
Replies to editor and referee comments on “Investigating the
thermal state of permafrost with Bayesian inverse modeling of heat
transfer”

The Cryosphere, 10.5194/egusphere-2022-630

EC: Editor’s Comment, RC: Referee’s Comment, AR: Authors’ Response, □ Manuscript Text

1. Response to editor comments

EC: Dear authors,

I consider the manuscript a valuable contribution to TC, but I think the reviewers have raised questions about the approach

that need to be addressed within the manuscript before being accepted for publication. I believe the comments should not

be only addressed from the process-understanding point of view, but also the technical aspects of the approach proposed, as

this study is for me more a technical paper than a case-study. I believe the comments from the reviewers are fair and your

answer is in general adequate. Maybe it could be consider a sensitivity analysis to further understand the role from borehole

data at different depths? The problem on the data uncertainty from sensors located at different depths was clearly a main

issue for reviewer 1, which also was commented by reviewer 2. I understand that setting sensors at large depths is not always

feasible; thus, this issue will come along in many other studies - also those using the approach you are proposed. Maybe,

while preparing the revisions to your manuscript you could still test this in a synthetic study or a sensitivity analysis? I will

ask the reviewers to read your revised version of the manuscript before considering it ready for publication.

Best regards,

Adrian Flores

AR: Dear Prof. Dr. Adrian Flores Orozco,

We thank you for your time and consideration as well as your positive feedback regarding our manuscript. We acknowledge

your concerns about the referees’ comments regarding the impact of available sensor depths on the inverse modeling procedure.

Following your suggestion, we have conducted a sensitivity analysis for representative cold and warm sites (Samoylov and

Bayelva) using synthetic pseudo-observations produced using model outputs from our previous simulations. The results of this

analysis as well as a detailed description of the methodology are presented in Sect. S1.2 of the supplementary material. We

found that the inclusion and exclusion of measurements at various depths had a fairly predictable impact on the resulting fitted
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ensemble. Predicted mean annual ground temperatures at the considered depths of 10m and 20m were in better agreement with

the synthetic measurements when there were measurements available at these respective depths. The fitted ensemble tended to

overestimate warming at “shallower” depths (above 10m) when only deeper measurements were available (below 20m) and

tended to unerestimate warming at “deeper” depths when only shallow measurements were available. We have added a brief

comment on these additional results in the main text.

We provide a brief summary of all major changes to the manuscript in Sect. 2 of this response letter. We include updated

versions of our point-by-point responses to the referee comments in Sect. 3 and Sect. 4.

We would like to thank you again for your time, and we look forward to receiving your feedback on the revised manuscript.

Sincerely,

B. Groenke on behalf of all co-authors

2. Summary of major changes

We briefly summarize the most substantial changes to the manuscript below.

– As noted in our earlier responses to referee comments, we fixed a minor bug in our model code and re-ran inverse

modeling simulations from scratch. There were no substantial changes to the results. We also used a larger ensembele

size to improve the robustness of our results. All relevant figures and tables have been updated with these regenerated

results in the revised manuscript.

– We have added a supplementary material document to cut down on the length of the primary manuscript and host some

of the more technical details and additional results.

– In the process of addressing the editor and referee comments, we noticed an issue with Fig. 6 (now Fig. 7) in the original

manuscript. The method by which we computed sensible heat for this figure previously, while technically correct, was

slightly misleading in that it included changes in the heat capacity due to melting/freezing of pore ice/water. In order

to more clearly isolate the relative contributions of temperature change and phase change, we have used an alterna-

tive formulation of sensible heat in the updated figure. Further explanation and discussion can be found in the revised

manuscript (Sect. 4.2 and Sect. 5.4).

– Following the suggestion of the editor, we carried out additional experiments using synthetic data to assess the sensitivity

of the inversion results to available sensor depths. The results are presented in the supplementary material (Sect. S1.2).

– Following the suggestion of referee 1, we have revised the discussion section to include more specific quantitative

analysis.
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– Following the suggestion of referee 1, we included the diagram describing the heat transfer model in the main text (Fig.

2). We also updated this diagram to make it more precise (e.g. referring to the layers as “soil” rather than “sediment”

which is technically more correct). We additionally have added a new subfigure showing examples of the soil freezing

characteristic curves used in our model. We felt this was necessary in order to provide a clearer picture of how phase

change is actually represented in the model and why the soil freezing characteristics matter.

– Following the suggestion of referee 1, we improved the clarity and accessibility of the methods section, particularly the

sections on Bayesian inference and the inverse modeling approach. Much of the inverse modeling detail has now moved

to the Appendix. Furthermore, we have added some higher level explanation of EKS to provide more context to the

reader.

– Following the suggestion of referee 2, we added further discussion on related work and methods in the introduction

(Sect. 1).

– Following the suggestion of referee 2, we moved some of the technical description of the trend analysis method to the

main text.

– Following the suggestion of referee 2, we have updated the parameter distribution plots in the Appendix to show both

the prior and posterior.

– We have expanded the numerical implementation details in the Appendix. We further reorganized the Appendix for

clarity.

– We have changed all mentions of “thaw depth” in the text with “active layer thickness” to be more precise; in this work,

we are only ever discussing maximum annual thaw depth for which “active layer thickness” is a more common and more

parsimonious term.

– We have revised and cleaned up the mathematical notation in the methods section to be more concise and consistent.

– We have condensed the “Limitations” section by combining points 2 and 3 from the original manuscript, the latter of

which we assessed to be mostly redundant.

– We have corrected the parameter sensitivity analysis previously presented in the response to referee 2 to use only samples

from the prior and not the posterior; this is necessary to avoid parameter correlations affecting the estimated indices (Li

et al., 2010).

– We have made further minor corrections, clarifications, and improvements throughout the manuscript which we do not

enumerate here.
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3. Response to referee 1

The text in this section is adapted from Groenke (2023a) with updated excerpts from the revised manuscript included where

relevant.

3.1. Issue 1: Research design and uncertainties

RC: The research design has some issues making it unclear if the main conclusions are attributed to the physical processes or

the modeling uncertainties. First, the available depths of borehole data are not the same. At the two colder sites (Samoylov

and Barrow, Fig 4b and 4c), both sites have deep borehole data although Barrow does not have shallow borehole data. In

contrast, neither of the two warmer sites (Fig 4d and 4e) has deep borehole data. This could be the main reason causing the

much larger temperature variability (Fig 4d and 4e), more scattered relationships in Fig 5, and more observed uncertainties

in Fig 6. Therefore, the majority of conclusions made by comparing colder and warmer sites are not convincing. One or

more warm sites with deep borehole data are needed to validate this study’s conclusions. It is also worth performing the

inverse modeling again on the Samoylov site excluding its deep borehole data to see if its thermal behavior stays the same

or changes toward the warm sites.

AR: We acknowledge that the disparity between available borehole temperature measurement depths is a concern. It is important

to note, however, that this is not an intentional aspect of the study design but rather a limitation of the available data. It is

common for researchers and practitioners to install automated temperature sensor instrumentation in the upper one meter of

the ground since this is generally achievable without heavy drilling equipment. High quality, automated instrumentation of

deep boreholes is unfortunately relatively rare and instead research teams typically collect manual measurements once per year

(often in the summer when the borehole can be easily located). The data from the Barrow North Meadow Lake site featured

in this work are an example of such measurements. As mentioned in the text, these annual measurements cannot be compared

to mean annual temperatures recorded in instrumented boreholes (such as the other three sites) above the depth of zero annual

amplitude (ZAA) due to the effects of seasonal variation. This is why we only use the manual measurements from Barrow at

20 m and below, as this is presumed to be deep enough that seasonal variation should be negligible.

Despite this limitation, we argue that our conclusions are justified for three primary reasons:

Firstly, the availability of deeper measurements should largely only affect uncertainty in the initial temperature profile at the

beginning of the simulation period (i.e. at the year 2000); this is because deeper measurements help better constrain the range of

plausible temperature profiles after the spin-up period (1979-1999). The impact on later years where observations are available

in the upper 10m will necessarily be less significant since, after the first 5 to 10 years, the climate signal will dominate the

initial condition.

Secondly, one of the main reasons why we limit the analysis of energy contents to the upper 10m is because this is the range in

which all sites (excepting Barrow) have measurements available. While it is true that the temperature profile at the beginning
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of the simulation period would have some impact on the resulting distribution of observed trends, we would expect this effect

to be mostly limited to temperature (i.e. a wider range of initial temperatures would spread out the distribution along the x-axis

in Figure 6 from the revised manuscript). It should not affect the underlying relationship between temperature and latent heat,

which is the central interest of this study.

Lastly, while it is true that the availability of deeper borehole measurements will affect the resulting spread of temperature

predictions across the ensemble, we do not agree that this weakens the conclusions drawn from comparing the cold and

warm sites. On the contrary, it is actually a strength of our method (and Bayesian methods more generally) that the posterior

distribution meaningfully reflects uncertainty due to differences in data availability between sites and therefore allows us to

make inferences despite these limitations of the available data.

To validate our arguments here, we followed the suggestion of the referee and ran an additional set of simulations for the

Samoylov site with the measurements below 10m omitted from the inference procedure. The results, along with an accompa-

nying discussion, are presented in Sect. S1.1 of the supplementary material.

RC: Line 374 seems to demonstrate depth alone cannot explain the variability. However, the statement is not strong because 82

cm is too small on a 10 m scale. Also, the observations of Bayelva also have less variability than those of Parson’s Lake,

which likely explains the less variability in the modeled temperature at Bayelva.

AR: We agree with the referee’s assessment here and have removed this statement from the text.

RC: The authors do have a full section 5.6 to discuss the limitations. While these limitations are definitely important, the current

research design is not strong enough to support the conclusions even neglecting other uncertainties.

AR: We believe that the additional results presented in the supplementary material validate the study design and support the central

arguments of our paper. The limitations detailed in section 5.6 are, as the referee states, important. However, as also argued in

the main text, we believe that the model and study design are still strong enough to support the main conclusions.

RC: Secondly, section 5.3 discusses the role of surface conditions on ground warming based on the n-factor change before and

after 2005. Again, uncertainties can be the main driver because no borehole observations are available to constrain the

model before 2005. This is another key point made based on the comparison of two data not having the same conditions.

AR: We have removed this paragraph from the text since it is, in hindsight, overly speculative given the limitations of the current

study design and available data. We do not agree, however, that this is a particularly important point of the manuscript. The

discussion here was largely tangential and was intended only to comment on the potential hazards of extrapolating recently

observed trends in deep ground temperatures backwards in time.
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3.2. Issue 2: Method description

RC: The manuscript has a large space describing the modeling method but most contents are too technical and not accessible

to people who are in the cryosphere community but do not have expertise in numerical modeling, inversion, and Bayesian

method, etc. The authors focus too much on the advanced topics of the method but completely missed the information on

the basic idea of the applied method. Also, in many cases, the authors only cite some references without explicitly describing

the methods, which makes the readers difficult to follow or understand.

AR: We thank the referee for this valuable feedback. Although we already attempted in the original manuscript to keep technical

language and details to a minimum, we recognize that this communication gap is one of the primary challenges of interdisci-

plinary research and that there are certainly further improvements that can be made to the existing text. We respond to each of

the referee’s specific concerns below.

RC: Section 3.1. The introduction of Bayesian inference involves too many technical terminologies. Please consider adding

supporting sentences to make it easier for people not familiar with the Bayesian method to understand it.

This section was intended to provide a basic introduction to the ideas of Bayesian inference for those not familiar with such

methods, so it is of course important that it is accessible for this audience. We have revised the paragraph in question as follows:

The Bayesian approach to statistics provides a natural framework for inferring unobserved quantities of interest while

simultaneously accounting for their associated uncertainties [...]. This is accomplished by applying Bayes ruleto some

observed and unobserved variables, Y and X , respectively
::
via

::::::
Bayes

:::
rule:

p(X|Y ) =
p(Y |X)p(X)

p(Y )
with p(Y ) =

∫
x∈X

p(Y |X = x)p(X = x)dx, (1)

which can be seen a generic formula for obtaining the so-called posterior distribution of an unobserved quantity X a

posteriori given observations Y from some sampling distribution or likelihood p(Y |X). The prior distribution
:
.
:::
The

:::::
prior

:::::::::
distribution p(X) encodes information about Y known

::::::
reflects

:::
our

::::::::::
pre-existing

:::::::::
uncertainty

:::::
about

:::
X a priori and plays

a crucial role in the Bayesian inference workflow.
::::
(i.e.

:::::
before

:::::::::
observing

::
Y )

:::::
while

:::
the

:::::::::
likelihood

:::::::
p(Y |X)

::::::::
measures

::::
how

:::
well

::::
the

::::::
model’s

::::::::::
predictions

:::::
agree

::::
with

:::
the

:::::::::::
observations,

:::
Y .

::
In

::::
this

:::::
work,

::
Y

:::
are

:::::::::::
temperature

::::::::::::
measurements,

::::::::
typically

:::::::
sampled

::::
over

::::
time

::::::
and/or

:::::
space,

:::::::
whereas

:::
X

:::
are

::::::::
unknown

:::::
model

::::::::::
parameters

::
or

::::::::::
unobserved

:::::::
physical

::::::::
quantities

:::::
such

::
as

:::
soil

:::::::::
properties,

:::::
thaw

:::::
depth,

::
or
::::

the
::::
ratio

::
of

:::::::
sensible

:::
to

:::::
latent

::::
heat.

::::
The

::::::
overall

::::::::
objective

::
is

::::
then

::
to

::::::
obtain

:::
the

::::::::
posterior

::::::::::
distribution,

:::::::
p(X|Y ),

:::
of

::::
these

::::::::
unknown

::::::::::
parameters

::::
given

::::
the

::::::::::
temperature

::::::::::::
measurements

:::::
which

::::::::
quantifies

::::
not

::::
only

:::
the

:::::::::
best-fitting

::::::::
parameter

:::::::
settings

:::
but

::::
also

::
the

:::::::::
associated

::::::::
modeling

:::::::::::
uncertainties.

:

RC: Lines 140-144. Need to briefly explain the bias correction procedure.

AR: We have added the following clarifying clause to briefly elaborate on the bias correction procedure of Piani et al. (2010):
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The bias correction procedure for air temperature follows closely the empirical quantile mapping method of [...]
:
in
::::::
which

::
the

:::::::::
empirical

:::::::
quantiles

:::
of

::::
both

:::
the

:::::
model

::::::::::
(reanalysis)

::::
and

:::::::::::
observational

::::
data

:::
are

::::::::
computed

::::
over

:::::
some

::::::::
reference

::::::
period

::
(in

::::
this

:::::
study,

:::
we

:::
use

:::
the

:::
full

:::::
time

:::::
period

:::
for

::::::
which

::::::::::
observations

:::
are

:::::::::
available);

:::
the

::::::
model

::::
data

:::
are

::::
then

:::::::
mapped

::
to

:::
the

:::::::::::
corresponding

::::::::
quantiles

::
of

:::
the

:::::::::::
observations.

RC: Line 150. Need to briefly explain the numerical procedures and parameterizations of CryoGrid.

AR: We have added two additional missing pieces of information to the Appendix section, namely the parameterization of the

thermal conductivity, kT (z, t), and heat capacity, CT (z, t), functions.

:::
The

:::::
bulk,

:::::::::::::::::::
temperature-dependent

:::::::
thermal

:::::::::::
conductivity

::::
k(T )

:::
is

::::::::::::
parameterized

::::::::
following

:::::::::::::::::::
(Cosenza et al., 2003)

::
as

:::
the

::::::
inverse

::::::::
quadratic

::::
mean

:::
of

:::
the

::::::::::
constituents:

:

k(T ) = (kw ∗
√
θw(T )+ ki ∗

√
θi(T )+ ka ∗

√
θa + km ∗

√
θm + ka ∗

√
θo)

2

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(2)

:::::
where

::
k [

::::::::::
Wm−1K−1]

::::
refers

:::
to

::
the

:::::::
thermal

:::::::::::
conductivity

::
of

:::
the

:::::::::
constituent

::::::::
material.

:::
The

::::
bulk

::::
heat

:::::::
capacity

::
is
::::::::
similarly

::::::::
computed

::
as

:
a
::::::
simple

::::::::
weighted

:::::::
average:

:

C(T ) =
1

5
(cw ∗ θw(T )+ ci ∗ θi(T )+ ca ∗ θa + cm ∗ θm + co ∗ θo)

::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

:::::
where

:
c
:::
are

:::
the

:::::::::
constituent

::::
heat

:::::::::
capacities.

:::::
Since

:::
we

::::::
already

::::
vary

:::
the

::::::::::
constituent

:::::::
fractions

::
θ

::
in

:::
our

::::::::
inversion

:::::::::
procedure,

::
we

::::
hold

:::::
these

::::::
values

:::
for

:::
the

:::::::::
constituent

:::::::
thermal

:::::::::
properties

:::::::
constant

::
in

:::
all

::
of

:::
our

::::::::::
simulations.

::::
The

::::::
values

:::
are

::::::
shown

::
in

::::
Table

::::
B5.

We have also added a table to the Appendix (Table B5) enumerating the relevant constituent conductivities and heat capacity

parameters which are treated as constants.

RC: Section 3.6 This section introduces a key methodology EKS. It presents the advantages of EKS over MCMC and EKI without

explaining the basic theory/idea of EKS in the first place. Again, this makes researchers not familiar with EKS very difficult

to follow and understand it.

AR: We have added some additional explanation of the basic idea behind the EKS algorithm:

::::
EKS

:::::::
assumes

:::
that

:::
the

::::::::
observed

::::::::
borehole

::::::::::
temperatures

::::
can

::
be

::::::::::
represented

:::
as:

Tobs = (gT ◦ f)(ϕ)+ η, (4)

:::::
where

:::
gT ::

is
:::

the
::::::::

forward
::::
map

:::::
from

:::
the

::::::
model

:::::
states

:::::::::
produced

::
by

:::
f

::
to

::::::::::
comparable

:::::::::::
temperature

:::::::::::
observations,

::::
and

::::::::::::
η ∼ N (0,ΣT ):::

is
::::::::::
observation

:::::
noise

::::
with

:::::
zero

:::::
mean

:::
and

::::::::
assumed

::::::::::
covariance

::::
ΣT .

:::::::::
Additional

::::::
inputs

::
to

:::
f ,

::::
such

:::
as

::::::
forcing

::::
data,

:::
are

:::::::
assumed

::
to
:::
be

::::::::::
independent

::
of

::
ϕ

:::
and

:::
are

::::
here

:::::::::
suppressed

:::
for

:::::::
brevity.

::::
EKS

:::::::
requires

:::
the

::::
prior

::::::::::
distribution
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:::
over

::::::::::
parameters

::
to

:::
be

:
a
::::::::::
multivariate

:::::::::
Gaussian,

::
so

:::
we

::::
must

::::
first

::::::::
construct

::
a

:::::::
bijective

:::::::
function

:::::::::
γ : Φ→Ψ

::::
that

:::::
maps

:::
the

::::::::::::
m-dimensional

::::::::::
parameters

::::::
ϕ ∈ Φ

::
to

::::::
values

::::::
ψ ∈Ψ

::::
with

::::::::::
unbounded

:::::::
support

::
on

:::
the

::::
real

:::::
line.

:::
The

:::::::::::
approximate

:::::
prior

::
for

:::::
EKS

::
is

::::
then

::::::::
specified

::
as

:::::::::::::::::::::
ψ ∼ p(ψ) =N (µψ,Σψ).::::

The
:::
key

:::::::
insight

::::::
behind

:::
the

::::
EKS

::::::::
algorithm

::
is
::::

that
:::
an

::::::::
ensemble

::
of

::::::::
parameter

::::::
values

::::::
{ψ(i)}

::::::::
sampled

::::
from

:::
an

:::::
initial

:::::::
density

:::
(i.e.

::::
the

:::::
prior)

:::
can

:::
be

::::::::::
transformed

::::
into

:::::::
samples

:::::
from

:::
the

:::::::::::
(approximate)

::::::::
posterior

::::::::::
distribution

::
by

:::::::
treating

::::
them

:::
as

:
a
::::::::
stochastic

:::::::
system

::
of

:::::::::
interacting

::::::::
particles.

:::::
Their

::::::::
dynamics

:::
are

:::
then

::::::::
governed

:::
by

:::
the

::::::::::
overdamped

::::::::
Langevin

::::::::
equation:

∂ψ(i)

∂t
=−∇L(ψ(i))+

√
2R(t) (5)

:::::
where

:::::
L(ψ)

::
is

:::
the

::::::::::::
log-likelihood

:::
of

:::
the

::::::::::::
unconstrained

:::::::::
parameters

::
ψ

:::::
with

::::::
respect

::
to

:::
the

:::::::::::
observations

::::
and

::::
R(t)

::
is
:::
an

::::::::::::
m-dimensional

:::::::::
Brownian

::::::
motion.

::
It
::::
can

::
be

::::::
shown

::::
that

:::
this

:::::::::
interacting

:::::::
particle

::::::
system

::::
then

:::::::::
converges

::
to

:::
the

::::::::
posterior

::::::
density

::::
over

::
an

::::::
infinite

:::::
time

:::::::
horizon,

:::::
where

::::::
“time”

::::
here

:::::
refers

::
to

::::
that

::
of

:::
the

:::::::
particle

:::::::
diffusion

:::::
rather

::::
than

::::::::
physical

::::
time

::
in

:::
the

::::::
forward

::::::
model.

::::
We

::::
refer

:::
the

:::::
reader

:::
to

::::::::::::
Garbuno-Inigo

::
et

::
al.

:::::
2020

:::
for

::::::
further

::::::
details

:::::
about

:::
the

::::
EKS

::::::::
algorithm

::::
and

:::::::
iteration

:::::::::
procedure.

RC: Line 250. Need briefly explain what a mean vector from Garbuno-Inigo et al. 2020 is.

AR: As discussed in the text, the observed temperatures are assumed to be generated according to equation (9), i.e:

Tobs = (hT ◦ f)(θ)+ η

where f is the forward model evaluated at θ, hT is the mapping function which extracts and aggregates the modeled tempera-

tures, and η ∼N (0,ΣT ) is the observational noise. For the purposes of constructing the EKS algorithm, the model predictions

can thus be equivalently seen as being sampled from a Gaussian distribution centered at Tobs (this follows from moving η to the

left hand side of the above equation). Since we assume the observation noise to be independent across space and time, we can

flatten the two-dimensional temperature field into a vector which thus constitutes the mean of this Gaussian distribution, hence

the term “mean vector”. However, we acknowledge that this term is non-standard and possibly confusing; in light of this, we

have now rephrased this sentence in the revised manuscript:

The
::
We

::::
use

:::
the observed mean annual ground temperatures,

:::::::::::
temperatures

::::
from

::::
each

::::::::
borehole

:::
site

:::
as

:::
the

:::::::::::
observations,

::
i.e.

:
Tobs , are used as the observation mean vector for the Ensemble Kalman Sampler described in [...]

:
in
::::
Eq.

:
7
:
,
:::
for

:::
the

::::
EKS

::::::::
algorithm.

This part of the text has also been moved to the Appendix in the interest of brevity.

3.3. Issue 3: Quantiative analysis in discussion

RC: The discussion needs more quantitative and specific analysis. When interpreting the results, the authors only briefly propose

possible factors without explaining how would these factors impact the results.
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AR: We agree with the referee’s assessment and have revised the discussion section accordingly. The diff is too extensive to include

here, so we kindly refer the reader to the revised manuscript and its corresponding diff markup.

RC: Paragraph 255. I may miss something but I did not get the purpose of this paragraph. It states that the prior distribution

over model parameters is important but does not explain what was done to improve performance.

AR: The purpose of this paragraph was just to provide some basic motivation. We have rearranged this and the following paragraph

to make this more clear:

The prior distribution over model parameters, p(ϕ), is of crucial importance to our method
:::
also

:::::
plays

:
a
::::

key
::::
role

::
in

:::
the

:::::::
inversion

:::::::::
procedure. Some parameters in the heat transfer model, such as soil composition, will cause the resulting

optimization problem on ϕ to be under-constrained, since there may be more than one possible combination of soil com-

ponents which have similar thermal properties. Additionally, incorporating prior knowledge about plausible parameter

values allows us to reduce the amount of computational effort wasted on physically implausible or incoherent model

configurations that may arise from random sampling.

EKS assumes the m unconstrained parameters γ(ϕ) =ψ ∈Ψ⊆ Rm to follow a multivariate Gaussian distribution,

ψ ∼N (µψ,Σψ), where γ : Φ→Ψ is a bijective function which maps the m-dimensional possibly constrained parameters

ϕ ∈ Φ to their unconstrained values on the real line. We define our priors in the constrained parameter space Φ in order

to more easily incorporate physically meaningful information about each site. We define suitable parameter priors for

each site based on published field measurements and soil core analyses; full details on choices of priors for each site are

in Appendix [...]

::::
EKS

:::::::
assumes

:::
the

:::
m

::::::::::::
unconstrained

::::::::::
parameters

::::::::::::::::::
γ(ϕ) =ψ ∈Ψ⊆ Rm

::
to

::::::
follow

::
a
::::::::::
multivariate

::::::::
Gaussian

:::::::::::
distribution,

::::::::::::::
ψ ∼N (µψ,Σψ),::::::

where
:::::::::
γ : Φ→Ψ

::
is

:
a
::::::::

bijective
:::::::
function

::::::
which

:::::
maps

:::
the

:::::::::::::
m-dimensional

::::
(and

:::::::
possibly

:::::::::::
constrained)

:::::::::
parameters

:::::
ϕ ∈ Φ

::
to
:::::
their

:::::::::::
unconstrained

::::::
values

::
on

:::
the

::::
real

:::
line.

This section has also been moved to the Appendix for brevity.

RC: Line 356. This sentence does not explain why Samoylov has deep soil temperature warming faster than the air temperature.

Factors other than air temperature should be included here.

AR: We agree that the other factors are also important to highlight. This was actually explained further in the following paragraph,

but the connection was not necessarily obvious as written. We have revised these two paragraphs to make this point more clear:

This is consistent with the results of our analysis which show mean air temperature trends ranging from 0.09Kyr−1

at Parson’s Lake to 0.11Kyr−1 on Samoylov Island. The large difference
::::
This

::::::::::
discrepancy

:
in observed permafrost

temperature trends between these two sites, despite similar changes in air temperature, indicates considerable uncertainty

in how permafrost is responding to the changing climate . Furthermore, the observation that deep permafrost on Samoylov
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Island is most likely warming faster than air temperature suggests that changes in air temperature alone cannot always

fully explain permafrost warming.

These results motivate our inverse modeling study by demonstrating clear, localized differences andsubstantial uncertainty

in how the permafrost thermal regime responds to long-term changes in air temperature. The discrepancies in the

apparent relationship between long-term changes in air and permafrost temperatures suggest that other factors are at

play, such as surface conditions (e. g. snow cover) and variability in
:::
that

::
is

:::::
likely

::::::::::
attributable

:::
to

:::::
other

::::::
factors.

::::
For

:::::::
example,

:::::::
thicker

:::::
and/or

::::
less

::::::
dense

::::
snow

::::::
cover

:::
can

:::::::::
accelerate

:::::::::
permafrost

::::::::
warming

:::
by

:::::::::
insulating

:::
the

::::::
ground

:::::::
against

::::
rapid

:::::
drops

::
in
:::

air
::::::::::
temperature

::::::::::::
characteristic

::
to

:::::::
autumn

:::
and

:::::
early

::::::
winter,

:::::::
thereby

:::::::
delaying

:::
the

:::::::::
refreezing

::
of

:::
the

::::::
active

::::
layer

:::::::::::::::
(Park et al., 2015).

:::::::::::
Additionally,

:
soil thermal properties . These factors

:::
such

:::
as

:::
the

::::
bulk

::::::::::
conductivity

::::
and

:::::::
freezing

:::::::::::
characteristics

::::
due

::
to

:::
soil

::::::
texture

:::
can

::::
also

::::
play

:
a
:::::::::
significant

:::
role

::
in
::::::::::
modulating

:::
the

::::::
effects

::
of

::::::
surface

::::::::::
temperature

:::::::
changes

:::
[...].

:::::
Both

::
of

::::
these

:::::::
factors,

::::::
among

:::::
others,

::::
can significantly affect energy uptake in the subsurface, and ultimately, the cur-

rent and future thermal state of permafrost in Arctic regions (Smith et al., 2022; Langer et al., 2022). We believe

:::
The

::::::
results

::
of

:::
this

:::::
trend

:::::::
analysis

::::::::
motivate

:::
our

::::::
inverse

::::::::
modeling

:::::
study

::
by

::::::::::::
demonstrating

:::::
clear,

::::::::
localized

:::::::::
differences

::::
and

:::::::::
substantial

:::::::::
uncertainty

::
in

::::
how

:::
the

::::::::::
permafrost

::::::
thermal

:::::::
regime

::
at

::::
these

::::
four

::::
sites

::
is
::::::::::
responding

::
to

:::::::::
long-term

:::::::
changes

::
in

::
air

:::::::::::
temperature.

:::
We

:::::
argue that this can be at least partially attributed to the latent heat effect, in addition to soil thermal

properties, both of which are a major source
::::::
factors

:::::::
affecting

::::
the

:::::
uptake

:::
of

:::::
latent

::::
heat

::
in

:::
the

::::::::::
subsurface

::::
such

::
as

::::
soil

:::::::
freezing

:::::::::::
characteristics

:::
as

::::
well

::
as

::::::::
historical

::::::::::
climatology.

:::
We

::::::
discuss

::
in
:::
the

:::::::::
following

:::::::
sections

:::
how

::::
our

::::::
inverse

::::::::
modeling

:::::
results

:::::::
suggest

::::
that

::::
both

::
of

:::::
these

::::::
factors

:::
are

::::::
major

::::::
sources

:
of uncertainty in making inferences about the subsurface

thermal regime (Riseborough, 1990; Romanovsky and Osterkamp, 2000)
::::::::
changing

::::::
thermal

:::::
state

::
of

:::::::::
permafrost.

RC: Paragraph 360. Besides only presenting the potential factors impacting the soil thermal states, I would include how they

impact the thermal states. For example, how does the ground temperature change with air temperature giving increasing

(or decreasing) snow thickness and soil thermal diffusivity?

AR: We have added further discussion in the text to clarify the expected impacts on the thermal state (see the revised text above).

RC: Line 390. Please explain more about why latent heat is lost so that the temperature is warmer. Please also explain why

drainage and evapotranspiration cause latent heat loss.

AR: The revised manuscript now includes the following explanation:

For Bayelva, we suspect that the
:::
The wintertime warm bias may

::
for

:::::::
Bayelva

::
((1.5± 0.5)K)

::::
may

::::
also

:
be due to the

model’s
:::
our assumption of static hydrology, which fails to capture the effects of latent heat being lost

:::::::
seasonal

:::::::
changes

::
in

:::
soil

::::::::
moisture

:::
on

:::
the

:::::::::
subsurface

:::::::
thermal

:::::::
regime.

::::
The

::::::
release

::
of

::::::
latent

::::
heat

::::::
during

:::::::
freezing

:::::
slows

:::
the

:::::::::::
propagation

::
of

::::
cold

:::::::
surface

:::::::::::
temperatures,

:::::::
thereby

::::::::
delaying

:::
the

:::::::::
refreezing

::
of

::::
the

:::::
active

:::::
layer

::
in

:::::
early

::::::
winter

::::::::::::
(Romanovsky

::::
and

:::::::::
Osterkamp,

::::::
2000).

::::::
When

:::::::
unfrozen

:::::
water

::
is
::::::::

removed
:::::
from

:::
the

:::::
active

:::::
layer due to drainage and evapotranspiration.

::
or
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:::::::::::::::
evapotranspiration,

::::
the

:::::
latent

::::
heat

::::::
stored

::
in

::::
this

:::::
water

::
is

::::::::
removed

::
as

:::::
well.

::::
The

:::::
result

::
is

::::
that

::::
cold

:::::::::::
temperatures

::::
can

::::::::
propagate

:::::
faster

::
in

:::
the

:::::::::
wintertime

::::
since

::
a
:::::
higher

:::::::
fraction

::
of

::::
this

:::::
energy

::
is
:::::::
diffused

::
as

:::::::
sensible

:::::
heat.

::::
This

:::::
would

::::::::
therefore

::::
serve

::
as

:::::::
possible

::::::::::
explanation

:::
for

:::
the

:::::
warm

::::
bias

::
in

:::
the

:::::
model

::
at

::::
this

:::
site.

:

RC: Section 5.6. It would be helpful if include some discussion about the expected changes after addressing each limitation.

AR: We have condensed the limitations section and added some supporting sentences per the suggestion of the referee.

1. Neglected subsurface processes. The transient heat conduction model described in Sect. 3.3 is capable of accu-

rately simulating heat conduction with phase change at a relatively high spatial resolution. However, it neglects

several processes such as water infiltration and percolation, excess ice melt and subsidence, as well as lateral

exchange of heat and water in the subsurface. In particular, the assumption that soil water content remains con-

stant over the simulation period precludes factoring in the effects of long-term wetting or drying on the thermal

properties (and therefore the thermal regime) of the ground closer to the surface.
:::
This

:::::
could

::::::::::
potentially

::::
alter

:::
the

::::::
thermal

::::::::
dynamics

::
of

:::
the

::::::
ground

::
in
::::
two

:::::
ways:

:::::
firstly,

::::::::
unfrozen

:::::
water

:::::
which

::
is

:::::::::
transported

:::
out

:::
of

:::
the

::::
pore

::::
space

::::
and

:::
not

:::::::
replaced

:::
can

:::
be

::::
seen

::
as

:::::::::
effectively

:::::::::
removing

::::::
energy

::::
from

:::
the

::::::
system

:::::::
thereby

:::::::
altering

:::
the

::::::
energy

::::::
balance

:::
of

::
the

:::::::
ground.

::::::::
Secondly,

:::::
drier

::::
soils

::::
with

::::::
higher

::
air

:::::::
content

:::
will

::::::::::
necessarily

::
be

::::
less

:::::::::
conductive,

:::::::
thereby

::::::::
becoming

:::
an

:::::::
insulator

:::
for

::::::
deeper

:::::
layers

:::::::
against

::::::
further

:::::::
warming

::::
and

:::::::
cooling.

:
However, the assumption

:
of

:::::
static

:::::::::::
hydrological

::::::::
conditions

:
allows us to more objectively

:::::
easily compare changes in the partitioning of latent vs. sensible heat

in the subsurface
:::::::
between

::::
sites

:
(Fig. 7). We further note that for some sites, such as Samoylov

::::::::
Samoylov,

:
which

is typically waterlogged, no substantial wetting or drying has been reported during the simulation period (Boike

et al., 2019).

2. Simplified parameterization of surface processes. We use only n-factor scaled air temperatures as the upper

boundary condition for the heat equation. Our model does not explicitly represent surface processes such as ra-

diative and turbulent heat fluxes, water bodies, vegetation and snow dynamics, but represents them in bulk via

n-factors [...].
:::
(see

::::
Sect.

::::::
3.3.2).

:
Thus, inter-annual variability in surface conditions is not effectively represented,

and meteorological forcings other than air temperature are not taken into account, thereby neglecting potentially

valuable sources of information that would serve as additional constraints on the inverse problem.

3. Under-constrained tuning of n-factors. The parametric approach used for
:::
We

:::::
might

::::::
expect,

:::
for

::::::::
example,

:::::
some

::
of the n-factor scheme in our model (see Sect. 3.3.1), while powerful and flexible from a model calibration point

of view, has the additional disadvantage of potentially creating non-physical or unrealistic surface conditions

which are not supported or constrained by observational data. The optimization or sampling algorithm (in this

work, EKS) has the freedom to adjust the half-decadal n-factors at the upper boundary in order to produce

annual ground temperatures that better match the borehole observations, with the only constraint being the prior

distributions. Since the focus of this work is not to generate realistic surface conditions but rather to understand
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the relationship between changes in sensible and latent heat changes at various sites, we consider this limitation

to be acceptable. However, this is a problem that should be addressed in order to use our methodology to make

inferences about likely causal drivers behind warming or long-term hydrothermal changes in the active layer.

::::::::::
inter-annual

::::::::::
fluctuations

::
to

::
be

:::::::::
explained

::
by

:::::::
changes

::
in
:::::
snow

::
or

:::::
cloud

::::::
cover.

::::
The

::::::::
inclusion

::
of

::::::::
additional

:::::::
surface

::::::::
processes,

::::::::
however,

:::
also

::::::
brings

::::
with

:
it
::
a

:::::
whole

:::::
range

::
of

::::::::
additional

:::::::::::
uncertainties

::::
from

::::
both

:::
the

:::::::
forcings

:::
and

:::::::
relevant

:::::::::::::::
parameterizations.

4. Selection and calibration of prior distributions. Prior distributions provide a flexible tool for encoding domain-knowledge

into inverse problems and, most importantly, can act as smooth regularizers in otherwise ill-posed or non-convex

optimization problems. The model parameter priors employed in this work are loosely derived from both auxiliary

data sources as well as field work and published values in the literature (see Appendix [...]
::::
B3.3 for further discus-

sion). However, the general lack of precise error and uncertainty estimates for some model parameters (in partic-

ular, soil properties) makes the selection of appropriate
::::::::::
construction

::
of

:
prior distributions difficult.

:::::::::::
Furthermore,

:
it
::
is

::::
very

:::::
likely

::::
that

:::::
many

:::::::::
parameters

::::
are,

::
in

::::::
reality,

::::::
highly

:::::::::
correlated,

:::::
which

:::
we

:::
are

::::::::
currently

::::::
unable

::
to

:::::::
account

::
for

:::
in

:::
the

:::::
prior.

::::
Prior

:::::::::::
distributions

:::::
which

:::
are

:::::
more

::::::::::
informative

::
or

:::::
more

:::::::
realistic

::::
will

::::
help

:::
the

::::::::
inversion

:::::::
method

:::::::
converge

:::::
faster

::::
and

:::::::
improve

:::
the

::::::::
reliability

::
of

:::
the

::::::::
resulting

::::::::
posterior

:::::::
samples

::
in

::::::
making

:::::::::
inferences

:::::
about

:::
the

::::
real

:::::
world

::::::
system.

:
We nevertheless emphasize that even imperfect (but plausible) prior distributions still do a better

job of accounting for uncertainty than arbitrary point estimates of parameter values . Ideally, we would perform a

sensitivity analysis to assess the impact of the priors on the results, but the large number of model parameters and

computational cost of the dynamical model makes such comprehensive analyses prohibitively difficult.
::::::::
produced

::
by

:::::::::
traditional

:::::::::
calibration

::::::::
methods.

5. Other statistical considerations
::::::::
Statistical

::::::::::
limitations. While EKS provides a computationally efficient alter-

native to MCMC for drawing samples from the posterior, it is nevertheless an approximation which provides a

theoretical guarantee of convergence to the posterior measure only over an infinite “time” horizon (i.e., iterations

of the algorithm) (Garbuno-Inigo et al., 2020). Furthermore, the empirical results presented by the authors of EKS

indicate that the method underestimates posterior variance (and thus uncertainty) on a finite time horizon unless

the ensemble is very large. More recent work by Cleary et al. (2021) has attempted to circumvent this problem by

performing exact posterior inference on emulated model outputs
:::::::::
predictions

::::::::
produced

::
by

::
a
::::::::
surrogate

:::::
model. Addi-

tionally, EKS requires
:
a
:::::
priori specification of the observation noise

:::::::
sampling

::::::::::
distribution covariance ΣT , which is

not, in general, known. Ideally, a
:
A
:
fully Bayesian treatment of the inversion problem would include

::::
these

:
ΣT as

parameters to be inferred, which
::
(or

::::::::::
equivalent)

:::::::::
parameters

::
in

:::
the

:::::::
posterior

::::::::::
distribution.

::::
This

:
would have the bene-

fit of producing an ensemble with a predictive distribution that
:::::::
posterior

:::::::
samples

::::::
where

:::
the

::::::::
predictive

::::::::::
distribution

is well calibratedon the training data. This is, however, not possible using EKS, and thus, we leave the problem of

estimating noise parameters to future work,
:::
i.e.

:::
the

::::
95%

:::::::::
prediction

:::::::
interval

::::::
should

:::::::
actually

:::::
cover

::::::::::::
approximately
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::::
95%

::
of

:::
the

:::::::::::
observations

::
in

:::
the

:::::::::
calibration

::::::
period,

::::::::
therefore

:::::::::
providing

:
a
:::::::
built-in

:::::::
measure

::
of

:::
the

::::::
degree

::
to

::::::
which

::
the

::::::
model

::
is

::::::
capable

:::
of

::::::::
explaining

:::
the

:::::::::::
observations.

RC: Line 345 information about site location is needed for Biskaborn et al. 2019.

AR: We have added a comment about the sites used by Biskaborn et al. 2019.

...who reported average decadal changes in permafrost temperatures of (0.39± 0.15)Kdec−1
::
for

:::
53

::::::
GTN-P

:::::::::
boreholes

across the continuous permafrost zone...

RC: Line 386. This may be due ‘to’ the thermal. . .

AR: Thank you. We have fixed this typo in the revised text.

RC: Line 445. The second point. Warm permafrost could have slow refreezing when warming due to the effects of latent heat.

AR: Thank you for pointing this out. This sentence has been corrected in the revised manuscript.

This underscores two features of warmer permafrost: (i) that observed temperature trends (or lack thereof) should be

interpreted with caution, as there is substantial uncertainty inherent in associated changes in latent heat, and (ii) that the

sensitivity of warmer permafrost to climatic changes can also imply rapid refreezing and contraction of the active layer

under cooling conditions. We can expect the realistic impact of this effect, however, to be tempered by water drainage,

which is not accounted for in our model
::::::
change

::
is

::::::
highly

:::::::::
dependent

::
on

::::
soil

:::::::
thermal

:::::::::
properties,

::::
most

:::::::
notably

:::
the

::::
soil

:::::::
freezing

::::::::::::
characteristics.

:::::
Soils

::::::
which

:::::
retain

:::::
more

::::::::
unfrozen

:::::
water

::
at

:::::::::::
temperatures

:::::
below

:
0 °C

:::
may

:::::
delay

:::::::
thawing

::::
and

::::::::
refreezing

:::
due

:::
to

::
the

:::::::::
nonlinear

:::::
effects

::
of
:::::
latent

::::
heat

:::::::::::::::::::::::::::::
(Nicolsky and Romanovsky, 2018).

RC: Fig B1. In my opinion, this figure is important as it shows the basic settings of forward modeling. Please consider moving

it into the main text.

AR: The updated diagram is now featured in Fig. 2 of the revised manuscript.

RC: Line 170. The depth information of each layer is missing.

AR: Depth information for the site stratigraphies can be found in the Appendix (Tables B1-B4).

4. Response to referee 2

The text in this section is adapted from Groenke (2023b) with updated excerpts from the revised manuscript included where

relevant.

RC: I regret the absence of a more through sensitivity analysis for the parameters that were not included.
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AR: We agree that a parameter sensitivity analysis would be a valuable addition to our work. We are happy to report that we have

re-run the simulations with a larger ensemble size (N = 512) and run a sensitivity analysis on the prior samples using the EASI

method of Plischke (2010) as implemented by Dixit and Rackauckas (2022). We have included the results of this analysis in

the suplementary material.

The only model parameters not included in our analysis are the geothermal heat flux (this is discussed further below), con-

stituent material thermal properties (conductivities and heat capacities), and physical constants. We also exclude soil compo-

sition parameters in layers where there is strong a priori reason to do so (e.g. organic content is excluded from deeper layers).

We have added a table summarizing these constant parameters and their values in the supplement of the revised manuscript.

Of these excluded parameters, the most influential are certainly the constituent thermal properties, and in particular, the con-

stituent thermal conductivities. While, in principle, it would be better to include these parameters in the analysis, the current

parameterization of the bulk thermal conductivity and heat capacity in terms of the constituents would lead to colinearity with

the soil composition parameters (i.e. organic content, porosity, saturation, and excess ice) that are varied already in our analysis.

This is both numerically problematic and functionally redundant since the bulk thermal properties can already be adjusted by

varying the soil constituent fractions. Choosing only one of these two sets of parameters (i.e. fixing the constants and varying

the composition, or vice versa) avoids this problem.

We should note, however, that this approach would not be appropriate if the primary goal of the inversion were to recover

the correct thermal properties or composition parameters from temperature measurements. This would require a more careful

analysis such as the hierarchical approach in Wang and Zabaras (2005) as well as higher resolution temperature measurements

(we use only annual means in this study). In this work, however, we are primarily interested in the predictive densities and the

corresponding relationship between temperature and latent heat rather than the exact parameter values.

RC: L65-73. I regret that other solutions to this issue are not discussed at all. If EKS is one possible avenue, others have been

proposed, such as the combination of efficient multiple-chain McMC algorithm with reduced dimension representation of

the parameter space (Laloy et al., 2018) , or bypassing the inverse problem by directly predicting the posterior distribution

from simulation-based machine learning approaches (Thibaut et al., 2022 for example in hydrogeology dealing with the

same type of prediction (temperature field)). Since this aspect is also included in the discussion, it could be interesting to

expand the perspectives beyond the technique used in the paper (i.e. EKS).

AR: We thank the referee for the additional references. In particular, we were not aware of the work of Thibaut et al. (2022) and

Hermans et al. (2018) on "Bayesian Evidential Learning" which looks like a very promising alternative to the inversion method

used in this work. We have added further discussion on alternative approaches to the Introduction:

Unfortunately, full-fledged Bayesian inference using standard numerical sampling methods is generally
::::
often

:
infeasi-

ble for complex, simulation-based models where forward evaluation of the model
::::
over

:::::
longer

:::::
time

::::::
periods

:
is compu-

tationally expensive, which is the case for most transient models of dynamical processes (Cranmer et al., 2020). In
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this setting, theoretical and practical compromises must generally be made in order to obtain computationally feasible

approximate inferences (Reich and Cotter, 2015). This applies also to transient thermal
::
A

::::
wide

:::::
range

:::
of

::::::::
strategies

:::
for

:::::::::
overcoming

::::
this

:::::::::
challenge

::::
have

:::::
been

::::::::
proposed.

:::::
One

:::::::
common

::::::
family

:::
of

:::::::
methods

:::::::
known

::
as

::::::::::::
"approximate

::::::::
Bayesian

:::::::::::
computation"

::::::
(ABC)

::::::
attempt

:::
to

:::::::::
circumvent

:::
the

:::::
issue

::
of

:::::::::
computing

:::
the

:::::::::
likelihood

:::
by

:::::
means

:::
of

:::::::
rejection

::::::::
sampling

::::
and

:::::::
summary

::::::::
statistics

:::::::::::::::::::::::::::
(Sisson et al., 2018; Rubin, 1984)

:
.
:::::::
Particle

::::
filter

::::
(also

::::::
known

:::
as

:::::::::
"sequential

::::::
Monte

::::::
Carlo")

::::::::
methods

:::::::::::::::::::::::::::::::::
(Sisson et al., 2007; Doucet et al., 2001)

:::
have

::::
also

:::::
been

::::::
widely

:::::::::
employed

:::
due

:::
to

::::
their

:::::::::
efficiency

::
in

::::::
solving

:::::::::
nonlinear

::::::
filtering

::::::::
problems

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Kantas et al., 2014; Noh et al., 2011; Moradkhani et al., 2005).

:::::
Other

:::::
more

:::::::
recently

:::::::
proposed

::::::::
methods

::::::
include

::::::::
Bayesian

:::::::::
Evidential

::::::::
Learning

::::::
(BEL)

::::::::::::::::::::::::::::::::::::
(Thibaut et al., 2022; Hermans et al., 2018)

:::
and

:::
the

:::::::::
"Calibrate,

::::::::
emulate,

::::::
sample"

:::::::::
algorithm

::
of

::::::::::::::::
Cleary et al. (2021)

:
,
::::
both

::
of

::::::
which

:::::::
leverage

:::
the

::::::::
predictive

::::::
power

::
of

:::::::
machine

::::::::
learning

:::::::::
algorithms

::
to

:::::
obtain

:::
an

::::::::::
approximate

:::::
form

::
of

:::
the

::::::::
posterior

::::::::::
distribution

:::::
using

:
a
:::::

small
:::::::

number
:::
of

:::::
initial

:::::::
forward

::::::::::
simulations

:::
and

::
a

::::::
learned

:::::::
mapping

::
to
:::
the

:::::::
relevant

:::::::::
predictors.

:

:::::
These

::::::::::::
computational

:::::::::
challenges

::
in
:::::::

inverse
::::::::
modeling

:::
are

::::::::
naturally

::::
also

:::::::
relevant

:::
for

::::::::
transient

:
models of permafrost ,

::::::::
processes which typically require solving a discretized partial differential equation for heat diffusion

::
one

:::
or

::::
more

::::::
partial

:::::::::
differential

::::::::
equations

:::::::::
governing

::::
heat

:::
and

::::::
water

::::
flow in the forward evaluation (Riseborough et al., 2008)

::
[...]. Finding

computationally feasible methods for performing simulation-based inference is, therefore, a key methodological chal-

lenge in investigating the thermal state of permafrost with numerical models.
::::::::
However,

::::::::
relatively

:::
few

:::::::
studies

::
to

::::
date

::::
have

::::::::
attempted

::
to
:::::::

address
::::
this

::::::::
challenge.

::::::::::::::::::::::::::::::
Romanovsky and Osterkamp (1997)

::::
used

:::
an

::::::::
analytical

::::::::::
equilibrium

::::::
model

::
to

:::::
invert

::
air

::::
and

:::
soil

:::::::::::
temperatures

::::::::
measured

::
at

::::
three

:::::
sites

::
in

:::::::
northern

::::::
Alaska;

:::::::::::::::::::
Nicolsky et al. (2009)

:::
later

:::::
used

:
a
:::::::::
traditional

:::::::::
variational

:::::::
approach

:::
to

:::::
invert

::::::::
measured

:::
soil

:::::::::::
temperatures

::::
with

::
a
::::::::
numerical

::::::
model

::
of

:::
1D

::::
heat

::::::::::
conduction

::::::
similar

::
to

:::
the

:::
one

::::
used

::
in

:::
our

:::::
study.

::::::::::::::::
Harp et al. (2016)

:::::::
analyzed

:::
the

:::::
effects

:::
of

:::
soil

:::::::
property

:::::::::::
uncertainties

::
on

::::::::::
permafrost

::::
thaw

:::::
using

:::
the

::::
Null

:::::
Space

::::::
Monte

:::::
Carlo

::::::::
(NSMC)

::::::
method

:::::::
applied

::
to

:::
the

:::::::::
Advanced

:::::::::
Terrestrial

:::::::::
Simulator

:::::
(ATS)

:::
of

:::::::::::::::
Coon et al. (2019)

:
.
:::::
More

:::::::
recently,

:::::::::::::::::::
Garnello et al. (2021)

:::
used

::::::::
Bayesian

::::::::
methods

::
to

::::::::
calibrate

:::
the

:::::
GIPL

::::::::::
permafrost

:::::
model

::::
(?)

:::
and

:::::
make

::::::::
long-term

:::::::::
permafrost

::::
thaw

::::::::::
projections.

:

RC: L133-134. The prior does not encode information about Y, it encodes information known about the unobserved quantities

(X), before the data Y is actually collected and thus correspond to what we know and don’t know about X before the

experience.

AR: This was a typo in the text which we have now fixed.

RC: Section 3.2. It was not directly clear to me that a Bayesian approach was applied to the trend analysis. Maybe it could be

more explicit.

AR: We have updated this section to include more detail on the trend analysis method.
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:::
Due

:::
to

:::
the

:::::
small

:::::::
sample

::::
size

::
of

::::
our

::::::
annual

::::
data

::::::
(fewer

::::
than

:::
20

:::::
years

::
at

:::
all

::::::
sites),

:::
we

:::::::
analyze

:::
air

:::
and

::::::::::
permafrost

::::::::::
temperature

:::::
trends

::::
with

:
a
:
robust, Bayesian trend model to mean annual air and permafrost temperatures for all measured

depths at each site. More details on the trend model and data preparation procedures can be
::::
linear

:::::
trend

::::::
model.

:::
We

::::::
choose

::
the

:::::::::
Student’s

:::::::::::
t-distribution

::
as

:::
the

:::::::::
likelihood

::::
due

::
to

::
its

::::::
longer

::::
tails

::::::
which

:::::
allow

:::
for

:::::
more

::::::::
tolerance

::
of

:::::::::
unusually

::::
cold

::
or

:::::
warm

:::::
years

::::::
without

::::::::
severely

:::::::
affecting

::::
the

::::::
overall

::::
trend

:::::::::::::::::
(Lange et al., 1989)

:
.
:::
We

:::
use

::::::::
standard,

:::::::::::::::::
weakly-informative

::::
prior

::::::::::
distributions

:::
for

:::::
each

:::::::::
parameter,

::::
with

:::
the

::::::::
exception

::
of

:::
the

:::::
slope

:::
µ1::

to
:::::
which

:::
we

::::::
assign

:
a
::::::

mildly
::::::::::
informative

::::
unit

::::::::
Gaussian.

::::
This

::
is
:::::::
justified

:::
by

:::
the

::::
fact

::::
that

::::::
annual

:::::::
average

::::::
change

::
in

:::::::::::
temperature

::::
near

:::
and

::::::
below

:::
the

:::::::
surface

:::
can

:::
be

:::::::::
reasonably

:::::::
expected

::
to
::::
fall

::::
well

:::::
below

:
1 °C

::
per

:::::::
annum.

:::
The

:::::::::::
specification

::
of

:::
the

::::
full

:::::::::
probability

::::::
model

:::
can

::
be

:
found in

Appendix B1.

RC: L134-136. Is it? Since this integral is a constant for a given problem, the comparison of the likelihood (ratio) is sufficient

to sample the posterior distribution (see rejection sampling or Metropolis sampling) and the integral is not such a problem.

The main problem lies in the computation of the likelihood p(Y|X) which requires to solve the forward problem, generally

through numerical approximation of partial derivative equations.

AR: In the original text, we were referring to the historical difficulties of applying Bayesian methods that predated the development

of numerical sampling based inference algorithms. These methods were not, to our knowledge, widely used for Bayesian

inference until the work of Geman and Geman (1984) and then were further developed by Gelman et al. (1995) and Neal

(2011) among others.

As discussed later in Sec. 3.5, the primary impediment to the application of modern sampling methods to simulation-based

problems like the one in this work is the cost of the likelihood as described by the referee. We have rephrased this section to

make this more clear:

Difficulties in the practical applications of Bayesian methods have historically arisen from the intractability of the integral

in the denominator of (2), often referred to as the marginal likelihood p(Y ). However, advances in numerical sampling

methods over the last few decades [...]and the
::
in

::::::::
numerical

:::::::::
sampling

:::::::
methods

:::::
such

::
as

:::::::
Markov

::::::
Chain

::::::
Monte

:::::
Carlo

::::::::
(MCMC)

:::
[...]

:::::
which

:::::::
sidestep

:::
the

:::::
need

::
to

::::::::
compute

:::
the

::::::::
marginal

:::::::::
likelihood,

:::
as

::::
well

::
as

::
a
::::::
general

:
increase in available

computing power
:
, have made Bayesian methods significantly more accessible.

RC: L190-191. I am wondering about the effect of this fixed boundary. Given the effort for modelling the uncertainty on the

upper BC, why not also considering uncertainty on the bottom one? This flux is certainly not known for sure and it could

contribute to significant uncertainty at depth.

AR: It is true that the geothermal heat flux at the lower boundary can have substantial effect in some cases when (i) it is very large,

e.g. in a volcanic area, (ii) the simulation period is very long (centuries or longer), or (iii) when the total depth-wise thickness

of the modeled volume is relatively shallow, i.e. < 100m. As we state in the text, however, we can safely assume the effect of

the lower boundary to be negligible in our simulations since our simulation period is relatively short (40 years) and the depth of
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the lower boundary condition is very deep (1 km) so there simply is not enough time for such a small energy flux to propagate

all the way to the upper 50m. Hermoso de Mendoza et al. (2020) found that, even when applying the average continental

heat flux (which we use here) at a relatively shallow depth of 42m, the effect on the ground temperature at 2.86m was only

(0.04± 0.01)K per 20mWm−2 change in the geothermal heat flux. Given the much deeper depth of the lower boundary in

our model, we would expect this effect to be still 1-2 orders of magnitude smaller. Thus, we chose to simply neglect it in the

interest of limiting the dimensionality of the parameter space under study.

RC: Section 3.4. is empty.

AR: This was due to a LaTeX typo which we have now fixed in the revised version.

RC: L218-220. This is a weird formulation. Any Bayesian approach will include some prior uncertainty on model parameters,

and if modelling error is often neglected, it is generally included in the observation error from the likelihood. Maybe what

is specific to your approach is that the target X and the predictor Y are actually the same (temperature) and that you have

first to estimate the distribution of parameter phi?

AR: It is common for applied Bayesian methods to neglect certain variables or parameters in the model. A common example is in

regression problems, where the posterior distribution p(ϕ|X,Y ) is typically sought. A fully Bayesian treatment of this problem

would assign priors to the predictors, i.e: p(ϕ|X,Y )∝ p(Y |X,ϕ)p(X,ϕ). This is often referred to as a "generative" model

since integrating over ϕ yields the joint data distribution p(Y,X). However, p(X) is often neglected which simply corresponds

to an implicit uniform prior in the resulting probability model.

Similarly, here we mean to emphasize that the model states, x1:τ , on which temperature is functionally dependent, are a deter-

ministic function of the parameters, ϕ, in the probability model described by Eq. 7. A fully Bayesian solution of the problem

would account for uncertainty in the model states, x1:τ , by treating them also as stochastic quantities. This is precisely the for-

mulation used by Hidden Markov Models (HMM) and their continuous equivalents, state space models (SSM) and stochastic

differential equations (SDE). Since our forward model is a deterministic function that does not include such stochasticity, this

distribution is implicitly a Dirac density, as we describe in this paragraph.

It is true that model error is implicitly also included in the observation error from the likelihood. The limitations of EKS in this

regard are also discussed in Sec. 5.6.

The paragraph discussed here has been moved to Appendix B3.1 in the revised manuscript. We have further added the following

remark to the paragraph in this section:

::
In

::::::::
principle,

:::::
model

:::::
error

:::
can

::
be

::::::::
implicitly

:::::::::
accounted

:::
for

::
in

:::
the

::::::::
likelihood

:::::::::::::::::
p(y1:τ |x1:τ ,ϕ,s1:τ ).::::::::

However,
:::
as

::::::::
discussed

::
in

::::
Sect.

::::
5.5,

::::
EKS

:::::::
assumes

:::
the

:::::
noise

:::::
scale

::
of

:::
the

::::::::
liklihood

::
to

:::
be

::::
fixed

::::
and

::::::
known

:
a
::::::
priori,

:::::
which

::
is
::::::::
generally

::::::::::
insufficient

::
for

:::::::::
nontrivial

::::::
inverse

::::::::
problems.

:::
As

:
a
::::::
result,

:::
the

::::::::
predictive

::::::::::
distribution

::::::::
described

::
by

::::
Eq.

::::
(B8)

::::::
cannot

::
be

:::::::::
guaranteed

::
to
:::
be

:::
well

:::::::::
calibrated.
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RC: L224-225. It sounds like a classical McMC approach wouldn’t work. Any method sampling the posterior can solve the

problem, right?

AR: MCMC is not feasible here due to the fact that the random walk is sequential, and a very large number of samples (typically

thousands) is required in order to produce high quality posterior samples for nontrivial models. More advanced, gradient-based

methods such as Hamiltonian Monte Carlo (HMC) are more efficient in this regard but require computation of the gradient

which is equally (if not more) costly in a dynamical model such as the one used in this work.

But in principle, any method that can sample the posterior could work, notwithstanding computational limitations. Other

particle-based methods such as sequential Monte Carlo (SMC) or even importance sampling would also, in principle, be

viable.

It is worth noting that Garnello et al. (2021) used adaptive Metropolis-Hastings to solve a similar inverse problem (with a

different end goal) for the GIPL permafrost model (Jafarov et al., 2012). However, their calibration period was much shorter

(6 years) and limited to one site.

RC: Computational time for one forward model?

AR: Each model run takes between 5 and 15 minutes for the full 40 year simulation period on a 5-node compute cluster, each with

24 x Intel® Xeon® Gold 6128 CPUs @ 3.40GHz and 200 GiB of RAM. The compute time for each individual simulation

depends on the size of the calculated maximum timesteps which in turn depends on the parameter settings. Heavier tailed

freeze curve configurations (e.g. for silty or clay-like soils) tend to be slower due to the strong nonlinearity induced by the

freeze curve over a much wider range of subzero temperatures.

RC: L253-254. Assuming uncorrelated noise in time and space might be one of the unrealistic assumptions, depending of the

type of sensors of course. Maybe mention it in the discussion?

AR: We have revised the last point of Sect. 5.6:

:
A
:

fully Bayesian treatment of the inversion problem would include
::::
these ΣT as parameters to be inferred, which

:::
(or

:::::::::
equivalent)

::::::::::
parameters

::
in

:::
the

::::::::
posterior

:::::::::::
distribution.

::::
This

:
would have the benefit of producing an ensemble with a

predictive distribution that
:::::::
posterior

::::::::
samples

:::::
where

:::
the

:::::::::
predictive

::::::::::
distribution

:
is well calibratedon the training data.

This is, however, not possible using EKS, and thus, we leave the problem of estimating noise parameters to future work
:
,

::
i.e.

:::
the

:::::
95%

::::::::
prediction

:::::::
interval

::::::
should

:::::::
actually

:::::
cover

::::::::::::
approximately

::::
95%

:::
of

:::
the

::::::::::
observations

::
in
:::
the

::::::::::
calibration

::::::
period,

:::::::
therefore

::::::::
providing

::
a
::::::
built-in

:::::::
measure

:::
of

::
the

::::::
degree

::
to

::::::
which

:::
the

:::::
model

::
is

:::::::
capable

::
of

:::::::::
explaining

:::
the

::::::::::
observations.

While this does not directly address the question about noise correlation, it addresses the broader point about the need to not

make assumptions about the noise structure, in particular with regard to the problem of mdoel error.
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For observation (i.e. measurement) error alone, assuming no correlation is actually fairly reasonable, notwithstanding long-term

drift in the temperature sensor calibration. This is mitigated, however, by semi-regular maintenance (Boike et al., 2019)

RC: L258-259. It is also a requirement for any Bayesian inference. The posterior is directly related to the prior, so the prior

should reflect the actual knowledge about the site. McMC is sampling from the prior distribution as well.

AR: This paragraph has been moved to the Appendix B3.1. The line has also been revised to read:

:::
The

::::
prior

::::::::::
distribution

::::
over

::::::
model

:::::::::
parameters,

:::::
p(φ),

::
is

::
of

::::::
crucial

::::::::::
importance

::
to

:::
any

::::::::
Bayesian

::::::::
inference

:::::::::
procedure.

RC: L284-291. I wonder about the validity of deducing trend with such short data sets. In the discussion, comparison with longer

trend is introduced, but I feel this could be strengthened.

AR: We use a Bayesian trend model with semi-informative priors and a robust (Student-t) likelihood for exactly this reason (see

Appendix B1 for details). The wider tails of the Student-t likelihood makes the model much more "skeptical" of outliers and

thus more conservative in estimating trends. The magnitude of the posterior slopes, despite this robust formulation, suggests

that the observed trends are not spurious, although it is of course impossible to extrapolate them into the past without additional

data.

Following the suggestion of the referee, we have revised the corresponding method section to make the trend analysis method

more clear (see above).

RC: What is the reason? Is this biased visible consistenly throughout the year. If yes, all the models of the posterior must have

a high misfit, what could indicate a lack of consistency between the prior and the data set (e.g., Lopez-Alvis et al., 2019).

AR: The reasons for these biases are discussed in Sec. 5.2 of the original manuscript. Please also see our response to the related

comment below along with the supplementary results presented in Fig. R1.

RC: Close to what? I am not sure the sentence makes sense. Please clarify.

AR: We assume that the referee is referring to this sentence on line 331: "Both warmer sites also show more overall variability

across the ensemble in both latent heat and thaw depth trends with standard deviations close to or sometimes more than double

those of the two colder sites."

We meant to say that the standard deviations of the latent heat and thaw depth trend slopes computed across the ensemble

are generally much larger than those for the two colder sites, i.e. nearly double or more than double. Fortunately, our updated

results with a larger ensemble have made this distinction more clear:
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... close to or sometimes
::
of

::
the

:::::
trend

::::::
slopes more than double those of the two colder

::::
cold sites.

RC: L374-375. Is this significant enough to state that the difference is not only due to the depth of the sensor? If both had some

sensors deeper, this would largely reduce the uncertainty and has likely nothing to do with the fact that they are warmer,

don’t you think?

AR: Following the suggestion of the other referee, we repeated the Samoylov simulations with all sensors below 10m excluded

from the inference procedure. The results showed that this does indeed increase the spread of the predicted temperature, as we

might expect, but does not affect the uncertainty related to changes in latent heat and active layer thickness. We have revised

the text and moved it to section 5.3:

There is substantial variability in modeled temperatures over the simulation period (2000-2020) even after using EKS

to calibrate the model ensemble to borehole measurements (Fig. 5). This variability reveals fundamental uncertainties

about what observed changes in permafrost temperatures actually tell us. We see, for example, significant differences

in the overall spread
:::::
range

:
of predicted temperatures between sites. This can be partially explained by differences in

the depths of the observed temperatures
::::
both

:::::::::
differences

:::
in

::
air

::::::::::
temperature

:::::::::
variability

:::::
(Fig.

::
4)

::
as

::::
well

:::
as

::
in

:::
the

::::::
depths

:
at
::::::

which
::::::::::
temperature

:::::::::::
observations

:::
are

::::::::
available; e.g., the deepest sensors available at the Bayelva and Parson’s Lake

sites are at 9m and 9.82m respectively, whereas both Barrow and Samoylov have much deeper measurements available

near the depth of zero annual amplitude where there is little to no impact from seasonal variation. Important to note,

however, is that the ensemble temperature spread in Bayelva is less than that of Parson’s Lake, despite the sensor being

roughly closer to the surface, suggesting that depth alone likely cannot explain these differences in variability. The wider

spread in modeled temperatures at both Bayelva and Parson’s Lake, particularly in the deeper parts of the soil profile,

seems to indicate that there is more uncertainty in modeling the thermal dynamics of warmer permafrost. This may be

due to higher sensitivity to soil properties, initial conditions, and changes in surface conditions and soil water content.

We suspect that this sensitivity is in large part attributable to the nonlinear effects of the freeze curve on the thermal

dynamics, especially in deep permafrost (
:::
We

::::::
present

:::::::::
additional

::::::::::
experiments

::::::::
exploring

:::
the

:::::::::
sensitivity

::
of
::::

our
::::::::
inversion

::::::
method

::
to

::::::::
available

::::::
sensor

:::::
depths

:::
in

:::
the

::::::::::::
supplementary

:::::::
material

:::::
(Sect.

::::
S1).

::::
We

:::
find

::::
that

:::
the

::::::::
inclusion

::
or

::::::::
exclusion

:::
of

:::::::::::
measurements

::
at
:::::::

various
::::::
depths

:::
has

:
a
:::::

fairly
::::::::::
predictable

:::::
effect

:::
on

:::
the

:::::
results

:::
of

:::
the

:::::::
analysis;

:
i.e. near the depth of zero

annual amplitude) where thermal gradients are smaller and heat diffuses more slowly.
::
the

::::::::
inclusion

::
of
::::
data

::
at
:::::::::
additional

:::::
sensor

::::::
depths

::::::::
generally

::::::::
improves

:::
the

::::::
fidelity

:::
of

:::
the

::::::::
predicted

:::::::::::
temperatures

::
at

:::::
these

::::::
depths

:::
and

:::::::
reduces

:::
the

:::::::::
associated

:::::::::
uncertainty.

:::::::::
However,

:::
the

:::::
results

:::::::
suggest

::::
that

::::::::::
constraining

:::
the

::::::
model

:::::
using

::::
only

::::
deep

:::::::::::::
measurements,

::
as

:::
we

:::
do

:::
for

:::
the

::::::
Barrow

::::
site,

::::
may

::::
lead

::
to

:::::::::::
overestimated

::::::::
warming

:::::
closer

::
to

:::
the

:::::::
surface.

RC: Why a reference to the median suddenly? The discrepancy is for all models, not only the median or the mean, all predictions

are wrong.
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AR: We assume that the referee is referring to this sentence: "For Samoylov, the ensemble median of the modeled annual temperature

range of the permafrost layers is slightly too narrow..."

This is actually a mistake; we have now corrected this line in the revised text:

For Samoylov, the ensemble median of the modeled annual temperature range of the permafrost layers is slightly too

narrow...

In general, we often refer to the median elsewhere in the text because, as a quantile, it is robust against distributional skew

which does occur in some of the ensemble predictive distributions (most dramatically for Bayelva).

RC: L386-387. Have you tried enlarging the prior? Do you observe a similar bias for other years?

AR: We generally tried to select priors for the n-factors and soil properties that were informative enough to be useful but not so

informative where they would be restrictive. Ideally we would perform a robust sensitivity analysis with a wide range of priors,

but given the complexity of the downstream modeling task, this is prohibitively difficult. While we did perform a number of

ad-hoc experiments with wider or narrower priors, this did not affect this specific issue for Samoylov. The bias is also persistent

across years (Fig. R1) with the exception of 2016 in which the observed temperatures are unusually warm due to early season

snowfall.

It is very likely that the low temporal-resolution (bidecadal) of the n-factor parameterization is the source of this bias since it

cannot capture interseasonal (or even interannual) variation in snow cover effects. It is only a very coarse approximation of

snow cover effects to allow the model to capture long term trends.

RC: What do you mean by “smooth regularizers”. One of the advantage of Bayesian inversion is to use realistic prior and avoid

regularization (such as smoothing). Smoothing is normally only visible in the mean which is not necessarily a sample of

the posterior.

AR: The intent here was to relate the role of the prior in Bayesian inference to the role of regularization in classical optimization

problems (Calvetti and Somersalo, 2018). It is a well known result that there is a correspondence between certain regularization

schemes and families of prior distributions, e.g. ℓ2-regularization in ridge regression corresponds to a multivariate Gaussian

prior, and ℓ1-regularization in LASSO corresponds to a multivariate Laplace prior (Hastie et al., 2009).

This sentence has now been removed from the revised manuscript since it is nonessential and, as the referee pointed out,

potentially confusing.

RC: I think the term “appropriate” is badly chosen. The prior should reflect the uncertainty on model parameters before con-

sidering the data set, and what is mentioned should then result in larger prior. The main challenge is maybe to consider

correlation between parameters?

AR: We have improved the wording of this sentence and added a remark about correlation:
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Figure R1. Samoylov ensemble trumpet curves (annual min vs max temperature) for four selected years with data available: 2010, 2013,

2016, 2019. The black dots are observed min/max temperatures for that year. The dashed white line shows the median annual temperature.

However, the general lack of precise error and uncertainty estimates for some model parameters (in particular, soil

properties) makes the selection of appropriate
::::::::::
construction

:::
of prior distributions difficult.

:::::::::::
Furthermore,

::
it

::
is

::::
very

:::::
likely

:::
that

:::::
many

:::::::::
parameters

::::
are,

::
in

::::::
reality,

:::::
highly

:::::::::
correlated,

::::::
which

::
we

:::
are

::::::
unable

::
to

:::::::
account

:::
for

::::
with

:::
our

::::::
current

:::::::::
approach.

RC: L515-516. This is also the case for most McMC approaches.

AR: To clarify, we meant that the noise covariance must be fixed a priori, i.e. it is not treated as a parameter. Since MCMC is a more

flexible method that can work on any target density, the noise parameters are typically included in the posterior distribution

(Gelman et al., 1995) and sampled to fit the data. This is not possible with EKS. We have clarified this in the revised manuscript.
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:
A
:

fully Bayesian treatment of the inversion problem would include
::::
these ΣT as parameters to be inferred, which

:::
(or

:::::::::
equivalent)

::::::::::
parameters

::
in

:::
the

::::::::
posterior

:::::::::::
distribution.

::::
This

:
would have the benefit of producing an ensemble with a

predictive distribution that
:::::::
posterior

::::::::
samples

:::::
where

:::
the

:::::::::
predictive

::::::::::
distribution

:
is well calibratedon the training data.

This is, however, not possible using EKS, and thus, we leave the problem of estimating noise parameters to future work
:
,

::
i.e.

:::
the

:::::
95%

::::::::
prediction

:::::::
interval

::::::
should

:::::::
actually

:::::
cover

::::::::::::
approximately

::::
95%

:::
of

:::
the

::::::::::
observations

::
in
:::
the

::::::::::
calibration

::::::
period,

:::::::
therefore

::::::::
providing

::
a
::::::
built-in

:::::::
measure

:::
of

::
the

::::::
degree

::
to

::::::
which

:::
the

:::::
model

::
is

:::::::
capable

::
of

:::::::::
explaining

:::
the

::::::::::
observations.

RC: L520-523. See comment 1.

AR: We have now included further discussion on related methods (see above).

RC: Table B5. Display prior distributions behind posterior in figures A2 to A5 to immediately grasp the reduction in parameter

uncertainty?

AR: This is a great suggestion, and we have implemented it in the revised manuscript.
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