

1 **Supplementary Information**

2 **Study site and characteristics of plant species.** Samples were collected from a sedge-dominated fen
3 (10.2 ha) located in an 817 ha sub-watershed of the Lake Superior basin near White River Ontario,
4 Canada (48°21' N, 85°21' W). The weather data (air temperature and precipitation) was provided by
5 the Ontario Ministry of Natural Resources and Forestry, who installed a weather station and monitored
6 the environmental conditions in this study site. The mean annual air temperature and precipitation from
7 2012 to 2018 were 1.7 °C and 721 mm, respectively. For the sample collecting year (2018), the mean
8 annual air temperature and precipitation were 1.2 °C and 730 mm, respectively. The sedge-dominated
9 fen is surrounded by a mixed-wood deciduous and coniferous forest with two small streams running
10 along the northern and southwestern edges. The growing season is from June to September.

11 The sedge-dominated fen is mostly open and the vegetation community is dominated by three sedge
12 species: few-seeded sedge [*Carex oligosperma* Michx.], wire sedge [*Carex lasiocarpa* Ehrh.], tussock
13 sedge [*Carex stricta* Lamb.] (Lyons and Lindo, 2019). Sweet gale [*Myrica gale* L.] is the dominant
14 shrub at this site (Lyons and Lindo, 2019; Palozzi and Lindo, 2017). The characteristics of these plants
15 are described in Newmaster *et al.* (1997). In brief, the few-seeded sedge is 40–100 cm tall; their leaves
16 are 1–3 mm wide, stiff, smooth, edges rolled in toward midrib and rounded in cross-section, and red-
17 tinged at the base. The wire sedge is 30–100 cm tall; leaves are arching, narrow, 1–2 mm wide, wire-
18 like, folded along the midrib, and angular. Tussock sedge is 40–140 cm tall; leaves are 3–6 mm wide,
19 lowest leaves reduced to bladeless sheaths. Sweet gale is a deciduous shrub, up to 1.5 m tall; leaves are
20 alternate, 3–6 cm long, toothed at the tip; sweet gale is a nitrogen-fixer and its root nodules contain
21 symbiotic nitrogen-fixing bacteria. In this study, few-seeded sedges and wire sedges were mixed during
22 plant sample collection as they are indistinguishable in size and form from one another when not in
23 flower/seed.

24 **Foliar total mercury, C content, and N content.** In the laboratory, leaf samples for chemical analyses
25 were rinsed three times with deionized water (18.2 MΩ cm) and then freeze-dried for 48 h. Freeze-
26 dried leaf samples were subsequently ground and homogenized with a stainless-steel blade grinder. All

27 powdered samples were stored in polyethylene bags for further chemical analysis. Precautions were
28 performed to avoid any cross-contamination during the process. Disposable nitrile gloves were worn
29 during sample handling. The blade grinder was thoroughly rinsed with deionized water (18.2 MΩ cm)
30 after each sample grinding and completely dried with Kimwipes® (Kimtech Science™). THg in leaves
31 was analyzed by thermal decomposition, amalgamation, and atomic absorption spectrometry using a
32 Milestone™ DMA-80 (EPA method 7473) with the National Research Council Canada, DORM-4 as the
33 Certified Reference Material (CRM) to validate instrument recovery and stability. Each analytical run
34 for THg included 10 % method blanks (empty sample boat), 10 % duplicates, and 20 % matrix spikes.
35 The detection limit for THg was 0.05 ng g⁻¹. All method blanks were below the detection limits. The
36 relative standard deviation (RSD) was 4.42 ± 3.60 % for all duplicate samples. Recoveries of THg for
37 matrix spikes and CRM (DORM-4) were 101.08 ± 3.08 %. All recoveries of matrix spikes and CRM
38 were comparable well with the certified values: 25 ng and 0.41 ± 0.04 mg kg⁻¹, respectively.

39 Leaf C content (%C; w/w) and N content (%N; w/w) before and after the foliar Hg leaching experiment
40 was analyzed using a CNSH analyzer (Vario Isotope Cube; Elementar). The ratio of leaf C content and
41 N content (C:N) were calculated. Birch leaf Organic Analytical Standard (*Betula papyrifera* Marsh.)
42 was the CRM. Each analytical run for C and N included 10 % method blanks and 10 % duplicates (no
43 matrix spikes for C and N). The detection limits for C and N were 0.26 mg g⁻¹ and 0.02 mg g⁻¹,
44 respectively. All method blanks were below the detection limits. The RSDs of C and N were 0.28 ±
45 0.14 % and 4.73 ± 3.05 % for duplicate samples, respectively. Recoveries of CRM for C and N were
46 99.16 ± 0.30 %, and 101.62 ± 0.88 % of the certified values, respectively.

47 **Dissolved total Hg concentrations analyses and QA/QC.** The dissolved total Hg (THg_{aq})
48 concentrations in the rinse water and leachate were analyzed using Environmental Protection Agency
49 (EPA) method 1631. Samples were oxidized for 12 h with BrCl oxidation, neutralized using
50 hydroxylamine, reduced to Hg⁰ by SnCl₂ reduction, purged onto gold traps, thermally desorbed in
51 argon, and finally analyzed by cold vapor atomic fluorescence spectroscopy (CVAFS, Tekran 2600,
52 Tekran Inc., Canada) (Bloom and Fitzgerald, 1988). The detection limit for THg_{aq} was 0.072 ng L⁻¹.
53 The instrument, Tekran 2600, was calibrated daily. Each analytical run included 10 % method blanks

54 (deionized water), 10 % sample duplicates, and 20 % matrix spikes. Check standards (made from 1000
55 ppm stock standard) were included in every ten samples. All method blanks were below the detection
56 limit. The RSD was 3.45 ± 2.48 % for all duplicate samples. Recoveries of matrix spikes and check
57 standards were 101.09 ± 14.03 % and 104.60 ± 6.37 %, respectively.

58 **Dissolved organic matter concentration analyses and QA/QC.** Dissolved organic matter is
59 quantified analytically as dissolved organic carbon (DOC). DOC concentrations in rinse water and
60 leachate were measured using an iTOC Aurora 1030 (OI Analytical, College Station, TX, USA) using
61 the persulfate wet oxidation method. Dissolved organic carbon in the liquid was oxidized to CO₂ gas by
62 the persulfate wet oxidation and the amount of CO₂ was subsequently determined by measuring the
63 infrared absorbance of CO₂ gas. DOC concentrations in blanks were less than 1 mg L⁻¹. Each run
64 included 10 % deionized water blanks, 10 % sample duplicates, 10 % matrix spikes, and check
65 standards. Deionized water blanks were generally less than 1 mg L⁻¹. The RSD was 1.58 ± 1.83 % for
66 sample duplicates. Recoveries of matrix spikes and check standards were 101.04 ± 1.33 % and $104.60 \pm$
67 5.36 %, respectively. Concentrations of THg_{aq} and DOM in both rinse waters and leachate are
68 presented as the mass of solute per mass of dry material.

69 **Characteristics of DOM and QA/QC data.** DOM in leachate was characterized as specific ultraviolet
70 absorbance at a wavelength of 254 nm (SUVA₂₅₄), an indicator of the molecular weight (or size) and
71 aromaticity (the content of aromatic molecules) of DOM (Weishaar *et al.*, 2003). Higher SUVA₂₅₄
72 values suggest that DOM contains more high-molecular-weight and aromatic molecules (Weishaar *et*
73 *al.*, 2003). Sample absorbance was measured at $\lambda = 254$ nm using a Horiba Aqualog[®] fluorescence
74 spectrofluorometer with a xenon lamp. SUVA₂₅₄ values were determined by dividing the absorbance at
75 254 nm by the DOM concentration of the same sample and multiplied by 100 and are reported in the
76 unit of L mg C⁻¹ m⁻¹ (Weishaar *et al.*, 2003). There were no reference materials to assess method
77 performance, but 10 % of samples were run in duplicates. The RSDs of SUVA₂₅₄ were 0.62 ± 0.29 %
78 for sample duplicates.

79 Fluorescence excitation-emission matrices (EEMs) were also collected for calculating informative
80 optical indices that reflect differences in DOM characteristics in leachate using a Horiba Aqualog[®]

81 fluorescence spectrofluorometer with a xenon lamp. The ultrapure closed water blank was used to
82 correct the inner-effects of the Horiba Aqualog® fluorescence spectrofluorometer. Aqualog® directly
83 reported the fluorescence intensity as arbitrary units (A.U.). The reported EEMs were then converted to
84 optical indices using R Software (R Core Team 2012). Three common indices were chosen in this
85 study: the fluorescence index (FI), the humification index (HIX_{EM}), and the biological index or
86 ‘freshness’ index (BIX). FI reflects DOM sources and characteristics with lower FI values (< 1.2)
87 indicating that DOM is terrestrially derived (resulting from decomposition and leaching of plant and
88 soil organic matter) and has higher aromaticity, while higher FI values (> 1.8) indicating that DOM is
89 microbially derived (originating from processes as extracellular release and leachate of algae and
90 bacteria) and has lower aromaticity (Fellman *et al.*, 2010; McKnight *et al.*, 2001). HIX_{EM} is an
91 indicator of humic substance content or the extent of humification that converts lower-molecular
92 weight organic matter derived from animal and plant products to more condensed and higher-
93 molecular-weight organic matters by microbes. High HIX_{EM} (> 1.0) values reflect the high
94 humification of DOM and DOM is composed of more highly condensed and higher molecular weight
95 molecules (Fellman *et al.*, 2010; Hansen *et al.*, 2016; Huguet *et al.*, 2009; Ohno, 2002). BIX reflects
96 the contribution of autochthonous (or microbially derived) DOM with higher BIX values (> 1.0)
97 reflecting that more low-molecular-weight DOM was recently produced by microbes (Fellman *et al.*,
98 2010; Huguet *et al.*, 2009). For FI, HIX_{EM} , and BIX, there were also no reference materials to assess
99 method performance, but 10 % of samples were run in duplicates. The RSDs of FI, HIX_{EM} , and BIX
100 were $7.27 \pm 3.43\%$, $2.05 \pm 2.77\%$, and $3.48 \pm 3.50\%$ for sample duplicates respectively.

101 **References**

102 Bloom, N. and Fitzgerald, W. F.: Determination of volatile mercury species at the picogram level by
103 low-temperature gas chromatography with cold-vapour atomic fluorescence detection. *Anal.*
104 *Chim. Acta*, 208, 151-161, DOI:10.1016/S0003-2670(00)80743-6, 1988.

105 Fellman, J. B., Hood, E., and Spencer, R. G.: Fluorescence spectroscopy opens new windows into
106 dissolved organic matter dynamics in freshwater ecosystems: A review. *Limnol. Oceanogr.*, 55,
107 2452-2462, DOI:10.4319/lo.2010.55.6.2452, 2010.

108 Hansen, A. M., Kraus, T. E., Pellerin, B. A., Fleck, J. A., Downing, B. D., Bergamaschi, B. A.: Optical
109 properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation.
110 *Limnol. Oceanogr.*, 61, 1015-1032, DOI:10.1002/lo.10270, 2016.

111 Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., Parlanti, E.: Properties of

112 fluorescent dissolved organic matter in the Gironde Estuary, *Org. Geochem.*, 40, 706-719,
113 DOI:10.1016/j.orggeochem.2009.03.002, 2009.

114 Lyons, C. L. and Lindon, Z.: Above-and belowground community linkages in boreal peatlands. *Plant*
115 *Ecol.*, 221, 615-632, DOI:10.1007/s11258-020-01037-w, 2019.

116 McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., Andersen, D. T.:
117 Spectrofluorometric characterization of dissolved organic matter for indication of precursor
118 organic material and aromaticity, *Limnol. Oceanogr.*, 46, 38-48,
119 DOI:10.4319/lo.2001.46.1.0038, 2001.

120 Newmaster, S. G., Harris, A. G., and Kershaw, L. J.: *Wetland plants of Ontario*. Lone Pine Publishing,
121 Edmonton, Canada. 1997.

122 Ohno, T.: Fluorescence inner-filtering correction for determining the humification index of dissolved
123 organic matter, *Environ. Sci. Technol.*, 36, 742-746, DOI10.1021/es0155276, 2002.

124 Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., Mopper, K.: Evaluation of
125 specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of
126 dissolved organic carbon, *Environ. Sci. Technol.*, 37, 4702-4708, DOI:10.1021/es030360x,
127 2003.