RF-SIF-VI integrates SIFd and VIs to estimate 305 
GPP, and RF-SIF-R-PFT includes R, SIFd and plant functional type as categorical variable to predict GPP. 

The RF regression model’s GPP estimates and the observed GPP representing different vegetation types at the 

site level are depicted in the Figures 6 and 7 for the RF-SIF-R model predictions as an example. The estimates 

for each site from the others models are presented in the Supplementary Materials (Figures S6-a RF-R, S6-b 

RF-R, S7-a RF-SIF-VI, S7-b RF-SIF-VI, S8-a RF-SIF-R-PFT and S8-b RF-SIF-R-PFT) and the summary 310 

statistics results in Tab S7 for all RF models. At the site level, the RF-SIF-R model predicted tower-based 

GPP with high accuracy (adj. R2 = 0.54-0.95), except for three sites such as IT-BCi (adj. R2 = 0.21), IT-Cp2 

(adj. R2 = 0.25), and SE-Deg (adj. R2 = 0.41), where the RF-SIF-R model has difficulties to reproduce GPP, 

even if the R2 remain statistically significant at 5% probability level. It is worth noting that all others RF 

models have a poor GPP predictions for these aforementioned sites. However, on data pooled across all sites 315 

of the same PFT, the RF-SIF-R model show high performance in estimating GPP for all eight major PFT with 

an adj. R2 being between 0.68 and 0.90. The lowest predictions are encountered in CRO and EBF sites, 

whereas the best tower-based GPP estimates were found in DBF and OSH sites. 

 

 320 
Figure 6: Site-specific scatterplots between observed GPP and RF-SIF-R predicted GPP at daily timescale. The adj. R2 

represents the adjusted coefficient of determination of the relationships between observed GPP and predicted GPP. All pairwise 

relationships between observed GPP vs predicted GPP were statistically significant at all sites (with p<0.0001). The color code 

represents the eight different vegetation types encountered in the study sites: Red color stands for CRO, green for DBF, yellow 

for EBF, magenta for ENF, blue for GRA, Cyan for MF, lime for OSH, and dimgrey for WET.  325 
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Figure 7: Scatterplots of observed GPP against RF-SIF-R predicted GPP in eight PFT at daily timescale. The adj. R2 represents 

the adjusted coefficient of determination of the relationship between observed GPP and predicted GPP. p denotes probability 

value of the relationships.  

In Figure 8 and Table 3, it is depicted the observed and estimated GPP representing different PFT for all four RF 330 

models. The estimation for each site is given in Supplementary Materials Figure S5.  Overall, all RF models’ GPP 

predictions capture very well the seasonal and interannual dynamics of the tower-based GPP. However, there are 

sites, years and vegetation types where observed GPP cannot be estimated with high accuracy. For instance, the 

RF models tend to underestimate GPP maxima in GRA, WET and EBF vegetation types. These underestimates 

are mostly marked by the slope of the relationships between the observed GPP and predicted GPP in Table 3.  335 

 
Figure 8: Comparison between observed GPP and RF regression models estimated GPP at selected ICOS flux sites representing 

different PFT: DBF, EBF, ENF, MF, CRO, GRA, OSH, and WET. The color code represents the different RF GPP predictions 

and the observed GPP: Red color stands for RF-SIF-R, green for RF-SIF-R-PFT, blue for RF-R, Cyan for RF-SIF-VI, and 

black for observed GPP. 340 

Table 3: Summary statistics of plant functional type-specific observed GPP against RF models predicted GPP relationships in 

eight major PFT: MF, CRO, ENF, DBF, EBF, GRA, OSH, and WET. All pairwise relationships between observed GPP and 
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predicted GPP were statistically significant with p<0.0001. The sign ± denotes the 95% confidence interval on the slope and 

intercept of the relationships between observed GPP and predicted GPP.  

 
 RF-R RF-SIF-R 

PFT Sites N Adj. 

R2 

Slope Intercept RMSE Adj. 

R2 

Slope Intercept RMSE 

CRO 9 1171 0.78 1.03±0.03 0.00±0.24 2.67 0.75 1.01±0.03 0.08±0.26 2.89 

DBF 6 748 0.92 1.02±0.02 -0.23±0.18 1.41 0.90 1.05±0.02 -0.52±0.21 1.61 

EBF 2 188 0.77 0.93±0.07 1.01±0.83 1.23 0.68 0.90±0.09 1.58±0.99 1.45 

ENF 13 1385 0.85 1.01±0.02 -0.01±15 1.29 0.78 1.06±0.03 -0.23±0.19 1.54 

GRA 3 364 0.81 1.02±0.05 -0.02±32 1.64 0.76 1.07±0.06 -0.17±0.38 1.87 

MF 2 117 0.84 1.05±0.08 -0.15±0.76 1.49 0.82 1.12±0.10 -0.62±0.83 1.56 

OSH 1 317 0.91 1.02±0.04 -0.09±0.22 0.99 0.88 1.01±0.04 0.01±0.24 1.10 

WET 4 599 0.92 0.98±0.02 -0.15±0.10 0.85 0.84 0.98±0.03 -0.37±0.15 1.17 

ALL 40 4889 0.86 1.02±0.01 -0.09±0.08 1.72 0.82 1.04±0.01 -0.19±0.10 1.94 
 

 RF-SIF-VI RF-SIF-R-PFT 

PFT Sites N Adj. 

R2 

Slope Intercept RMSE Adj. 

R2 

Slope Intercept RMSE 

CRO 9 1171 0.70 1.03±0.04 0.01±0.29 3.14 0.75 1.00±0.03 0.12±0.26 2.87 

DBF 6 748 0.84 1.05±0.03 -0.58±0.28 2.06 0.91 1.04±0.02 -0.40±0.21 1.56 

EBF 2 188 0.51 0.77±0.11 3.42±1.14 1.80 0.72 0.96±0.09 0.74±0.98 1.37 

ENF 13 1385 0.66 1.02±0.04 0.10±0.24 1.92 0.79 1.08±0.03 -0.39±0.19 1.5 

GRA 3 364 0.69 0.98±0.07 0.02±0.43 2.11 0.77 1.07±0.06 -0.29±0.38 1.84 

MF 2 117 0.71 1.04±0.12 0.04±1.07 2.00 0.82 1.12±0.09 -0.73±0.84 1.56 

OSH 1 317 0.83 0.98±0.05 0.21±0.29 1.33 0.89 1.02±0.04 -0.06±0.24 1.08 

WET 4 599 0.72 0.88±0.04 -0.39±0.21 1.54 0.88 1.05±0.03 -0.29±0.12 0.99 

ALL 40 4889 0.75 1.03±0.02 -0.18±0.12 2.28 0.83 1.03±0.01 -0.15±0.09 1.89 

4.2.2 Relative importance of the predictive variables for predicting GPP 345 

Figure 9 shows the relative importance (or mean decrease in impurity) of the predictive variables of the RF models 

for predicting GPP across all sites pooled together. The Figure 9 indicates that for RF-R model, the R in the near-

infrared (NIR) band (B2 :841-876 nm) and the R in the red band (B1: 620-670 nm) were found as the most important 

inputs variables for GPP estimates. Moreover, it can be seen that the contribution of the far-red R (B13) on 

predicting GPP is also important, whereas the contribution of the others R bands was on similar level.  For the RF-350 

SIF-R model, SIFd (>23%), R in the NIR (B2 = 17%) and the R in the red band (B1= 9%) are far largely the most 

relevant variables for GPP prediction, while the other variables contribute less into GPP estimates. The RF-SIF-

R-PFT model differs with the previous model (RF-SIF-R) only on the plant functional type categorical variable 

and its results underline that the plant functional type variable is still important for predicting GPP.  Ultimately, 

reflectance-based vegetation indices are widely used for predicting GPP at larger scales. Hence, it is worthwhile 355 

investigating what are the contributions of these interesting variables jointly with SIFd in predicting canopy GPP. 

The relative importance derived from the RF-SIF-VI model reveals that SIFd (36%) is substantially the most 

relevant variable for predicting GPP. The contributions of NIRv and NDVI to the model are comparable, whereas 

PRI has a lower contribution in estimating GPP. 
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 360 
Figure 9: Relative importance of predictive variables of the RF models based only on remote sensing data for estimating GPP, 

except for the RF-SIF-R-PFT model. RF-R model based only on MODIS surface spectral reflectance, RF-SIF-R model uses 

SIFd and surface reflectance as input variables, RF-SIF-R-PFT model integrates SIFd, surface reflectance and PFT as 

explanatory variables, and RF-SIF-VI model combines SIFd and reflectance-based indices notably NDVI, NIRv, and PRI as 

input variables for predicting GPP across all sites. The wavelengths depicted on the spectral bands denote the central wavelength 365 

5. Discussions 

5.1 Strength of the relationship between GPP and SIFd at site and PFT levels 

In this study, the first aim was to evaluate the strength of the relationship between tower-based GPP and SIFd at 

daily timescale and different spatial scales (at site and plant functional type levels).  

At the site level, the results demonstrate that there were strong and statistically significant relationships between 370 

GPP and SIFd. However, the hyperbolic fit between tower-based GPP and SIFd vary significantly across sites, 

which suggests a site-specific relationship. In other words, at these scales the differential variations in plant 

physiology and vegetation structure across sites and years and the spatiotemporal dynamics of the flux tower 

footprints (depending mainly on the height of the tower and wind direction), along with spatial heterogeneity and 

environmental conditions across sites may strongly affect first of all the SIF emissions, scattering and reabsorption 375 

across sites, and consequently the relationship between GPP and SIFd (Fournier et al., 2012; Paul-Limoges et al., 
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2018; Tagliabue et al., 2019; Li et al., 2020; Chu et al., 2021; Zhang, et al., 2021). These results are consistent with 

previous studies based on ground-based and satellite measurements which found evidence that canopy structure, 

as well as PFT have substantially great effects on the relationships between GPP and SIF across multiple sites  

(Dechant et al., 2020; Lu et al., 2020;  Li et al., 2018; Sun et al., 2018; Wang et al., 2020; Hao et al., 2021;  Wang 380 

et al., 2022). For instance, Wang et al. (2020) found that the relationship between OCO-2 SIF observed at 757 nm 

and 771 nm and tower-based GPP across eight vegetation types at 61 flux sites all over the world relies on canopy 

structure and Lu et al. (2020) reported a better relationship between canopy GPP and SIF corrected from 

reabsorption and scattering effects than top of canopy SIF based on ground-based measurements, underlying the 

importance of canopy structure on SIF and GPP relationships.  385 

Furthermore, these results are also in good agreement with several studies carried out with instantaneous ground-

based measurements at different vegetation types, sites and locations (Kim et al., 2021, Damm et al., 2015; He et 

al., 2020, Gu et al., 2019). For instance, Kim et al. (2021) pointed out that a hyperbolic model could explained 

better the relationships between GPP and SIF in an evergreen needle forest and Damm et al. (2015) showed similar 

results in croplands, mixed temperate forests and grassland vegetation types. One of the most plausible 390 

explanations is that GPP might reach saturation at high light, while SIF tends to keep increasing with PAR. It is 

also paramount to mention that the saturation of optical signal is a common issue in remote sensing, which can 

explain part of the lower relationships found in the EBF sites. 

The relationship between tower-based GPP and SIFd considering the PFT was also examined. The results revealed 

a significant PFT-specific GPP and SIFd relationships across all eight major vegetation type. Yet, the hyperbolic 395 

relationships between GPP and SIFd vary considerably across PFT, suggesting a PFT-specific relationship. The 

relationship between GPP and SIFd is driven by the ratio of canopy photosynthesis and fluorescence yield, along 

with the canopy escape probability fraction of SIF photons from canopy to sensor (Porcar-Castell et al., 2014;  

Zhang et al., 2018; Zeng et al., 2019). The major drivers affecting the canopy photosynthesis and SIF yield include 

among others leaf morphology and orientation, plant physiology, canopy structure (leaf area index, chlorophyll 400 

contents, etc.), rapid changes in incident radiation and illuminated canopy surface, different contributions from 

photosystem I and II, as well as rapid abiotic responses (Porcar-Castell et al., 2014; Mohammed et al., 2019; 

Gamon et al., 2019; P. Yang et al., 2020; Chu et al., 2021; Wang et al., 2022). These explanations altogether 

sustained the PFT-specific GPP vs SIF relationship as those factors can considerably differ across PFT. 

Additionally, the results showed that the MF, DBF and OSH sites have the strongest GPP and SIFd relationship, 405 

which indicates that SIF may easily capture the seasonal, interannual and phenological variations in GPP within 

this vegetation type. In other words, in MF, DBF and OSH (one sample of vineyard plantation) biomes, there are 

explicitly marked seasonal and phenological changes compared to EBF or ENF forest where there is greenness all 

time. Thus, in DBF, MF and OSH biomes SIF signal may easily capture the variations in LAI and absorbed PAR 

and consequently display a high correlation between GPP and SIFd. On the other hand, the lower observed relations 410 

between GPP and SIFd in EBF (GF-Guy & IT-Cp2) sites could be partly explained by a lower spatiotemporal 

variability of SIF emissions in tropical forests coupled to a dispersed and lower GPP values observed on the 

datasets, as well as challenges in detecting or decoupling the understory vegetation effects from all vegetation 

canopy contribution to SIF emissions and uncertainties related to GPP estimates in tropical forests,  while in CRO 

(FR-Mej) the difference in photosynthetic pathways (C3, C4 or mixed of both)  and different management practices 415 

may be the reason why SIFd could not capture the variations in GPP, as reported in early studies (Li et al., 2018; 
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Hayek et al., 2018; Mengistu et al., 2020; He et al., 2020; Hornero et al., 2021;  Li & Xiao, 2022). Previous studies 

have also reported weak relationships between GPP and SIF in EBF stands biome (Li et al., 2018; Wang et al., 

2020). Moreover, it is worth mentioning that the biases related to cloudless sky and cloudy sky in space-based SIF 

retrieval, complicates the use of SIF to estimate GPP at the PFT scale because cloudless sky SIF and cloudless sky 420 

GPP are completely different from cloudy sky SIF and cloudy sky GPP and consequently, their relationship may 

also differ (Miao et al., 2018). Investigating GPP and SIF relationships based only on clear sky data and only on 

cloudy sky data, without the mix of both, is justified to better understand their links. Ultimately, not only the weak 

and statistically significant relationship reported for all biomes on data pooled together across all sites confirmed 

the PFT-dependent relationships between GPP and SIFd in this study, but also the significant effects of the year, 425 

site and PFT in the relationship between SIFd and GPP reported in the GLM model further supported this 

hypothesis. Exploring the newly launched satellite instruments such as OCO-3 and ECOSTRESS and upcoming 

FLEX and GeoCarb satellite missions which are planned to have diurnal sampling or fine-spatial resolution (for 

instance 300 m for FLEX), along with ongoing ground-based and airborne-based SIF and GPP data altogether will 

improve the abilities to not only better understand the GPP and SIF relationship but also to completely decouple  430 

the effects of driving factors such vegetation physiology, canopy structure and abiotic stress conditions that 

mediate their relationships at the ecosystem scale. 

5.2 Synergy between SIFd, R and VIs for estimating GPP using Random Forest  

The second main goal in this manuscript was to explore the synergy between SIFd from TROPOMI instrument and 

MODIS R and VIs namely NDVI, NIRv and PRI for predicting GPP on data pooled across all sites. For achieving 435 

this purpose, four RF regression models were established: RF-R, RF-SIF-R, RF-SIF-R-PFT, and RF-SIF-VI. 

Except for RF-SIF-R-PFT model, the main advantage of using solely remotely sensed data for  estimating GPP is 

that we do not need to rely on land cover type and land cover change, and meteorological data (Xiao et al., 2019). 

The current results show that the RF-R (surface spectral reflectance alone), RF-SIF-R (SIFd plus surface spectral 

reflectance) and RF-SIF-R-PFT (SIFd plus surface spectral reflectance plus PFT) models, statistically explain the 440 

same variance of GPP at the daily time scale (82~86%), whereas the RF-SIF-VI (SIFd plus reflectance based-

indices) explains the lowest part, about 75% of GPP across all sites. It is well known that at the seasonal scale 

spectral reflectance capture the variations in canopy structure. The seasonal variations in canopy structure, 

especially LAI, are strongly correlated with variations in GPP (Dechant et al., 2022). This could justify the strong 

relationship found between tower-based GPP and the predicted GPP by the RF-R model. On the other hand, SIF 445 

is an integrative variable at the seasonal and interannual scales as shown in Figure 9 and on the correlation matrix 

results (strong contribution of SIF on GPP estimates and high correlation between GPP and SIFd compared to each 

R band taken alone). However, SIF, while exhibiting the highest relative importance, fails to improve the GPP 

estimate. Hence, while being limited by its spatial resolution (7 km x 3.5 km), at which SIF may lose its 

physiological information and most likely reflect phenological, structural and illumination information (Jonard et 450 

al., 2020; Kimm et al., 2021), SIF remains a better predictor of GPP than each reflectance band individually. These 

results also revealed that the RF-SIF-VI have the poorest performance in predicting GPP. This lower performance 

could be partly due to the well-known saturation of VIs over dense canopies. In addition, the paired t-test did not 

show any statistically significant difference between RF-R and RF-SIF-R models, which confirms the above 

hypothesis, which suggests that SIF represents the variations in absorbed PAR at these scales. Recently, Pabon-455 
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Moreno et al. (2022) used solely Sentinel-2 satellite derived red-edge-based and near-infrared-based vegetation 

indices and all spectral bands to predict GPP at daily time scale across 54 EC flux sites using a data-driven approach 

(Random Forest). The authors reported that spectral bands jointly with VIs can inform only 66% of the variance 

in GPP, which is far less than the here worse performing model (i.e. RF-SIF-VI) in predicting GPP. The daily scale 

and solely remotely sensed driven RF-R and RF-SIF-R models outperform previous GPP products derived based 460 

on data-driven methods  (Wolanin et al., 2019; Tramontana et al., 2016; Jung et al., 2019) and process-based model 

(Jiang & Ryu, 2016; Zhang et al., 2017; Lin et al., 2019), which included even further inputs as predictive variables 

such as meteorological data, land cover type and land cover change data and were conducted mostly at longer time 

scales (8-day or monthly time scale) compared to this study. Furthermore, these results are in strong agreement to 

two recent studies (Cho et al., 2021; Li et al., 2021). More specifically, Cho et al. (2021) found that remotely 465 

sensed data alone can explain 81%  of GPP variability across four vegetation types, including ENF, EBF, DBF, 

and MF in South Korea at 8-day time scale and Li et al. (2021) pointed out that instantaneous GPP estimates across 

56 flux tower sites could be achieved with a R2 of 0.88 and RMSE of  2.42 µmol CO2  m -2 s -1 using ECOSTRESS 

land surface temperature, daily MODIS satellite data and meteorological data from ERA5 reanalysis. This study 

revealed also that GPP prediction can be achieved with high accuracy based on solely remotely sensed data that 470 

are widely and publicly available for all. 

The RF models could clearly capture the GPP variations at each site encompassing different vegetation types as 

shown in Figures 6 and 8. Indeed, there are sites, years and vegetation types where tower-based GPP were 

underestimated, which were the cases for WET and EBF vegetation types. Furthermore, all RF models suffer to 

estimate accurately tower GPP at IT-BCi, IT-Cp2 and SE-Deg sites, owing most likely to SIF pixel heterogeneities 475 

and lower GPP values observed in these sites, along with previous explained issues associated in estimating GPP 

in crops and tropical stands. Similar results were reported recently in Pabon-Moreno et al. (2022) including eight 

vegetation types (ENF, CRO, DBF, GRA, WET, MF, SAV, and OSH). The reason behind these poor performances 

may be also related to difficulties to detect abiotic stress conditions (Bodesheim et al., 2018), underscoring the 

needs of more research for predicting GPP during extreme-abiotic conditions. 480 

Furthermore, in this study, it is determined what are the main variables contributing to GPP prediction using the 

four RF models based on the relative importance metric of each model. Yet, it is found that SIFd, the R in the NIR 

band (B2), red band (B1) and far-red band (B13), as well as the vegetation type, NDVI and NIRv seem to provide 

useful information for the predictions of GPP as shown in Figure 9. B2 and B1 are well-known spectral bands for 

characterizing vegetation canopy structure, seasonal phenology, canopy scattering and reabsorption due to 485 

chlorophyll content within leaves, and consequently have a dominant role in estimating GPP across all sites. The 

high contribution of SIFd is presumably due to its integrative role at the seasonal and interannual scales as explained 

previously (Maguire et al., 2020; Dechant et al., 2022). PRI is known to be implied in the xanthophyll cycle, which 

is an important photoprotection mechanism and as a driver of GPP (Wang et al., 2020;  Hmimina et al., 2015; 

Soudani et al., 2014). However, in this study, the findings evidenced that the contribution of PRI on predicting 490 

GPP was weak, which could be explained by the spatial and temporal aggregation of the rapid responses in plant 

physiological and functional activities, observable at the finer scales (diurnal). Ultimately, the findings in this study 

suggest that using R bands and SIF for estimating GPP is an important approach for improving GPP predictions 

compared to GPP products that include meteorological and land cover type information. 
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6. Conclusion 495 

In this current study, the strength of the relationships between tower-based GPP and SIFd encompassing eight 

major plant functional types (PFT) at the site and interannual scales was evaluated, and the synergy between SIFd, 

surface spectral reflectance, and reflectance-based indices namely NDVI, NIRv and PRI to improve GPP estimates 

using a data-driven modelling approach was examined. 

 At the site scale, the results showed a strong and statistically significant hyperbolic relationships between GPP 500 

and SIFd (p<0.0001). However, these relationships were site-dependent, indicating that canopy structure and 

environmental conditions affect the relationship between GPP and SIFd. The GPP and SIFd relationships across all 

sites of the same PFT was considerably significant and was PFT-specific. Furthermore, it was also found that the 

relationships between GPP and SIFd on data pooled across all sites was moderately weak but statistically 

significant, confirming the PFT dependence of the relationship between GPP and SIFd. The GLM model results 505 

supported this PFT-dependent relationship between GPP and SIFd as the site, year and PFT have meaningful effects 

on the slope of the relationship between GPP and SIFd. 

This study also demonstrated that the spectral reflectance bands, and SIFd plus reflectance explained over 80% of 

the tower-based GPP variance. The RF models were able to represent the GPP seasonal and interannual variabilities 

across all sites. In addition, from the mean decrease in impurity results obtained from the RF models, it is inferred 510 

that the spectral reflectance bands in the near-infrared, red and SIFd appeared as the most influential and dominant 

factors determining GPP predictions. In summary, this study provides insights into understanding the strength of 

the relationships between GPP and SIF across different ICOS flux sites and the use of the daily MODIS R and 

SIFd TROPOMI on predicting GPP across different vegetation types. 
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