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Abstract. Climate projections from global circulation models (GCMs) part of the Coupled Model Intercomparison Project

6 (CMIP6) are often employed to study the impact of future climate on ecosystems. However, especially at regional scales,

climate projections display large biases in key forcing variables such as temperature and precipitation. These biases have been

identified as a major source of uncertainty in carbon cycle projections, hampering predictive capacity. In this study, we open

the proverbial Pandora’s Box, and peer under the lid of strategies to tackle climate model ensemble uncertainty. We employ a5

dynamic global vegetation model (LPJ-GUESS) and force it with raw output from CMIP6 to assess the uncertainty associated

with the choice of climate forcing. We then test different methods to either bias correct or calculate ensemble averages over the

original forcing data to reduce the climate-driven uncertainty in the regional projection of the Australian carbon cycle. We find

that all bias correction methods reduce the bias of continental averages of steady-state carbon variables. Bias correction can

improve model carbon outputs but carbon pools are insensitive to the type of bias correction method applied for both individual10

GCMs and the arithmetic ensemble average across all corrected models. None of the bias correction methods consistently

improve the change in simulated carbon over time compared to the target dataset, highlighting the need to account for temporal

properties in correction or ensemble averaging methods. Multivariate bias correction methods tend to reduce the uncertainty

more than univariate approaches, although the overall magnitude is similar. Even after correcting the bias in the meteorological

forcing dataset, the simulated vegetation distribution presents different patterns when different GCMs are used to drive LPJ-15

GUESS. Additionally, we found that both the weighted ensemble averaging and random forest approach reduce the bias in

total ecosystem carbon to almost zero, clearly outperforming the arithmetic ensemble averaging method. The random forest

approach also produces the results closest to the target dataset for the change in the total carbon pool, seasonal carbon fluxes,

emphasizing that machine learning approaches are promising tools for future studies. This highlights that where possible,

an arithmetic ensemble average should be avoided. However, potential target datasets that would facilitate the application20

of machine learning approaches, i.e., that cover both the spatial and temporal domain required to derive a robust informed

ensemble average are sparse for ecosystem variables.
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1 Introduction

Global circulation models (GCMs) are useful projection tools of future climate at continental and global scales but inevitably

simulate large biases in temperature, precipitation and humidity at regional scales and at individual grid points (Randall et al.,25

2007; Flato et al., 2013). Projections of atmospheric variables from GCMs, represented by the Coupled Model Intercomparison

Project (CMIP), underpin a suite of critical future predictions of the carbon and water cycles (e.g. Ahlström et al., 2012;

Ukkola et al., 2016; Ahlström et al., 2017), species distributions (Cheaib et al., 2012), species resilience to climate extremes

(Sperry et al., 2019) and predictions of conservation planning (Gallagher et al., 2021). Critically, many applications utilise

atmospheric variables from GCMs as forcing without explicitly considering underlying uncertainty in their (bias-corrected)30

climate projections. This uncertainty includes, but is by no means limited to, the fact that CMIP is an ’ensemble of opportunity’,

and not explicitly designed to represent an independent set of estimates, i.e. CMIP models share modules and are related to

varying degrees (e.g. Annan and Hargreaves, 2017; Boe, 2018; Abramowitz et al., 2019).

To tackle biases in GCM forcing a range of approaches have been employed, with no clear agreement or ’best practice’ on

how to assess GCM skill and to bias correct simulated climate variables, and/or to weight ensemble members. Some studies35

have quantified the sensitivity of impact studies to GCM selection method, the choice of bias correction, and/or the ensemble

averaging techniques. For example, Gohar et al. (2017) examined the impact of bias correction methods on future warming

levels and found that both selecting GCMs based on performance and bias correcting model data reduced uncertainties in

regional projections. In an Australian study, Johnson and Sharma (2015) increased model consensus in future drought projec-

tions using bias corrected simulations. These studies focused either directly on the climate variables and/or derived relatively40

simple indices based on a single variable. In an analysis of hazard indices based on multiple climate drivers, Zscheischler et al.

(2019) showed multivariate methods tended to outperform univariate bias-correction methods. In addition, Kolusu et al. (2021)

tested the impact of different weighting techniques and two bias correction methods on the spread of hydrological risk profiles

and found that the sensitivity to climate model weighting was considerably smaller than the uncertainty resulting from bias

correction methodologies. When Ahlström et al. (2012) used CMIP5 simulations to run the dynamic global vegetation model45

(DGVM) LPJ-GUESS, they found that GCM climate biases translated into a divergence in the future simulated (offline) carbon

cycle responses on regional and global scales that was significantly reduced when the climatological input forcing was bias

corrected (Ahlström et al., 2017). The need to address biases in GCM forcing is commonly acknowledged, but the wide range

in possible solutions (e.g., bias correction, ensemble averages across GCMs) makes it difficult to determine the impact of the

correction in climate forcing on the specific question of interest. Here, we examine multiple methods to constrain regional50

projections of the carbon cycle by opening Pandora’s box, famous in Greek mythology. When Pandora could not resist opening

the lid on her box, she allowed all the evils of the world to escape. Similarly, we could not resist testing the impact of various

approaches to constraining the carbon cycle, and the challenges we identify are not easily resolvable. However, we hope that

by highlighting these challenges we at least begin the process of resolving them.

There have been multiple efforts to constrain future multi-model ensemble uncertainty (e.g. Michelangeli et al., 2009; Knutti55

et al., 2010b; Bárdossy and Pegram, 2012; Bishop and Abramowitz, 2013; Johnson and Sharma, 2015; François et al., 2020).
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Most of these attempts assume that the GCMs that simulate the historical climate well are likely to provide more skillful

future projections. Based on this assumption, different approaches for dealing with ensemble uncertainty have emerged that

can broadly be grouped into three strategies: (i) selecting only a subset of GCMs fit for the respective study (e.g. Pennell and

Reichler, 2011; Rowell et al., 2016; Herger et al., 2018; Gershunov et al., 2019); (ii) applying downscaling and bias correction60

methods (e.g. Panofsky et al., 1958; Wood et al., 2004; Déqué, 2007; Michelangeli et al., 2009; Bárdossy and Pegram, 2012;

François et al., 2020); and/ or (iii) applying ensemble weighting techniques (e.g. Bishop and Abramowitz, 2013; Sanderson

et al., 2017; Massoud et al., 2019, 2020).

The first strategy focuses on sub-selecting GCMs from the full ensemble, using metrics deemed to be application relevant, to

obtain an ensemble that is truly representative of the uncertainty linked to GCM simulations. Commonly, this is based on how65

well GCMs simulate relevant climate variables compared to historical observations (e.g. Kolusu et al., 2021) and represents

the ’skilled models’ category, shown in figure 1. Other studies find that excluding the ’weakest’ models has little impact on

the overall uncertainty range (e.g. Déqué and Somot, 2010; Knutti et al., 2010b; Rowell et al., 2016). Some studies choose

models defined as independent (e.g. based on the correlation of the biases in the simulations or within a Bayesian framework;

Jun et al., 2008; Knutti et al., 2010a; Pennell and Reichler, 2011; Annan and Hargreaves, 2017). Lastly, Evans et al. (2014)70

and Cannon (2015) suggest selecting those models that ’span’ the (plausible) CMIP projections when selecting GCMs for

dynamical downscaling (’bounding’ models category in fig. 1).

The second strategy employs a range of bias correction methods to reduce errors in the GCM outputs. Univariate bias cor-

rection methods are widely used to improve agreement of the statistical attributes (mean, variance, quantiles) of the simulated

climate variables with those of historical climate data. While these methods can produce reasonable results (e.g. Yang et al.,75

2015; Casanueva et al., 2018) they typically correct each climate variable independently, one grid cell at a time. This can result

in inconsistent relationships across physically interlinked climate variables, and/or across a spatial domain. Given univariate

methods do not account for multidimensional dependencies, they cannot correct temporal, inter-variable or spatial aspects of

the simulations (François et al., 2020). To address these gaps, multivariate methods account for dependencies between variables

and spatial patterns. Multivariate methods are especially valuable in impact modeling frameworks where the combination of80

atmospheric processes across a range of time and space scales, such as coinciding low rainfall and high temperatures inducing

vegetation drought stress, are important (Zscheischler et al., 2019).

Finally, several weighting methods have been developed to derive ensemble averages. The arithmetic multi-model mean

is commonly used (Knutti et al., 2010a) and by cancelling non-systematic errors, usually out-performs individual GCMs.

However, assigning each ensemble member a uniform weight has been criticised (Knutti et al., 2010b; Herger et al., 2019).85

Non-uniform weights, based on skill, independence, or skill and independence combined (e.g. Bishop and Abramowitz, 2013;

Brunner et al., 2019, 2020) can also be used. In addition, machine learning techniques have become increasingly popular to

calculate multi-model averages (e.g. Huntingford et al., 2019; Thao et al., 2022) that use GCM outputs as predictors to match

an observation based target (e.g. reanalysis products). For example, Wang et al. (2018) explored a random forest approach,

support vector machine, and Bayesian model averaging to calculate a best-fit multi-model ensemble average for monthly90

temperature and precipitation over Australia. Similarly, other studies have focused on climate extremes (e.g. Deo and Şahin,

3



2015; Yunjie Liu et al., 2016) and climate impacts on the environment (e.g. Jung et al., 2010; Yang et al., 2016; Wu et al.,

2019a) using machine learning approaches.

In this study, we focus on Australia, and analyse the impact of climate forcing bias correction and ensemble averaging

methods on the simulated historical carbon cycle. Australia is a suitable study system for this work because climate projections95

of precipitation will remain uncertain at regional scales for the foreseeable future (IPCC, 2013; Ukkola et al., 2020; Grose

et al., 2020). These uncertainties are likely to have a disproportionate influence on water-limited regions such as Australia,

with potential impacts on vegetation distributions, and water and carbon cycles, given many biologically relevant processes

are threshold-based and disproportionately responsive to extremes as opposed to mid-range changes in climate forcing. While

Australia is not the largest contributor to the global carbon sink on centennial timescales, the continents’ total carbon storage is100

still significant. On shorter timescales, the IAV in NBP is important for the both historical and future estimates of atmospheric

growth rate since several studies (e.g. Poulter et al., 2014; Ahlström et al., 2015) have found that Australia can be a major

contributor to the global net carbon sink in wet years. It is therefore important to reduce the uncertainty in carbon cycle

projections over Australia, first to improve estimates of future carbon sinks, second to help constrain future atmospheric growth

rates and third, because the improved understanding will ultimately enable better predictions of vegetation responses and of fire105

to climate change over Australia. Here, we assess the impact of different CMIP6 GCM selection, bias correction and ensemble

averaging methods on the simulated carbon cycle in a synthetic experiment. We use a single dynamic global vegetation model,

LPJ-GUESS (Smith et al., 2014), forced with different versions of CMIP6 climate forcing, as well as LPJ-GUESS forced

with the CRUJRA reanalysis (Harris, 2019) as a target dataset for the carbon variables, and focus on responses at seasonal to

centennial timescales. Using a single model forced with multiple realisations of climate allows us to separate climate-driven110

uncertainties from those arising from model parametrisations. LPJ-GUESS is the only second-generation DGVM part of the

TRENDY ensemble, i. e. it is a cohort-based DGVM that incorporates the dynamics of forest-gap models. It can therefore be

expected to simulate more realistic temporal carbon dynamics than first-generation DGVMs which typically rely on a single

area-averaged representation of each plant functional type (PFT) for each climatic grid cell (e.g. Fisher et al., 2018). Our goal

is to examine how the choice of method to deal with climate biases and uncertainty in the CMIP6 climate forcing influences115

the projection of the terrestrial carbon cycle and whether any selected method represents a robust or preferable choice.

2 Climate forcing

2.1 CMIP6

We chose the historical simulations of 21 CMIP6 GCMs (see tab. 1) that provide the three meteorological forcing variables

needed to run LPJ-GUESS, i.e. the near-surface air temperature (tas), the total precipitation flux (pr) and the incoming short-120

wave radiation (rsds), and examine the r1i1p1f1 realisation that covers the time period (1850–2100). Four GCMs (ACCESS-

CM2, ACCESS-ESM1-5, BCC-CSM2-MR and NESM3) provide incoming shortwave radiation starting in 1950 only. For these

GCMs, we recycled the climate forcing of the first 25 years of the available forcing (i.e. 1950–1974) for the first 100 years (i.e.

1850–1949). All GCMs provide daily data but differ in their spatial resolution. We therefore regridded all GCMs to a common
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0.5◦ grid using first order conservative remapping to match the resolution of the reanalysis and the native grid of LPJ-GUESS,125

and focus on the historical time period (1901-2019).

Table 1. CMIP6 models used to force LPJ-GUESS. Further details for each model are available at the references listed in this table.

GCM Institute ID
Native resolution

(lat × lon)
Key reference

ACCESS-CM2 CSIRO-ARCCSS 1.25◦× 1.875◦ Bi et al. (2013)

ACCESS-ESM1-5 CSIRO 1.25◦× 1.875◦ Law et al. (2017)

BCC-CSM2-MR BCC 1.121◦× 1.125◦ Wu et al. (2019b)

CanESM CCCma 2.7905◦× 2.8125◦ Swart et al. (2019)

CESM2-WACCM NCAR 1.3◦× 0.9◦ Liu et al. (2019)

CMCC-CM2-SR CMCC 0.94◦× 1.25◦ Cherchi et al. (2019)

EC-Earth EC-Earth-Consortium ∼0.7◦× 0.7◦ Döscher et al. (2022)

EC-Earth3-Veg EC-Earth-Consortium ∼0.7◦× 0.7◦ Döscher et al. (2022)

GFDL-CM4 NOAA-GFDL 1◦× 1.25◦ Held et al. (2019)

GFDL-ESM4 NOAA-GFDL 1◦× 1.25◦ Dunne et al. (2020)

INM-CM4-8 INM 1.5◦× 2◦ Volodin et al. (2018)

INM-CM5-0 INM 1.5◦× 2◦ Volodin et al. (2018)

IPSL-CM6A-LR IPSL 1.3◦× 2.5◦ Boucher et al. (2020)

KIOST-ESM KIOST 1.875◦× 1.875◦ Pak et al. (2021)

MIROC6 MIROC 1.4◦× 1.4◦ Tatebe et al. (2019)

MPI-ESM1-2-HR MPI-M 0.94◦× 0.94◦ Mauritsen et al. (2019), Müller et al. (2018)

MPI-ESM1-2-LR MPI-M 1.865◦× 1.875◦ Mauritsen et al. (2019)

MRI-ESM2-0 MRI 1.121◦× 1.125◦ Yukimoto et al. (2019)

NESM3 NUIST 1.865◦× 1.875◦ Cao et al. (2018)

NorESM2-LM NCC 1.9◦× 2.5◦ Seland et al. (2020)

NorESM2-MM NCC 0.94◦× 1.25◦ Seland et al. (2020)

2.2 Reanalysis

We chose the CRUJRA reanalysis product (Harris, 2019) as the reference dataset to compare with the unconstrained CMIP6

results, as well as to derive bias corrections and ensemble weights. In addition, we use LPJ-GUESS runs forced with the

CRUJRA reanalysis as reference datasets for carbon variables. CRUJRA is derived from the Climatic Research Unit gridded130

Time Series (CRU TS) v4.03 monthly data (Harris et al., 2014) and from the Japanese 55-year Reanalysis data (JRA-55)

(Kobayashi et al., 2015). Temperature, downward solar radiation flux, specific humidity and precipitation in JRA-55 are aligned
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to temperature, cloud fraction, vapour pressure and precipitation in CRU TS (v4.03), respectively. The CRUJRA dataset spans

the years 1901–2018 on a 6 hour timestep which we aggregated to a daily temporal resolution, at a 0.5◦ spatial resolution.

2.3 Dataset sensitivity135

The CRUJRA reanalysis is not "observations" and, as with all reanalyses, is subject to uncertainty itself. To test the sensitivity

to the choice of reference dataset, we compared the CRUJRA to the ERA5 reanalysis dataset.

ERA5 is the fifth generation reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF; Hers-

bach et al., 2020). It uses a linearized quadratic 4D-var assimilation scheme that takes the timing of the observations and model

evolution within the assimilation window into account. Compared to the predecessor ERA-Interim reanalysis, it has a higher140

spatiotemporal resolution and assimilates more observations. The reanalysis is produced at an hourly time step and covers the

time period 1979–2020. Its horizontal resolution is 0.1◦. As for the CRUJRA reanalysis, we aggregated the data to a daily

timestep and regridded the dataset to a 0.5◦ spatial resolution using first-order conservative regridding.

2.4 Atmospheric CO2 forcing and nitrogen deposition

In addition to the climate forcing, both atmospheric CO2 concentration and nitrogen deposition are transient. We force LPJ-145

GUESS with the atmospheric CO2 forcing following historical data until the year 2014. For the remaining years, values for

the shared socio-economic pathway SSP245 are used (both from Meinshausen et al., 2020). We further prescribe historical

nitrogen deposition until 2009. After 2009, LPJ-GUESS is forced with the nitrogen deposition following the representative

concentration pathway RCP4.5 (based on Lamarque et al., 2013).

3 Methods150

To assess the sensitivity of carbon cycle projections to different GCM selection, bias correction and ensemble averaging meth-

ods, we followed the steps outlined in figure 1 and detailed below.
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Figure 1. Schematic for study set-up. All terms are defined in the text and the key steps are described in the text. GCM refers to Global circu-

lation models. MAV, QM, CDF-t, dOTC and R2D2 represent five different bias correction methods (Mean and Variance, Quantile Mapping,

Cumulative Distribution Function, Dynamical Optimal Transport Correction, and Rank Resampling For Distributions and Dependences,

respectively).).

3.1 Step 1: Model selection

Our first step was to decide whether to use the full CMIP6 ensemble (’Full ensemble’) or to select a subset of GCMs based

on a selection criterion (’skilled’, ’independent’, ’bounding’, see fig. 1 step 1 and appendix fig. A1). Since precipitation is the155

single largest driver of variability in the Australian carbon cycle (Haverd et al., 2013), we selected the GCMs solely based on

the performance of projected precipitation. We next describe each of the selection criteria in more detail (see fig. 1 step 1).

3.1.1 Skill

An intuitive way to select CMIP GCMs is to define a set of performance metrics and select those GCMs with a pre-defined

level of skill (e.g. Rowell et al., 2016; Gershunov et al., 2019). We calculated the metrics suggested by Haughton et al. (2018)160

(see tab. 2) using the CRUJRA reanalysis as the reference dataset for daily, monthly and annual precipitation, then ranked all
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GCMs for each metric and finally chose the GCMs with the highest average rank for monthly and annual timescales. For the

last method (overlap of histogram), we estimated the intervals (’bin size’) using the Freedman Diaconis Estimator (Freedman

and Diaconis, 1981) for the reference dataset (CRUJRA) and then used the same bin size for the simulated variable (i.e. CMIP

forcing).165

Table 2. Metrics used to evaluate GCM performance (compare Haughton et al., 2018). O is the observation, here the reanalysis, and S is the

simulation.

Metric Formulation

Mean bias error 1
n

∑n
i=1

Si−Oi

n

Difference in standard deviation |1− σS

σO
|

Correlation corr(O,S)

Difference in 5th percentile P5(S)−P5(O)

Difference in 95th percentile P95(S)−P95(O)

Difference in skewness |1− skew(S)
skew(O) |

Difference in kurtosis |1− kurt(S)
kurt(O) |

Overlap of histogram
∑

(min(binS,k, binO,k))

3.1.2 Independence

The CMIP6 ensemble is not designed to be an ensemble of independent models, and therefore there is a risk that the members

of the ensemble share systematic biases. We therefore seek to select GCMs that are independent of each other, in order to

obtain a better sample of model projections. Here we defined that GCMs are independent if their (here: precipitation) biases

are uncorrelated with any of the other ensemble members. We derived the bias by subtracting the reanalysis from the simulated170

precipitation and then calculated the Pearson correlation coefficient between the different CMIP6 GCMs on monthly and annual

timescales and and chose the GCMs with a weak correlation coefficient (i.e. lower than 0.3; compare Bishop and Abramowitz,

2013). While 0.3 is an arbitrary threshold, it is commonly interpreted to represent weak to moderate correlation. We further

note that multiple approaches exist to define GCM dependence (see for example Knutti et al., 2010a; Herger et al., 2019), and

following a different method may yield a different result. Moreover, reanalysis products and GCMs can share modules as well175

which further complicates achieving an estimate of truly independent GCMs.

3.1.3 Bounding models

Similar to Evans et al. (2014), we also chose GCMs that span the largest range of simulated precipitation based on the average,

the interannual variability (IAV) and the change of average precipitation in the last 30 years of the historical time period

(1989–2018) compared to 1901–1930. Accordingly, the five bounding GCMs are the driest (INM-CM4-8) and the wettest180

(MPI-ESM1-2-HR) GCM, the GCMs with the lowest (KIOST-ESM) and highest (NorESM-MM) IAV in precipitation and
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the GCMs with the lowest (EC-Earth3-Veg) and the highest (NorESM2-MM) change of average precipitation in 1989–2018

relative to the 1901–1930 average.

3.2 Step 2: Bias correction methods

Once a selection of GCMs is made, the biases of a given GCM can be corrected (see fig. 1 step 2). We explored six approaches185

using CRUJRA as our reference dataset. We corrected the three climate forcing variables, i.e. temperature, precipitation and

incoming shortwave radiation, and derived the correction based on the calibration time period 1989–2010 given this is common

to both reanalysis products used here. We applied each method per pixel so that the different grid points were corrected

independently of each other and tested the correction on both daily and monthly timescales, and note that none of the correction

methods used here are designed to correct temporal properties of the climate forcing. We show the corrections based on daily190

timescales in the main figures, and use the corrections based on monthly timescales to assess the sensitivity to the correction

timescale in the supplement. To understand the sensitivity to the correction technique, we only corrected the five bounding

models (see section 3.1.3) because they defined the total CMIP6 ensemble spread. In the subsections below, we describe the

methods in more detail. In the following, O and S represent the observed and simulated variables at the same grid point for

the calibration time period. P is the simulated variable for the projection period to adjust with bias correction methods, and195

C is the resulting bias-corrected variable. The projection period was split into ten 25-year slices. The bias correction was then

derived and applied to each calendar month on a daily timestep within each time slice separately. Let Pt and Ct being the

values of the variables at time t.

3.2.1 Scaling

We calculated additive (temperature) and multiplicative (precipitation and incoming shortwave radiation) scaling bias correc-200

tions based on the 1989–2010 climatology (compare e.g. Chen et al., 2011). For temperature, the bias-corrected value at time

t for the projection period is derived as follows:

Ct = Pt−S+O, (1)

with S and O the means of the variables S and O, respectively. For precipitation and incoming shortwave radiation, bias-

corrected values are derived according to205

Ct =
Pt

S
·O. (2)

to avoid negative values.
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3.2.2 Mean and variance correction (MAV)

Here, we aimed to additionally correct the variance in the temperature forcing. We followed equation 1 and accounted for the

variance by multiplying by the ratio between the standard deviation of the observed and simulated variables σO and σS . The210

forcing variables are corrected following

Ct = (Pt−S) · σO
σS

+O. (3)

We used the precipitation and incoming shortwave radiation corrected following the multiplicative correction (see eqn. 2)

since the (proportional) scaling correction affects both mean and variance.

3.2.3 Quantile mapping (QM)215

We employed the univariate quantile mapping (QM) method (Panofsky et al., 1958; Wood et al., 2004; Déqué, 2007) which

adjusts the cumulative distribution function of a modeled climate variable to that of the observed one. Let FO and FS denote

the cumulative distribution function (CDF) of the observed and simulated variables, respectively. By linking CDFs between

the model and the reference, the QM method allows to derive the bias-corrected value Ct as follows:

Ct = F−1O (FS(Pt)), (4)220

where F−1O is the inverse cumulative distribution function of O.

3.2.4 Cumulative Distribution Function (CDF-t)

The ’Cumulative Distribution Function – Transform’ (CDF-t; Michelangeli et al., 2009) is a version of quantile mapping

that adjusts the cumulative distribution function of the simulated climate variables using a quantile-mapping transfer function.

The difference with QM is that, by linking cumulative distribution functions using a two-step procedure, CDF-t is specifically225

designed to take into account the simulated changes of CDFs from the calibration to the projection period. Thus, the future

climate scenarios incorporate the model’s projected changes in both mean climate and variability at all time scales up to the

decadal. More details can be found in (Vrac et al., 2012). Implementing the CDF-t method in the present study in addition

to the QM method allows to assess the influence of taking into account simulated distribution changes in the bias correction

procedure on results of regional projections of carbon cycle for Australia.230

3.2.5 Dynamical Optimal Transport Correction (dOTC)

The ‘dynamical Optimal Transport Correction’ method (dOTC, Robin et al., 2019) is a generalization of the CDF-t method to

the multivariate case. By using optimal transport theory, dOTC is designed to adjust both univariate distributions and depen-

dence structures of the simulated variables. Moreover, following the philosophy of CDF-t, dOTC is able not only to preserve
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the simulated changes in the univariate distributions between the calibration and the projection periods but also the simulated235

change in multivariate properties (e.g., induced by climate change). For more details and equations, see Robin et al. (2019);

François et al. (2020).

3.2.6 Rank Resampling For Distributions and Dependences (R2D2)

The ‘Rank Resampling For Distributions and Dependences’ method (’R2D2’, Vrac, 2018) is based on the Schaake Shuffle

(Martyn Clark et al., 2004). The Schaake Shuffle is a reordering technique that reorders a sample so that its rank structure240

corresponds to the rank structure of a reference sample. This allows the reconstruction of multivariate dependence structures.

As a first step, the R2D2 performs the univariate CDF-t bias correction (see 3.2.4). The method allows for the possibility to

select a ’reference dimension’ for the Schaake Shuffle, i.e., one physical variable at one given site, for which rank chronology

remains unchanged. The reconstruction of inter-variable correlations of the reference is then performed using the Schaake

Shuffle with the constraint of preserving the rank structure for the reference dimension. For more details and equations, see245

Robin et al. (2019); François et al. (2020).

3.3 Step 3: Run LPJ-GUESS

We ran LPJ-GUESS with a reference dataset (CRUJRA reanalysis), the full raw CMIP6 ensemble (which includes the skilled,

independent and bounding models) and additionally with the bounding models (see section 3.1.3) after they were bias corrected

according to the methods 3.2.1–3.2.6.250

LPJ-GUESS (Smith et al., 2014, Lund–Potsdam–Jena General Ecosystem Simulator; ) is a widely used dynamic global veg-

etation model for climate–carbon studies (Sitch et al., 2003; Smith et al., 2014). LPJ-GUESS simulates the exchange of water,

carbon and nitrogen through the soil–plant–atmosphere continuum (Smith et al., 2014) by accounting for resource competi-

tion for light and space between plants. We adopted the global configuration of the model that uses 12 plant functional types

(PFTs), simulating differences in growth form (grasses, broadleaved trees or deciduous trees), photosynthetic pathway (C3 or255

C4), phenology (evergreen, summer green or rain green), tree allometry, life history strategy, fire sensitivity, and bioclimatic

limits for establishment and survival (see Smith et al., 2014, for details). LPJ-GUESS is the only second-generation DGVM

part of the TRENDY ensemble (compare Fisher et al., 2010, 2018) and explicitly represents demographic processes, such

as stand age/size structure development, mortality and competition among locally co-occurring PFT populations, as well as

disturbance-induced heterogeneity across the landscape of a grid cell.260

We use LPJ-GUESS version 4.0.1 in ’cohort mode’, where woody plants of the same size and age co-occur in a ’patch’ and

as such, are represented by a single average individual. Each PFT is represented by multiple average individuals, and one PFT

cohort is defined as the average of several individuals. We run LPJ-GUESS with the plant and soil nitrogen dynamics switched

on. Fire is simulated annually (stochastically) based on temperature, fuel availability and the moisture content of upper soil

layer as a proxy for litter moisture content (Thonicke et al., 2001).265
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3.4 Step 4: Ensemble averages

After running LPJ-GUESS with either the raw or corrected climate data (step 3), the final step was to calculate an ensemble

average of the resulting carbon fluxes. We focussed on the total carbon storage (CTotal) and foliar projective cover (FPC) over

Australia at annual timesteps, and the gross primary productivity (GPP) at seasonal timesteps. We explored three different

approaches based on the full ensemble or the selected models (see section 3.1)270

3.4.1 Arithmetic ensemble average

We first calculated the arithmetic ensemble average where each of the GCM+LPJ-GUESS ensemble members was assigned

the same weight.

3.4.2 Skill and independence

Following Bishop and Abramowitz (2013), we calculated weights based on both independence and skill. We here chose the275

carbon variables resulting from the reference LPJ-GUESS run (driven with the CRUJRA reanalysis) as the target variable,

and the carbon variables resulting from the LPJ-GUESS runs forced with the CMIP6 as the predictor variables. This method

accounts for both the performance differences and their error dependencies. In a first step, the bias with respect to observational

data is calculated. Then, the error correlation coefficient is used as a metric for error dependencies. The linear combination of

the CMIP6 members is derived to minimise the mean square difference to the results from the reanalysis runs following:280

Cjw = wTxj =

K∑
k=1

wkx
j
k (5)

where j represent the grid cells, and k is the number of the ensemble members. Consequently, xjk is the value of the kth

bias-corrected model (i.e., after subtracting the mean error from the dataset) at the jth grid cell. The weights (wT ) provide an

analytical solution to the minimization of

J∑
j=1

(Cjw −x
j
obs)

2 (6)285

when subject to the constraint that the sum of the weights (wk) always adds up to 1. The solution can be expressed as:

w =
A−11

1TA−11
(7)

where 1T =

k elements︷ ︸︸ ︷
[1,1, ...,1] and A is the K × K difference covariance matrix.
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3.4.3 Random Forest

Random forest is an ensemble learning method that constructs a collection of decision trees and then outputs a weighted average290

of predictions of the individual trees. For each decision tree, a subset of training samples are randomly selected following a

bootstrap sampling approach. At each node, a random sample of predictor variables is selected for splitting. We varied the

number of predictor variables and number of trees, and here show the results that produced the lowest error. The metric of

splitting is the sum of squares of errors. As in method 3.4.2, we chose the carbon variables resulting from the reference

LPJ-GUESS run (driven with the CRUJRA reanalysis) as the target variable, and the carbon variables resulting from the LPJ-295

GUESS runs forced with the CMIP6 as the predictor variables. We further included the latitude and longitude as predictors, and

when analysing monthly data, the month. The random selections change as the ’tree’ grows following a random sampling with

the replacement approach. The algorithms involved in different decision trees are run in parallel. Both the random sampling

procedure and the parallelism in algorithm operations mean that the predictor blocks in random forest are built independently.

3.5 Summary of methods300

Our methods examine many of the approaches previously used to select from and/or constrain the CMIP6 ensemble in car-

bon cycle modelling. In this study, we seek to examine how applying these corrections methods affect the simulation of the

Australian carbon cycle by LPJ-GUESS as a case study. In the following, we use the abbreviations defined in table 3.
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4 Results

We first explored the uncertainty in the CMIP6 climate fields by examining the average and IAV (depicted by the standard305

deviation of the detrended annual precipitation and temperature) of the simulated and reanalysis annual precipitation and tem-

perature over Australia between 1989–2018 (see fig. 2). Annual precipitation (1989–2018) simulated by the CMIP6 ensemble

members varies widely from 254 mm yr−1 (MPI-ESM1-2-HR) to 858 mm yr−1 (INM-CM4-8). The CRUJRA reanalysis lies

in the lower quartile of the CMIP6 spread (499 mm yr−1, see fig. 2,c), implying a systematic over-estimate across the CMIP6

GCMs. The precipitation IAV varies between 55 mm yr−1 (KIOST-ESM) and 183 mm yr−1 (NorESM2-MM) and most CMIP6310

ensemble members simulated higher IAV than the CRUJRA reanalysis (66 mm yr−1; see fig. 2,c). Relative to 1901–1930, most

CMIP6 GCMs do not show a significant trend (17 out of 21), two GCMs significantly increase in precipitation (up to 76 mm

yr−1 in the end of the historical time period; NorESM2-MM) and two GCMs significantly decrease (down to -59 mm yr−1,

EC-Earth3-Veg). CRUJRA slightly increases in precipitation relative to 1901–1930 for the latter half of the historical time

period (27.2 mm with a significant trend of 0.40 mm yr−1; see fig. 2,d).315
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Figure 2. Average and interannual variability (IAV) of annual precipitation averaged over Australia for the time period 1989–2018 (a),

average and IAV of annual temperature averaged over Australia for the time period 1989–2018 (c) for the 21 CMIP6 ensemble members (see

tab. 1). Panel e shows the average of the total carbon stored in Australia for the time period 1989–2018 based on LPJ-GUESS simulations

with the CMIP6 ensemble on the left and the IAV of the net biome productivity over Australia for the same time period on the right. The

black stars represent the respective values obtained using the CRUJRA reanalysis. Panel b, d, and f show the 30-year moving average of

the change of annual temperature, precipitation and total carbon storage respectively relative to the 1901–1930 average. The thick black line

represents simulations obtained using the CRUJRA reanalysis.

The average simulated temperature over Australia for the last 30 years of the historical time period varies amongst the

CMIP6 ensemble members from 21.2◦C (INM-CM5-0) up to 24.6◦C (MIROC6). The median of the full ensemble is 22.7◦C

and slightly higher than the average temperature for the CRUJRA reanalysis (22.1◦C). The IAV in temperature ranges from

0.27◦C (NorESM-LM) to 0.68◦C (GFDL-ESM4). The CMIP6 GCMs tend to simulate higher IAV in temperature compared to
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the year-to-year variability found in the CRUJRA reanalysis (0.31◦C; see fig. 2, a). Relative to 1901–1930, all CMIP6 ensemble320

members show a continental average increases in temperature but to varying degrees (∼0.4–1.2◦C averaged over 1989–2018;

see fig. 2,b). We note that figure 2b, d, and f show the smoothed change in the according variable and do not allow conclusions

on IAV.

Finally, figure 2 e, f show the impact of differences in the meteorological forcing on the average simulated total carbon

pool (CTotal), the IAV in net biome productivity (NBP) and the change in CTotal for Australia when LPJ-GUESS is forced325

with the raw climate forcing of each of the CMIP6 ensemble members. Depending on the choice of GCM, CTotal varies

between 28.6 PgC (LGMPI−ESM1−2−HR) and 75.1 PgC (LGINM−CM4−8). Compared to CTotal simulated by LGCRUJRA (56.4

PgC), the LPJ-GUESS driven with CMIP6 forcing tends to simulate lower CTotal. The IAV in NBP ranges between 0.3 PgC

(LGKIOST−ESM) and 1.1 PgC (LGCMCC−CM2−SR5). The IAV in NBP simulated by LGCRUJRA (0.6 PgC) falls into the lower

interquartile range (IQR) of the CMIP6 ensemble runs. CTotal for Australia increases by the end of the historical period for330

all CMIP6 forcings with values between 0.1 PgC (LGEC−Earth3) and 4.1 PgC (LGNorESM2−MM). Compared to the reanalysis

results, most of the CMIP6 models lead to a weaker increase in CTotal over the historical period (except for LGINM−CM4−8,

LGINM−CM5−0, LGNorESM2−LM, and LGNorESM2−MM).

Taken together, figure 2 demonstrates both the uncertainties in meteorological variables obtained from GCMs and how these

propagate to large simulation biases in Australia’s carbon cycle. In the following, we examine the impact of correcting climate335

forcing on these biases.
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Figure 3. Difference between precipitation (pr), temperature (T), and carbon storage (CTotal) based on the CMIP6 and CRUJRA forcing

(a,c,e), and coefficient of variance across the ensemble of the same variables averaged over Australia. The different colors represent the

results based on the raw (blue) or corrected climate forcing using scaling (orange), mean and variance (MAV, green), quantile mapping

(QM, red), cumulative distribution function - transform (CDF-t, purple), dynamical optimal transport correction (dOTC, brown), and matrix

recorrelation (R2D2, dark grey) approaches and the three ensemble averaging methods (arithmetic mean (olive), weighted average (pink),

and random forest (cyan)). The different symbols show LPJ-GUESS runs forced with the five bounding models EC-Earth3-Veg (filled circle),

INM-CM4-8 (x), KIOST-ESM (square), MPI-ESM1-2-HR (+), and NorESM2-MM (triangle), the full ensemble (empty circle), and the three

model selection methods skill (diamond), independence (horizontal bar), and bounding models (hexagon). The black hexagons depict the

ensemble average of the LPJ-GUESS runs based on the raw and corrected bounding climate forcing.
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The large ensemble spread in the CMIP6 forcing variables (see fig. 2 a–d) results in a large spread in the simulated carbon

cycle (see fig. 2 e and f). Figure 3 a shows the biases in the forcing variables precipitation (pr) and temperature (T) as well

as CTotal based on the CMIP6 compared to the results of the reanalysis. Positive values indicate that the results based on the

CMIP6 forcing are higher compared to the reanalysis, and negative values demonstrate the opposite. Each of the bias correction340

methods reduces the bias in the forcing variables so that the bias in the corrected precipitation is significantly lower , and the

bias in corrected temperature in comparison to the raw CMIP6 meteorology is close to zero (see fig. 3a,c). Consequently,

CTotal based on LPJ-GUESS driven with the corrected CMIP6 GCMs results in a smaller distance to CTotal based on the

LGCRUJRA run compared to the raw forcing for most LPJ-GUESS runs (see fig. 3 a). However, while the results based on the

LGNorESM2−MM model initially simulated ∼3 PgC more than the runs based on the CRUJRA reanalysis, all univariate bias345

correction methods lead to larger biases from -5.0 PgC (CDF-t) to -8.3 PgC (Scaling) while the multivariate methods result in

biases similar in magnitude (dOTC) or reduce it significantly (R2D2). When averages are calculated based on the full CMIP6

ensemble (hollow circles in fig. 3e), the random forest and weighted ensemble average approach produces almost identical

results compared to the LGCRUJRA run (-0.29 PgC and -0.16 PgC, respectively; see fig. 3). The arithmetic ensemble average

of CTotal is with -7.7 PgC lower than the weighted average and the random forest approach. Figure 3e also shows the impact of350

model selection on calculated ensemble averages. Given both the weighted ensemble averaging and random forest approach are

insensitive to redundant (i.e. models with similar biases) information we expect that testing those methods based on different

GCM subsamples will yield similar results. We therefore only show the impact on the arithmetic average of CTotal. The values

for the arithmetic average can depend on the selection of models it is derived from. Calculating the arithmetic average based

on the full ensemble or on the five independent or bounding models gives similar results (but lower than the weighted and355

random forest approach: -9.0, and -7.6 PgC, respectively). Notably, the arithmetic ensemble average based on the five most

skilled models produces the lowest value of all selection methods (-18.9 PgC). The arithmetic average of the bounding models

is almost identical to that of the full ensemble for CTotal, and does not changes slightly with the correction method (black

hexagons in fig. 3).

While the type of bias correction method only shows small alterations of the values of the arithmetic average of any of the360

variables examined in figure 3, the coefficient of variation (CV), which we here use as a measure for ensemble uncertainty,

can vary depending on the method chosen. All bias correction methods reduce the CV compared to the raw CMIP6 data.

For temperature, all bias correction methods result in similar values for CV (see fig. 3 d). Precipitation shows some variation

depending on the type of bias correction method applied (univariate vs multivariate; see fig. 3 b). For temperature, the CV is

robust and does not change strongly depending on the subselection of GCMs while for precipitation, selecting GCMs with high365

skill decreases the CV most. The CV of CTotal is most reduced when the multivariate dOTC approach is applied on the forcing

variables, and selecting the most skilled GCMs for an arithmetic average here yields the strongest reduction in CV compared

to the full ensemble or selecting independent or bounding models.
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Figure 4. 30-year moving average of the change in CTotal averaged over Australia. In each panel, the bold black line is the change in CTotal

obtained using the CRUJRA reanalysis and the grey shaded area represents the full unconstrained CMIP6 model ensemble. Panel a–e show

the CTotal change simulated using input from the five individual bounding models separately. The colors show the change in CTotal based

on the different bias correction methods. Panel f shows the change in CTotal estimated by the ensemble averaging methods.

Figure 4 shows the change in CTotal relative to the 1901–1930 average for the five bounding models (i.e., weakest and

highest amount, change and IAV in precipitation over time; see fig. B2 and B1 for the corrected precipitation and temperature370

forcing). For the LPJ-GUESS runs based on the lowest amount in precipitation and increase in precipitation (LGEC−Earth3−Veg

and LGMPI−ESM1−2−HR, respectively), none of the bias correction approaches significantly alters the change in CTotal so
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that the change in CTotal remains significantly lower compared to LGCRUJRA (see fig. 4 c and e). In the LPJ-GUESS runs

forced with the highest annual precipitation (LGINM−CM4−8) and the strongest increase and highest IAV in precipitation (both

LGNorESM2−MM), the bias correction methods generally reduce the simulated change of CTotal so that it is closer to the375

LGCRUJRA result (see fig. 4 a, b). For LGINM−CM4−8, all methods are successful in bias correcting to the reanalysis. For

LGNorESM2−MM, four methods approximately halve the difference between the reanalysis and raw runs, with the exception

of CDF-t and dOTC. Figure 4 f shows the impact of different ensemble averaging methods applied to CTotal. All averaging

methods simulate very similar ∆ CTotal in the last 10 years of the model runs whereas the weighted approach is lower by∼0.5

PgC in the first fifty years.380
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Figure 5. Difference between the ensemble averages of CTotal and CTotal simulated by LGCRUJRA. Panel a-c show the arithmetic, weighted,

and random forest ensemble average based on the LPJ-GUESS runs using the full CMIP6 ensemble. Panel d–f show the arithmetic ensemble

average based on LPJ-GUESS runs using subselections of the CMIP6 ensemble (skilled, independent, and bounding GCMs). Panel g–l show

the arithmetic ensemble average based on LPJ-GUESS runs using the bias corrected bounding GCMs following the scaling, MAV, QM,

CDF-t, R2D2, and dOTC approach. The noticeable bias across the Tropic of Capricorn results from the assumed bioclimatic limit for C4

grasses. 22



Figure 6. Coefficient of variation (CV) over the ensemble of CTotal simulated by LPJ-GUESS. Panel a shows the CV based on the LPJ-

GUESS runs using the full CMIP6 ensemble. Panel d–f show the CV based on LPJ-GUESS runs using subselections of the CMIP6 ensemble

(skilled, independent, and bounding GCMs). Panel g–l show the CV based on LPJ-GUESS runs using the bias corrected bounding GCMs

following the scaling, MAV, QM, CDF-t, R2D2, and dOTC approach. The noticeable CV across the Tropic of Capricorn results from the

assumed bioclimatic limit for C4 grasses. Note that we do not show a coefficient of variation for the weighted ensemble averages. Given they

produce a single estimate rather than an ensemble estimate, a coefficient of variation does not exist for these methods.23



Figure 5 shows the regional details of the relative differences between CTotal based on the three ensemble averaging methods

(full ensemble; a-c), and different model selection methods (d-e) compared to the reference run LGCRUJRA. The arithmetic (see

fig. 5a) and weighted average (see fig. 5b) show regional biases that can be both positive (East Central Australia) and negative

(Southwest Australia), and along the Tropic of Capricorn. The random forest approach shows small differences in CTotal

compared to the CRUJRA reanalysis. Figure 5 further supports that using a weighted average or random forest approach yields385

a more robust ensemble estimate than using the mean of any of the sub-ensembles. Deriving the arithmetic average based on

the full ensemble or on a sub-selection based on independent or bounding models (see fig. 5a,e,f) yields very similar results;

notably choosing the five most skilled models produces an overall negative bias in the CTotal estimate (see fig. 5d).

Correcting the bounding models tends to reduce the bias in the ensemble average of CTotal (see fig. 5 g-m). The resulting

bias map for individual GCMs can depend on the raw simulation by the GCM to which the bias correction is applied. Each of390

the bias correction methods leads to similar spatial patterns within the same GCM (see appendix fig. B3).

Figure 6 shows the coefficient of variation (CV) of CTotal across the ensemble. Selecting either the full ensemble or making

a sub-selection based on skill and independence (see fig. 6a-c), results in a high CV across the Tropic of Capricorn that results

from the assumed bioclimatic limit for C4 grasses (similar to fig. 5). Selecting models based on skill (see fig. 6a) reduces the

CV compared to the full ensemble while choosing the five bounding models reduces the CV across the Tropic of Capricorn but395

increases it in most of the other regions. The CV is significantly lower when the climate forcing input is bias corrected for all

methods, and the quantile mapping approach overall leads to the lowest values.
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Figure 7. Boxplots showing the median, 75th, and 25th percentiles of foliar projective cover (FPC) for temperate (a) and tropical (b) trees and

C3 (c) and C4 (d) grasses for Australia. The first five groups are the LPJ-GUESS runs based on the five bounding models LGEC−Earth3−Veg,

LGINM−CM4−8, LGKIOST−ESM, LGMPI−ESM1−2−HR, and LGNorESM2−MM where blue shows the FPC based on the raw model forcing

and orange, green, red, purple, brown and grey show the FPC when LPJ-GUESS is forced with the corrected model forcing following the

scaling, MAV, QM, CDF-t, dOTC and R2D2 method, respectively. The yellow, pink and bright blue boxplots on the right hand side of each

panel show the different ensemble averaging methods (arithmetic average, weighted average, and random forest, respectively) when the full

ensemble is used (group ’Full’). The groups Skill (dashed), Independence (dotted), and Bounding (dashed the other way around) show the

results for the arithmetic average when only a sub-selection of models is used (see section 3.1). The dashed lines show the median values of

the simulations with the CRUJRA reanalysis, the dotted lines are the 75th and the dash-dotted line the 25th percentiles.
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The different patterns in ∆CTotal for the bounding model runs imply that the underlying vegetation composition might

vary with the climate forcing and the bias correction methods applied. Indeed, studies have suggested that the sensitivity to

climate forcing is generally larger on regional and PFT-scales (Wu et al., 2017). To examine the impact of bias correction on400

vegetation composition we examine the FPC which can be seen as indicator for the vegetation growth (due to the relationship

between foliar area and light interception), and species competition through tree-grass shading. We focus on the FPC of

four different vegetation groups (temperate and tropical trees, C3 and C4 grasses) for the five bounding models and different

ensemble averages (see fig. 7). For temperate trees, most raw models simulate a higher median compared to the FPC based on

LGCRUJRA (except for MPI-ESM1-2-HR; see fig. 7 a) and the variability in simulated FPC depends strongly on the GCM used405

to drive LPJ-GUESS. For the LPJ-GUESS runs based on the wettest GCM (LGINM−CM4−8 and the one based on the strongest

increase in precipitation (LGNorESM2−MM), the median falls outside the LGCRUJRA interquartile range and the 75th percentile

of both models is more than double (LGMPI−ESM1−2−HR) or triple (LGINM−CM4−8) of what the LGCRUJRA run suggests. For

all models, correcting the GCM forcing brings the simulated FPC much closer together. The arithmetic and weighted ensemble

average result in a higher median and 25th and 75th percentile compared to the LGCRUJRA run. The median of random forest410

is close to the LGCRUJRA median. However, 75th is significantly lower compared to that of LGCRUJRA and the variability for

the random forest approach is overall lower compared to LGCRUJRA. Only choosing skilled models reduces the median of the

arithmetic ensemble average, leading to better agreement with the LGCRUJRA reanalysis but the variability is lower. The other

selection methods produce similar values for the median compared to the full ensemble result with a larger spread.

For the tropical trees (see fig. 7 b), most models simulate medians and interquartile ranges similar to that based on the415

LGCRUJRA reanalysis. In contrast, the FPC based on wettest GCM (LGINM−CM4−8) shows a significantly higher median and

75th percentile (the latter about four times higher compared to LGCRUJRA). All bias correction methods decrease the median so

that it is within the LGCRUJRA interquartile range (IQR). The MAV approach however still leads to a too high 75th percentile.

The weighted ensemble average shows the distribution that is the most similar compared to the LGCRUJRA FPC. Calculating

the arithmetic average based on the full ensemble yields a similar result, however the random forest approach median almost420

drops out of the LGCRUJRA IQR. The arithmetic approach based on the independent GCMs produce the best match compared

to LGCRUJRA.

In contrast to the two tree groups, the median C3 grass FPC based on the CMIP6 forcing tends to be lower than that based on

LGCRUJRA (see fig. 7). The C4 grasses show a mixed response to the raw CMIP6 forcing. The LPJ-GUESS runs based on the

wettest model and the one with the strongest increase in precipitation (LGINM−CM4−8 and LGNorESM2−MM simulate a higher425

median FPC compared to the LGCRUJRA while the runs based on the driest model and the model with the lowest increase

in precipitation (LGMPI−ESM1−2−HR and LGEC−Earth3−Veg) are lower. Especially the LGMPI−ESM1−2−HR run shows large

variation in simulated C4 grass FPC depending on the correction method. For LGINM−CM4−8, the three approaches based on

quantile mapping (QM, CDF-t and dOTC) lower the median closer to the LGCRUJRA median. For the wet model, all approaches

lead to significant improvement compared to the target dataset. None of the arithmetic or weighted ensemble averages in FPC430

match the LGCRUJRA median, and mostly are below the lower quartile of LGCRUJRA.
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Overall, the analysis of FPC highlights important implications for bias correction. The results show that LPJ-GUESS re-

sponds very differently to the various bias correction methods because the change in the GCM forcing alter the competitive

interactions between vegetation types. Importantly, although the spatial maps show similar agreement in CTotal between cor-

rection methods, the change in FPC implies that the resulting change in carbon is simulated by difference underlying vegetation435

compositions. We therefore further examine the seasonal cycle of GPP of C4 grasses in the following as the change was the

most different after bias correction.
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Figure 8. Seasonal cycle of gross primary productivity for C4 grasses in Australia. The different panels show the seasonality when LPJ-

GUESS is forced with the bounding five bounding models (a-e). The different colors show the unconstrained model climate forcing (blue),

or after bias correcting the data following the scaling (orange), the mean and variance (green), the quantile mapping (red), the CDF-t (purple),

the dOTC (brown) and the R2D2 (grey) method. The black lines represent the reanalysis simulations with CRUJRA and the grey shading

shows the full CMIP6 ensemble spread. The blue shaded area indicate the wet season (November–April) and the red area the dry season

(May–October).

Figure 8 shows the seasonal GPP for C4 grasses. All simulations, including LGCRUJRA, simulate peak productivity in

the wet season and minimum productivity in the dry season (see fig. 8 a) but the uncertainty in simulated seasonal GPP

is large (see ensemble spread with values between ∼0.1 to 0.4 PgC mon−1 at the peak of the wet season, and ∼0 to 0.15440
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PgC mon−1 at the peak of the dry season). Through December to March, the maximum GPP during the wet season is lower

compared to the reanalysis results but is closer to the reanalysis simulations in the dry season. As a result, the bias correction

methods achieve similar CTotal values (see fig 3) predominantly through reducing biases during the dry season and introducing

an underestimation bias in the wet season. Notably, the R2D2 method always achieves the lowest bias to the target dataset

compared to the remaining bias correction methods.445

For LGMPI−ESM2−2−HR, the raw climate forcing does not generate the right magnitude and timing of peak GPP. When

corrected with the two multivariate approaches, both become more similar to the LGCRUJRA runs. For LGINM−CM4−8 and

LGMPI−ESM1−2−HR, all bias correction methods increase GPP from December to March, while for LGKIOST−ESM, only the

two multivariate approaches achieve a change closer to the LGCRUJRA runs in the wet season GPP. When the NorESM2-MM

climate forcing is corrected, the magnitude is even lower than when the raw climate forcing is used. Figure 8 f also shows450

the impact of the different ensemble averaging approaches. Applying the random forest approach leads to near identical result

to the LGCRUJRA simulation. Both the weighted and arithmetic ensemble average result in a lower peak in GPP in the wet

season, where the arithmetic average is lower than both the random forest result and the weighted average.

5 Discussion

In this study, we explored the impact of climate model uncertainty on the regional carbon cycle over Australia and the sensitivity455

of the carbon cycle to different approaches to correcting climate forcing biases. We found that, uncorrected, the continental-

scale climate projections over Australia were associated with large uncertainties. The difference between the hottest and coldest

model is very large; 3.4◦C higher than the observed historical warming over the continent (1.4◦C; IPCC, 2021), and local

differences can be even larger. Similarly, average precipitation ranges between 254 and 858 mm yr−1, and the IAV ranges

from 55-183 mm yr−1. The differences on both timescales have a large impact on predicted vegetation, especially across a460

water-limited continent such as Australia. Our finding that the simulation of Australia’s carbon cycle is particular sensitive to

the choice of climate forcing is consistent with previous studies (e.g. Ahlström et al., 2012; Ahlström et al., 2015; Ahlström

et al., 2017). The uncertainty in the CMIP6 forcing translates into a significant variability in the simulated carbon cycle in LPJ-

GUESS, for example the average values for CTotal vary between 28.6 PgC and 75.1 PgC, and the IAV in NBP was between

0.3 and 1.1 PgC. We explored three approaches to reduce biases and ensemble uncertainty and discuss each in turn below.465

5.1 Sensitivity to bias correction methods

We tested six different methods for bias correcting the CMIP model forcing driving LPJ-GUESS. Four methods incorporate uni-

variate approaches (each climate variable is corrected independently), and two employ multivariate approaches (inter-variable

relationships are accounted for). The methods tested range in complexity. The widely used scaling method applied in this

study can correct the mean values of the variables, however, cannot adjust variability and extreme values correctly (see for470

example Berg et al., 2012). The mean and variance approach therefore builds on the scaling method by correcting both mean

and variance. We also considered two alternative approaches that attempt to correct the bias based on their distribution, i.e.
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quantile mapping and CDF-t. The basic quantile mapping method not only corrects the mean bias but also adjusts the distri-

bution and may therefore be more suitable when both the average and extremes are studied. Based on quantile mapping, the

CDF-t method additionally incorporates projected changes in mean and variability simulated by the GCM. In contrast to the475

univariate approaches discussed, multivariate correction methods allow to adjust intervariable dependencies. One of the main

differences between the dOTC and R2D2 methods applied here is that dOTC is designed to transfer some of the multidimen-

sional properties from the GCM to the bias-corrected data (such as the change in time; see François et al., 2020). The R2D2

approach instead assumes that inter-variable and intersite rank correlations are stable in time.

We found that all bias correction methods reduce the average bias of CTotal to that of the reference run for the five individual480

models. When deriving an arithmetic ensemble average of the raw and bias corrected results, the values for the ensemble

averages are relatively similar. Correcting the climate forcing significantly reduces the spread amongst the ensemble members

compared to the raw model forcing. We further explored regional differences for Australia in the CTotal bias compared to our

reference run, and found that all bias corrections methods reduce the magnitude of the bias. The spatial patterns in bias were

consistent across the bias correction methods, implying that the relative spatial distribution of CTotal remains similar. We note485

that in all maps display high values for both bias and CV in CTotal across the Tropic of Capricorn (S 23◦26′10.7”). This is an

artefact resulting from assumed model bioclimatic limits. In LPJ-GUESS, vegetation growth of C4 grasses and tropical trees

is restricted by a lower temperature boundary such that these vegetation types cannot establish or survive when the 20-year-

average minimum temperature falls below 15.5◦C. Therefore, C4 grasses and tropical trees only grow north of the Tropic of

Capricorn, while south of it only temperate trees and C3 grasses are simulated. The strong variation across GCMs in simulated490

temperature thus leads to very different simulated vegetation cover (and thus high CV) in LPJ-GUESS.

In contrast to the average CTotal results, bias correcting the forcing CMIP models does not necessarily lead to better results

for other variables simulated by LPJ-GUESS. The different bias correction approaches did not necessarily lead to improved

simulations of the change in CTotal compared to the target dataset. The arithmetic average across all five bounding models is

relatively close to that of the reference run, and the upper boundary of the model spread was reduced when bias correction495

methods were applied. However, the lower boundary was almost the same or slightly worse than before (EC-Earth3-Veg). The

different biases and magnitudes in CTotal reflect that the underlying vegetation composition may vary depending on the CMIP6

ensemble member used to run LPJ-GUESS, and the bias correction method.

The foliar projective cover gives an indication of the fidelity of vegetation cover. In LPJ-GUESS, FPC results from simulated

vegetation competition which in turn is influenced by the climate input forcing. For example, water-limited regions such as500

arid Australia will have limited tree growth, and increased grass growth. Further, competitive processes amongst tree species,

and C3 and C4 grasses, that are driven by temperature (either dynamically or prescribed) can drive vegetation competition

and therefore FPC. We found that temperate trees and C4 grasses in particular can vary strongly in dominance and relative

cover depending on the GCM used as the input forcing and bias correction applied. Only the two multivariate approaches

adjust the distribution so that it is more comparable to the reference dataset and the other ensemble members. This implies505

that both the model selection as well as the bias correction method can lead to small but potentially important differences in

composition of vegetation distributions across the landscape. Models that show large differences in the vegetation distribution
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are also sensitive to the bias correction for seasonal GPP. For the two models with the strongest divergence in C4 grass

distribution, all bias correction methods improve the seasonal productivity compared to the target dataset. However, correcting

the climate forcing also led to a lower skill in predicting seasonal GPP for one model (LGNorESM2−MM). We also found the510

foliar projective cover, especially that of C4 grasses, showed a strong sensitivity to the bias correction method chosen for some

models (e.g. MPI-ESM1-2-HR). However, the spatial patterns in average bias of CTotal remain relatively consistent across all

bias correction methods tested and show some similarity to that of the raw model forcing (LGEC−Earth3−Veg, LGKIOST−ESM

and LGNorESM2−MM). This outcome may emerge as we corrected each grid cell independently. When François et al. (2020)

correct their climate variables taking into account spatial properties, both methods tested here improved the results for small515

regional scales. Given the heterogeneity of climate and large area of the Australian continent, we did not attempt correcting the

spatial scales given limitations in computation time but this would be worth exploring in future work.

In summary, within a framework of testing bias correction methods on the five models spanning the CMIP6 model spread,

we found that the bias correction methods successfully reduced the bias to the reference dataset for averages over time and

space (CTotal). Overall, the two multivariate approaches achieved a stronger reduction in bias for both individual GCMs and520

the ensemble average while also presenting a lower uncertainty across the ensemble. A clear advantage of applying multivariate

approaches is that they account for intervariable dependencies and can therefore preserve the consistency between the climate

variables used to drive LPJ-GUESS. However, the variation across the different correction methods is small, and value ranges

for multivariate are comparable to the univariate quantile mapping approaches. Given the increased computation cost associated

with multivariate approaches, and the limited benefit demonstrated in this study, multivariate bias correction methods may525

therefore not necessarily be the best approach in future impact studies. Further, all correction methods show limited impact

for other temporal properties (such as the change over time; e.g. Hagemann et al., 2011; Maurer and Pierce, 2014; Cannon

et al., 2015; François et al., 2020). For example, Hagemann et al. (2011) found that bias correction does not necessarily lead to

a more realistic climate change signal. In a different study focusing on precipitation, Maurer and Pierce (2014) demonstrated

that long-term changes in simulated precipitation can artificially deteriorate following quantile mapping. Further, Cannon et al.530

(2015) find that quantile mapping approaches can inflate relative trends in precipitation extremes projected by GCMs. The

lack of skill in correcting temporal properties was also demonstrated for multivariate bias correction approaches (François

et al., 2020). Using single models or even a subset of the ensemble may therefore not inform trends and processes on short

timescales for studies exploring the future carbon cycle. Conversely, explicitly bias correcting trends based on historical data,

when the spatiotemporal nature may not yet have clearly emerged, could equally be problematic for unbiased estimation of535

climate system properties like equilibrium climate sensitivity. Despite the demonstrated limited impact of bias correction on

temporal and spatial scales, correcting the driving forcing is still preferable to using raw climate forcing. DGVMs largely rely

on bioclimatic limits that define where specific types of vegetation can grow. Relying on a biased climate forcing dataset might

therefore result in a misrepresentation of the vegetation. Indeed, we found strong differences in the foliar projective cover

of different vegetation groups. This mismatch in vegetation composition that can result from threshold-defined boundaries is540

likely to lead to diverging carbon and water cycle responses to the climate, which might be even more pronounced in areas

with higher vegetation carbon mass than Australia. Future studies could further explore options to improve temporal features
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in climate variables. Robin and Vrac (2021), for example, include time as an additional variable for their multivariate bias

correction which may be a promising avenue for future research.

Climate change impact studies need to be aware of the limitations of bias correction methods. As we have shown, bias545

correction cannot solve fundamental deficiencies in GCMs (Maraun et al., 2017). A possible flaw in applying univariate bias

correction methods on a set of climate variables needed to force a dynamic vegetation model is a resulting inconsistency

within the climate forcing. While all bias correction methods improve the averages of CTotal compared to the target dataset,

importantly, based on our findings it is not clear that one method systematically outperforms any other. This may be because

the carbon cycle in Australia is mostly driven by precipitation, and for vegetation limited by both temperature and precipitation,550

multivariate approaches may outperform univariate approaches more distinctly (Zscheischler et al., 2019). While the ensemble

average is mostly insensitive to choice of raw or corrected data, the spread between the outlier models is significantly reduced

by any of the correction methods (especially the quantile mapping approaches and the multivariate dOTC method). Other

temporal properties, such as the change over time, are not necessarily improved or can even deteriorate compared to the raw

climate forcing, such as the trend, interannual variability or extreme events. Researchers should be especially cautious when555

they rely on a small sub-sample or even single models for their impact study, given different GCMs can react differently to the

same bias correction method (e.g. for LGINM−CM4−8, the magnitude in bias is reduced while for LGNorESM2−MM the sign in

bias can change depending on correction method applied).

5.2 Sensitivity to ensemble averaging methods and model selection methods

We also tested the commonly used arithmetic ensemble average, a weighted averaging approach following Bishop and Abramowitz560

(2013), and a random forest regression approach. We found that the weighted average and the random forest approach outper-

form the arithmetic ensemble average for average CTotal, and seasonal GPP with results very similar to the reference dataset.

The random forest approach produces a small error magnitude when spatial dimensions are explored (see fig. 5) while for the

arithmetic and weighted ensemble average, systematic biases persist. While the FPC of tropical trees and C3 grasses seems to

be broadly captured by all averaging methods, C4 grasses shows a strong bias where only the random forest approach achieves565

a median value within the IQR of the LGCRUJRA run. As shown in previous studies (e.g. Bishop and Abramowitz, 2013; Knutti

et al., 2017; Abramowitz et al., 2019; Merrifield et al., 2020) there is benefit to avoiding the use of the arithmetic ensemble

averaging method for impact studies. An additional caveat of the arithmetic ensemble average is the sensitivity to the model

selection. The ensemble average somewhat depends on the models it is derived from. Counter intuitively, choosing the models

that show high skill in simulating precipitation, led to the worst results in most cases (a result similar to Herger et al., 2018).570

5.3 General caveats

All methods explored in this study rely on the general assumption that the reanalyses used to describe the historical time period

are accurate and that the methods employed apply equally to the past and the future. It seems reasonable to argue that methods

that fail to constrain models in the historical period are unlikely to work well for future periods. Unfortunately, the converse that

methods that work well in the historical period will necessarily work well in the future is not always true. Shifts in atmospheric575
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circulation, emergence of novel climates or the triggering of ecosystem tipping points might alter land-atmosphere feedbacks

that lead to changes in the climate such that methods that are reliable in the historical period cease to be reliable in the future.

A possible caveat in our study set up is the design of the ensemble subsets. We selected all models based on the simulated

precipitation based on the assumption that precipitation is the most important driver of Australia’s carbon cycle. However,

temperature and perhaps the extremes of temperature may also be an important constraint for vegetation distribution (especially580

in LPJ-GUESS where vegetation grows within pre-defined bioclimatic limits that are based on temperature like the boundary

between C3 and C4 grasses). However, when we repeated the analysis using the raw temperature and incoming shortwave

radiation forcing and bias corrected precipitation data, the results were almost identical compared to the runs where all climate

variables were corrected, confirming that precipitation drives the carbon cycle response within this framework. Further, for

simulating vegetation the skill of the variables may be important on multiple timescales. We attempt to account for this in585

the model selection methods by applying the respective metrics on monthly and annual timescales. In addition, the response

of the simulated terrestrial carbon cycle to the climate forcing is intimately linked to the sensitivity to the atmospheric CO2

concentration. This study chose a model set-up with both transient atmospheric CO2 concentration and nitrogen deposition,

and therefore does not fully isolate the impact of the climate forcing. However, given all LPJ-GUESS simulations have the

same configuration apart from the climate forcing, i.e. the prescribed atmospheric CO2 concentration and nitrogen deposition590

are identical, we argue that our experiment set-up is suitable for this study. Lastly, five models for all selection methods may

seem like a small subset. However, earlier studies (e.g. Pierce et al., 2009) found that the multi-model ensemble mean tends to

converge towards a similar value after including five models. We therefore conclude that five models was a sufficient number

in our testing framework.

We further chose a relatively short calibration time period (1989–2010) to allow sensitivity tests with multiple reanalysis595

datasets. While these 22 years may not cover decadal variability, we assume it is sufficient to account for interannual variability

such as the El Niño Southern Oscillation, the Indian Ocean Dipole, and Southern Annual Mode which have been shown to be

important influences on the Australian carbon cycle (e.g. Cleverly et al., 2016).

Other areas of uncertainty may include the sensitivity of the methods to the reference dataset. Several studies have discussed

that both bias correction methods (e.g. Iizumi et al., 2017; Famien et al., 2018; Casanueva et al., 2020), and weighted ensemble600

averaging methods (e.g. Merrifield et al., 2020) depend on the observation dataset they are calibrated on. Casanueva et al.

(2020) demonstrate that precipitation in particular is sensitive to the choice of reference dataset. We therefore repeated the

bias correction and chose ERA5 as a second dataset. We found high correlation coefficients between LPJ-GUESS runs that are

based on GCMs corrected to CRUJRA and LPJ-GUESS runs that were based on GCMs corrected to ERA5 for CTotal (0.96–

0.98; not shown here). We conclude that our results were robust to the choice of reference dataset. Another concern frequently605

discussed is impact of the mismatch in spatial resolution (high resolution reanalysis product vs. low resolution GCM output).

A solution to reduce the mismatch in spatial resolution might be to use dynamically downscaled datasets, such as CORDEX.

However, Casanueva et al. (2020) find the impact of the horizontal resolution on the bias correction results to be small in

comparison to the impact of bias correction method. Given dynamically downscaled products were only available for older

CMIP generations (CORDEX is based on CMIP5, NarCLIM on CMIP3) or contained a small subset of GCMs only (ISIMIP),610
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and we expected the uncertainty associated with the spatial mismatch to be small, we chose the state-of-the-art CMIP6 GCM

output.

Further, in this study, we chose just one realization from each GCM, and therefore the results presented in this study do

not fully reflect the uncertainty in simulations of the terrestrial carbon cycle linked to the entire spectrum of possible GCM

forcings. Adding more realizations would significantly increase the computational costs, and we do not expect that our results615

would differ significantly. Ukkola et al. (2020) looked at the effects of additional ensemble members in their assessment of

future rainfall change and found limited sensitivity. Nevertheless, to fully understand the impact of uncertainty in simulated

climate within individual GCMs, future work could consider using the CESM large ensemble. In addition, Teckentrup et al.

(2021) showed significant uncertainty in the simulated terrestrial carbon cycle linked to the choice of DGVM, but in this study

we chose a single DGVM to study the impact of climate uncertainty. However, to capture the full uncertainty, and to achieve620

a stronger constraint on the simulated terrestrial carbon cycle, future work could explore the response in other members of the

TRENDY ensemble, and create an ensemble composed of both different DGVMs and different GCM climate forcings.

Lastly, we chose to correct daily climate data for the main analysis. However, correcting monthly data may be statistically

more robust, especially for highly variable climate variables with a large number of null values such as daily precipitation.

Indeed, our analysis of the corrected input variables surprisingly showed an increase in bias in simulated precipitation for two625

GCMs after correction (see Fig. 3) which is likely linked to a mismatch in simulated days without rain in the target dataset

and the GCM simulation. We additionally tested the importance of timescales, i.e., we bias corrected the GCMs on both

daily and monthly timescales before forcing LPJ-GUESS with them. CTotal simulated by LPJ-GUESS driven by daily and

monthly corrected GCM output was strongly correlated (0.92–0.99; ; not shown here). Given only a few grid cells displayed

an unreasonably high bias in precipitation (not shown), and the fact that vegetation growth is also driven by temperature and630

incoming shortwave radiation in LPJ-GUESS, we assume that the impact on the simulated carbon on monthly-multidecadal

timescales is small.

5.4 Implications

Based on our findings, we conclude that decisions in regard to model selection, bias correction of GCM output, and ensemble

averaging methods, may alter future projections of ecosystem studies, especially the uncertainty estimates. Selecting a subset of635

models to reduce computation time is common, but sensitive to the criterion chosen for both arithmetic average and uncertainty

estimate. While choosing GCMs based on how well they represent the historical climate may seem intuitive, we find that the

arithmetic average based on a subset representing only independent models or models that define the full ensemble spread

reduces the bias compared to our reference run. Conversely, a subset of only skilled models reduces the ensemble uncertainty.

However, this reduction in uncertainty may stem from the wrong biophysical reasons, and a sub-selection of skilled models640

might not truly represent all plausible GCM outputs.

We further demonstrate that correcting GCM output can significantly alter Australia’s carbon cycle projections. Bias correc-

tions however only reduce the biases in relatively steady vegetation variables, such as the longer-term carbon states. Averaged

over the continent, we find that LPJ-GUESS forced with individual corrected GCM output can be sensitive to the bias cor-
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rection method but the arithmetic ensemble averages were found to be insensitive. Some bias correction methods did reduce645

the ensemble uncertainty more than others (e.g. Scaling vs. dOTC). On smaller scales, i.e., exploring regional differences or

on PFT level, the choice of bias correction method can have a big influence on species distribution and magnitude in fluxes.

Correcting biases may also lead to different outcomes relying on thresholds of absolute values when applied to individual

GCMs, such as for climate threshold studies exploring tipping points.

Importantly, bias correction methods do not correct temporal (such as IAV or trend) and spatial properties, unless the methods650

are specifically designed and set-up to do so. We found that using corrected GCM output can even increase the distance in

change compared to our reference dataset. Future studies of ecosystem/carbon cycle impacts based on GCM climate forcing

should therefore carefully choose a subset of models that is representative of the ensemble uncertainty, and do not rely on using

a single GCM.

To conclude, when Pandora opened the lid on her box she released the evils of the world, and these could never be put655

back into the box. We fear that we have also made the challenge of constraining the future regional-scale carbon budgets more

difficult. We have, for example, raised more questions than answers, identified limitations of existing approaches and ultimately

provided a challenge to the community to find more robust strategies to reduce the uncertainty in the projection of regional

carbon stores. We acknowledge we have not provided easy answers, but we hope that by highlighting the challenges, strategies

may be developed that can robustly constrain regional estimates of carbon storage.660

Code and data availability. The CMIP6 output used in this study is available via the Earth System Grid Federation (ESGF). The CRUJRA

reanalysis dataset is accessible via https://catalogue.ceda.ac.uk/uuid/7f785c0e80aa4df2b39d068ce7351bbb (last access: March 2021). The

analysis code can be found on https://github.com/lteckentrup/CMIP6_australia.
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Figure A1. Ranks derived for CMIP6 GCM subselection. Panel a and b show the rank according to the skill of each GCM in simulating

temperature (a) and precipitation (b) on monthly and annual timescales for Australia (compare tab. 2 and section 3.1.1). Panel c and d

show the independence rank of each GCM for temperature (c) and precipitation (d) on monthly and annual timescales (compare section

3.1.2). Lastly, panel e and f show the GCMs defining the ensemble spread, i.e. the GCM simulating the highest and lowest total amount in

precipitation (’Averages’), change in precipitation (’Change’), and interannual variability (’IAV’; compare section 3.1.3).
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Figure B1. 30 year moving average of the change in temperature (T) averaged over Australia. In each panel, the bold black line is the change

in T based on the CRUJRA reanalysis and the grey shaded area represents the full unconstrained CMIP6 model ensemble. Panel a–e show

the T change based on the five bounding models. The colors show the change in T based on the different bias correction methods. Panel f

shows the change in T estimated by the ensemble averaging methods.
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Figure B2. 30 year moving average of the change in precipitation (pr) averaged over Australia. In each panel, the bold black line is the

change in pr based on the CRUJRA reanalysis and the grey shaded area represents the full unconstrained CMIP6 model ensemble. Panel a–e

show the pr change based on the five bounding models. The colors show the change in pr based on the different bias correction methods.

Panel f shows the change in pr estimated by the ensemble averaging methods.
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Figure B3. Difference between the simulated CTotal based on the five bounding models and the CRUJRA reanalysis when LPJ-GUESS is

forced with the raw model forcing or with the corrected forcing following the Scaling, MAV, QM, CDF-t, dOTC and R2D2 approach. The

bottom row shows the different ensemble averaging methods (arithmetic average, weighted average, and random forest).
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