

Plant mercury accumulation and litter input to a Northern Sedge-dominated Peatland

3 Ting Sun^{1,2,3} and Brian A. Branfireun⁴

4 ¹School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China

5 ²Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China

6 ³Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street, London, Ontario,
7 Canada

8 ⁴Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada

9 Correspondence to: Ting Sun (tsun64@uwo.ca)

10

11

12

13

14

15

16

17

18

19

21 Abstract

22 Plant foliage plays an essential role in accumulating mercury (Hg) from the atmosphere and transferring it to soils in terrestrial
23 ecosystems, while many studies have focused on forested ecosystems. Hg input from plants to northern peatland peat soils has
24 not been nearly as well studied and is likely equally important from a mass balance perspective. In this study, we investigated the
25 accumulation of atmospheric Hg by the dominant plant species, few-seeded sedge [*Carex oligosperma* Michx.], wire sedge
26 [*Carex lasiocarpa* Ehrh], tussock sedge [*Carex stricta* Lamb.], and sweet gale [*Myrica gale* L.] in a boreal sedge-dominated
27 peatland. Foliar Hg concentrations decreased early in the growing season due to growth dilution, and after that were
28 subsequently positively correlated with leaf age (time). Hg concentrations were 1.4-1.7 times higher in sweet gale than in sedges.
29 A leaching experiment showed that sweet gale leached less Hg but more bioaccessible dissolved organic matter (DOM) by mass
30 than sedges. Leaching of Hg was positively related to the aromaticity of DOM in leachate, suggesting the importance of DOM
31 with higher aromaticity in controlling Hg mobility. Annual inputs of Hg through senesced leaf material to peat soils were 9.88
32 mg/ha/yr, 1.62 mg/ha/yr, and 8.29 mg/ha/yr for sweet gale, tussock sedge, and few-seeded sedge/wire sedge, respectively. Future
33 investigations into foliar Hg accumulation and input from other plant species to the sedge-dominated peatland are needed to
34 estimate the annual Hg inputs precisely.

35

36

37

38

39

40

41

42 **1 Introduction**

43 Mercury (Hg), especially methylmercury (MeHg), is a global concern due to its potential toxicity and ubiquitous presence in the
44 environment (Morel et al., 1998). Hg is emitted to the atmosphere from both natural (e.g., volcanoes, wildfires, geothermal
45 activity) and anthropogenic sources (e.g., coal combustion, artisanal gold mining, incineration) (Schroeder and Munthe, 1998;
46 Streets et al., 2011). Atmospheric Hg exists as gaseous elemental mercury (GEM, Hg(0)), reactive gaseous mercury (RGM,
47 Hg(II)), and particulate-bound mercury (PBM, Hg_p) with GEM as the dominant species (> 95 %) (Schroeder and Munthe, 1998).
48 RGM and PBM have shorter atmospheric residence time ranging from hours to days, whereas GEM has a longer atmospheric
49 residence time of several months to a year and thus is transported globally (Schroeder and Munthe, 1998). These atmospheric Hg
50 species are eventually deposited into aquatic and terrestrial ecosystems via wet deposition (precipitation, such as rain, snow, and
51 fog) and dry deposition (particle settling or direct partitioning to vegetation, water, and soil surface, or direct absorption by
52 vegetation foliage) (Lindberg et al., 2007). Hg dry deposition is a larger input than wet deposition to vegetated terrestrial
53 landscapes, contributing 70 %~85 % of total Hg deposition (dry and wet deposition) in terrestrial ecosystems (Graydon et al.,
54 2008; Risch et al., 2017; Risch et al., 2012; St. Louis et al., 2001; Wang et al., 2016; Zhang et al., 2016), and more than 70 % of
55 Hg dry deposition is by vegetation litterfall/incorporation into soil organic matter (SOM) (Obrist et al., 2017; Wang et al., 2016).

56 Vegetation is generally considered a sink for atmospheric Hg, with the majority of Hg in vegetation leaves accumulated from the
57 atmosphere (Jiskra et al., 2018; Obrist et al., 2017). Plant leaves accumulate Hg from the atmosphere mainly through stomatal
58 uptake (Lindberg et al., 1992). Stamenkovic and Gustin (2009) suggested that the non-stomatal pathway of Hg deposition to the
59 leaf cuticle and subsequently retention and incorporation into leaf tissue also plays an important role in accumulating
60 atmospheric Hg. Plant roots are thought to generally act as a barrier of Hg transport from soils to shoots (Wang et al., 2015), and
61 it has been shown that less than 10% of Hg in roots is transported to the aboveground portion of plants (Erickson et al., 2003;
62 Mao et al., 2013). Some studies have found that a great proportion of foliar Hg in halophytes in salt marshes was translocated
63 from the root (Canário et al., 2017; Cabrita et al., 2019; Weis and Weis 2004). The plausible reason is that plants in the
64 hydroponic growth system have fewer apoplastic barriers (i.e. Casparyan bands and suberin lamellae) in root architecture than
65 plants grown in contaminated soils (Redjala et al., 2011).

66 Forest ecosystems are important sinks of atmospheric Hg and have received widespread attention from researchers (Risch et al.,
67 2012; St. Louis et al., 2001; Wang et al., 2016; Zhang et al., 2009); however, studies about foliar Hg accumulation in other plant

68 types in boreal peatlands ecosystems are few (see Moore et al., 1995) despite their critical role in the carbon (Gorham, 1991)
69 and Hg cycles (Grigal, 2003). Boreal peatlands are a type of wetland that stores large amounts of Hg (Grigal 2003) and can be
70 major MeHg sources to downstream ecosystems (Branfireun et al., 1996; Mitchell et al., 2008; St. Louis et al., 1994), given their
71 anaerobic conditions, non-limiting amounts of inorganic Hg, and often available but limited amounts of sulfate (Blodau et al.,
72 2007; Schmalenberger et al., 2007) and bioaccessible carbon facilitating net MeHg production (Mitchell et al., 2008).
73 Elucidation of foliar Hg input from the dominant plant types to boreal peatlands is important to further estimate the supply of
74 bioavailable Hg(II) for net MeHg production.

75 Previous studies have found that the majority of Hg in plant leaves in wetlands was from the atmosphere (Brahmstedt et al.,
76 2021; Enrico et al., 2016; Fay and Gustin 2007) and nonvascular plants (e.g., fungi, lichens, and mosses) had higher foliar Hg
77 concentrations than vascular plants (Moore et al., 1995; Pech et al., 2022). Although foliar Hg concentration is lower in vascular
78 plants than in nonvascular plants, Hg mass input to peatlands may be substantial, given the greater litter input from vascular
79 plants than from nonvascular plants (Frolking et al., 2001). With more bioaccessible litter than bryophytes (Hobbie, 1996; Lyons
80 and Lindo, 2019), vascular plants also have a faster initial decomposition rate (0.2 y^{-1}) than bryophytes ($0.05\text{--}0.08 \text{ y}^{-1}$) (Frolking
81 et al., 2001), leading to a rapid Hg release to the soil. Boreal peatlands are experiencing rising temperatures due to climate
82 change (IPCC, 2018) which is likely to both increase aboveground biomass in vascular plant-dominated peatlands (Tian et al.,
83 2020) and promote a shift from moss-dominated to more vascular plant-dominated plant communities (Buttler et al., 2015;
84 Dieleman et al., 2015; Weltzin et al., 2000) further affecting Hg deposition (Zhang et al., 2016). To date, the amount of
85 atmospheric Hg accumulated in dominant plants in the vascular plant-dominated (i.e., graminoid plants and shrubs) peatlands, an
86 important type of boreal wetlands (Rydin and Jeglum, 2013), is unknown.

87 Foliar Hg eventually enters peat soils via litterfall and is expected to follow the sequence: (1) wash-off of aerosols, particles, and
88 gases from leaf surfaces, (2) leaching of water-soluble components, and (3) incorporation into SOM after the microbial
89 decomposition of litter. Leaching is the initial phase of litter breakdown in aquatic environments and can rapidly release up to
90 30 % dissolved matter, primarily dissolved organic matter (DOM) within 24 h after immersion of litter (Gessner et al., 1999). It
91 has been established that dissolved organic matter (DOM) is closely related to Hg mobility in terrestrial and aquatic ecosystems
92 (Haitzer et al., 2002; Ravichandran, 2004; Kneer et al., 2020), given the strong affinity between Hg and reduced sulfur groups
93 (i.e., thiols) in DOM (Xia et al., 1999). DOM with higher aromaticity has more thiols ligands and has a stronger correlation with
94 Hg (Dittman et al., 2009). The rapid and abundant leaching of DOM, especially those with higher aromaticity from litterfall may

95 lead to large amounts of Hg leaching. The amount of rapidly released Hg during litter leaching is unknown and needs to be
96 elucidated because more recently deposited Hg appears to be more readily methylated than “old” Hg in peat soils (Branfireun et
97 al., 2005; Feng et al., 2014; Hintelmann et al., 2002). Despite previous studies showing that Hg mass in live leaf leachate is
98 insignificant compared to that on leaf surfaces and in SOM (Rea et al., 2001; Rea et al., 2000), litterfall generally lacks structural
99 integrity and likely leaches more Hg compared to live leaves.

100 The overall objective of this study is to link the vascular plant community (i.e., sedges and shrubs) to the peatland Hg cycle in a
101 vascular plant-dominated fen-type peatland. We use “sedge-dominated fen” instead of “vascular plant-dominated fen-type
102 peatland” hereafter, given that sedges are the primarily dominant plants in this study site (Webster and McLaughlin, 2010). The
103 specific objectives of this study are to:

104 (1) quantify the mass accumulation of atmospherically-derived Hg in leaves of dominant plant species in a sedge-dominated fen
105 over a growing season;
106 (2) estimate the Hg input from the litter of different plant species and through litter leaching to peat soils;
107 (3) clarify the role of DOM characteristics in controlling Hg leaching;
108 (4) estimate the annual areal loading of foliar Hg of different plant species to peat soils.

109 **2 Materials and methods**

110 **2.1 Study site**

111 Samples were collected from a sedge-dominated fen (10.2 ha) located in an 817 ha sub-watershed of the Lake Superior basin
112 near White River Ontario, Canada (48°21' N, 85°21' W). The growing season is roughly from June to September. The sedge-
113 dominated fen is mostly open and the vegetation community is dominated by three sedge species: few-seeded sedge [*Carex*
114 *oligosperma* Michx.]; wire sedge [*Carex lasiocarpa* Ehrh.]; and tussock sedge [*Carex stricta* Lamb.] (Lyons and Lindo, 2019).
115 Sweet gale [*Myrica gale* L.] is the dominant shrub at this site (Lyons and Lindo, 2019; Palozzi and Lindo, 2017). The mean
116 species percent cover of few-seeded sedge, wire sedge, tussock sedge, and sweet gale from the sedge-dominated fen is 35.0 ±
117 21.79%, 0.3 ± 0.12%, 73.0 ± 18.81%, 44.8 ± 10.63% (average ± standard error (SE)), respectively (Palozzi and Lindo 2017).
118 Details of the study site and the characteristics of these plants are provided in the Supporting Information (SI). In this study, few-

119 seeded sedges and wire sedges were mixed during plant sample collection as they are indistinguishable in size and form from one
120 another when not in flower/seed, and frequently co-occur.

121 **2.2 Sample collection and analysis**

122 Five locations several hundred meters apart were selected in the sedge-dominated fen to serve as within-site replicates to account
123 for potential local-scale variability. These five locations were roughly evenly distributed over this study area. Approximately
124 fifty whole leaves of each few-seeded sedge/wire sedge, tussock sedge, and sweet gale were collected from each location using a
125 clean blade in the middle of June, July, August, and after senescence at the beginning of October 2018 in each location, totaling
126 60 samples. For the October sampling event, the sedge leaves were still standing with the lower sections green, and although
127 senesced, shrub leaves were sampled from the branch to ensure that there was no mixing with previous years' fallen leaves.
128 Disposable nitrile gloves were worn during the sample collection. All samples were double bagged with two polyethylene bags
129 and transported to the lab using a clean cooler. Leaves of each species that were collected from each location in October 2018
130 were divided for foliar total Hg (THg) analyses and a foliar Hg leaching experiment. Leaves were stored frozen until they were
131 returned to the university laboratory.

132 For estimation of annual biomass of senesced leaf, seven 0.25 m^2 ($0.5\text{ m} \times 0.5\text{ m}$) plots several hundred meters apart were
133 selected at the end of August 2019 during senescence and before leaf off. All aboveground biomass of few-seeded sedge/wire
134 sedge and tussock sedge and all aboveground leaf biomass of sweet gale were collected separately using a clean blade from each
135 0.25 m^2 plot. All vegetation samples were stored by species in paper bags, transported to the lab, and then oven-dried at $60\text{ }^\circ\text{C}$
136 for a minimum of 48 h. Dried leaves of each species in each plot were sorted and weighed to estimate senesced leaf biomass of
137 each species for each plot. The senesced leaf biomass of each species per hectare per year was calculated and expressed as
138 mg/ha/yr.

139 **Foliar total mercury, C content and N content.** In the laboratory, leaf samples for chemical analyses were rinsed three times
140 with deionized water ($18.2\text{ M}\Omega\text{ cm}$), freeze-dried for 48 h, ground and homogenized, and then analyzed using a MilestoneTM
141 DMA-80 (EPA method 7473). Leaf C content (%C; w/w) and N content (%N; w/w) before and after the foliar Hg leaching
142 experiment was analyzed using a CNSH analyzer (Vario Isotope Cube; Elementar). The ratio of leaf C content and N content
143 (C:N) were calculated. Detailed information concerning analytical methods are described in the SI, including analysis of foliar
144 total Hg, %C, and %N.

145 **Foliar mercury leaching experiment.** The foliar leaching experimental procedure followed the design of Rea et al. (2000) and
146 Del Giudice and Lindo (2017). Senesced leaves of sedges and sweet gale collected in October 2018 were rinsed twice with 100
147 mL of deionized water (18.2 MΩ cm) to quantify particulate or loosely-bound Hg and DOM that can be easily removed/leached
148 from the leaf surface. This water was reserved for subsequent analysis. After rinsing, the leaves were oven-dried at a low
149 temperature (40 °C) for 48 h, and then the leaves of each species from each location were relatively evenly separated into three
150 groups and weighed, totaling 45 groups. These oven-dried senesced leaf samples were immersed in 150 mL of deionized water
151 in clean 250 mL PETG bottles. All PETG bottles were capped, double bagged, and incubated in the dark at room temperature
152 (~21 °C) for 48 h. Senesced leaf materials were gently swirled at the beginning of the leaching experiment to ensure complete
153 wetting. Following the leaching, the leachate was vacuum filtered through a 0.45 µm glass fiber filter into clean 250 mL PETG
154 bottles. Leachate from each sample was split into two aliquots. One was preserved by acidifying to 0.5 % (vol/vol) with high-
155 purity HCl for dissolved total Hg (THg_{aq}) analysis and stored in 250 mL PETG bottles; the other was stored in the clean 60 mL
156 Amber glass bottles and analyzed within 2 d for the quantity and characteristics of DOM. All samples were stored in the dark at
157 4 °C for further analysis. Method blanks of the leaching experiment were performed at the same time following the same
158 procedure.

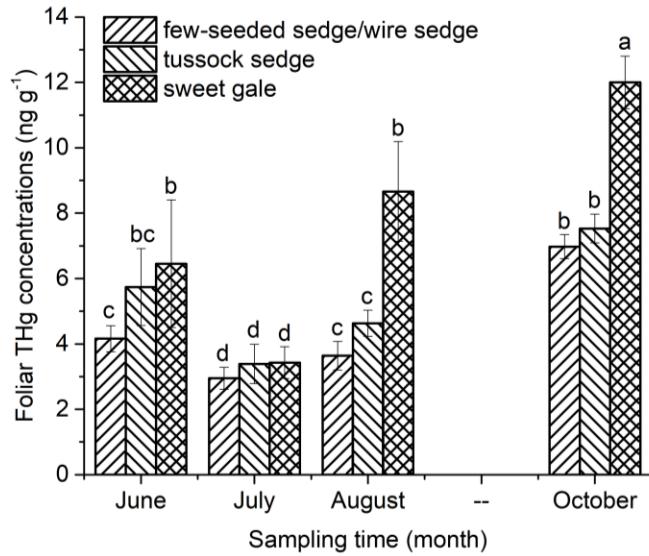
159 Senesced leaf material was taken out of each PETG bottle, oven-dried at 40 °C for 48 h, and re-weighed after leaching. The dry
160 leaf weight before and after the leaching process was used to calculate the mass loss. These re-dried senesced leaf samples after
161 leaching were ground and homogenized before the measurement for %C and %N as described above.

162 The dissolved total Hg (THg_{aq}) concentrations in the rinse water and leachate were analyzed using Environmental Protection
163 Agency (EPA) method 1631. Dissolved organic matter is quantified analytically as dissolved organic carbon (DOC). DOC
164 concentrations in rinse water and leachate were measured using an iTOC Aurora 1030 (OI Analytical, College Station, TX,
165 USA) using the persulfate wet oxidation method. Details on the analytical procedures and QA/QC data for concentrations of
166 THg_{aq} and DOC are provided in the SI.

167 DOM in leachate was characterized as specific ultraviolet absorbance at a wavelength of 254 nm (SUVA₂₅₄), an indicator of the
168 molecular weight (or size) and aromaticity (the content of aromatic molecules) of DOM (Weishaar et al., 2003). Higher SUVA₂₅₄
169 values suggest that DOM contains more high-molecular-weight and aromatic molecules (Weishaar et al., 2003). Fluorescence
170 excitation-emission matrices (EEMs) were also collected for calculating informative optical indices that reflect differences in
171 DOM characteristics in leachate. The reported EEMs were then converted to optical indices using R Software (R Core Team

172 2012). Three common indices were chosen in this study: the fluorescence index (FI), the humification index (HIX_{EM}), and the
173 biological index or ‘freshness’ index (BIX). Lower FI values (< 1.2) indicate that DOM is terrestrially derived (resulting from
174 decomposition and leaching of plant and soil organic matter) and has higher aromaticity, while higher FI values (> 1.8) indicate
175 that DOM is microbially derived (originating from processes as extracellular release and leachate of algae and bacteria) and has
176 lower aromaticity (Fellman et al., 2010; McKnight et al., 2001). High HIX_{EM} (> 1.0) values reflect the high humification of
177 DOM and DOM is composed of more highly condensed and higher molecular weight molecules (Fellman et al., 2010; Hansen et
178 al., 2016; Huguet et al., 2009; Ohno, 2002). Higher BIX values (> 1.0) reflect that more low-molecular-weight DOM was
179 recently produced by microbes (Fellman et al., 2010; Huguet et al., 2009). Details on the analytical procedures and QA/QC data
180 for $SUVA_{254}$, FI, HIX_{EM} , and BIX are provided in the SI.

181 3 Statistical analysis


182 Results were analyzed using IBM SPSS statistics software (IBM SPSS Inc. 24.0). The repeated-measures ANOVA was
183 performed to compare the difference in foliar THg concentrations among different plant species over the growing season and to
184 analyze the effect of leaf age on foliar Hg concentrations. Linear regressions were analyzed to examine the relationship between
185 foliar THg accumulation and leaf age. Differences in foliage quality (%C, %N, and C:N) were analyzed using a multivariate
186 ANOVA. One-way ANOVA was used to determine the effects of plant species on concentrations of THg_{aq} and DOM quantity
187 and characteristics in leachate. The repeated-measures ANOVA, multivariate ANOVA, and one-way ANOVA were followed by
188 a *post hoc* test (Bonferroni’s significant difference; honestly significant difference at the 95 % confidence interval). Weighed
189 least squares regression was used to examine the nature of the relationship between THg_{aq} concentrations and $SUVA_{254}$ in
190 leachate. Data are presented as the mean \pm standard deviation (SD). Coefficient of determination (R^2) and significance p-values
191 (p) are presented for linear regression fits, and $p < 0.05$ was considered significant.

192 4 Results and discussion

193 4.1 Foliar mercury accumulation in peatland plants

194 Foliar THg concentrations were related to time/leaf age ($F_{(3,36)} = 108.86$, $p < 0.001$) and plant species ($F_{(2,12)} = 51.85$, $p < 0.001$)
195 (Fig. 1). Based on *post hoc* tests, foliar THg concentrations were significantly different between plant species and between the
196 sampling months, except that there was no significant difference in foliar THg concentrations between June and August. The
197 mean foliar THg concentrations ($n = 5$) in June followed the sequence: few-seeded sedge/wire sedge < tussock sedge < sweet

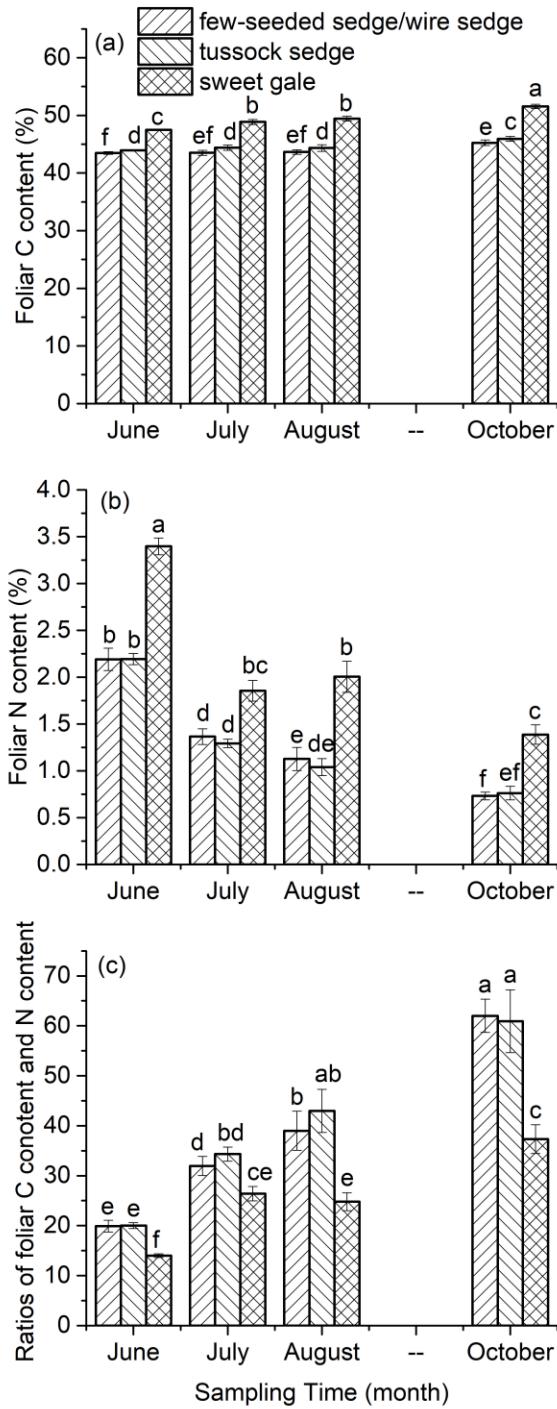
198 gale. In July foliar THg concentrations decreased by 30 % (few-seeded sedge/wire sedge), 40 % (tussock sedge), and 47 %
 199 (sweet gale), respectively. The decrease in THg concentrations is likely because of leaf growth dilution, although changes in leaf
 200 biomass were not quantified as part of this study. Foliar THg concentrations were positively related to time after July (few-
 201 seeded sedge/wire sedge: $F_{(1,13)} = 185.79$, $p < 0.001$, $R^2 = 0.93$; tussock sedge: $F_{(1,13)} = 200.87$, $p < 0.001$, $R^2 = 0.94$; sweet gale:
 202 $F_{(1,13)} = 70.72$, $p < 0.001$, $R^2 = 0.84$). The mean foliar THg concentrations in October few-seeded sedge/wire sedge, tussock sedge,
 203 and sweet gale were 1.7, 1.3, and 2.0 times higher than the initial concentrations in June. This result showed a clear pattern of
 204 continuous THg accumulation in foliage in boreal peatland plant species over time as has been shown for forests (Laacouri et al.,
 205 2013; Millhollen et al., 2006b; Rea et al., 2002), which can be attributed to foliar Hg accumulation from the air, given that plant
 206 roots act as a barrier of Hg transport from soils to shoots (Wang et al., 2015). Further studies are needed to quantify the
 207 contribution of atmospheric and soil Hg to foliar Hg.

208

209 **Figure 1** The intraseasonal trend in foliar total mercury (THg) concentrations (ng g^{-1}) of few-seeded sedge/wire sedge,
 210 tussock sedge (ng g^{-1}). All concentrations are expressed in dry weight. Error bars are $\pm \text{SD}$ ($n = 5$ for each species for each time
 211 interval). The same letters above bars denote that values of foliar THg concentrations are not significantly different at the 0.05 levels.

212 Mercury accumulation in leaves is affected by many factors, such as atmospheric Hg concentration, environmental conditions
 213 (e.g., solar radiation and temperature), and biological factors (e.g., leaf age, plant species, leaf area, and leaf placement)
 214 (Blackwell and Driscoll, 2015; Erickson et al., 2003; Erickson and Gustin, 2004; Laacouri et al., 2013; Millhollen et al., 2006a).
 215 Since all samples were collected in the same location, factors such as atmospheric Hg concentration and environmental
 216 conditions were deemed the same, leaving only biological factors as an explanation for differences.

217 **Leaf age.** Leaf age is an important biological factor in controlling foliar concentrations (Erickson et al., 2003; Laacouri et al.,
218 2013). The positive relationship between foliar THg concentrations and time after July suggests that leaves of all species here
219 continued to assimilate atmospheric Hg over the growing season right up to senescence. Some studies have found that the rate of
220 foliar Hg uptake decreased toward the end of the growing season (Erickson et al., 2003; Laacouri et al., 2013; Poissant et al.,
221 2008), which appears to be because of the decrease in photosynthetic activity at the end of the growing season (Koike et al.,
222 2003). In this study, foliar Hg concentrations continue to increase right up to senescence. Although foliar Hg can transport to
223 other plant organs, such as tree rings (Arnold et al., 2018; McLagan et al., 2022), and/or can be re-emitted into the atmosphere
224 (Zheng et al., 2016; Yu et al., 2016; Yuan et al., 2019), the majority of foliar Hg by mass is generally incorporated into leaf
225 tissue (Laacouri et al., 2013; Lodenius et al., 2003; Stamenkovic and Gustin, 2009). In addition, it is likely that less than 10% of
226 Hg in roots was transported to the leaves (Erickson et al., 2003; Mao et al., 2013).

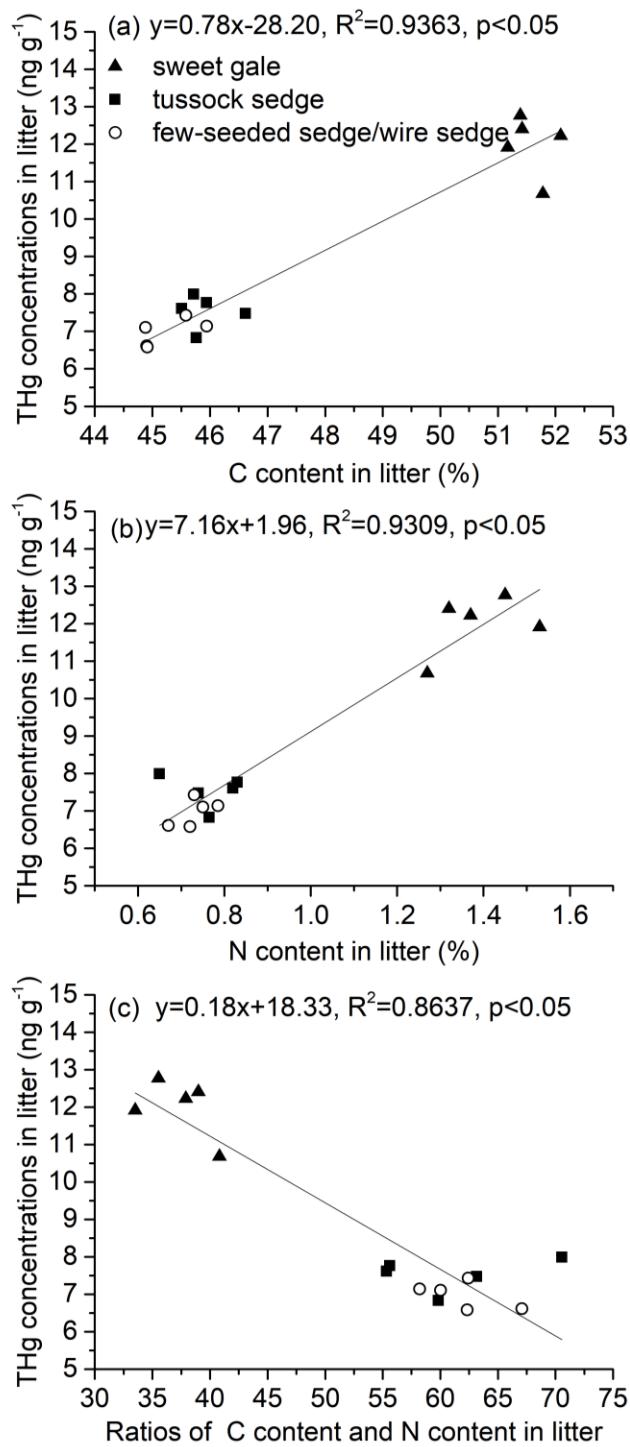

227 **Plant species.** Plant photosynthesis, transpiration, growth rates, and leaf area are different among plant species (Antúnez et al.,
228 2001; Laacouri et al., 2013; Millhollen et al., 2006b), and given that these are important controls on Hg accumulation, the
229 differences among species found in this study are not surprising. The mean foliar THg concentrations in tussock sedge were 1.2
230 times higher than that in few-seeded sedge/wire sedge, and although not measured as part of this study, tussock sedge has a
231 larger leaf area than few-seeded sedge/wire sedge (Newmaster et al., 1997). A larger leaf has a higher density of stomate and
232 thus more leaf accumulation of atmospheric Hg (Laacouri et al., 2013; Millhollen et al., 2006; Stamenkovic and Gustin, 2009). A
233 larger leaf area may also provide more adsorption sites for non-stomatal Hg uptake. Increased biomass corresponding with a
234 bigger leaf area can offset the effects of stomate number on atmospheric Hg accumulation by leaves to a certain degree. A
235 plausible explanation is that leaf biomass does not proportionally increase with leaf area and stomata, leading to a higher
236 absolute Hg concentration in tussock sedge leaves than in few-seeded segde/wire sedge leaves. Kozlowski and Pallardy (1997)
237 reported that leaves near the top of the canopy generally have higher rates of photosynthesis and stomatal conductance than those
238 near the bottom of the canopy due to light saturation. Sweet gale had potentially higher stomatal conductance due to higher
239 incident radiation and vapor pressure deficits than sedges that are lower to the saturated ground with tightly packed vertical
240 leaves.

241 Concentrations of Hg in senesced leaves of few-seeded sedge/wire sedge, tussock sedge, and sweet gale (6.58 ng g^{-1} to 12.77 ng
242 g^{-1}) were lower than that reported in tree litter (21 ng g^{-1} – 78 ng g^{-1}) in North-America and Europe (Laacouri et al., 2013; Obрист
243 et al., 2021; Poissant et al., 2008; Rea et al., 2002; Wang et al., 2016) but similar to that previously reported for grasses and

244 herbaceous plants ($\sim 10 \text{ ng g}^{-1}$) (Moore et al., 1995; Olson et al., 2019). The foliar Hg concentrations for plant species in this
245 study increased 1.3-2.0 times over the growing season, which was smaller than that (3-11 fold) reported for trees (Laacouri et al.,
246 2013; Poissant et al., 2008; Rea et al., 2002). The above results further confirm that foliar Hg concentrations differ among
247 vegetation types (Demers et al., 2007; Moore et al., 1995; Obrist et al., 2012; Richardson and Friedland, 2015). It has been
248 suggested that Hg previously retained in leaves can be photo reduced to Hg^0 that is re-emitted to the atmosphere, and consistent
249 Hg^0 re-emission from the foliage is positively related to photosynthetically active radiation (PAR) (Yuan et al., 2019). The plants
250 in open boreal peatlands lacking a tree overstorey like that in this study would receive very high exposure to ultraviolet (UV),
251 which may result in a greater photoreduction of Hg previously retained in leaves and then Hg loss than tree leaves that are more
252 often shaded. Moreover, despite angiosperms having higher stomatal conductance due to fewer stomata but more numbers (de
253 Boer et al., 2016; Jordan et al., 2015), stomatal opening in dark-adapted leaves after light exposure was generally faster in
254 gymnosperms than in angiosperms but stomatal closing upon the darkness of light-adapted leaves was faster in angiosperms than
255 in gymnosperms (Xiong et al., 2018). This phenomenon may lead to a higher Hg concentration in trees (a type of gymnosperms)
256 than in sedges and sweet gales (two types of angiosperms). More studies are needed to elucidate this mechanism of foliar Hg
257 accumulation by different plant types.

258 **Leaf carbon, nitrogen and mercury.** Leaf %C, %N, and C:N were significantly different among plant species ($F_{(6,104)} = 59.64$, p
259 < 0.001) over the growing season ($F_{(9,124)} = 45.42$, p < 0.001) (Fig. 2). Based on *post hoc* tests, foliar %C, %N, and C:N was
260 significantly different between sweet gale and sedges (few-seeded sedge/wire sedge and tussock sedge) but not between few-
261 seeded sedge/wire sedge and tussock sedge. Foliar %C and %N were much lower in these sedges than sweet gale, which agrees
262 well with a previous study that deciduous shrubs (i.e., sweet gale) generally have a higher foliar %C and %N than grasses
263 (Wright et al., 2004). The fixation of nitrogen in sweet gale is in part attributed to sweet gale root nodules containing symbiotic
264 nitrogen-fixing (Newmaster et al., 1997; Vitousek et al., 2002) with this greater amount of available N leading to higher
265 photosynthetic capacity (Wright et al., 2004), thus, species containing a higher foliar %N are usually accompanied with a
266 higher %C.

267


268

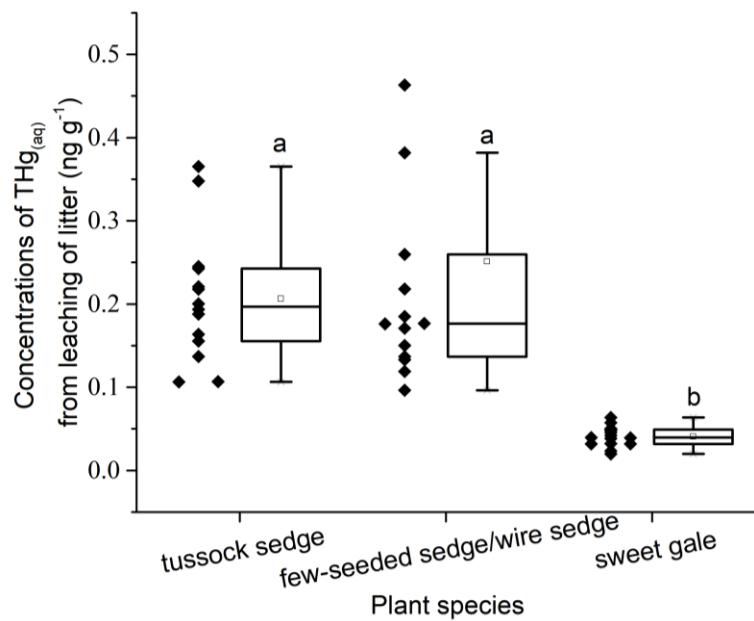
269 **Figure 2 The carbon content (%C) (a), nitrogen content (%N) (b), and the ratio of carbon content to nitrogen content (C:N) (c) over**
 270 **the 2018 growing season. Vertical bars are mean \pm SD ($n = 5$). The same letters above bars denote that values of foliar THg**
 271 **concentrations are not significantly different at the 0.05 levels.**

272 There were significant increases in foliar %C (few-seeded sedge/wire sedge: $F_{(3,9)} = 25.98$, $p < 0.001$; tussock sedge: $F_{(3,9)} =$
 273 20.56, $p < 0.001$; sweet gale: $F_{(3,9)} = 115.90$, $p < 0.001$) but sharp decreases in foliar %N (few-seeded sedge/wire sedge: $F_{(3,9)} =$

274 =354.20, p < 0.001; tussock sedge: $F_{(3,9)} = 252.36$, p < 0.001; sweet gale: $F_{(3,9)} = 170.43$, p < 0.001) over the growing season (Fig.
275 2). The strong decreases in foliar %N with leaf age can be attributed to the translocation of N from senescing leaves to new
276 leaves (Wang et al., 2003). A study found that approximately 77 % N, 57 % phosphorus (P), and 44 % potassium (K) were
277 translocated out of senescing leaves during mangrove leaf senescence (Wang et al., 2003). Foliar C is sequestering continuously
278 over the growing season (Kueh et al., 2013). The element re-translocation and C sequestration in leaves may lead to the
279 foliar %C increase with time. The values of foliar C:N increased with time, which is a function of the decreases of foliar %N and
280 the increases of foliar %C.

281 Senesced leaf tissue with higher foliar %C and %N had higher foliar THg concentrations (%C and Hg: $F_{(1,13)} = 191.09$, p < 0.05,
282 $y = 0.78x - 28.20$, $R^2 = 0.94$; %N and Hg: $F_{(1,13)} = 82.38$, p < 0.05, $y = 7.16x - 1.96$, $R^2 = 0.93$) (Fig. 3a and 3b). THg
283 concentrations were negatively related to foliar C:N during senescence ($F_{(1,13)} = 175.10$, p < 0.05, $y = 0.18x - 18.33$, $R^2 = 0.86$;
284 Fig. 3c). A previous study found soil Hg concentrations were positively related to soil organic C and N, and then given a possible
285 explanation that high C and N levels in soil reflect high vegetation productivity corresponding with high atmospheric Hg
286 deposition via litterfall (Obrist et al., 2009). Although the mechanism of these relationships between Hg concentrations and
287 contents of C and N in senesced leaves materials is still unclear, this study shows that Hg input via litterfall to soils can be
288 affected by C and N content in senesced leaves. More studies and data are needed to draw predictive conclusions.

289


290 Figure 3 Correlations between (a) THg concentrations and C contents, (b) THg concentrations and N contents, and (c) THg concentrations and ratios of C content and N content (C:N) in litter. All linear correlations are statistically significant ($p < 0.05$).

291 4.2 Mercury leaching from senesced leaves

292 **Surface-rinsable mercury.** The mean mass of Hg from the surface rinse of senesced leaf material (expressed per gram of dry
293 senesced leaf) was 0.02 ± 0.01 ng g⁻¹ and 0.01 ± 0.00 ng g⁻¹ (or 3.27 ± 1.68 ng L⁻¹ and 1.39 ± 0.83 ng L⁻¹, expressed per liter of

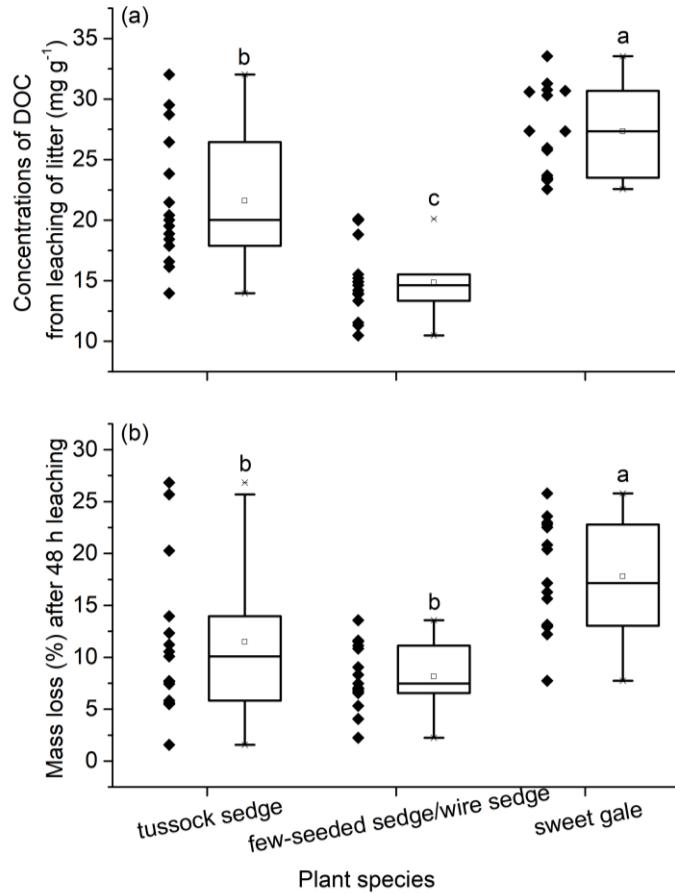
295 rinse water ($18.2 \text{ M}\Omega \text{ cm}$)), respectively, indicating that mass of Hg that was loosely bound on the leaf surface was small relative
296 to the total senesced leaf tissue Hg concentration ($8.83 \pm 2.38 \text{ ng g}^{-1}$) representing on average only 0.4 % Hg (tussock sedge:
297 0.6 %; few-seeded sedge/wire sedge: 0.3 %; sweet gale: 0.3 %) of total THg mass.

298 **Leachable mercury.** The mean THg_{aq} mass per gram of senesced leaf had significant differences between plant species ($F_{(2,41)} =$
299 11.55, $p < 0.001$; Fig. 4). Based on *post hoc* tests, there were significant differences in THg_{aq} mass per gram of senesced leaf
300 between sweet gale and sedges (few-seeded sedge/wire sedge and tussock sedge) but not between few-seeded sedge/wire sedge
301 and tussock sedge. The senesced leaf of sweet gale leached the least Hg among these plant species, which is likely due to their
302 hydrophobic waxy cuticle that may both retain Hg, as well as protect the inner leaf material from leaching. Another plausible
303 explanation is that N was more easily released from sedges than C and it was the opposite for sweet gale, based on changes in
304 foliar %C and %N between before and after leaching (Table 1), whereas N groups in litter hinder the leaching of foliar Hg
305 (Obrist et al., 2009). Foliar %N of sweet gale increased after leaching, which is likely attributed to a large amount of loss of other
306 elements, such as K, Mg, and P, although they were not part of this experiment. Bessaad and Korboulewsky (2020) found that
307 60–79 % of K, 19–50 % of Mg, 22–30 % of P, and < 16 % of Ca and N were leached out from fully developed broadleaves
308 (collected in summer) during rainfall.

309

310 **Figure 4** Mass of mercury leached per gram of senesced leaf material (ng g^{-1}). Boxplot displays median (50th percentile; the inside line
311 of the box), first quartile (25th percentile; lower bound of the box), third quartile (75th percentile; upper bound of the box), whiskers
312 (all measures between 5th percentile and 25th percentile and between 75th percentile and 95th percentile; the straight line below and
313 above the box), and outliers (individual points outside of the percentile of 5th and 95th). $n = 15$.

Table 1 Changes of foliar carbon content (%C) and nitrogen content (%N) during leaching of litterfall. n = 15

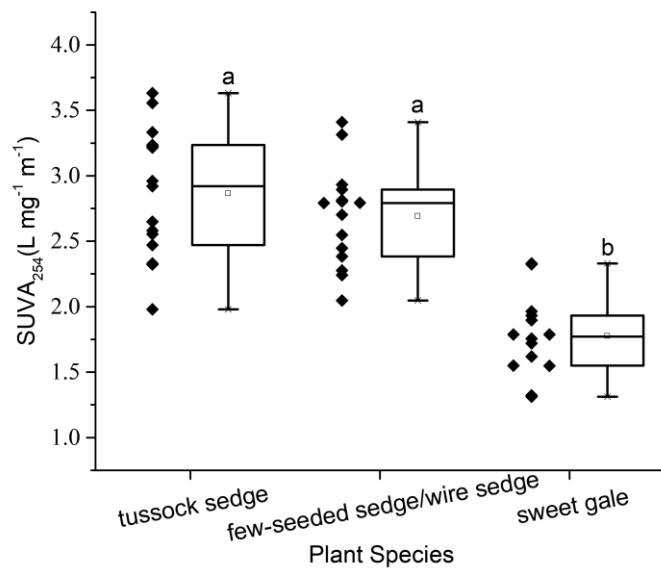

	foliar %C			foliar %N		
	before leaching	after leaching	change percentage (%)	before leaching	after leaching	change percentage (%)
sweet gale	51.57 ± 0.36	51.03 ± 0.34	-1.05	1.39 ± 0.10	1.50 ± 0.07	-7.91
tussock sedge	45.91 ± 0.42	44.97 ± 0.54	-2.05	0.76 ± 0.07	0.68 ± 0.10	-10.53
few-seeded sedge/wire sedge	45.24 ± 0.49	43.83 ± 0.49	-3.12	0.73 ± 0.04	0.64 ± 0.02	-12.33

316 During experimental leaching, 3.0 %, 2.9 %, and 0.3 % of the total THg mass present in tussock sedge, few-seeded sedge/wire
 317 sedge, and sweet gale senesced leaf was leached, respectively. The percentages of Hg that leached from tussock sedge, few-
 318 seeded sedge/wire sedge leaves were 5.5 and 10.6 times higher than that from rinses, while the percentage of Hg that leached
 319 from sweet gale senesced leaf was similar to that from rinse water (0.3 %). Rea et al. (2000) reported that surface washoff of
 320 loosely bound and particulate Hg was a rapid and larger source of Hg in forest throughfall compared to continuously foliar Hg
 321 leaching from live leaves. It is likely because dry leaves lack structural integrity compared to live leaves in Rea et al.'s (2000)
 322 study, leading to more rapid leaching of soluble constituents (Gessner et al., 1999), including Hg, so the results of these prior
 323 studies are not directly comparable to this one. Further, although Hg leached from senesced leaf material was a small (< 5 % of
 324 foliar tissue Hg) but a measurable contributor to the mass balance, it is one that would be completely missed if material had been
 325 collected from a litter trap that had been exposed to rainfall for any period.

326 **4.3 The roles of dissolved organic matter properties in Hg mobility during litter leaching phase**

327 **The quantity and characteristics of DOM in leachate.** The mean mass of DOC leached per gram of senesced leaf material and
 328 the mass loss during senesced leaf material leaching was significantly different between plant species (leached DOC mass: $F_{(2,42)}$
 329 = 34.95, $p < 0.001$; mass loss: $F_{(2,42)} = 11.62$, $p < 0.05$) with a same sequence following: few-seeded sedge/wire sedge < tussock
 330 sedge < sweet gale (Fig. 5). The same sequence is in part because the loss of soluble carbons accounted for the majority of the
 331 mass loss during litter leaching (Del Giudice and Lindo, 2017). Mass loss of sweet gale (17.7%) was significantly larger than
 332 sedges (few-seeded sedge/wire sedge (8.1%) and tussock sedge (11.5%)). The released DOC accounted for $22.96 \pm 14.85\%$,
 333 $23.73 \pm 12.95\%$, and $17.03 \pm 6.68\%$ of mass loss during senesced leaf material leaching for few-seeded sedge/wire sedge,

334 tussock sedge, and sweet gale, respectively. Loss of other nutrients, such as dissolved organic nitrogen (DON) and dissolved
 335 organic phosphorus (DOP) (Ong et al., 2017; Liu et al., 2018; Hensgens et al., 2020) and the inorganic components and other
 336 elemental organic matter (Lavery et al., 2013; Jiménez et al., 2017) also contribute to the mass loss, despite these nutrients not
 337 being measured.


338

339 **Figure 5** Mass of dissolved organic carbon (DOC) leached per gram of senesced leaf material (mg g⁻¹) (a), and mass loss after 48 h
 340 leaching (b). Boxplot displays median (50th percentile; the inside line of the box), first quartile (25th percentile; lower bound of the
 341 box), third quartile (75th percentile; upper bound of the box), whiskers (all measures between 5th percentile and 25th percentile and
 342 between 75th percentile and 95th percentile; the straight line below and above the box), and outliers (individual points outside of the
 343 percentile of 5th and 95th). n = 15.

344 Characteristics of DOM also varied among plant species (SUVA₂₅₄: $F_{(2,42)} = 24.02$, $p < 0.001$; FI: $F_{(2,42)} = 11.24$, $p < 0.001$;
 345 HIX_{EM}: $F_{(2,42)} = 3.82$, $p < 0.05$; BIX: $F_{(2,42)} = 125.48$, $p < 0.001$) (Fig. 6 and Table 2). Based on *post hoc* tests, there were
 346 significant differences in SUVA₂₅₄ and FI between sweet gale and sedges (few-seeded sedge/wire sedge) only and in BIX among
 347 all plant species. FI (1.2-1.8) and BIX (<1.0) reflected that DOM in leachate was generally of plant origin, suggesting that the
 348 microbially-derived OM was a smaller component. The mean value of SUVA₂₅₄ in leachate followed the sequence: tussock

349 sedge \approx few-seeded sedge/wire sedge > sweet gale leaves, respectively, indicating that leached DOM from tussock sedge and
350 few-seeded sedge/wire sedge leaves had higher aromaticity and higher molecular weights than that from the sweet gale leaves.
351 SUVA₂₅₄ was negatively related to DOM concentrations ($F_{(1,43)} = 48.37$, $p < 0.001$, $y = -0.69x + 3.93$, $R^2 = 0.53$) when all plant
352 species were considered, suggesting that sweet gale prefers to release more amount of lower aromatic DOM.

353 Previous studies have found that characteristics of DOM controlled Hg mobility and methylation (Cui et al., 2022; Jiang et al.,
354 2018; Ravichandran 2004; Xin et al., 2022; Wang et al., 2022). Hg is tightly and readily bound to reduced sulfur groups (i.e.,
355 thiols) in DOM (Ravichandran, 2004; Xia et al., 1999). Mercury weakly binds to carboxyl and phenol functional groups in DOM
356 after all thiol groups are occupied at relatively high Hg concentrations (Drexel et al., 2002; Graham et al., 2012), which is
357 atypical in most natural environments in which Hg concentrations are relatively low. Higher terrestrial (plant-derived) DOM had
358 a greater DOM-Hg affinity (Wang et al., 2022). Additionally, DOM with higher aromaticity and molecular weight strongly
359 bonded with Hg(II), potentially because these DOM provide more sulfidic groups such as thiols (Dittman et al., 2009; Wang et
360 al., 2022). Therefore, terrestrial DOM and/or DOM with higher aromaticity and molecular weight may transport more Hg into
361 peat soils during the litter leaching phase.

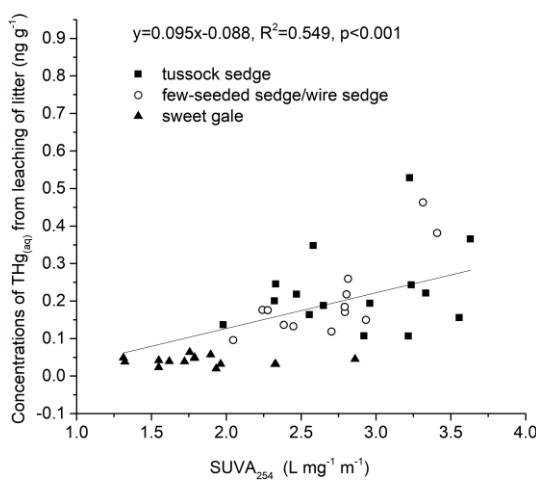

362
363 **Figure 6** Dissolved organic matter characteristics as measured by specific ultraviolet absorbance at the wavelength 254 nm (SUVA₂₅₄),
364 $n = 15$. Boxplot displays median (50th percentile; the inside line of the box), first quartile (25th percentile; lower bound of the box),
365 third quartile (75th percentile; upper bound of the box), whiskers (all measures between 5th percentile and 25th percentile and
366 between 75th percentile and 95th percentile; the straight line below and above the box), and outliers (individual points outside of the
367 percentile of 5th and 95th).

Table 2 The mean fluorescence indices of dissolved organic matter characteristics^a

Index	Tussock sedge	Few-seeded sedge/wire sedge	Sweet gale
FI	1.19 ± 0.10	1.31 ± 0.09	1.49 ± 0.27
HIX _{EM}	0.16 ± 0.03	0.16 ± 0.02	0.19 ± 0.03
BIX	0.53 ± 0.05	0.63 ± 0.06	0.35 ± 0.04

369 ^aLower values of the FI (< 1.2) suggest dissolved organic matter (DOM) has higher aromaticity and is primarily composed of
 370 high-molecular-weight DOM, while high FI values (> 1.8) indicate that DOM has lower aromaticity and is mainly composed of
 371 low-molecular-weight DOM. DOM with high HIX_{EM} (> 1) values is composed of more highly condensed and higher molecular
 372 weight molecules. In contrast, higher BIX (> 1.0) values reflect that more low-molecular-weight DOM is recently produced,
 373 generally, by microbes. All indices are unitless, n = 15.

374 **Correlation between THg_{aq} concentrations and SUVA₂₅₄ values in leachate.** The concentrations of soluble THg_{aq} were
 375 significantly related to SUVA₂₅₄ values ($F_{(1,41)} = 52.06$, $p < 0.001$, $y = 0.09x - 0.09$, $R^2 = 0.55$; Fig. 7). This result suggested that
 376 DOM with higher aromaticity plays an important role in controlling Hg mobility (Ravichandran, 2004). The value of R^2 was
 377 only 0.55, which can be attributed that the number of reduced sulfur groups in DOM far exceeds the amount of Hg in natural
 378 environments and other factors, such as pH and sulfide may affect the binding between DOM and Hg (Ravichandran, 2004). In
 379 this study, DOM with higher aromaticity may transport more Hg from litter to soils, and senesced leaves of sedges had a higher
 380 potential in leaching Hg into peatland soils than the senesced leaves of sweet gales in this study.

382 **Figure 7 Correlations between the mass of mercury leached per gram of senesced leaf material (THg_{aq}) and the specific ultraviolet**
 383 **absorbance at the wavelength 254 nm (SUVA₂₅₄) in leachate.**

384 **4.5 Estimation of annual input of Hg via senesced leaves and rapid Leaching to peat soils**

385 The annual input of leaf biomass (mg/ha/yr) of few-seeded sedge/wire sedge into peat soils was 5.55 and 1.41 fold higher than
 386 tussock sedge and sweet gale, while the annual inputs of Hg (mg/ha/yr) via sweet gale leaves were 6.29 and 1.22 fold higher than
 387 via tussock sedge and few-seeded/wire sedge leaves in the sedge-dominated fen (Table 3). Annual total Hg input through
 388 senesced leaves to peat soils were 1.56, 8.03, and 9.82 mg/ha/yr for tussock sedge, few-seeded sedge/wire sedge, and sweet gale,
 389 respectively. The input of surficial Hg and leachable Hg accounted for 0.64 % and 0.37 %, 0.31 % and 3.20 %, and 2.86 % and
 390 0.30 % of total foliar Hg input to peat soils annually for tussock sedge, few-seeded sedge/wire sedge, and sweet gale,
 391 respectively. The majority of Hg in senesced leaves (> 96 %) was from the deposition of solid plant tissues in litter.

392

393 **Table 3 Annual input of senesced leaves, and senesced leaf Hg, surficial Hg, and leached Hg during leaching into peat**
 394 **soils per hectare and per year in the sedge-dominated fen (mg/ha/yr).**

Species	Senesced leaf biomass (mg/ha/yr)	Litter total Hg input (mg/ha/yr)	Washoff Hg input (mg/ha/yr)	Leachate Hg input (mg/ha/yr)
Tussock sedge	2.07×10^8	1.56	0.01	0.05
Few-seeded sedge/wire sedge	1.15×10^9	8.03	0.03	0.23
Sweet gale	8.18×10^8	9.82	0.03	0.03
Total	2.17×10^9	19.41	0.07	0.31

395

396 Based on the data from the study growing season, the annual input of Hg in total via senesced leaves (19.40 mg/ha/yr) was 5-
 397 22 % of litterfall in forest ecosystems (e.g., jack pine/black spruce/balsam fir forest, red maple/birch forest, Norway spruce
 398 forest; 86-372 mg/ha/yr) (St Louis et al., 2001; Graydon et al., 2008; Shanley and Bishop, 2012), which can be attributed to those
 399 forest ecosystems having both higher mean foliar Hg concentrations (21-51 ng g⁻¹) (Zhou and Obrist, 2021) and much greater
 400 aboveground biomass and litterfall inputs (2000-3488 kg/ha/yr) (Graydon et al., 2008) than plants in this study. The overall
 401 annual Hg inputs via these senesced leaves to peat soils in this sedge-dominated fen were 59 % of that via wet deposition using

402 the mean precipitation Hg input estimates from the Experimental Lakes Area (33 mg/ha/yr) for the years 2001-2010, which is in
403 the same general geographic region of Ontario (St Louis et al., 2019).

404 **5 Conclusions**

405 This study shows that the widely-observed pattern of foliar Hg accumulation from the atmosphere and changes in foliar Hg
406 concentrations over time are the same in peatland vascular plants as they are for forest trees and that the patterns are related to
407 time/leaf age and plant species. The THg concentrations in senesced leaves in this study are relatively lower than that in the
408 forest litterfall. Hg released from ubiquitous sedge litter during leaching is relatively more quickly than the much slower release
409 of tissue-associated Hg through the decomposition of plant tissues. Thus, the supply of inorganic Hg to sites of methylation in
410 peatlands has both fast and slow pathways that may shift under climate change, given that peatland plant species composition
411 and biomass will certainly change under climate change.

412

413 ■DATA AVAILABILITY

414 All data generated or analysed during this study are included in this published article and its supplementary information files.

415 ■SUPPLEMENT

416 The supplement related to this article is available online.

417 ■AUTHOR CONTRIBUTION

418 Ting Sun carried the project out, collected all samples, performed the leaching experiment, analyzed samples and data, and wrote
419 the manuscript. Brian A. Branfireun designed the experiments, provided supervision, and edited the manuscript.

420 ■COMPETING INTERESTS

421 The authors declare that they have no conflict of interest.

422 ■DISCLAIMER

423 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional
424 affiliations.

425 ■ACKNOWLEDGMENTS

426 The research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic projects
427 Grant (STPGP/479026-2015). We thank all members of Dr. Brian A. Branfireun and Dr. Zoë Lindo lab group for their help in
428 the field.

429 ■ABBREVIATIONS

430 Hg, mercury; MeHg, methylmercury; GEM, gaseous elemental mercury; RGM, reactive gaseous mercury; PBM, particulate-
431 bound mercury; THg, total mercury; THg_{aq}, dissolved total mercury; SRB, sulfate-reducing bacteria; %C, carbon content; %N,
432 nitrogen content; C:N, the ratio of leaf C content and N content; dissolved organic matter (DOM); DOC, dissolved organic
433 carbon; SUVA₂₅₄, specific ultraviolet absorbance at a wavelength of 254 nm; EEMs, fluorescence excitation-emission matrices;
434 FI, fluorescence index; HIX_{EM}, humification index; BIX, biological index; soil organic matter (SOM); CRM, certified reference
435 material; RSD, relative standard deviation.

436

437

438

439

440

441

442

443

444

445 **References**

446 Antúnez, I., Retamosa, E. C., and Villar, R.: Relative growth rate in phylogenetically related deciduous and evergreen woody
447 species, *Oecologia*, 128, 172-180, DOI:10.1007/s004420100645, 2001.

448 Arnold, J., Gustin, M. S., Weisberg, P. J.: Evidence for nonstomatal uptake of Hg by aspen and translocation of Hg from foliage
449 to tree rings in Austrian pine, *Environ. Sci. Technol.*, 52, 1174-1182, DOI10.1021/acs.est.7b04468, 2018.

450 Bessaad, A. and Korbolewsky, N.: How much does leaf leaching matter during the pre-drying period in a whole-tree harvesting
451 system? *Forest Ecol. Manag.*, 477, 118492, DOI:10.1016/j.foreco.2020.118492, 2020.

452 Blackwell, B. D. and Driscoll, C. T.: Deposition of mercury in forests along a montane elevation gradient. *Environ. Sci. Technol.*,
453 49, 5363-5370, DOI:10.1021/es505928w, 2015.

454 Blodau, C., Mayer, B., Peiffer, S., Moore, T. R.: Support for an anaerobic sulfur cycle in two Canadian peatland soils, *J. Geophys.
455 Res-Biogeo.*, 112, G02004, DOI:10.1029/2006JG000364, 2007.

456 Brahmstedt, E. S., Crespo, C. N. A., Holsen, T. M., Twiss, M. R., Mercury distribution in an Upper St. Lawrence River wetland
457 dominated by cattail (*Typha angustifolia*), *Wetlands*, 41, DOI10.1007/s13157-021-01511-9, 2021.

458 Branfireun, B. A., Heyes, A., and Roulet, N. T.: The hydrology and methylmercury dynamics of a Precambrian Shield headwater
459 peatland, *Water Resour. Res.*, 32, 1785-1794, DOI:10.1029/96WR00790, 1996.

460 Branfireun, B. A., Krabbenhoft, D. P., Hintelmann, H., Hunt, R. J., Hurley, J. P., Rudd, J. W. M.: Speciation and transport of
461 newly deposited mercury in a boreal forest wetland: A stable mercury isotope approach. *Water Resour. Res.*, 41, W06016,
462 DOI:10.1029/2004WR003219, 2005.

463 Buttler, A., Robroek, B. J., Laggoun-Défarge, F., Jassey, V. E., Pochelon, C., Bernard, G., Delarue, F., Gogo, S., Mariotte, P.,
464 Mitchell, E. A. D.: Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic
465 peatland. *J. Veg. Sci.*, 26, 964-974, DOI:10.1111/jvs.12296, 2015.

466 Cabrita, M. T., Duarte, B., Cesario, R., Mendes, R., Hintelmann, H., Eckey, K., Dimock, B., Cacador, I., Canário, J.: Mercury
467 mobility and effects in the salt-marsh plant *Halimione portulacoides*: Uptake, transport, and toxicity and tolerance
468 mechanisms, *Sci. Total Environ.*, 650, 111-120, DOI10.1016/j.scitotenv.2018.08.335, 2019.

469 Canário, J., Poissant, L., Pilote, M., Caetano, M., Hintelmann, H., O'Driscoll, N. J.: Salt-marsh plants as potential sources of Hg-
470 0 into the atmosphere, *Atmos. Environ.*, 152, 458-464, DOI10.1016/j.atmosenv.2017.01.011, 2017.

471 Cui, H. Y., Zhao, Y., Zhao, L., Wei, Z. M.: Characterization of mercury binding to different molecular weight fractions of dissolved
472 organic matter, *J. Hazard. Mater.*, 431, DOI10.1016/j.jhazmat.2022.128593, 2022.

473 de Boer, H. J., Price, C. A., Wagner-Cremer, F., Dekker, S. C., Franks, P. J., Veneklaas, E. J.: Optimal allocation of leaf
474 epidermal area for gas exchange, *New Phytol.*, 210, 1219-1228, DOI10.1111/nph.13929, 2016.

475 Demers, J. D., Driscoll, C. T., Fahey, T. J., Yavitt, J. B.: Mercury cycling in litter and soil in different forest types in the
476 Adirondack region, New York, USA, *Ecol. Appl.*, 17, 1341-1351, DOI:10.1890/06-1697.1, 2007.

477 Del Giudice, R. and Lindo, Z.: Short-term leaching dynamics of three peatland plant species reveals how shifts in plant
478 communities may affect decomposition processes, *Geoderma*, 285, 110-116, DOI:10.1016/j.geoderma.2016.09.028,
479 2017.

480 Dieleman, C. M., Branfireun, B. A., McLaughlin, J. W., Lindo, Z.: Climate change drives a shift in peatland ecosystem plant
481 community: implications for ecosystem function and stability, *Glob. Change Biol.*, 21, 388-395, DOI:10.1111/gcb.12643,
482 2015.

483 Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., Towse, J. E.: Ultraviolet absorbance as a proxy for
484 total dissolved mercury in streams, *Environ. Pollut.*, 157, 1953-1956, DOI:10.1016/j.envpol.2009.01.031, 2009.

485 Drexel, R. T., Haitzer, M., Ryan, J. N., Aiken, G. R., Nagy, K. L.: Mercury (II) sorption to two Florida Everglades peats:

486 evidence for strong and weak binding and competition by dissolved organic matter released from the peat, *Environ. Sci.*
487 *Technol.*, 36, 4058-4064, DOI:10.1021/es0114005, 2002.

488 Enrico, M., Le Roux, G., Marusczak, N., Heimbürger, L. E., Claustres, A., Fu, X. W., Sun, R. Y., Sonke, J. E.: Atmospheric
489 mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition, *Environ. Sci. Technol.*, 50, 2405-
490 2412, DOI10.1021/acs.est.5b06058, 2016.

491 Erickson, J., Gustin, M., Schorran, D., Johnson, D., Lindberg, S., Coleman, J.: Accumulation of atmospheric mercury in forest
492 foliage, *Atmos. Environ.*, 37, 1613-1622, DOI:10.1016/S1352-2310(03)00008-6, 2003.

493 Erickson, J. A. and Gustin, M.: Foliar exchange of mercury as a function of soil and air mercury concentrations, *Sci. Total
494 Environ.*, 324, 271-279, DOI10.1016/j.scitotenv.2003.10.034, 2004.

495 Fay, L., and Gustin, M. S.: Investigation of mercury accumulation in cattails growing in constructed wetland mesocosms,
496 *Wetlands*, 27, 1056-1065, DOI10.1672/0277-5212(2007)27[1056:IOMAIC]2.0.CO;2, 2007.

497 Fellman, J. B., Hood, E., and Spencer, R. G.: Fluorescence spectroscopy opens new windows into dissolved organic matter
498 dynamics in freshwater ecosystems: A review, *Limnol. Oceanogr.*, 55, 2452-2462, DOI:10.4319/lo.2010.55.6.2452, 2010.

499 Frolking, S., Roulet, N. T., Moore, T. R., Richard, P. J., Lavoie, M., Muller, S. D.: Modeling northern peatland decomposition
500 and peat accumulation, *Ecosystems* 4, 479-498, DOI10.1007/s10021-001-0105-1, 2001.

501 Gessner, M. O., Chauvet, E., and Dobson, M.: A perspective on leaf litter breakdown in streams, *Oikos* 85, 377-384,
502 DOI10.2307/3546505, 1999.

503 Gorham, E.: Northern peatlands: Role in the carbon cycle and probable responses to climatic warming, *Ecol. Appl.*, 1, 182-195,
504 DOI:10.2307/1941811, 1991.

505 Graham, A. M., Aiken, G. R., and Gilmour, C. C.: Dissolved organic matter enhances microbial mercury methylation under
506 sulfidic conditions, *Environ. Sci. Technol.*, 46, 2715-2723, DOI:10.1021/es203658f, 2012.

507 Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W., Kelly, C. A., Hall, B. D.,
508 Mowat, L. D.: Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada,
509 *Environ. Sci. Technol.*, 42, 8345-8351, DOI:10.1021/es801056j, 2008.

510 Haitzer, M., Aiken, G. R., and Ryan, J. N.: Binding of mercury (II) to dissolved organic matter: The role of the mercury-to-DOM
511 concentration ratio, *Environ. Sci. Technol.*, 36, 3564-3570, DOI:10.1021/es025699i, 2002.

512 Hensgens, G., Laudon, H., Peichl, M., Gil, I. A., Zhou, Q., Berggren, M.: The role of the understory in litter DOC and nutrient
513 leaching in boreal forests, *Biogeochemistry*, 149, 87-103, DOI:10.1007/s10533-020-00668-5, 2020.

514 Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., Lindberg, S., Rudd, J. W., Scott, K. J., St.
515 Louis, V. L.: Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year
516 of the METAALICUS study, *Environ. Sci. Technol.*, 36, 5034-5040, DOI:10.1021/es025572t, 2002.

517 Hobbie, S. E.: Temperature and plant species control over litter decomposition in Alaskan tundra, *Ecol. Monogr.*, 66, 503-522,
518 DOI:10.2307/2963492, 1996.

519 Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., Parlanti, E.: Properties of fluorescent dissolved organic
520 matter in the Gironde Estuary, *Org. Geochem.*, 40, 706-719, DOI:10.1016/j.orggeochem.2009.03.002, 2009.

521 Jiang, T., Bravo, A. G., Skjellberg, U., Bjorn, E., Wang, D. Y., Yan, H. Y., Green, N. W.: Influence of dissolved organic matter
522 (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest
523 China, *Water Res.*, 146, 146-158, DOI10.1016/j.watres.2018.08.054, 2018.

524 Jiménez, M. A., Beltran, R., Traveset, A., Calleja, M. L., Delgado-Huertas, A., Marba, N.: Aeolian transport of seagrass
525 (*Posidonia oceanica*) beach-cast to terrestrial systems, *Estuar. Coast. Shelf S.*, 196, 31-44,
526 DOI:10.1016/j.ecss.2017.06.035, 2017.

527 Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C. L., Pfaffhuber, K. A., Wängberg, I., Kyllonen, K.,

528 Worthy, D.: A vegetation control on seasonal variations in global atmospheric mercury concentrations, *Nat. Geosc.*, 11,
529 244-250, DOI:10.1038/s41561-018-0078-8, 2018.

530 Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A., & Brodribb, T. J.: Environmental adaptation in stomatal size independent
531 of the effects of genome size. *New Phytol.*, 205, 608–617, DOI:10.1111/nph.13076, 2015.

532 Kneer, M. L., White, A., Rolflus, K. R., Jeremiason, J. D., Johnson, N. W., Ginder-Vogel, M.: Impact of dissolved organic matter
533 on porewater Hg and MeHg concentrations in St. Louis River estuary sediments, *ACS Earth Space Chem.*, 4, 1386-1397,
534 DOI:10.1021/acsearthspacechem.0c00134, 2020.

535 Koike, T., Kitaoka, S., Ichie, T., Lei, T., Kitao, M.: Photosynthetic characteristics of mixed deciduous-broadleaf forests from leaf
536 to stand, Terra, Publishing, Tokyo, Japan. 2003.

537 Kueh, J. H. R., Ab Majid, N. M., Seca, G., Ahmed, O. H.: Above ground biomass-carbon partitioning, storage and sequestration
538 in a Rehabilitated forest, Bintulu, Sarawak, Malaysia, *Sains Malays.*, 42, 1041-1050, 2013.

539 Laacouri, A., Nater, E. A., and Kolka, R. K.: Distribution and uptake dynamics of mercury in leaves of common deciduous tree
540 species in Minnesota, USA, *Environ. Sci. Technol.*, 47, 10462-10470, DOI:10.1021/es401357z, 2013.

541 Lavery, P. S., McMahon, K., Weyers, J., Boyce, M. C., Oldham, C. E.: Release of dissolved organic carbon from seagrass wrack
542 and its implications for trophic connectivity, *Mar. Ecol-Prog. Ser.*, 494, 121-133, DOI:10.3354/meps10554, 2013.

543 Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., Seigneur, C.: A
544 synthesis of progress and uncertainties in attributing the sources of mercury in deposition, *AMBIO*, 36, 19-33,
545 DOI:10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2, 2007.

546 Lindberg, S. E., Meyers, T. P., Taylor, G. E., Turner, R. R., Schroeder, W. H.: Atmosphere surface exchange of mercury in a
547 forest: results of modeling and gradient approaches, *J. Geophys. Res. Atmos.*, 97, 2519-2528, DOI:10.1029/91JD02831,
548 1992.

549 Liu, S. L., Jiang, Z. J., Zhou, C. Y., Wu, Y. C., Arbi, I., Zhang, J. P., Huang, X. P., Trevathan-Tackett, S. M.: Leaching of
550 dissolved organic matter from seagrass leaf litter and its biogeochemical implications, *Acta Oceanol. Sin.*, 37, 84-90,
551 DOI:10.1007/s13131-018-1233-1, 2018.

552 Lodenius, M., Tulisalo, E., and Soltanpour-Gargari, A.: Exchange of mercury between atmosphere and vegetation under
553 contaminated conditions, *Sci. Total Environ.*, 304, 169-174, DOI:10.1016/S0048-9697(02)00566-1, 2003.

554 Lyons, C. L. and Lindon, Z.: Above-and belowground community linkages in boreal peatlands, *Plant Ecol.*, 221, 615-632,
555 DOI:10.1007/s11258-020-01037-w, 2019.

556 Mao, Y. X., Li, Y. B., Richards, J., Cai, Y.: Investigating uptake and translocation of mercury species by Sawgrass (*Cladium*
557 *jamaicense*) using a stable isotope tracer technique, *Environ. Sci. Technol.*, 47, 9678-9684, DOI:10.1021/es400546s, 2013.

558 McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., Andersen, D. T.: Spectrofluorometric characterization
559 of dissolved organic matter for indication of precursor organic material and aromaticity. *Limnol. Oceanogr.*, 46, 38-48,
560 DOI:10.4319/lo.2001.46.1.00038, 2001.

561 McLagan, D. S., Biester, H., Navratil, T., Kraemer, S. M., Schwab, L.: Internal tree cycling and atmospheric archiving of
562 mercury: examination with concentration and stable isotope analyses, *Biogeosciences*, 19, 4415-4429, DOI:10.5194/bg-
563 19-4415-2022, 2022.

564 Millhollen, A., Obrist, D., and Gustin, M.: Mercury accumulation in grass and forb species as a function of atmospheric carbon
565 dioxide concentrations and mercury exposures in air and soil, *Chemosphere*, 65, 889-897,
566 DOI:10.1016/j.chemosphere.2006.03.008, 2006a.

567 Millhollen, A. G., Gustin, M. S., and Obrist, D.: Foliar mercury accumulation and exchange for three tree species, *Environ. Sci.*
568 *Technol.*, 40, 6001-6006, DOI:10.1021/es0609194, 2006b.

569 Mitchell, C. P. J., Branfireun, B. A., and Kolka, R. K.: Spatial characteristics of net methylmercury production hot spots in

570 peatlands, *Environ. Sci. Technol.*, 42, 1010-1016, DOI:10.1021/es0704986, 2008.

571 Moore, T., Bubier, J., Heyes, A., Flett, R.: Methyl and total mercury in boreal wetland plants, *Experimental Lakes Area*,
572 Northwestern Ontario, *J. Environ. Qual.*, 24, 845-850, DOI:10.2134/jeq1995.00472425002400050007x, 1995.

573 Morel, F. M., Kraepiel, A. M., and Amyot, M.: The chemical cycle and bioaccumulation of mercury, *Annu. Rev. Ecol. Syst.*, 29,
574 543-566, DOI:10.1146/annurev.ecolsys.29.1.543, 1998.

575 Newmaster, S. G., Harris, A. G., and Kershaw, L. J.: *Wetland plants of Ontario*. Lone Pine Publishing, Edmonton, Canada, 1997.

576 Obrist, D., Agnan, Y., Jiskra, M., Olson, C., Colegrove, D., Hueber, J., Moore, C., Sonke, J., Helmig, D.: Tundra uptake of
577 atmospheric elemental mercury drives Arctic mercury pollution, *Nature*, 547, 201–204, DOI:10.1038/nature22997, 2017.

578 Obrist, D., Johnson, D., and Lindberg, S.: Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships
579 to organic carbon and nitrogen, *Biogeosciences*, 6, 765-777, DOI:10.5194/bg-6-765-2009, 2009.

580 Obrist, D., Johnson, D. W., and Edmonds, R. L.: Effects of vegetation type on mercury concentrations and pools in two adjacent
581 coniferous and deciduous forests, *J. Plant Nutr. Soil Sc.*, 175, 68-77, DOI:10.1002/jpln.201000415, 2012.

582 Obrist, D., Roy, E. M., Harrison, J. L., Kwong, C. F., Munger, J. W., Moosmuller, H., Romero, C. D., Sun, S.W., Zhou, J.,
583 Commane, R.: Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest, *P. Natl. Acad.*
584 *Sci. USA.*, 118, DOI:10.1073/pnas.2105477118, 2021.

585 Palozzi, J. E. and Lindo, Z.: Boreal peat properties link to plant functional traits of ecosystem engineers, *Plant Soil*, 418, 277-
586 291, DOI:10.1007/s11104-017-3291-0, 2017.

587 Pech, P., Wojtun, B., Samecka-Cyberman, A., Polechonska, L., Kempers, A. J.: Metals in plant functional types of ombrotrophic
588 peatlands in the Sudetes (SW Poland), *Arch. Environ. Contam. Toxicol.*, 82, 506-519, DOI:10.1007/s00244-022-00928-5,
589 2022.

590 Poissant, L., Pilote, M., Yumvihoze, E., Lean, D.: Mercury concentrations and foliage/atmosphere fluxes in a maple forest
591 ecosystem in Quebec, Canada, *J. Geophys. Res-Atmos.*, 113, DOI:10.1029/2007JD009510, 2008.

592 Ravichandran, M.: Interactions between mercury and dissolved organic matter: A review, *Chemosphere*, 55, 319-331,
593 DOI:10.1016/j.chemosphere.2003.11.011, 2004.

594 Rea, A., Lindberg, S., Scherbatskoy, T., Keeler, G.J.: Mercury accumulation in foliage over time in two northern mixed-
595 hardwood forests, *Water Air Soil Poll.*, 133, 49-67, DOI:10.1023/A:1012919731598, 2002.

596 Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Assessment of dry deposition and foliar leaching of mercury and selected trace
597 elements based on washed foliar and surrogate surfaces, *Environ. Sci. Technol.*, 34, 2418-2425, DOI:10.1021/es991305k,
598 2000.

599 Redjala, T., Zelko, I., Sterckeman, T., Legue, V., Lux, A.: Relationship between root structure and root cadmium uptake in maize,
600 *Environ. Exp. Bot.*, 71, 241-248, DOI:10.1016/j.envexpbot.2010.12.010, 2011.

601 Richardson, J. and Friedland, A.: Mercury in coniferous and deciduous upland forests in northern New England, USA:
602 implications of climate change, *Biogeosciences*, 12, 6737-6749, DOI:10.5194/bg-12-6737-2015, 2015.

603 Risch, M. R., DeWild, J. F., Gay, D. A., Zhang, L., Boyer, E. W., Krabbenhoft, D. P.: Atmospheric mercury deposition to forests
604 in the eastern USA, *Environ. pollut.*, 228, 8-18, DOI:10.1016/j.envpol.2017.05.004, 2017.

605 Risch, M. R., DeWild, J. F., Krabbenhoft, D. P., Kolka, R. K., Zhang, L. M.: Litterfall mercury dry deposition in the eastern
606 USA, *Environ. Pollut.*, 161, 284-290, DOI:10.1016/j.envpol.2011.06.005, 2012.

607 Rydin, H. and Jeglum, J. K.: *The biology of peatlands*. (2nd ed.), Oxford, United Kingdom, Oxford University Press. 2013.

608 Schmalenberger, A., Drake, H. L., and Küsel, K.: High unique diversity of sulfate-reducing prokaryotes characterized in a depth
609 gradient in an acidic fen, *Environ. Microbiol.*, 9, 1317-1328, DOI:10.1111/j.1462-2920.2007.01251.x, 2007.

610 Schroeder, W. H. and Munthe, J.: Atmospheric mercury: An overview, *Atmos. Environ.*, 32, 809-822, DOI:10.1016/S1352-
611 2310(97)00293-8, 1998.

612 Shanley, J. B. and Bishop, K.: Mercury cycling in terrestrial watersheds. In: Banks, M. S. (Ed.), *Mercury in the Environment: 613 pattern and process*, pp. 119-141. 2012.

614 Skjellberg, U., Xia, K., Bloom, P. R., Nater, E. A., Bleam, W. F.: Binding of mercury (II) to reduced sulfur in soil organic matter 615 along upland-peat soil transects, *J. Environ. Qual.*, 29, 855-865, DOI:10.2134/jeq2000.00472425002900030022x, 2000.

616 St. Louis, V. L., Graydon, J. A., Lehnher, I., Amos, H. M., Sunderland, E. M., St. Pierre, K. A., Emmerton, C. A., Sandilands, K., 617 Tate, M., Steffen, A., Humphreys, E. R.: Atmospheric concentrations and wet/dry loadings of mercury at the remote 618 Experimental Lakes Area, Northwestern Ontario, Canada, *Environ. Sci. Technol.*, 53, 8017-8026, 619 DOI:10.1021/acs.est.9b01338, 2019.

620 St. Louis, V. L., Rudd, J. W., Kelly, C. A., Beaty, K. G., Bloom, N. S., Flett, R. J.: Importance of wetlands as sources of methyl 621 mercury to boreal forest ecosystems, *Can. J. Fish. Aquat. Sci.*, 51, 1065-1076, DOI:10.1139/f94-106, 1994.

622 St. Louis, V. L., Rudd, J. W., Kelly, C. A., Hall, B. D., Rolphus, K. R., Scott, K. J., Lindberg, S. E., Dong, W.: Importance of the 623 forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems, *Environ. Sci. Technol.*, 35, 3089-3098, 624 DOI:10.1021/es001924p, 2001.

625 Stamenkovic, J. and Gustin, M. S.: Nonstomatal versus stomatal uptake of atmospheric mercury, *Environ. Sci. Technol.*, 43, 626 1367-1372, DOI:10.1021/es801583a, 2009.

627 Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M., Jacob, D. J.: All-time releases of mercury to the 628 atmosphere from human activities, *Environ. Sci. Technol.*, 45, 10485-10491, DOI:10.1021/es202765m, 2011.

629 Tian, J., Branfireun, B. A., Lindo, Z.: Global change alters peatland carbon cycling through plant biomass allocation, *Plant Soil*, 630 455, 53-64, DOI:10.1007/s11104-020-04664-4, 2020.

631 Ullrich, S. M., Tanton, T. W., and Abdrashitova, S. A.: Mercury in the aquatic environment: A review of factors affecting 632 methylation, *Crit. Rev. Env. Sci. Tec.*, 31, 241-293, DOI:10.1080/20016491089226, 2001.

633 Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., Howarth, R. W., Marino, R., Martinelli, L., 634 Rastetter, E. B., Sprent, J. I.: Towards an ecological understanding of biological nitrogen fixation, *Biogeochemistry*, 57, 635 1-45, DOI:10.1023/A:1015798428743, 2002.

636 Wang, W. Q., Wang, M., and Lin, P.: Seasonal changes in element contents in mangrove element retranslocation during leaf 637 senescence, *Plant Soil*, 252, 187-193, DOI:10.1023/A:1024704204037, 2003.

638 Wang, X., Bao, Z., Lin, C. J., Yuan, W., Feng, X.: Assessment of global mercury deposition through litterfall, *Environ. Sci.* 639 *Technol.*, 50, 8548-8557, DOI:10.1021/acs.est.5b06351, 2016.

640 Wang, X., Tam, N. F., He, H. D., Ye, Z. H.: The role of root anatomy, organic acids and iron plaque on mercury accumulation in 641 rice, *Plant Soil*, 394, 301-313, DOI:10.1007/s11104-015-2537-y, 2015.

642 Wang, Y. Q., Liu, J., Van, L. N., Tian, S. Y., Zhang, S. Q., Wang, D. Y., Jiang, T.: Binding strength of mercury (II) to different 643 dissolved organic matter: The roles of DOM properties and sources, *Sci. Total Environ.*, 807, 644 DOI:10.1016/j.scitotenv.2021.150979, 2022.

645 Webster, K. L. and McLaughlin, J. W.: Importance of the water table in controlling dissolved carbon along a fen nutrient 646 gradient, *Soil Sci. Soc. Am. J.*, 74, 2254-2266, DOI:10.2136/sssaj2009.0111, 2010.

647 Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., Mopper, K.: Evaluation of specific ultraviolet 648 absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, *Environ. Sci.* 649 *Technol.*, 37, 4702-4708, DOI:10.1021/es030360x, 2003.

650 Weltzin, J. F., Pastor, J., Harth, C., Bridgman, S. D., Updegraff, K., Chapin, C. T.: Response of bog and fen plant communities to 651 warming and water-table manipulations, *Ecology*, 81, 3464-3478, DOI:10.1890/0012- 652 9658(2000)081[3464:ROBAFP]2.0.CO;2, 2000.

653 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.

654 H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk,
655 C., Midgley, J. J., Navas, M. L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I.,
656 Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., Villar, R.: The worldwide leaf economics spectrum, *Nature*,
657 428, 821-827, DOI:10.1038/nature02403, 2004.

658 Xia, K., Skjellberg, U., Bleam, W., Bloom, P., Nater, E., Helmke, P.: X-ray absorption spectroscopic evidence for the
659 complexation of Hg (II) by reduced sulfur in soil humic substances, *Environ. Sci. Technol.*, 33, 257-261,
660 DOI:10.1021/es980433q, 1999.

661 Xin, Y., Zhang, X. H., Zheng, D. M., Zhang, Z. S., Jiang, M.: Impacts of spectral characteristics of dissolved organic matter on
662 methylmercury contents in peatlands, Northeast China, *Environ. Geochem. Hlth.*, DOI10.1007/s10653-022-01257-1,
663 2022.

664 Xiong, D. L., Douthe, C., Flexas, J.: Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic
665 conductance in response to changing light across species, *Plant Cell Environ.*, 41, 436-450, DOI10.1111/pce.13111, 2018.

666 Yu, B.; Fu, X. W.; Yin, R. S.; Zhang, H.; Wang, X.; Lin, C. J.; Wu, C. S.; Zhang, Y. P.; He, N. N.; Fu, P. Q.; Wang, Z. F.; Shang, L.
667 H.; Sommar, J.; Sonke, J. E.; Maurice, L.; Guinot, B.; Feng, X. B.: Isotopic composition of atmospheric mercury in China: new
668 evidence for sources and transformation processes in air and in vegetation, *Environ. Sci. Technol.*, 50, 9262-9269,
669 DOI10.1021/acs.est.6b01782, 2016.

670 Yuan, W., Sommar, J., Lin, C. J., Wang, X., Li, Kai, Liu, Y., Zhang, H., Lu, Z. Y., Wu, C. S., Feng, X. B.: Stable isotope evidence
671 shows re-emission of elemental mercury vapor occurring after reductive loss from foliage, *Environ. Sci. Technol.*, 53, 651-
672 660, DOI10.1021/acs.est.8b04865, 2019.

673 Zhang, H., Holmes, C., and Wu, S.: Impacts of changes in climate, land use and land cover on atmospheric mercury, *Atmos.*
674 *Environ.*, 141, 230-244, DOI:10.1016/j.atmosenv.2016.06.056, 2016.

675 Zhang, L., Wright, L. P., and Blanchard, P.: A review of current knowledge concerning dry deposition of atmospheric mercury,
676 *Atmos. Environ.*, 43, 5853-5864, DOI:10.1016/j.atmosenv.2009.08.019, 2009.

677 Zheng, W., Obrist, D., Weis, D., Bergquist, B. A.: Mercury isotope compositions across North American forests, *Global*
678 *Biogeochem Cycles*, 30, 1475-1492, DOI10.1002/2015GB005323, 2016.

679
680