
Replies to referee comments on “Investigating the thermal state of
permafrost with Bayesian inverse modeling of heat transfer”

The Cryosphere, 10.5194/egusphere-2022-630

RC: Referee’s Comment, AR: Authors’ Response, □ Manuscript Text

1. Response to referee 1

We would first like to thank the referee for their time and effort in providing valuable feedback to improve our work. While we

acknowledge the referee’s general criticisms regarding the study design, we believe that our method, as well as the data that we

have available, are strong enough to still draw meaningful conclusions about how the thermal state of permafrost is responding

to long-term changes in climate conditions. We provide detailed responses to the referee’s individual comments below.

1.1. Issue 1: Research design and uncertainties

RC: The research design has some issues making it unclear if the main conclusions are attributed to the physical processes or

the modeling uncertainties. First, the available depths of borehole data are not the same. At the two colder sites (Samoylov

and Barrow, Fig 4b and 4c), both sites have deep borehole data although Barrow does not have shallow borehole data. In

contrast, neither of the two warmer sites (Fig 4d and 4e) has deep borehole data. This could be the main reason causing the

much larger temperature variability (Fig 4d and 4e), more scattered relationships in Fig 5, and more observed uncertainties

in Fig 6. Therefore, the majority of conclusions made by comparing colder and warmer sites are not convincing. One or

more warm sites with deep borehole data are needed to validate this study’s conclusions. It is also worth performing the

inverse modeling again on the Samoylov site excluding its deep borehole data to see if its thermal behavior stays the same

or changes toward the warm sites.

AR: We acknowledge that the disparity between available borehole temperature measurement depths is a concern. It is important

to note, however, that this is not an intentional aspect of the study design but rather a limitation of the available data. It is

common for researchers and practitioners to install automated temperature sensor instrumentation in the upper one meter of

the ground since this is generally achievable without heavy drilling equipment. High quality, automated instrumentation of

deep boreholes is unfortunately relatively rare and instead research teams typically collect manual measurements once per year

(often in the summer when the borehole can be easily located). The data from the Barrow North Meadow Lake site featured

in this work are an example of such measurements. As mentioned in the text, these annual measurements cannot be compared
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to mean annual temperatures recorded in instrumented boreholes (such as the other three sites) above the depth of zero annual

amplitude (ZAA) due to the effects of seasonal variation. This is why we only use the manual measurements from Barrow at

20 m and below, as this is presumed to be deep enough that seasonal variation should be negligible.

Despite this limitation, we argue that our conclusions are justified for three primary reasons:

Firstly, the availability of deeper measurements should largely only affect uncertainty in the initial temperature profile at the

beginning of the simulation period (i.e. at the year 2000); this is because deeper measurements help better constrain the range of

plausible temperature profiles after the spin-up period (1979-1999). The impact on later years where observations are available

in the upper 10m will necessarily be less significant since, after the first 5 to 10 years, the climate signal will dominate the

initial condition.

Secondly, one of the main reasons why we limit the analysis of energy contents to the upper 10m is because this is the range in

which all sites (excepting Barrow) have measurements available. While it is true that the temperature profile at the beginning

of the simulation period would have some impact on the resulting distribution of observed trends, we would expect this effect

to be mostly limited to temperature (i.e. a wider range of initial temperatures would spread out the distribution along the x-axis

in Figure 5 from the manuscript). It should not affect the underlying relationship between temperature and latent heat, which

is the central interest of this study.

Lastly, while it is true that the availability of deeper borehole measurements will affect the resulting spread of temperature

predictions across the ensemble, we do not agree that this weakens the conclusions drawn from comparing the cold and

warm sites. On the contrary, it is actually a strength of our method (and Bayesian methods more generally) that the posterior

distribution meaningfully reflects uncertainty due to differences in data availability between sites and therefore allows us to

make inferences despite these limitations of the available data.

To validate our arguments here, we followed the suggestion of the referee and ran an additional set of simulations for the

Samoylov site with the measurements below 10m omitted from the inference procedure. The results are presented below.

It is clear that the primary impact of omitting the deeper borehole observations for Samoylov on long-term change in the

energy partitions (Fig. R1) is on the sensible heat content. This is due to the additional uncertainty in the initial temperature

profile at the beginning of the simulation period (Fig. R2). The effect on latent heat, as well as the relationship between

changes in temperature and latent heat and/or permafrost thaw, is negligible (Fig. R3), with the linear relationship between

latent heat and temperature staying the same within the bootstrap margin of error: (2.1± 0.9)MJ/K with all sensors depths

to (2.2± 0.3)MJ/K excluding depths below 10m. The change in the linear relationship between active layer thickness and

temperature was also negligible: (0.011± 0.007)m/K to (0.014± 0.002)m/K.

We propose that this lack of sensitivity to the initial temperature offset is exactly because of (i) the historically cold temperature

of deep permafrost at Samoylov Island and (ii) the freezing characteristics of sandy soils which allow for minimal unfrozen

water at temperatures well below the freezing point. Thus, even the warmest plausible initial temperatures, given the larger
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Figure R1. Total change in energy partitions (upper 10m of soil profile) since the beginning of simulation period. Energy is partitioned into

three categories: Latent heat in frozen grid cells (i.e. cells with maximum annual temperature Tmax < 0°C), latent heat in the active layer

(Tmax ≥ 0°C), and sensible heat. Solid lines show the median energy change while the shaded regions show the 95% CCI over the ensemble.

uncertainty range, are cold enough that there is minimal change in latent heat. This is consistent with the central argument

of our paper: soil characteristics and historical climatology are crucial to understanding what observed changes in ground

temperature can tell us about the thermal state of permafrost.

We will add these additional results to the appendix of the revised manuscript, and we will also include additional discussion

to highlight the robustness of our results to the discrepancies in available measurements between sites.

RC: Line 374 seems to demonstrate depth alone cannot explain the variability. However, the statement is not strong because 82

cm is too small on a 10 m scale. Also, the observations of Bayelva also have less variability than those of Parson’s Lake,

which likely explains the less variability in the modeled temperature at Bayelva.

AR: We agree with the referee’s assessment here and have removed this assertion from the text.

RC: The authors do have a full section 5.6 to discuss the limitations. While these limitations are definitely important, the current

research design is not strong enough to support the conclusions even neglecting other uncertainties.

AR: We believe that the additional results presented in figure R1-R3 validate the study design and support the central arguments of

our paper. The limitations detailed in section 5.6 are, as the referee states, important. However, as also argued in the main text,

we believe that the model and study design are still strong enough to support the main conclusions.

RC: Secondly, section 5.3 discusses the role of surface conditions on ground warming based on the n-factor change before and

after 2005. Again, uncertainties can be the main driver because no borehole observations are available to constrain the

model before 2005. This is another key point made based on the comparison of two data not having the same conditions.
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Figure R2. Mean annual ground temperatures at 9.75m depth (the deepest sensor after truncation) at Samoylov along with temperature

profiles in the final simulation year (2020) for all ensemble members. The blue line shows the ensemble mean. The dotted white line on

the temperature profile plots shows the ensemble median. Note the recent change in the long-term warming trend at this depth within the

last five years cannot be resolved by our current model due to the bidecadal n-factor parameterization. This change is actually not due to air

temperature but rather changes in snow cover, in particular substantial early-season snowfall in the winter of 2016/2017 (Boike et al., 2019).

AR: We have removed this paragraph from the text since it is, in hindsight, overly speculative given the limitations of the current

study design and available data. We do not agree, however, that this is a particularly important point of the manuscript. The

discussion here was largely tangential and was intended only to comment on the potential hazards of extrapolating recently

observed trends in deep ground temperatures backwards in time.
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(a) Latent heat, Samoylov all depths
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(b) Latent heat, Samoylov down to 10m
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(c) Active layer thickness, Samoylov all depths
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(d) Active layer thickness, Samoylov down to 10m

Figure R3. Joint densities of modeled mean annual change in latent heat (a-b) and active layer thickness (c-d) vs. mean annual change in

ground temperature across sites for both the normal Samoylov run with all borehole depths (a,c) and the additional Samoylov run with only

borehole observations up to 10m (b,d). Note that omitting the deeper sensors largely only affects the spread of observed temperature trends

and not the relationship with changes in latent heat. In all four plots, a small number of points from Bayelva exceed the upper y-axis limit

and thus are not shown.

1.2. Issue 2: Method description

RC: The manuscript has a large space describing the modeling method but most contents are too technical and not accessible

to people who are in the cryosphere community but do not have expertise in numerical modeling, inversion, and Bayesian

method, etc. The authors focus too much on the advanced topics of the method but completely missed the information on

the basic idea of the applied method. Also, in many cases, the authors only cite some references without explicitly describing

the methods, which makes the readers difficult to follow or understand.
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AR: We thank the referee for this valuable feedback. Although we already attempted in the original manuscript to keep technical

language and details to a minimum, we recognize that this communication gap is one of the primary challenges of interdisci-

plinary research and that there are certainly further improvements that can be made to the existing text. We respond to each of

the referee’s specific concerns below.

RC: Section 3.1. The introduction of Bayesian inference involves too many technical terminologies. Please consider adding

supporting sentences to make it easier for people not familiar with the Bayesian method to understand it.

This section was intended to provide a basic introduction to the ideas of Bayesian inference for those not familiar with such

methods, so it is of course important that it is accessible for this audience. We have revised the paragraph in question as follows:

The Bayesian approach to statistics provides a natural framework for inferring unobserved quantities of interest while

simultaneously accounting for their associated uncertainties [...]. This is accomplished by applying Bayes ruleto some

observed and unobserved variables, Y and X , respectively
::
via

::::::
Bayes

:::
rule:

p(X|Y ) =
p(Y |X)p(X)

p(Y )
with p(Y ) =

∫
x∈X

p(Y |X = x)p(X = x)dx, (1)

which can be seen a generic formula for obtaining the so-called posterior distribution of an unobserved quantity X a

posteriori given observations Y from some sampling distribution or likelihood p(Y |X). The prior distribution
:
.
:::
The

:::::
prior

:::::::::
distribution p(X) encodes information about Y known

::::::
reflects

:::
our

::::::::::
pre-existing

:::::::::
uncertainty

:::::
about

:::
X a priori and plays

a crucial role in the Bayesian inference workflow.
::::
(i.e.

:::::
before

:::::::::
observing

::
Y )

:::::
while

:::
the

:::::::::
likelihood

:::::::
p(Y |X)

::::::::
measures

::::
how

:::
well

::::
the

::::::
model’s

::::::::::
predictions

:::::
agree

::::
with

:::
the

:::::::::::
observations,

:::
Y .

::
In

::::
this

:::::
work,

::
Y

:::
are

:::::::::::
temperature

::::::::::::
measurements,

::::::::
typically

:::::::
sampled

::::
over

::::
time

::::::
and/or

:::::
space,

:::::::
whereas

:::
X

:::
are

::::::::
unknown

:::::
model

::::::::::
parameters

::
or

::::::::::
unobserved

:::::::
physical

::::::::
quantities

:::::
such

::
as

:::
soil

:::::::::
properties,

:::::
thaw

:::::
depth,

::
or
::::

the
::::
ratio

::
of

:::::::
sensible

:::
to

:::::
latent

::::
heat.

::::
The

::::::
overall

::::::::
objective

::
is

::::
then

::
to

::::::
obtain

:::
the

::::::::
posterior

::::::::::
distribution,

:::::::
p(X|Y ),

:::
of

::::
these

::::::::
unknown

::::::::::
parameters

::::
given

::::
the

::::::::::
temperature

::::::::::::
measurements

:::::
which

::::::::
quantifies

::::
not

::::
only

:::
the

:::::::::
best-fitting

::::::::
parameter

:::::::
settings

:::
but

::::
also

::
the

:::::::::
associated

::::::::
modeling

:::::::::::
uncertainties.

:

RC: Lines 140-144. Need to briefly explain the bias correction procedure.

AR: We have added the following clarifying clause to briefly elaborate on the bias correction procedure of Piani et al. (2010):

The bias correction procedure for air temperature follows closely the empirical quantile mapping method of [...]
:
in
::::::
which

::
the

:::::::::
empirical

:::::::
quantiles

:::
of

::::
both

:::
the

:::::
model

::::::::::
(reanalysis)

::::
and

:::::::::::
observational

::::
data

:::
are

::::::::
computed

::::
over

:::::
some

::::::::
reference

::::::
period

::
(in

::::
this

:::::
study,

:::
we

:::
use

:::
the

:::
full

:::::
time

:::::
period

:::
for

::::::
which

::::::::::
observations

:::
are

:::::::::
available);

:::
the

::::::
model

::::
data

:::
are

::::
then

:::::::
mapped

::
to

:::
the

:::::::::::
corresponding

::::::::
quantiles

::
of

:::
the

:::::::::::
observations.

RC: Line 150. Need to briefly explain the numerical procedures and parameterizations of CryoGrid.
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AR: We have added two additional missing pieces of information to the appendix section, namely the parameterization of the

thermal conductivity, kT (z, t), and heat capacity, CT (z, t), functions. We will also add parameter tables to the supplement

enumerating the relevant constituent conductivities and heat capacity parameters which are treated as constants in this study in

order to avoid colinearity with the soil composition parameters.

RC: Section 3.6 This section introduces a key methodology EKS. It presents the advantages of EKS over MCMC and EKI without

explaining the basic theory/idea of EKS in the first place. Again, this makes researchers not familiar with EKS very difficult

to follow and understand it.

AR: We will add a few sentences describing the theory behind EKS as well as one or two of the key equations from Garbuno-Inigo

et al. 2020.

RC: Line 250. Need briefly explain what a mean vector from Garbuno-Inigo et al. 2020 is.

AR: As discussed in the text, the observed temperatures are assumed to be generated according to equation (9), i.e:

Tobs = (hT ◦ f)(θ)+ η

where f is the forward model evaluated at θ, hT is the mapping function which extracts and aggregates the modeled tempera-

tures, and η ∼N (0,ΣT ) is the observational noise. For the purposes of constructing the EKS algorithm, the model predictions

can thus be equivalently seen as being sampled from a Gaussian distribution centered at Tobs (this follows from moving η to the

left hand side of the above equation). Since we assume the observation noise to be independent across space and time, we can

flatten the two-dimensional temperature field into a vector which thus constitutes the mean of this Gaussian distribution, hence

the term “mean vector”. However, we acknowledge that this term is non-standard and possibly confusing; in light of this, we

have now rephrased this sentence in the revised manuscript:

The
::
We

::::
use

:::
the observed mean annual ground temperatures,

:::::::::::
temperatures

::::
from

::::
each

::::::::
borehole

:::
site

:::
as

:::
the

:::::::::::
observations,

::
i.e.

:
Tobs , are used as the observation mean vector for the Ensemble Kalman Sampler described in [...]

:
in
::::
Eq.

:
7
:
,
:::
for

:::
the

::::::::
Ensemble

:::::::
Kalman

::::::::
Sampling

::::::::
algorithm.

1.3. Issue 3: Quantiative analysis in discussion

RC: The discussion needs more quantitative and specific analysis. When interpreting the results, the authors only briefly propose

possible factors without explaining how would these factors impact the results.

AR: We agree with the referee’s assessment and will revise the discussion section accordingly. More specifically, we will add

concrete numbers to reinforce the statements regarding model biases in Sec. 5.2 as well as for the statements discussing

correlations and effect sizes in Sec. 5.4.

RC: Paragraph 255. I may miss something but I did not get the purpose of this paragraph. It states that the prior distribution

over model parameters is important but does not explain what was done to improve performance.
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AR: The purpose of this paragraph was just to provide some basic motivation. We have rearranged this and the following paragraph

to make this more clear:

The prior distribution over model parameters, p(ϕ), is of crucial importance to our method
:::
also

:::::
plays

:
a
::::

key
::::
role

::
in

:::
the

:::::::
inversion

:::::::::
procedure. Some parameters in the heat transfer model, such as soil composition, will cause the resulting

optimization problem on ϕ to be under-constrained, since there may be more than one possible combination of soil com-

ponents which have similar thermal properties. Additionally, incorporating prior knowledge about plausible parameter

values allows us to reduce the amount of computational effort wasted on physically implausible or incoherent model

configurations that may arise from random sampling.

EKS assumes the m unconstrained parameters γ(ϕ) =ψ ∈Ψ⊆ Rm to follow a multivariate Gaussian distribution,

ψ ∼N (µψ,Σψ), where γ : Φ→Ψ is a bijective function which maps the m-dimensional possibly constrained parameters

ϕ ∈ Φ to their unconstrained values on the real line. We define our priors in the constrained parameter space Φ in order

to more easily incorporate physically meaningful information about each site. We define suitable parameter priors for

each site based on published field measurements and soil core analyses; full details on choices of priors for each site are

in Appendix [...]

::::
EKS

:::::::
assumes

:::
the

:::
m

::::::::::::
unconstrained

::::::::::
parameters

::::::::::::::::::
γ(ϕ) =ψ ∈Ψ⊆ Rm

::
to

::::::
follow

::
a
::::::::::
multivariate

::::::::
Gaussian

:::::::::::
distribution,

::::::::::::::
ψ ∼N (µψ,Σψ),::::::

where
:::::::::
γ : Φ→Ψ

::
is

:
a
::::::::

bijective
:::::::
function

::::::
which

:::::
maps

:::
the

:::::::::::::
m-dimensional

::::
(and

:::::::
possibly

:::::::::::
constrained)

:::::::::
parameters

:::::
ϕ ∈ Φ

::
to
:::::
their

:::::::::::
unconstrained

::::::
values

::
on

:::
the

::::
real

:::
line.

RC: Line 356. This sentence does not explain why Samoylov has deep soil temperature warming faster than the air temperature.

Factors other than air temperature should be included here.

AR: We agree that the other factors are also important to highlight. This was actually explained further in the following paragraph,

but the connection was not necessarily obvious as written. We have revised these two paragraphs to make this point more clear:

This is consistent with the results of our analysis which show mean air temperature trends ranging from 0.09Kyr−1

at Parson’s Lake to 0.11Kyr−1 on Samoylov Island. The large difference
::::
This

::::::::::
discrepancy

:
in observed permafrost

temperature trends between these two sites, despite similar changes in air temperature, indicates considerable uncertainty

in how permafrost is responding to the changing climate. Furthermore, the observation that deep permafrost on Samoylov

Island is most likely warming faster than air temperature suggests that changes in air temperature alone cannot always

fully explain permafrost warming.

These results motivate our inverse modeling study by demonstrating clear, localized differences and substantial uncertainty

in how the permafrost thermal regime responds to long-term changes in air temperature. The discrepancies in the apparent

relationship between long-term changes in air and permafrost temperatures suggest that other factors are at play, such as

surface conditions (e. g. snow cover) and variability in
::::::
climate

:::
that

::
is
:::::
likely

::::::::::
attributable

::
to

:::::
other

:::::::
factors.

:::
For

::::::::
example,
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::::::
thicker

:::::
and/or

:::::
lower

::::::
density

:::::
snow

:::::
cover

:::
can

:::::::::
accelerate

:::::::::
permafrost

:::::::
warming

:::
by

::::::::
insulating

:::
the

::::::
ground

::::::
against

:::::
rapid

:::::
drops

::
in

::
air

:::::::::::
temperature

:::::::::::
characteristic

::
to
:::::::

autumn
::::
and

:::::
early

:::::
winter

:::::::
thereby

::::::::
delaying

:::
the

:::::::::
refreezing

::
of

:::
the

::::::
active

:::::
layer

:::
[...]

:
.

::::::::::
Additionally,

:
soil thermal properties . These factors

:::
such

:::
as

:::
the

::::
bulk

:::::::::::
conductivity

:::
and

::::::::
freezing

::::::::::::
characteristics

:::
due

:::
to

:::
soil

::::::
texture

:::
can

::::
also

::::
play

::
a

::::::::
significant

::::
role

::
in

::::::::::
modulating

:::
the

::::::
effects

::
of

::::::
surface

::::::::::
temperature

:::::::
changes

::::
[...].

:::::
Both

::
of

:::::
these

::::::
factors,

::::::
among

::::::
others,

::::
can significantly affect energy uptake in the subsurface, and ultimately, the current and future

thermal state of permafrost in Arctic regions [...]. We believe

:::
The

::::::
results

::
of

:::
this

:::::
trend

:::::::
analysis

::::::::
motivate

:::
our

::::::
inverse

::::::::
modeling

:::::
study

::
by

::::::::::::
demonstrating

:::::
clear,

::::::::
localized

:::::::::
differences

::::
and

:::::::::
substantial

:::::::::
uncertainty

::
in

::::
how

:::
the

::::::::::
permafrost

::::::
thermal

:::::::
regime

::
at

::::
these

::::
four

::::
sites

::
is
::::::::::
responding

::
to

:::::::::
long-term

:::::::
changes

::
in

::
air

:::::::::::
temperature.

:::
We

:::::
argue that this can be at least partially attributed to the latent heat effect, in addition to soil thermal

properties, both of which are a major source
::::::
factors

:::::::
affecting

::::
the

:::::
uptake

:::
of

:::::
latent

::::
heat

::
in

:::
the

::::::::::
subsurface

::::
such

::
as

::::
soil

:::::::
freezing

:::::::::::
characteristics

:::
as

::::
well

::
as

::::::::
historical

::::::::::
climatology.

:::
We

::::::
discuss

::
in
:::
the

:::::::::
following

:::::::
sections

:::
how

::::
our

::::::
inverse

::::::::
modeling

:::::
results

:::::::
suggest

::::
that

::::
both

::
of

:::::
these

::::::
factors

:::
are

::::::
major

::::::
sources

:
of uncertainty in making inferences about the subsurface

thermal regime [...]
::::::::
changing

::::::
thermal

:::::
state

::
of

:::::::::
permafrost.

RC: Paragraph 360. Besides only presenting the potential factors impacting the soil thermal states, I would include how they

impact the thermal states. For example, how does the ground temperature change with air temperature giving increasing

(or decreasing) snow thickness and soil thermal diffusivity?

AR: We have added further discussion in the text to clarify the expected impacts on the thermal state (see the revised text above).

RC: Line 390. Please explain more about why latent heat is lost so that the temperature is warmer. Please also explain why

drainage and evapotranspiration cause latent heat loss.

AR: As discussed in section 5.5 in the original text, latent heat acts as both a heat sink during thawing and a heat source during

freezing. The latter plays a particularly important role during the winter because it slows the propagation of cold surface

temperatures thereby delaying the refreezing of the active layer (Romanovsky and Osterkamp, 2000). When unfrozen water is

removed from the active layer due to drainage or evapotranspiration, the latent heat stored in this water is removed as well, and

thus so is the heat source. The result is that cold temperatures can propagate faster in the winter-time since a higher fraction of

this energy is diffused as sensible heat.

We will also include this additional explanation in the revised text.

RC: Section 5.6. It would be helpful if include some discussion about the expected changes after addressing each limitation.

AR: We will add supporting sentences in this section to highlight the expected effect of addressing each limitation.

RC: Minor comments...
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AR: We thank the referee for these corrections. We have made the necessary revisions to the manuscript, including moving figure

B1 to the main text.

A. Additional comments from the authors

In the process of revising our simulation code to follow-up on the referee’s concerns, we discovered some unrelated bugs in the

configuration of the prior distributions for some of the parameters (specifically, the freeze curve parameters for the Parson’s

Lake site and the saturation level parameter for all sites). We fixed these errors and re-ran the simulations for all sites with the

same random seed as used in the original simulations. We also increased the size of the ensemble from 256 to 512 to improve

the robustness of our results as well as to facilitate the sensitivity analysis requested by the second referee.
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