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Abstract. Climate projections from global circulation models (GCMs) part of the Coupled Model Intercomparison Project

6 (CMIP6) are often employed to study the impact of future climate on ecosystems. However, especially at regional scales,

climate projections display large biases in key forcing variables such as temperature and precipitation. These biases have been

identified as a major source of uncertainty in carbon cycle projections, hampering predictive capacity. In this study, we open

the proverbial Pandora’s Box, and peer under the lid of strategies to tackle climate model ensemble uncertainty. We employ a5

dynamic global vegetation model (LPJ-GUESS) and force it with raw output from CMIP6 to assess the uncertainty associated

with the choice of climate forcing. We then test different methods to either bias correct or calculate ensemble averages over the

original forcing data to reduce the climate-driven uncertainty in the regional projection of the Australian carbon cycle. We find

that all bias correction methods reduce the bias of continental averages of steady-state carbon variables. Bias correction can

improve model carbon outputs but carbon pools are insensitive to the type of bias correction method applied for both individual10

GCMs and the arithmetic ensemble average across all corrected models. None of the bias correction methods consistently

improve the change in simulated carbon over time compared to the target dataset, highlighting the need to account for temporal

properties in correction or ensemble averaging methods. Multivariate bias correction methods tend to reduce the uncertainty

more than univariate approaches, although the overall magnitude is similar. Even after correcting the bias in the meteorological

forcing dataset, the simulated vegetation distribution presents different patterns when different GCMs are used to drive LPJ-15

GUESS. Additionally, we found that both the weighted ensemble averaging and random forest approach reduce the bias in

total ecosystem carbon to almost zero, clearly outperforming the arithmetic ensemble averaging method. The random forest

approach also produces the results closest to the target dataset for the change in the total carbon pool, seasonal carbon fluxes,

emphasizing that machine learning approaches are promising tools for future studies. This highlights that where possible,

an arithmetic ensemble average should be avoided. However, potential target datasets that would facilitate the application20

of machine learning approaches, i.e., that cover both the spatial and temporal domain required to derive a robust informed

ensemble average are sparse for ecosystem variables.
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1 Introduction

Global circulation models (GCMs) are useful projection tools of future climate at continental and global scales but inevitably

simulate large biases in temperature, precipitation and humidity at regional scales and at individual grid points (Randall et al.,25

2007; Flato et al., 2013). Projections of atmospheric variables from GCMs, represented by the Coupled Model Intercomparison

Project (CMIP), underpin a suite of critical future predictions of the carbon and water cycles (e.g. Ahlström et al., 2012;

Ukkola et al., 2016; Ahlström et al., 2017), species distributions (Cheaib et al., 2012), species resilience to climate extremes

(Sperry et al., 2019) and predictions of conservation planning (Gallagher et al., 2021). Critically, many applications utilise

atmospheric variables from GCMs as forcing without explicitly considering underlying uncertainty in their (bias-corrected)30

climate projections. This uncertainty includes, but is by no means limited to, the fact that CMIP is an ’ensemble of opportunity’,

and not explicitly designed to represent an independent set of estimates, i.e. CMIP models share modules and are related to

varying degrees (e.g. Annan and Hargreaves, 2017; Boe, 2018; Abramowitz et al., 2019).

To tackle biases in GCM forcing a range of approaches have been employed, with no clear agreement or ’best practice’ on

how to assess GCM skill and to bias correct simulated climate variables, and/or to weight ensemble members. Some studies35

have quantified the sensitivity of impact studies to GCM selection method, the choice of bias correction, and/or the ensemble

averaging techniques. For example, Gohar et al. (2017) examined the impact of bias correction methods on future warming

levels and found that both selecting GCMs based on performance and bias correcting model data reduced uncertainties in

regional projections. In an Australian study, Johnson and Sharma (2015) increased model consensus in future drought projec-

tions using bias corrected simulations. These studies focused either directly on the climate variables and/or derived relatively40

simple indices based on a single variable. In an analysis of hazard indices based on multiple climate drivers, Zscheischler et al.

(2019) showed multivariate methods tended to outperform univariate bias-correction methods. In addition, Kolusu et al. (2021)

tested the impact of different weighting techniques and two bias correction methods on the spread of hydrological risk profiles

and found that the sensitivity to climate model weighting was considerably smaller than the uncertainty resulting from bias

correction methodologies. When Ahlström et al. (2012) used CMIP5 simulations to run the dynamic global vegetation model45

(DGVM) LPJ-GUESS, they found that GCM climate biases translated into a divergence in the future simulated (offline) carbon

cycle responses on regional and global scales that was significantly reduced when the climatological input forcing was bias

corrected (Ahlström et al., 2017). The need to address biases in GCM forcing is commonly acknowledged, but the wide range

in possible solutions (e.g., bias correction, ensemble averages across GCMs) makes it difficult to determine the impact of the

correction in climate forcing on the specific question of interest. Here, we examine multiple methods to constrain regional50

projections of the carbon cycle by opening Pandora’s box, famous in Greek mythology. When Pandora could not resist opening

the lid on her box, she allowed all the evils of the world to escape. Similarly, we could not resist testing the impact of various

approaches to constraining the carbon cycle, and the challenges we identify are not easily resolvable. However, we hope that

by highlighting these challenges we at least begin the process of resolving them.

There have been multiple efforts to constrain future multi-model ensemble uncertainty (e.g. Michelangeli et al., 2009; Knutti55

et al., 2010b; Bárdossy and Pegram, 2012; Bishop and Abramowitz, 2013; Johnson and Sharma, 2015; François et al., 2020).
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Most of these attempts assume that the GCMs that simulate the historical climate well are likely to provide more skillful

future projections. Based on this assumption, different approaches for dealing with ensemble uncertainty have emerged that

can broadly be grouped into three strategies: (i) selecting only a subset of GCMs �t for the respective study (e.g. Pennell and

Reichler, 2011; Rowell et al., 2016; Herger et al., 2018; Gershunov et al., 2019); (ii) applying downscaling and bias correction60

methods (e.g. Panofsky et al., 1958; Wood et al., 2004; Déqué, 2007; Michelangeli et al., 2009; Bárdossy and Pegram, 2012;

François et al., 2020); and/ or (iii) applying ensemble weighting techniques (e.g. Bishop and Abramowitz, 2013; Sanderson

et al., 2017; Massoud et al., 2019, 2020).

The �rst strategy focuses on sub-selecting GCMs from the full ensemble, using metrics deemed to be application relevant, to

obtain an ensemble that is truly representative of the uncertainty linked to GCM simulations. Commonly, this is based on how65

well GCMs simulate relevant climate variables compared to historical observations (e.g. Kolusu et al., 2021) and represents

the 'skilled models' category, shown in �gure 1. Other studies �nd that excluding the 'weakest' models has little impact on

the overall uncertainty range (e.g. Déqué and Somot, 2010; Knutti et al., 2010b; Rowell et al., 2016). Some studies choose

models de�ned as independent (e.g. based on the correlation of the biases in the simulations or within a Bayesian framework;

Jun et al., 2008; Knutti et al., 2010a; Pennell and Reichler, 2011; Annan and Hargreaves, 2017). Lastly, Evans et al. (2014)70

and Cannon (2015) suggest selecting those models that 'span' the (plausible) CMIP projections when selecting GCMs for

dynamical downscaling ('bounding' models category in �g. 1).

The second strategy employs a range of bias correction methods to reduce errors in the GCM outputs. Univariate bias cor-

rection methods are widely used to improve agreement of the statistical attributes (mean, variance, quantiles) of the simulated

climate variables with those of historical climate data. While these methods can produce reasonable results (e.g. Yang et al.,75

2015; Casanueva et al., 2018) they typically correct each climate variable independently, one grid cell at a time. This can result

in inconsistent relationships across physically interlinked climate variables, and/or across a spatial domain. Given univariate

methods do not account for multidimensional dependencies, they cannot correct temporal, inter-variable or spatial aspects of

the simulations (François et al., 2020). To address these gaps, multivariate methods account for dependencies between variables

and spatial patterns. Multivariate methods are especially valuable in impact modeling frameworks where the combination of80

atmospheric processes across a range of time and space scales, such as coinciding low rainfall and high temperatures inducing

vegetation drought stress, are important (Zscheischler et al., 2019).

Finally, several weighting methods have been developed to derive ensemble averages. The arithmetic multi-model mean

is commonly used (Knutti et al., 2010a) and by cancelling non-systematic errors, usually out-performs individual GCMs.

However, assigning each ensemble member a uniform weight has been criticised (Knutti et al., 2010b; Herger et al., 2019).85

Non-uniform weights, based on skill, independence, or skill and independence combined (e.g. Bishop and Abramowitz, 2013;

Brunner et al., 2019, 2020) can also be used. In addition, machine learning techniques have become increasingly popular to

calculate multi-model averages (e.g. Huntingford et al., 2019; Thao et al., 2022) that use GCM outputs as predictors to match

an observation based target (e.g. reanalysis products). For example, Wang et al. (2018) explored a random forest approach,

support vector machine, and Bayesian model averaging to calculate a best-�t multi-model ensemble average for monthly90

temperature and precipitation over Australia. Similarly, other studies have focused on climate extremes (e.g. Deo and Şahin,
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2015; Yunjie Liu et al., 2016) and climate impacts on the environment (e.g. Jung et al., 2010; Yang et al., 2016; Wu et al.,

2019a) using machine learning approaches.

In this study, we focus on Australia, and analyse the impact of climate forcing bias correction and ensemble averaging

methods on the simulated historical carbon cycle. Australia is a suitable study system for this work because climate projections95

of precipitation will remain uncertain at regional scales for the foreseeable future (IPCC, 2013; Ukkola et al., 2020; Grose

et al., 2020). These uncertainties are likely to have a disproportionate in�uence on water-limited regions such as Australia,

with potential impacts on vegetation distributions, and water and carbon cycles, given many biologically relevant processes

are threshold-based and disproportionately responsive to extremes as opposed to mid-range changes in climate forcing. While

Australia is not the largest contributor to the global carbon sink on centennial timescales, the continents' total carbon storage is100

still signi�cant. On shorter timescales, the IAV in NBP is important for the both historical and future estimates of atmospheric

growth rate since several studies (e.g. Poulter et al., 2014; Ahlström et al., 2015) have found that Australia can be a major

contributor to the global net carbon sink in wet years. It is therefore important to reduce the uncertainty in carbon cycle

projections over Australia, �rst to improve estimates of future carbon sinks, second to help constrain future atmospheric growth

rates and third, because the improved understanding will ultimately enable better predictions of vegetation responses and of �re105

to climate change over Australia. Here, we assess the impact of different CMIP6 GCM selection, bias correction and ensemble

averaging methods on the simulated carbon cycle in a synthetic experiment. We use a single dynamic global vegetation model,

LPJ-GUESS (Smith et al., 2014), forced with different versions of CMIP6 climate forcing, as well as LPJ-GUESS forced

with the CRUJRA reanalysis (Harris, 2019) as a target dataset for the carbon variables, and focus on responses at seasonal to

centennial timescales. Using a single model forced with multiple realisations of climate allows us to separate climate-driven110

uncertainties from those arising from model parametrisations. LPJ-GUESS is the only second-generation DGVM part of the

TRENDY ensemble, i. e. it is a cohort-based DGVM that incorporates the dynamics of forest-gap models. It can therefore be

expected to simulate more realistic temporal carbon dynamics than �rst-generation DGVMs which typically rely on a single

area-averaged representation of each plant functional type (PFT) for each climatic grid cell (e.g. Fisher et al., 2018). Our goal

is to examine how the choice of method to deal with climate biases and uncertainty in the CMIP6 climate forcing in�uences115

the projection of the terrestrial carbon cycle and whether any selected method represents a robust or preferable choice.

2 Climate forcing

2.1 CMIP6

We chose the historical simulations of 21 CMIP6 GCMs (see tab. 1) that provide the three meteorological forcing variables

needed to run LPJ-GUESS, i.e. the near-surface air temperature (tas), the total precipitation �ux (pr) and the incoming short-120

wave radiation (rsds), and examine the r1i1p1f1 realisation that covers the time period (1850–2100). Four GCMs (ACCESS-

CM2, ACCESS-ESM1-5, BCC-CSM2-MR and NESM3) provide incoming shortwave radiation starting in 1950 only. For these

GCMs, we recycled the climate forcing of the �rst 25 years of the available forcing (i.e. 1950–1974) for the �rst 100 years (i.e.

1850–1949). All GCMs provide daily data but differ in their spatial resolution. We therefore regridded all GCMs to a common
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0.5� grid using �rst order conservative remapping to match the resolution of the reanalysis and the native grid of LPJ-GUESS,125

and focus on the historical time period (1901-2019).

Table 1.CMIP6 models used to force LPJ-GUESS. Further details for each model are available at the references listed in this table.

GCM Institute ID
Native resolution

(lat � lon)
Key reference

ACCESS-CM2 CSIRO-ARCCSS 1.25� � 1.875� Bi et al. (2013)

ACCESS-ESM1-5 CSIRO 1.25� � 1.875� Law et al. (2017)

BCC-CSM2-MR BCC 1.121� � 1.125� Wu et al. (2019b)

CanESM CCCma 2.7905� � 2.8125� Swart et al. (2019)

CESM2-WACCM NCAR 1.3� � 0.9� Liu et al. (2019)

CMCC-CM2-SR CMCC 0.94� � 1.25� Cherchi et al. (2019)

EC-Earth EC-Earth-Consortium � 0.7� � 0.7� Döscher et al. (2022)

EC-Earth3-Veg EC-Earth-Consortium � 0.7� � 0.7� Döscher et al. (2022)

GFDL-CM4 NOAA-GFDL 1� � 1.25� Held et al. (2019)

GFDL-ESM4 NOAA-GFDL 1� � 1.25� Dunne et al. (2020)

INM-CM4-8 INM 1.5� � 2� Volodin et al. (2018)

INM-CM5-0 INM 1.5� � 2� Volodin et al. (2018)

IPSL-CM6A-LR IPSL 1.3� � 2.5� Boucher et al. (2020)

KIOST-ESM KIOST 1.875� � 1.875� Pak et al. (2021)

MIROC6 MIROC 1.4� � 1.4� Tatebe et al. (2019)

MPI-ESM1-2-HR MPI-M 0.94� � 0.94� Mauritsen et al. (2019), Müller et al. (2018)

MPI-ESM1-2-LR MPI-M 1.865� � 1.875� Mauritsen et al. (2019)

MRI-ESM2-0 MRI 1.121� � 1.125� Yukimoto et al. (2019)

NESM3 NUIST 1.865� � 1.875� Cao et al. (2018)

NorESM2-LM NCC 1.9� � 2.5� Seland et al. (2020)

NorESM2-MM NCC 0.94� � 1.25� Seland et al. (2020)

2.2 Reanalysis

We chose the CRUJRA reanalysis product (Harris, 2019) as the reference dataset to compare with the unconstrained CMIP6

results, as well as to derive bias corrections and ensemble weights. In addition, we use LPJ-GUESS runs forced with the

CRUJRA reanalysis as reference datasets for carbon variables. CRUJRA is derived from the Climatic Research Unit gridded130

Time Series (CRU TS) v4.03 monthly data (Harris et al., 2014) and from the Japanese 55-year Reanalysis data (JRA-55)

(Kobayashi et al., 2015). Temperature, downward solar radiation �ux, speci�c humidity and precipitation in JRA-55 are aligned
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to temperature, cloud fraction, vapour pressure and precipitation in CRU TS (v4.03), respectively. The CRUJRA dataset spans

the years 1901–2018 on a 6 hour timestep which we aggregated to a daily temporal resolution, at a 0.5� spatial resolution.

2.3 Dataset sensitivity135

The CRUJRA reanalysis is not "observations" and, as with all reanalyses, is subject to uncertainty itself. To test the sensitivity

to the choice of reference dataset, we compared the CRUJRA to the ERA5 reanalysis dataset.

ERA5 is the �fth generation reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF; Hers-

bach et al., 2020). It uses a linearized quadratic 4D-var assimilation scheme that takes the timing of the observations and model

evolution within the assimilation window into account. Compared to the predecessor ERA-Interim reanalysis, it has a higher140

spatiotemporal resolution and assimilates more observations. The reanalysis is produced at an hourly time step and covers the

time period 1979–2020. Its horizontal resolution is 0.1� . As for the CRUJRA reanalysis, we aggregated the data to a daily

timestep and regridded the dataset to a 0.5� spatial resolution using �rst-order conservative regridding.

2.4 Atmospheric CO2 forcing and nitrogen deposition

In addition to the climate forcing, both atmospheric CO2 concentration and nitrogen deposition are transient. We force LPJ-145

GUESS with the atmospheric CO2 forcing following historical data until the year 2014. For the remaining years, values for

the shared socio-economic pathway SSP245 are used (both from Meinshausen et al., 2020). We further prescribe historical

nitrogen deposition until 2009. After 2009, LPJ-GUESS is forced with the nitrogen deposition following the representative

concentration pathway RCP4.5 (based on Lamarque et al., 2013).

3 Methods150

To assess the sensitivity of carbon cycle projections to different GCM selection, bias correction and ensemble averaging meth-

ods, we followed the steps outlined in �gure 1 and detailed below.
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Figure 1.Schematic for study set-up. All terms are de�ned in the text and the key steps are described in the text. GCM refers to Global circu-

lation models. MAV, QM, CDF-t, dOTC and R2D2 represent �ve different bias correction methods (Mean and Variance, Quantile Mapping,

Cumulative Distribution Function, Dynamical Optimal Transport Correction, and Rank Resampling For Distributions and Dependences,

respectively).).

3.1 Step 1: Model selection

Our �rst step was to decide whether to use the full CMIP6 ensemble ('Full ensemble') or to select a subset of GCMs based

on a selection criterion ('skilled', 'independent', 'bounding', see �g. 1 step 1 and appendix �g. A1). Since precipitation is the155

single largest driver of variability in the Australian carbon cycle (Haverd et al., 2013), we selected the GCMs solely based on

the performance of projected precipitation. We next describe each of the selection criteria in more detail (see �g. 1 step 1).

3.1.1 Skill

An intuitive way to select CMIP GCMs is to de�ne a set of performance metrics and select those GCMs with a pre-de�ned

level of skill (e.g. Rowell et al., 2016; Gershunov et al., 2019). We calculated the metrics suggested by Haughton et al. (2018)160

(see tab. 2) using the CRUJRA reanalysis as the reference dataset for daily, monthly and annual precipitation, then ranked all
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GCMs for each metric and �nally chose the GCMs with the highest average rank for monthly and annual timescales. For the

last method (overlap of histogram), we estimated the intervals ('bin size') using the Freedman Diaconis Estimator (Freedman

and Diaconis, 1981) for the reference dataset (CRUJRA) and then used the same bin size for the simulated variable (i.e. CMIP

forcing).165

Table 2.Metrics used to evaluate GCM performance (compare Haughton et al., 2018). O is the observation, here the reanalysis, and S is the

simulation.

Metric Formulation

Mean bias error 1
n

P n
i =1

Si � O i
n

Difference in standard deviation j1 � � S
� O

j

Correlation corr (O;S)

Difference in 5th percentile P5(S) � P5(O)

Difference in 95th percentile P95(S) � P95(O)

Difference in skewness j1 � skew (S)
skew (O) j

Difference in kurtosis j1 � kurt (S)
kurt (O) j

Overlap of histogram
P

(min (binS;k ;binO;k ))

3.1.2 Independence

The CMIP6 ensemble is not designed to be an ensemble of independent models, and therefore there is a risk that the members

of the ensemble share systematic biases. We therefore seek to select GCMs that are independent of each other, in order to

obtain a better sample of model projections. Here we de�ned that GCMs are independent if their (here: precipitation) biases

are uncorrelated with any of the other ensemble members. We derived the bias by subtracting the reanalysis from the simulated170

precipitation and then calculated the Pearson correlation coef�cient between the different CMIP6 GCMs on monthly and annual

timescales and and chose the GCMs with a weak correlation coef�cient (i.e. lower than 0.3; compare Bishop and Abramowitz,

2013). While 0.3 is an arbitrary threshold, it is commonly interpreted to represent weak to moderate correlation. We further

note that multiple approaches exist to de�ne GCM dependence (see for example Knutti et al., 2010a; Herger et al., 2019), and

following a different method may yield a different result. Moreover, reanalysis products and GCMs can share modules as well175

which further complicates achieving an estimate of truly independent GCMs.

3.1.3 Bounding models

Similar to Evans et al. (2014), we also chose GCMs that span the largest range of simulated precipitation based on the average,

the interannual variability (IAV) and the change of average precipitation in the last 30 years of the historical time period

(1989–2018) compared to 1901–1930. Accordingly, the �ve bounding GCMs are the driest (INM-CM4-8) and the wettest180

(MPI-ESM1-2-HR) GCM, the GCMs with the lowest (KIOST-ESM) and highest (NorESM-MM) IAV in precipitation and
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the GCMs with the lowest (EC-Earth3-Veg) and the highest (NorESM2-MM) change of average precipitation in 1989–2018

relative to the 1901–1930 average.

3.2 Step 2: Bias correction methods

Once a selection of GCMs is made, the biases of a given GCM can be corrected (see �g. 1 step 2). We explored six approaches185

using CRUJRA as our reference dataset. We corrected the three climate forcing variables, i.e. temperature, precipitation and

incoming shortwave radiation, and derived the correction based on the calibration time period 1989–2010 given this is common

to both reanalysis products used here. We applied each method per pixel so that the different grid points were corrected

independently of each other and tested the correction on both daily and monthly timescales, and note that none of the correction

methods used here are designed to correct temporal properties of the climate forcing. We show the corrections based on daily190

timescales in the main �gures, and use the corrections based on monthly timescales to assess the sensitivity to the correction

timescale in the supplement. To understand the sensitivity to the correction technique, we only corrected the �ve bounding

models (see section 3.1.3) because they de�ned the total CMIP6 ensemble spread. In the subsections below, we describe the

methods in more detail. In the following,O andS represent the observed and simulated variables at the same grid point for

the calibration time period.P is the simulated variable for the projection period to adjust with bias correction methods, and195

C is the resulting bias-corrected variable. The projection period was split into ten 25-year slices. The bias correction was then

derived and applied to each calendar month on a daily timestep within each time slice separately. LetPt andCt being the

values of the variables at timet.

3.2.1 Scaling

We calculated additive (temperature) and multiplicative (precipitation and incoming shortwave radiation) scaling bias correc-200

tions based on the 1989–2010 climatology (compare e.g. Chen et al., 2011). For temperature, the bias-corrected value at time

t for the projection period is derived as follows:

Ct = Pt � S + O; (1)

with S andO the means of the variablesS andO, respectively. For precipitation and incoming shortwave radiation, bias-

corrected values are derived according to205

Ct =
Pt

S
� O: (2)

to avoid negative values.
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3.2.2 Mean and variance correction (MAV)

Here, we aimed to additionally correct the variance in the temperature forcing. We followed equation 1 and accounted for the

variance by multiplying by the ratio between the standard deviation of the observed and simulated variables� O and� S . The210

forcing variables are corrected following

Ct = ( Pt � S) �
� O

� S
+ O: (3)

We used the precipitation and incoming shortwave radiation corrected following the multiplicative correction (see eqn. 2)

since the (proportional) scaling correction affects both mean and variance.

3.2.3 Quantile mapping (QM)215

We employed the univariate quantile mapping (QM) method (Panofsky et al., 1958; Wood et al., 2004; Déqué, 2007) which

adjusts the cumulative distribution function of a modeled climate variable to that of the observed one. LetFO andFS denote

the cumulative distribution function (CDF) of the observed and simulated variables, respectively. By linking CDFs between

the model and the reference, the QM method allows to derive the bias-corrected valueCt as follows:

Ct = F � 1
O (FS (Pt )) ; (4)220

whereF � 1
O is the inverse cumulative distribution function ofO.

3.2.4 Cumulative Distribution Function (CDF-t)

The 'Cumulative Distribution Function – Transform' (CDF-t; Michelangeli et al., 2009) is a version of quantile mapping

that adjusts the cumulative distribution function of the simulated climate variables using a quantile-mapping transfer function.

The difference with QM is that, by linking cumulative distribution functions using a two-step procedure, CDF-t is speci�cally225

designed to take into account the simulated changes of CDFs from the calibration to the projection period. Thus, the future

climate scenarios incorporate the model's projected changes in both mean climate and variability at all time scales up to the

decadal. More details can be found in (Vrac et al., 2012). Implementing the CDF-t method in the present study in addition

to the QM method allows to assess the in�uence of taking into account simulated distribution changes in the bias correction

procedure on results of regional projections of carbon cycle for Australia.230

3.2.5 Dynamical Optimal Transport Correction (dOTC)

The `dynamical Optimal Transport Correction' method (dOTC, Robin et al., 2019) is a generalization of the CDF-t method to

the multivariate case. By using optimal transport theory, dOTC is designed to adjust both univariate distributions and depen-

dence structures of the simulated variables. Moreover, following the philosophy of CDF-t, dOTC is able not only to preserve

10



the simulated changes in the univariate distributions between the calibration and the projection periods but also the simulated235

change in multivariate properties (e.g., induced by climate change). For more details and equations, see Robin et al. (2019);

François et al. (2020).

3.2.6 Rank Resampling For Distributions and Dependences (R2D2)

The `Rank Resampling For Distributions and Dependences' method ('R2D2', Vrac, 2018) is based on the Schaake Shuf�e

(Martyn Clark et al., 2004). The Schaake Shuf�e is a reordering technique that reorders a sample so that its rank structure240

corresponds to the rank structure of a reference sample. This allows the reconstruction of multivariate dependence structures.

As a �rst step, the R2D2 performs the univariate CDF-t bias correction (see 3.2.4). The method allows for the possibility to

select a 'reference dimension' for the Schaake Shuf�e, i.e., one physical variable at one given site, for which rank chronology

remains unchanged. The reconstruction of inter-variable correlations of the reference is then performed using the Schaake

Shuf�e with the constraint of preserving the rank structure for the reference dimension. For more details and equations, see245

Robin et al. (2019); François et al. (2020).

3.3 Step 3: Run LPJ-GUESS

We ran LPJ-GUESS with a reference dataset (CRUJRA reanalysis), the full raw CMIP6 ensemble (which includes the skilled,

independent and bounding models) and additionally with the bounding models (see section 3.1.3) after they were bias corrected

according to the methods 3.2.1–3.2.6.250

LPJ-GUESS (Smith et al., 2014, Lund–Potsdam–Jena General Ecosystem Simulator; ) is a widely used dynamic global veg-

etation model for climate–carbon studies (Sitch et al., 2003; Smith et al., 2014). LPJ-GUESS simulates the exchange of water,

carbon and nitrogen through the soil–plant–atmosphere continuum (Smith et al., 2014) by accounting for resource competi-

tion for light and space between plants. We adopted the global con�guration of the model that uses 12 plant functional types

(PFTs), simulating differences in growth form (grasses, broadleaved trees or deciduous trees), photosynthetic pathway (C3 or255

C4), phenology (evergreen, summer green or rain green), tree allometry, life history strategy, �re sensitivity, and bioclimatic

limits for establishment and survival (see Smith et al., 2014, for details). LPJ-GUESS is the only second-generation DGVM

part of the TRENDY ensemble (compare Fisher et al., 2010, 2018) and explicitly represents demographic processes, such

as stand age/size structure development, mortality and competition among locally co-occurring PFT populations, as well as

disturbance-induced heterogeneity across the landscape of a grid cell.260

We use LPJ-GUESS version 4.0.1 in 'cohort mode', where woody plants of the same size and age co-occur in a 'patch' and

as such, are represented by a single average individual. Each PFT is represented by multiple average individuals, and one PFT

cohort is de�ned as the average of several individuals. We run LPJ-GUESS with the plant and soil nitrogen dynamics switched

on. Fire is simulated annually (stochastically) based on temperature, fuel availability and the moisture content of upper soil

layer as a proxy for litter moisture content (Thonicke et al., 2001).265
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3.4 Step 4: Ensemble averages

After running LPJ-GUESS with either the raw or corrected climate data (step 3), the �nal step was to calculate an ensemble

average of the resulting carbon �uxes. We focussed on the total carbon storage (CTotal ) and foliar projective cover (FPC) over

Australia at annual timesteps, and the gross primary productivity (GPP) at seasonal timesteps. We explored three different

approaches based on the full ensemble or the selected models (see section 3.1)270

3.4.1 Arithmetic ensemble average

We �rst calculated the arithmetic ensemble average where each of the GCM+LPJ-GUESS ensemble members was assigned

the same weight.

3.4.2 Skill and independence

Following Bishop and Abramowitz (2013), we calculated weights based on both independence and skill. We here chose the275

carbon variables resulting from the reference LPJ-GUESS run (driven with the CRUJRA reanalysis) as the target variable,

and the carbon variables resulting from the LPJ-GUESS runs forced with the CMIP6 as the predictor variables. This method

accounts for both the performance differences and their error dependencies. In a �rst step, the bias with respect to observational

data is calculated. Then, the error correlation coef�cient is used as a metric for error dependencies. The linear combination of

the CMIP6 members is derived to minimise the mean square difference to the results from the reanalysis runs following:280

C j
w = wT x j =

KX

k=1

wk x j
k (5)

wherej represent the grid cells, andk is the number of the ensemble members. Consequently,x j
k is the value of the kth

bias-corrected model (i.e., after subtracting the mean error from the dataset) at thej th grid cell. The weights (wT ) provide an

analytical solution to the minimization of

JX

j =1

(C j
w � x j

obs)
2 (6)285

when subject to the constraint that the sum of the weights (wk ) always adds up to 1. The solution can be expressed as:

w =
A � 11

1T A � 11
(7)

where1T =

k elements
z }| {
[1;1; :::;1] andA is the K × K difference covariance matrix.
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3.4.3 Random Forest

Random forest is an ensemble learning method that constructs a collection of decision trees and then outputs a weighted average290

of predictions of the individual trees. For each decision tree, a subset of training samples are randomly selected following a

bootstrap sampling approach. At each node, a random sample of predictor variables is selected for splitting. We varied the

number of predictor variables and number of trees, and here show the results that produced the lowest error. The metric of

splitting is the sum of squares of errors. As in method 3.4.2, we chose the carbon variables resulting from the reference

LPJ-GUESS run (driven with the CRUJRA reanalysis) as the target variable, and the carbon variables resulting from the LPJ-295

GUESS runs forced with the CMIP6 as the predictor variables. We further included the latitude and longitude as predictors, and

when analysing monthly data, the month. The random selections change as the 'tree' grows following a random sampling with

the replacement approach. The algorithms involved in different decision trees are run in parallel. Both the random sampling

procedure and the parallelism in algorithm operations mean that the predictor blocks in random forest are built independently.

3.5 Summary of methods300

Our methods examine many of the approaches previously used to select from and/or constrain the CMIP6 ensemble in car-

bon cycle modelling. In this study, we seek to examine how applying these corrections methods affect the simulation of the

Australian carbon cycle by LPJ-GUESS as a case study. In the following, we use the abbreviations de�ned in table 3.
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4 Results

We �rst explored the uncertainty in the CMIP6 climate �elds by examining the average and IAV (depicted by the standard305

deviation of the detrended annual precipitation and temperature) of the simulated and reanalysis annual precipitation and tem-

perature over Australia between 1989–2018 (see �g. 2). Annual precipitation (1989–2018) simulated by the CMIP6 ensemble

members varies widely from 254 mm yr� 1 (MPI-ESM1-2-HR) to 858 mm yr� 1 (INM-CM4-8). The CRUJRA reanalysis lies

in the lower quartile of the CMIP6 spread (499 mm yr� 1, see �g. 2,c), implying a systematic over-estimate across the CMIP6

GCMs. The precipitation IAV varies between 55 mm yr� 1 (KIOST-ESM) and 183 mm yr� 1 (NorESM2-MM) and most CMIP6310

ensemble members simulated higher IAV than the CRUJRA reanalysis (66 mm yr� 1; see �g. 2,c). Relative to 1901–1930, most

CMIP6 GCMs do not show a signi�cant trend (17 out of 21), two GCMs signi�cantly increase in precipitation (up to 76 mm

yr� 1 in the end of the historical time period; NorESM2-MM) and two GCMs signi�cantly decrease (down to -59 mm yr� 1,

EC-Earth3-Veg). CRUJRA slightly increases in precipitation relative to 1901–1930 for the latter half of the historical time

period (27.2 mm with a signi�cant trend of 0.40 mm yr� 1; see �g. 2,d).315
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Figure 2. Average and interannual variability (IAV) of annual precipitation averaged over Australia for the time period 1989–2018 (a),

average and IAV of annual temperature averaged over Australia for the time period 1989–2018 (c) for the 21 CMIP6 ensemble members (see

tab. 1). Panel e shows the average of the total carbon stored in Australia for the time period 1989–2018 based on LPJ-GUESS simulations

with the CMIP6 ensemble on the left and the IAV of the net biome productivity over Australia for the same time period on the right. The

black stars represent the respective values obtained using the CRUJRA reanalysis. Panel b, d, and f show the 30-year moving average of

the change of annual temperature, precipitation and total carbon storage respectively relative to the 1901–1930 average. The thick black line

represents simulations obtained using the CRUJRA reanalysis.

The average simulated temperature over Australia for the last 30 years of the historical time period varies amongst the

CMIP6 ensemble members from 21.2� C (INM-CM5-0) up to 24.6� C (MIROC6). The median of the full ensemble is 22.7� C

and slightly higher than the average temperature for the CRUJRA reanalysis (22.1� C). The IAV in temperature ranges from

0.27� C (NorESM-LM) to 0.68� C (GFDL-ESM4). The CMIP6 GCMs tend to simulate higher IAV in temperature compared to
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the year-to-year variability found in the CRUJRA reanalysis (0.31� C; see �g. 2, a). Relative to 1901–1930, all CMIP6 ensemble320

members show a continental average increases in temperature but to varying degrees (� 0.4–1.2� C averaged over 1989–2018;

see �g. 2,b). We note that �gure 2b, d, and f show the smoothed change in the according variable and do not allow conclusions

on IAV.

Finally, �gure 2 e, f show the impact of differences in the meteorological forcing on the average simulated total carbon

pool (CTotal ), the IAV in net biome productivity (NBP) and the change in CTotal for Australia when LPJ-GUESS is forced325

with the raw climate forcing of each of the CMIP6 ensemble members. Depending on the choice of GCM, CTotal varies

between 28.6 PgC (LGMPI � ESM1 � 2� HR ) and 75.1 PgC (LGINM � CM4 � 8). Compared to CTotal simulated by LGCRUJRA (56.4

PgC), the LPJ-GUESS driven with CMIP6 forcing tends to simulate lower CTotal . The IAV in NBP ranges between 0.3 PgC

(LGKIOST � ESM ) and 1.1 PgC (LGCMCC � CM2 � SR5 ). The IAV in NBP simulated by LGCRUJRA (0.6 PgC) falls into the lower

interquartile range (IQR) of the CMIP6 ensemble runs. CTotal for Australia increases by the end of the historical period for330

all CMIP6 forcings with values between 0.1 PgC (LGEC � Earth3 ) and 4.1 PgC (LGNorESM2 � MM ). Compared to the reanalysis

results, most of the CMIP6 models lead to a weaker increase in CTotal over the historical period (except for LGINM � CM4 � 8,

LGINM � CM5 � 0, LGNorESM2 � LM , and LGNorESM2 � MM ).

Taken together, �gure 2 demonstrates both the uncertainties in meteorological variables obtained from GCMs and how these

propagate to large simulation biases in Australia's carbon cycle. In the following, we examine the impact of correcting climate335

forcing on these biases.
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Figure 3. Difference between precipitation (pr), temperature (T), and carbon storage (CTotal ) based on the CMIP6 and CRUJRA forcing

(a,c,e), and coef�cient of variance across the ensemble of the same variables averaged over Australia. The different colors represent the

results based on the raw (blue) or corrected climate forcing using scaling (orange), mean and variance (MAV, green), quantile mapping

(QM, red), cumulative distribution function - transform (CDF-t, purple), dynamical optimal transport correction (dOTC, brown), and matrix

recorrelation (R2D2, dark grey) approaches and the three ensemble averaging methods (arithmetic mean (olive), weighted average (pink),

and random forest (cyan)). The different symbols show LPJ-GUESS runs forced with the �ve bounding models EC-Earth3-Veg (�lled circle),

INM-CM4-8 (x), KIOST-ESM (square), MPI-ESM1-2-HR (+), and NorESM2-MM (triangle), the full ensemble (empty circle), and the three

model selection methods skill (diamond), independence (horizontal bar), and bounding models (hexagon). The black hexagons depict the

ensemble average of the LPJ-GUESS runs based on the raw and corrected bounding climate forcing.
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The large ensemble spread in the CMIP6 forcing variables (see �g. 2 a–d) results in a large spread in the simulated carbon

cycle (see �g. 2 e and f). Figure 3 a shows the biases in the forcing variables precipitation (pr) and temperature (T) as well

as CTotal based on the CMIP6 compared to the results of the reanalysis. Positive values indicate that the results based on the

CMIP6 forcing are higher compared to the reanalysis, and negative values demonstrate the opposite. Each of the bias correction340

methods reduces the bias in the forcing variables so that the bias in the corrected precipitation is signi�cantly lower , and the

bias in corrected temperature in comparison to the raw CMIP6 meteorology is close to zero (see �g. 3a,c). Consequently,

CTotal based on LPJ-GUESS driven with the corrected CMIP6 GCMs results in a smaller distance to CTotal based on the

LGCRUJRA run compared to the raw forcing for most LPJ-GUESS runs (see �g. 3 a). However, while the results based on the

LGNorESM2 � MM model initially simulated� 3 PgC more than the runs based on the CRUJRA reanalysis, all univariate bias345

correction methods lead to larger biases from -5.0 PgC (CDF-t) to -8.3 PgC (Scaling) while the multivariate methods result in

biases similar in magnitude (dOTC) or reduce it signi�cantly (R2D2). When averages are calculated based on the full CMIP6

ensemble (hollow circles in �g. 3e), the random forest and weighted ensemble average approach produces almost identical

results compared to the LGCRUJRA run (-0.29 PgC and -0.16 PgC, respectively; see �g. 3). The arithmetic ensemble average

of CTotal is with -7.7 PgC lower than the weighted average and the random forest approach. Figure 3e also shows the impact of350

model selection on calculated ensemble averages. Given both the weighted ensemble averaging and random forest approach are

insensitive to redundant (i.e. models with similar biases) information we expect that testing those methods based on different

GCM subsamples will yield similar results. We therefore only show the impact on the arithmetic average of CTotal . The values

for the arithmetic average can depend on the selection of models it is derived from. Calculating the arithmetic average based

on the full ensemble or on the �ve independent or bounding models gives similar results (but lower than the weighted and355

random forest approach: -9.0, and -7.6 PgC, respectively). Notably, the arithmetic ensemble average based on the �ve most

skilled models produces the lowest value of all selection methods (-18.9 PgC). The arithmetic average of the bounding models

is almost identical to that of the full ensemble for CTotal , and does not changes slightly with the correction method (black

hexagons in �g. 3).

While the type of bias correction method only shows small alterations of the values of the arithmetic average of any of the360

variables examined in �gure 3, the coef�cient of variation (CV), which we here use as a measure for ensemble uncertainty,

can vary depending on the method chosen. All bias correction methods reduce the CV compared to the raw CMIP6 data.

For temperature, all bias correction methods result in similar values for CV (see �g. 3 d). Precipitation shows some variation

depending on the type of bias correction method applied (univariate vs multivariate; see �g. 3 b). For temperature, the CV is

robust and does not change strongly depending on the subselection of GCMs while for precipitation, selecting GCMs with high365

skill decreases the CV most. The CV of CTotal is most reduced when the multivariate dOTC approach is applied on the forcing

variables, and selecting the most skilled GCMs for an arithmetic average here yields the strongest reduction in CV compared

to the full ensemble or selecting independent or bounding models.
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Figure 4. 30-year moving average of the change in CTotal averaged over Australia. In each panel, the bold black line is the change in CTotal

obtained using the CRUJRA reanalysis and the grey shaded area represents the full unconstrained CMIP6 model ensemble. Panel a–e show

the CTotal change simulated using input from the �ve individual bounding models separately. The colors show the change in CTotal based

on the different bias correction methods. Panel f shows the change in CTotal estimated by the ensemble averaging methods.

Figure 4 shows the change in CTotal relative to the 1901–1930 average for the �ve bounding models (i.e., weakest and

highest amount, change and IAV in precipitation over time; see �g. B2 and B1 for the corrected precipitation and temperature370

forcing). For the LPJ-GUESS runs based on the lowest amount in precipitation and increase in precipitation (LGEC � Earth3 � Veg

and LGMPI � ESM1 � 2� HR , respectively), none of the bias correction approaches signi�cantly alters the change in CTotal so
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that the change in CTotal remains signi�cantly lower compared to LGCRUJRA (see �g. 4 c and e). In the LPJ-GUESS runs

forced with the highest annual precipitation (LGINM � CM4 � 8) and the strongest increase and highest IAV in precipitation (both

LGNorESM2 � MM ), the bias correction methods generally reduce the simulated change of CTotal so that it is closer to the375

LGCRUJRA result (see �g. 4 a, b). For LGINM � CM4 � 8, all methods are successful in bias correcting to the reanalysis. For

LGNorESM2 � MM , four methods approximately halve the difference between the reanalysis and raw runs, with the exception

of CDF-t and dOTC. Figure 4 f shows the impact of different ensemble averaging methods applied to CTotal . All averaging

methods simulate very similar� CTotal in the last 10 years of the model runs whereas the weighted approach is lower by� 0.5

PgC in the �rst �fty years.380
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