1	The story of a summit nucleus:
2	Hillslope boulders and their effect on erosional patterns and landscape morphology
3	in the Chilean Coastal Cordillera
4	Emma Lodes ^{1*} , Dirk Scherler ^{1,2} , Renee van Dongen, ³ and Hella Wittmann ¹
5	¹ GFZ German Research Centre for Geosciences, Earth Surface Geochemistry, Telegrafenberg,
6	14473 Potsdam, Germany
7	² Freie Universität Berlin, Institute of Geographical Sciences, 12249 Berlin, Germany
8	³ International Centre for Water Resources and Global Change, 56068 Koblenz, Germany
9	*Corresponding author (lodes@gfz-potsdam.de)
10	
11	Key words: ¹⁰ Be; cosmogenic nuclides; Chilean Coastal Cordillera; hillslope denudation rates;
12	fractures; landscape morphology; grain size; hillslope denudation ratesfractures
13	
14	Abstract
15	While landscapes are broadly sculpted by tectonics and climate, on a catchment scale,
16	sediment size the density of bedrock fractures can influence hillslope denudation rates and dictate
17	the location of topographic highs and valleys. In this work, we used <i>in situ</i> ¹⁰ Be cosmogenic
18	radionuclide analysis to measure the denudation rates of bedrock, boulders, and soil, in three
19	granitic landscapes with different climates in Chile, with the hypothesis that bedrock and
20	boulders erode slower than soil, and that high fracture density reduces grain size and increases
21	denudation rates. To evaluate denudation rates, we present a simple model that assesses
22	differential denudation of boulders and the surrounding soil, considering boulder protrusion. We

23	found that hillslope bedrock and boulders consistently erode more slowly than soil in two out of
24	three of our field sites, which have a humid and a semi-arid climate: dDenudation rates range
25	from $\frac{-510}{-510}$ to 15 m Myr ⁻¹ for bedrock and boulders and from $\frac{-815}{-810}$ to 20 m Myr ⁻¹ for soil.
26	Furthermore, across a bedrock ridge in the humid site, denudation rates increase with fracture
27	density. In the site with a in the humid and semi-arid climates, and are higher in the
28	mediterranean climate, denudation rates for boulders and soil are much higher (~40-140 m Myr-
29	¹), likely due to steeper slopes, but the bedrock denudation rate remains low (~22 m Myr ⁻¹). We
30	found that hillslope bedrock and boulders erode more slowly than the surrounding soil in the
31	diffusively eroding study sites. to Furthermore, across a bedrock ridge in the humid site, bedrock
32	denudation rates increase with fracture density. Our findings suggest that bedrock patches and
33	large hillslope boulders affect landscape morphology through inducing differential denudation,
34	When occurring long enough, such differential denudation should eventually becoming lead to
35	topographic highs and lows controlled by bedrock exposure and hillslope sediment size. Based on
36	analysis of high-resolution digital elevation models of our field sites, We infer that bedrock
37	fracture patterns set maximum grain sizes in our field sites, thus influencing hillslope denudation
38	and stream incision. Accordingly, www observe that streams in our field sites follow the
39	orientation of at least one major fault orientation. We thus infer that bedrock fracture patterns set
40	maximum grain sizes in our field sites, thus influencing hillslope denudation and stream incision.
41	Accordingly. Together, these results imply that tectonically-induced fractures and faults dictate
42	landscape evolution through reducing grain size and thus enhancing differential denudation rates.

43 1 Introduction

44 Landscapes on Earth are shaped by tectonic uplift and climate, which dictate erosional45 and weathering regimes over geologic timescales. When uplift and climate are held constant

46	sufficiently long, fluvial landscapes reach a steady state, in which the slopes of hills and stream
47	channels adjust so that denudation rates match tectonic uplift rates (e.g. Burbank et al., 1996;
48	Kirby and Whipple, 2012). Variations in bedrock strength and the grain size of hillslope
49	sediment, however, exert additional control on the morphology of hills and valleys (e.g. Attal et
50	al., 2015; Glade et al., 2017). Initially, hillslope sediment size is set by lithology and the density
51	of fractures, which are formed due to tectonic and topographic stresses (e.g. Molnar et al., 2007;
52	St. Claire et al., 2015; Roy et al., 2016; St. Claire et al., 2015; Sklar et al., 2017). Near the earth
53	surface, water, often carrying biotic acids, infiltrates bedrock fractures and promotes chemical
54	weathering that further reduces sediment size and converts bedrock to regolith (Lebedeva and
55	Brantley, 2017; Hayes et al., 2020). Therefore, long residence times of sediment in the
56	weathering zone (on a million-year timescale), being the consequence of slow erosion, may result
57	in complete disintegration of bedrock and the formation of saprolite and soil, whereas rapid
58	erosion and short residence times can lead to hillslope sediment size limited by fracture spacing
59	(e.g. <u>Attal et al., 2015;</u> Sklar et al., 2017; Attal et al., 2015; Roda-Boluda et al., 2018; van Dongen
60	et al, 2019 Verdian et al., 2021). A spectrum between these end-members can also exist within
61	one catchment, especially where variations in lithology, fracture density or elevation cause spatial
62	differences in the rate and/or extent of weathering rates (e.g. Sklar et al., 2020). Where
63	weathering does not completely disintegrate the bedrock, boulders, or corestones, can be found
64	embedded in EhHillslope sediment-can be in the form of corestones, or once exhumed, boulders,
65	that have, with an initial a maximum size set by the spacing of bedrock fractures (Fletcher and
66	Brantley, 2010; Buss et al., 2013; Sklar et al., 2017; Fletcher and Brantley, ; Verdian et al., 2020;
67	Buss et al., 2013). Here we focus on the effects of such boulders on differential denudation and
68	landscape morphology on hillslopes with mixed cover of soil, boulders and bedrock

69	Soil-mantled hillslopes are typically considered to be dominated by diffusive processes,
70	for which conceptual models and geomorphic transport laws are relatively well-established (e.g.,
71	Dietrich et al., 2003; Perron, 2011). However, these models generally assume uniform hillslope
72	material and do not account for the exhumation of larger boulders through the critical zone. (we
73	refer to large hillslope sediment as boulders, but they could also be considered corestones, or
74	tors). Neely et al. (2019) recently addressed erosion and soil transport on mixed bedrock and soil-
75	covered hillslopes using a nonlinear diffusion model, assuming but assumed the same denudation
76	rate for bedrock and soil. Fletcher and Brantley (2010) modeled the reduction in the size of
77	corestones due to chemical weathering as they are exhumed through the weathering zone,
78	although this model does not consider the corestones' effect on differential erosion. Often,
79	however, bedrock and large boulders protrude above the surrounding soil, indicating that they are
80	eroding more slowly than the soil. Indeed, studies have shown that average, and that denudation
81	rates of bedrock outcrops and hillslope boulders are often lower than catchment average and soil
82	denudation rates (e.g. Bierman, 1994; Heimsath et al., 2000; Granger et al., 2001; Portenga and
83	Bierman, 2011). soil transport rates (Oberlander, 1972; Bierman, 1994; Portenga and Bierman,
84	2011). Once exposed, l
85	Larger boulders require greater forces to be moved, which can be achieved by steepening
86	slopes (Granger et al., 2001; DiBiase et al., 2018; Neely and DiBiase, 2020), or by lengthening
87	residence time until subaerial weathering has decreased their size sufficiently to be transported
88	downslope. During this prolonged residence time, boulders can shield hillslopes from erosion
89	(Glade et al., 2017: Chilton and Spotlia, 2020), and stream channels from incision (Shobe et al.,
90	2016: Thaler and Covington, 2016). In terrain where spatial gradients in bedrock fracture spacing
91	result in spatial gradients of hillslope sediment size, it is thus reasonable to expect that the
92	resistance of surface boulders to weathering and transport ought to retard erosion locally,

93	resulting in spatially differential erosion. Moreover, because smaller blocks are easier to move
94	also more easily transported in fluvial systems (Shobe et al., 2016), we would expect that rivers
95	preferentially incise in zones of more intensely fractured rocks (Buss et al., 2013)- that align with
96	the orientation of faults (Molnar et al., 2007; Roy et al., 2016).
97	To address these gaps in understanding, iIn this study we provide a new framework for
98	measuring and assessing differential denudation of boulders and the surrounding fine-grained
99	regolith on hillslopes, and also discuss the extent to which bedrock fracturing affects sediment
100	size, denudation rates, and stream incision. We
101	In this study, we examined the roles of fractures and hillslope boulders on landscape
102	evolution by quantifying quantified bedrock, boulder, and soil denudation rates in three different
103	areas along the granitic Coastal Cordillera of Chile with different climates and erosional regimes,
104	using in situ cosmogenic ¹⁰ Be. By developing a simple model to convert ¹⁰ Be concentrations
105	from boulders into soil and boulder denudation rates and by examining our field sites for signs of
106	fracture control on landscape morphology, we explored tested the following hypotheses: a)
107	hypothesis that on a hillslope, boulders affect differential erosion by eroding more slowly than the
108	surrounding soil, with the corresponding null hypothesis that no difference exists between soil
109	and boulder denudation rates. We make the simplifying assumptione that soil denudation rates
110	remain constant over the time period that a boulder is exhumed, and over long time periods,
111	denudation rates throughout the landscape vary according to whether boulders or soil are exposed
112	at the surface. In addition Following the logic outlined above, we additionally examined our field
113	sites for signs of fracture control on landscape morphology with the hypothesis that , and b) more
114	highly fractured bedrock is more susceptible to denudationerosion and stream incision than intact
115	bedrock.

116 2 Field sites

117	The Chilean Coastal Cordillera, a series of batholiths in the forearc of the Andean
118	subduction zone, lies along a marked climate gradient with humid conditions in the south and
119	hyper-arid conditions in the north (Fig. 1). The Andean subduction zone, in which the Nazca
120	Plate subducts under the South American Plate, has been active since at least Jurassic times (e.g.,
121	Coira et al., 1982). In this study we investigated three field sites along the Coastal Cordillera from
122	south to north: Nahuelbuta National Park, (NA), with a humid-temperate climate, La Campana
123	National Park (LC), with a mediterranean climate, and Private Reserve Santa Gracia (SG), with a
124	semi-arid climate (Fig. 1). NA and SG have mostly convex, mostly-diffusively-eroding hillslopes,
125	while hillslopes in LC are steeper and landslides have been observed (van Dongen et al., 2019;
126	Terweh et al., 2021). All three sites are underlain by granitoid bedrock (Oeser et al., 2018), none
127	show any signs of former glaciation, and all are located on protected land, away from major
128	human influence, such as mines, dams, and large infrastructure. In all three sites, denudation rates
129	from ¹⁰ Be cosmogenic radionuclide analysis have been reported by van Dongen et al. (2019)
130	(catchment average rates), and Schaller et al. (2018) (soil pits).
131	NA is located on an uplifted, fault-bounded block (plateau), an unusually high part of the
132	Coastal Cordillera with a mean elevation of ~1300 m above sea level. All of the measurements in
133	this work are from the plateau (9° mean slope). Tectonic uplift rates in NA increased from 0.03-
134	0.04 to >0.2 mm year ⁻¹ at 4 ± 1.2 Ma (Glodny et al., 2008), a shift that is appears to be also
135	recorded by knickpoints in streams that drain the plateau. All of the measurements in this work
136	are from the plateau (~9° mean slope), and are above knickpoints. ¹⁰ Be-derived denudation rates
137	are around 30 m Myr ⁻¹ (Schaller et al., 2018; van Dongen et al., 2019), indicating that denudation
138	rates on the NA plateau have not yet adjusted to the higher uplift rates. The main catchment in LC
139	has a mean elevation of 1323 m with a mean slope of 23°, and regional uplift rates are estimated 6

to be <0.1 mm yr⁻¹ (Melnick, 2016). Van Dongen et al. (2019) reported a catchment average
denudation rate of ~200 m Myr⁻¹ for a sub-catchment in LC, and-whereas_Schaller et al. (2018)
reported soil denudation rates of 40-55 m Myr⁻¹. In SG, the mean elevation is 773 m above sea
level, the mean slope is 17.2°, and uplift rates are <0.1 mm year⁻¹ (Melnick, 2016). Previously
reported ¹⁰Be-derived denudation rates are ~9-16 m Myr⁻¹ (Schaller et al., 2018; van Dongen et
al., 2019).

146 **3 Methods**

147 **3.1 In situ ¹⁰Be analysis**

148 **3.1.1 Sample collection**

We collected samples for cosmogenic ¹⁰Be analysis from bedrock, boulders, and soil to 149 150 estimate denudation rates from-in our field sites, targeting hillslopes near previously-collected 151 catchment average and soil pit samples from van Dongen et al (2019) and Schaller et al. (2020). 152 All sample locations are shown in Figure 1. Bedrock samples were taken using a hammer and 153 chisel from an area of up to ~20 m × 20 m (on ridge tops or hillslopes) and consist of an 154 amalgamation of at least ten chips ($\sim 25 \text{ cm}^2$ and < 2 cm thick), with which we aim to obtain 155 representative mean values of denudation rates that are potentially variable due to episodic 156 erosion by spalling rock chips (Small et al., 1997). Similarly, for boulder samples, one chip was 157 taken from the top of each of at least ten similarly-sized boulders and amalgamated for an area of 158 up to $\sim 40 \text{ m} \times 40 \text{ m}$, depending on boulder abundance. We targeted boulders that appear to be in 159 situ (essentially, exhumed corestones), based on the observation that they are tightly imbedded in 160 the ground. We acknowledge that iH is possible that some of the larger sampled boulders are 161 connected to bedrock roots, and that it is also possible that some boulders are not in situ, despite

162	our best efforts. In places with many various-sized boulders, we collected samples from different
163	protrusion heights (~1-m tall boulders, ~0.5-m tall boulders, etc.). Each sampled boulder was
164	measured along the a, b, and c axes, as far as discernible, and the protrusion height was noted (see
165	Table 1). We also measured tThe protrusion height of each boulder was also measured; to do this,
166	we measured each boulder once from the center of the top of the boulder to the ground. Each
167	protrusion height value in Table 1 consists of an average of at least ten boulders of similar
168	protrusion heights (the same boulders that we sampled for one amalgamated samplecosmogenic
169	radionuclide analysis). Boulders on sloping surfaces typically show varying protrusion heights.
170	with higher values downslope and lower values upslope. In such cases, we measured protrusion at
171	the sides of boulders. Occasionally, we observed that upslope protrusion was further reduced by
172	We did observe a small amount of sediment pooling trapping upslope of sampled-boulders-on
173	slopes, however we did not observe any significant variation in protrusion heights on the upslope
174	versus downslope side of sampled boulders. Topsoil samples were also collected by
174 175	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders.
174 175 176	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from
174 175 176 177	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring
174 175 176 177 178	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring tape along the bedrock surface and measuring the distance between fractures that were at least 1
174 175 176 177 178 179	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring tape along the bedrock surface and measuring the distance between fractures that were at least 1 mm wide (Fig. 2A <u>1</u> and 2 <u>A2</u> B). We further collected six boulder samples and three soil samples
174 175 176 177 178 179 180	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring tape along the bedrock surface and measuring the distance between fractures that were at least 1 mm wide (Fig. 2A <u>1</u> and 2 <u>A2</u> B). We further collected six boulder samples and three soil samples from the ridge and hillslope of "Cerro Anay" (Fig. <u>1 and 2A3</u> C), an area called "Casa de
174 175 176 177 178 179 180 181	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring tape along the bedrock surface and measuring the distance between fractures that were at least 1 mm wide (Fig. 2A <u>1</u> and 2 <u>A2</u> B). We further collected six boulder samples and three soil samples from the ridge and hillslope of "Cerro Anay" (Fig. <u>1 and 2A3</u> C), an area called "Casa de Piedras", and a hillslope near the soil pits that were sampled by Schaller et al. (2018). In LC and
174 175 176 177 178 179 180 181 182	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring tape along the bedrock surface and measuring the distance between fractures that were at least 1 mm wide (Fig. 2A <u>1</u> and 2 <u>A2</u> B). We further collected six boulder samples and three soil samples from the ridge and hillslope of "Cerro Anay" (Fig. <u>1 and 2A3</u> C), an area called "Casa de Piedras", and a hillslope near the soil pits that were sampled by Schaller et al. (2018). In LC and SG, we were not able to <u>collect samples at variably fractured bedrock outcrops directly measure</u>
174 175 176 177 178 179 180 181 182 183	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring tape along the bedrock surface and measuring the distance between fractures that were at least 1 mm wide (Fig. 2A1 and 2A2B). We further collected six boulder samples and three soil samples from the ridge and hillslope of "Cerro Anay" (Fig. 1 and 2A3C), an area called "Casa de Piedras", and a hillslope near the soil pits that were sampled by Schaller et al. (2018). In LC and SG, we were not able to collect samples at variably fractured bedrock outcrops directly measure fracture density-due to rarely exposed bedrock. In LC, we took one bedrock sample, two boulder
174 175 176 177 178 179 180 181 182 183 184	versus downslope side of sampled boulders. Topsoil samples were also collected by amalgamation in the area surrounding the sampled boulders. In NA, we collected five bedrock samples from an area called "Piedra de Aguila" from outcrops with different fracture densities, and measured fracture spacing by stringing a measuring tape along the bedrock surface and measuring the distance between fractures that were at least 1 mm wide (Fig. 2A1 and 2A2B). We further collected six boulder samples and three soil samples from the ridge and hillslope of "Cerro Anay" (Fig. 1 and 2A3C), an area called "Casa de Piedras", and a hillslope near the soil pits that were sampled by Schaller et al. (2018). In LC and SG, we were not able to <u>collect samples at variably fractured bedrock outcrops directly measure</u> fracture density due to rarely exposed bedrock. In LC, we took one bedrock sample, two boulder samples and two soil samples from the ridge and slope of "Cerro Cabra" (Fig. 1 and 2B1P), and

"Cerro Guanaco" (Fig. 1 and 2B3F). In SG, we took four boulder samples and three soil samples
from the ridge and slope of a hill we termed "Santa Gracia Hill," which also hosts the soil pits of
Schaller et al. (2018) (Fig. 1, 2C2H, and 2C3F), and two boulder samples and one soil sample
from the ridge of Zebra Hill (Fig. 2C1).

190

191 3.1.2 Analytical methods

192 We dried, crushed, and sieved amalgamated bedrock and boulder samples for quartz 193 mineral separation, and dried and sieved soils, each to 250-500 micrometer particle size, or to 250-1000 micrometers if the 250-500 micrometer sample amount wasn't sufficient. We used 194 195 standard physical and chemical separation methods to isolate ~20 g of pure quartz from each 196 sample. After spiking each sample with 150 µg of ⁹Be carrier and dissolving the quartz in 197 concentrated hydrofluoric acid, we extracted Be following protocols adapted from von Blanckenburg et al. (2004). ¹⁰Be/⁹Be_(carrier) ratios were measured by accelerator mass 198 199 spectrometry at the University of Cologne, Germany (Dewald et al., 2013). Sample ratios were normalized to standards KN01-6-2 and KN01-5-3 with ratios of 5.35×10⁻¹³ and 6.320×10⁻¹², 200 201 respectively. Final ¹⁰Be concentrations were corrected by process blanks with an average $Be^{10}/Be^{9}_{(carrier)}$ ratio of (2.21±0.25)×10⁻¹⁴. 202

203 **3.1.3 Denudation rate calculations**

In order to calculate denudation rates from the measured ¹⁰Be concentrations, we evaluated bedrock, boulder, and soil samples differently. Bedrock samples present the simplest case, in which we assumed steady state erosion and calculated bedrock denudation rates (ϵ_{br}) using the CRONUS online calculator v2.3 (Balco et al., 2008). The steady state assumption is based on our amalgamated sampling, and follows the results of Small et al. (1997), who showed

209	that an amalgamation of several individual bedrock samples is a reasonable approximation of the
210	long-term average denudation rate in episodically eroding settings.
211	Boulder and soil samples require a more nuanced assessment. Boulders protrude above
212	the ground surface, which implies that the lowering of the ground surface (i.e., the soil
213	denudation rate, ϵ_s) is faster than the lowering of the boulder's surfaces (i.e., the boulder
214	denudation rate, ϵ_b) (Fig. 3). Thus, even while they are buried and covered by soil (or saprolite),
215	boulders are exposed to cosmic rays for a significant amount of time prior to breaching the
216	surface (Fig. 3A). We refer to this time span as phase 1. When boulders breach the surface, they
217	should have a concentration similar to that of the surrounding soil (Fig. 3B). As boulders are
218	exposed during phase 2, nuclide production and decay continues, but it takes time for the boulder
219	surfaces to attain a ¹⁰ Be concentration that is in equilibrium with the slower boulder denudation
220	rate. Thus, we expect that the measured concentrations from the tops of boulders are
221	combinations of the two different phases in which ¹⁰ Be is accumulated at different rates (first a
222	rate corresponding to the soil denudation rate, and after exhumation, a rate corresponding to the
223	boulder denudation rate). Converting the ¹⁰ Be concentrations of soil samples collected from
224	around the boulders to a denudation rate also requires a special approach, as these samples
225	include an unknown number of grains eroded off boulders, which ought to increase the 10 Be
226	concentration, due to the slower denudation rate of boulders, as compared to soil.
227	Because of the above complications, we used an approach to estimate the soil and boulder
228	denudation rates that considers the measured boulder protrusion heights and their measured ¹⁰ Be
229	concentrations. We first calculated the modelled ¹⁰ Be concentrations ($N_{modelled}$, in atoms g ⁻¹) by
230	approximating the production rate profile with a combination of several exponential functions
231	(e.g., Braucher et al., 2011) during the two different phases:

N_{modelled} Nmodelled

$$= \sum_{i} \frac{P_{i}(0)}{\lambda + \frac{\epsilon_{s}\rho}{\Lambda_{i}}} e^{-t_{2}\lambda}$$

$$+ \sum_{i} \frac{P_{i}(0)}{\lambda + \frac{\epsilon_{b}\rho}{\Lambda_{i}}} \left[1 - e^{-t_{2}(\lambda + \frac{\epsilon_{b}\rho}{\Lambda_{i}})} \right]$$
(1),

232 where *i* indicates different terms for the production by spallation, fast muons, and negative muons; $P_i(0)$ are the site-specific ¹⁰Be surface production rates in atoms g⁻¹ yr⁻¹ for the different 233 production pathways (Table 1); λ is the ¹⁰Be decay constant (4.9975 ×10⁻⁷); ϵ_b is the boulder 234 denudation rate (cm yr⁻¹); ρ is the boulder density (here we use a value of 2.6 g cm⁻³ for all 235 samples); and Λ_i is the attenuation length scale (160 g cm⁻² for spallation, 4320 g cm⁻² for fast 236 237 muons, and 1500 g cm⁻² for negative muons, respectively; (Braucher et al., 2011). ρ is the 238 boulder density, and here we use a value of 2.6 g cm⁻³ for all samples. Although the density of 239 soil and saprolite layers would be lower, we do not have information on the thickness of these 240 layers at each field site, and soil depth is often highly variable throughout granitic landscapes 241 (e.g. Callahan et al., 2020). In addition, we do not have information about the material that has 242 already eroded from around the evaluated boulders (Balco et al., 2011). Surface production rates 243 by spallation are based on a SLHL (sea level high latitude) reference production rate of 4.01 244 atoms g⁻¹ yr⁻¹ (Borchers et al., 2016) and the time-time-constant spallation production rate scaling scheme of Lal (1991) and Stone (2000) ('St' in Balco et al., 2008). Surface production rates by 245 246 both fast and negative muons were obtained using the MATLAB-function 'P mu total.m' of 247 Balco et al. (2008). Topographic shielding at each sampling site was calculated with the function 248 'toposhielding.m' of the TopoToolbox v2 (Schwanghart and Scherler, 2014) and 12.5-meter 249 resolution ALOS PALSAR-derived digital elevation models (DEMs) from the Alaska Satellite 250 Facility.

In equation 1, the first term represents phase 1 and the second term represents phase 2, with t_2 being the exposure time of the boulder, calculated from the height of the boulder (*z*) divided by the difference between the soil denudation rate and the boulder denudation rate:

$$t_2 = \frac{z}{(\epsilon_s - \epsilon_b)} \tag{2}$$

For each sample and associated average boulder protrusion height, we modelled 10 Be concentrations with equation 1 for different combinations of soil and boulder denudation rates that we allowed to vary between 5 and 50 m Myr⁻¹ (NA-and SG), <u>between 3 and 50 m Myr⁻¹</u> (<u>SG</u>), and between 10 and 300 m Myr⁻¹ (LC), guided by previously published denudation rate estimates (Schaller et al., 2018; van Dongen et al., 2019). We consider permissible denudation rates as those for which the difference between the modelled and observed ¹⁰Be concentrations is less than the measured 2σ concentration uncertainty.

261 This is an idealized model that rests on several assumptions; 1) the landscapes are in a 262 long-term steady state where denudation is locally variable as boulders and bedrock are exhumed 263 in different locations, but this variation is around a long term stable average; 2) soil denudation 264 rates remain steady over the course of boulder exhumation; 3) boulders are in situ and have not 265 rolled downhill, and 4) boulder have not been intermittently shielded during their exhumation. Assumptions 3 has a higher chance of being violated on steep slopes or where boulders are tall, 266 267 and assumption 4 is more likely violated where boulders are densely clustered. These scenarios 268 are discussed in more detail in section 5.1.

269 3.2 Topographic analysis

To test if stream orientations in our field sites follow fault orientations, we analyzed the orientations of streams using one-meter resolution LiDAR DEMs (Kügler et al., 2022). Within each DEM, we first calculated stream networks based on flow accumulation area thresholds of 12

273	10^4 , 10^5 and 10^6 m ² . The lowest threshold was determined based on the occurrence of incised
274	channels visible in the DEMs. We then used the TopoToolbox function 'orientation' with a
275	default smoothing factor (K) of 100, to obtain the orientation of each node in the stream network.
276	Fractures in the field can only be seen where there are bedrock outcrops, which are generally
277	scarce. Therefore, we decided to refer to the orientation of faults, as depicted in geological maps,
278	with the assumption of similar orientation (Krone et al., 2021; Rodriguez Padilla et al., 2022). To
279	obtain the orientation of mapped faults, we extracted faults within ~ 50 km of each sampling site
280	from a 1:1,000,000-scale geological map from Chile's National Geology and Mining Service in
281	ArcGIS (SERNAGEOMIN, 2003). Fault orientations were measured for straight fault segments
282	with a length of 100 m. Because we are only interested in the strike of streams and faults, all
283	orientations lie between 0° and 180° . For displaying purposes in rose diagrams, we mirrored these
284	values around the diagram origin by duplicating values and adding 180°.

285 4 Results

4.1 ¹⁰Be concentrations 286

287	Measured ¹⁰ Be concentrations span a wide range of values, and are generally lowest in LC
288	and higher in NA and SG (Table 1). Within NA, we observe the lowest averaged 10 Be
289	concentrations (normalized to SLHL) for soil samples ($\mu \pm 24\sigma = 1.41 \times 10^5 \pm 0.0634 \times 10^5$ atoms
290	g ⁻¹), followed by bedrock samples $(2.19 \times 10^5 \pm 0.0\overline{236} \times 10^5 \text{ atoms g}^{-1})$ and boulder samples
291	$(2.82 \times 10^5 \pm 0.0844 \times 10^5 \text{ atoms g}^{-1})$ (Fig. 4 <u>A</u>). In NA at Piedra de Aguila, where we were able to
292	measure fracture spacing in areas with exposed bedrock, the ¹⁰ Be concentrations of samples from
293	fractured bedrock decrease with increasing fracture density (Fig. 54A). One boulder sample from
294	the slope of Soil Pit Hill stands out with a concentration that is lower than most soil samples.
295	Similar, but slightly higher average values as in NA are attained in SG, with soil samples
1	13

296	$(2.241.70 \times 10^{5} \pm 0.11039 \times 10^{5} \text{ atoms g}^{-1})$ being lower than boulder samples $(4.223.23 \times 10^{5} \pm 10^{5})$
297	0.00000000000000000000000000000000000
298	$(0.82 \times 10^5 \pm 0.0422 \times 10^5 \text{ atoms g}^{-1})$ and boulder samples $(0.74 \times 10^5 \pm 0.0522 \times 10^5 \text{ atoms g}^{-1}) \text{ small}_{2}$
299	and with 2σ error, within uncertainties (Fig. 4B). In addition, at 3 out of 5 sampling locations in
300	LC, boulders have lower concentrations than adjacent soil samples, inconsistent with the
301	assumption that $\epsilon_s < \epsilon_b$ (see section 3.1.3). However, our single bedrock sample from LC has a
302	higher concentration of $1.38 \times 10^5 \pm 0.16082 \times 10^5$ atoms g ⁻¹ . Finally, iIn all three field sites NA and
303	SG, boulder samples from slope locations have usually lower average ¹⁰ Be concentrations
304	compared to boulder samples from ridge locations, when accounting for their protrusion height as
305	a relative indicator for exposure time. An exception is again found in LC, at Cerro Cabra. Again,
306	in LC this pattern does not hold. Finally, wWe do not observe a significant trend between ¹⁰ Be
307	concentration and protrusion height (Fig. 5C); however, there is a relationship between protrusion
308	height and slope for LC (Fig. 5D).
1	

309 4.2 Bedrock, boulder, and soil denudation rates

310 Bedrock denudation rates in NA range from 8.53±0.60 m Myr⁻¹ to 18.64±1.40 m Myr⁻¹, 311 and the LC bedrock sample yielded a denudation rate of 22.28±2.62 m Myr⁻¹. We modelled 312 boulder (ϵ_s) and soil denudation rates (ϵ_s) using the approach described in section 3.1.3 for all 313 boulder samples that have higher concentrations than the adjacent soil concentrations. We address locations where ¹⁰Be concentrations are higher in soil compared to boulder samples in the 314 315 discussion (three locations in LC and one in NA). In contrast to the bedrock denudation rates, 316 modelled boulder and soil denudation rates have no unique solution, and their ranges of possible 317 denudation rates areis more complex (Fig. 65). The ranges of denudation rates, illustrated by the curves in Fig. 6, are comprised of values for which the difference between the measured and 318

319	modelled ¹⁰ Be concentrations are less than the measured 2σ ¹⁰ Be concentration uncertainty,
320	where modelled ¹⁰ Be concentrations are based on Eq. 1. Each colored band represents one
321	amalgamated boulder sample (such as 1-meter-protruding boulders from the ridge of Cerro
322	Anay). The x-axis shows the range of modelled boulder denudation rates, and the y-axis shows
323	the range of modelled soil denudation rates. However, not every combination within the range
324	plotted in Fig. <u>6</u> 5 is <u>plausible</u> likely. For example, the part of the colored bands in Fig. <u>6</u> 5 that is
325	close to the 1:1-line (edge of the gray area) exists because at very low differential denudation
326	rates (differences between soil and boulder denudation rates), phase 2 gets very long so that the
327	boulder denudation rate dominates the resulting concentration and approaches the value one
328	would obtain when neglecting the first term on the right side in Eq. 1. We argue that differential
329	denudation rates of less than ~1 m Myr ⁻¹ are highly unlikely, as it would take ~1 Myr to exhume a
330	boulder of only 1 m in height above the soil, while simultaneously eroding many times more soil
331	and boulder material.

332 In NA, permissible modelled soil denudation rates range from ~13 to 37 m Myr⁻¹ and 333 permissible modelled —boulder denudation rates range from ~5 to 20 m Myr⁻¹ (Fig. 65A). Three 334 samples that were taken from the same ridge at Cerro Anay (Fig. 2A3C and 4A) all overlap in 335 denudation rate despite varying protrusion heights. These samples also overlap with a sample 336 from Casa de Piedras, and together indicate a rather narrow range of soil and boulder denudation rates of ~15-20 m Myr⁻¹ and ~10-15 m Myr⁻¹, respectively. Only the mid-slope sample from 337 338 Cerro Anay has higher modelled soil and boulder denudation rates. In LC, modelled boulder and soil denudation rates that are consistent with the measured ¹⁰Be concentrations extend to much 339 higher values compared to the other field sites (40-140 m Myr⁻¹); Fig. 6B) and the two solutions 340 341 do not overlap. In SG, permissible modelled denudation rates are similar in magnitude to results from NA (Fig. 65C); soil denudation rates range from ~ 710 to 28 m Myr⁻¹ and boulder 342

343	denudation rates range from $\sim \frac{45}{2}$ to 23 m Myr ⁻¹ . Samples taken from the ridge of Santa Gracia
344	Hill (Fig. $2\underline{C2I}$ and 4C) have <u>permissible</u> modelled soil and boulder denudation rates that overlap
345	at values of ~12-15 m Myr ⁻¹ and ~10-12 m Myr ⁻¹ , respectively <u>, and</u> . whereas samples from the
346	ridge of Zebra Hill also-overlap at ~4-5.5 m Myr ⁻¹ for boulders and ~6.5-7.5 m Myr ⁻¹ for soil.
347	Samples from the slope of Santa Gracia Hill have higher modelled soil denudation rates, when
348	considering very low differential denudation rates unlikely. We further discuss the most plausible
349	ranges of denudation rates in sections 5.1 and 5.2.

350

351 4.3 Fault and stream orientations

352 Fault orientations in our field sites, based on straight segments of 100 m (8,731 segments 353 for SG, 6,572 segments for LC, and 6,214 segments for NA), generally have at least one 354 dominant orientation that aligns with stream orientations (Fig. 76). Stream orientations depend on the flow accumulation threshold: at smaller thresholds (104 m2), many abundant small streams are 355 356 selected, givingyield a large wide distribution of orientations that seems to reflects the shape of 357 the catchment as a whole. At a high flow accumulation threshold (10⁶ m²), the derived stream 358 networks comprise only the largest channels and their orientation is strongly controlled by the 359 orientation and tilt of the drainage basin. This can be seen clearly in NA, where the east-west 360 oriented trunk stream is weighted heavily. In SG, faults and stream orientations match each other 361 well, both trending north-south. In LC and NA, one of two regional fault orientations matches 362 stream orientations, and faults closest to the field sites more closely match dominant stream 363 orientations (red faults in Fig. 76). Specifically, in LC, the dominant orientations for the regional 364 faults are roughly northeast and secondarily northwest, whereas streams are generally oriented

and northwest. In NA, faults generally have east-west and northwest-southeast orientations, and

366 streams with an accumulation threshold above 10^4 follow an east-west orientation.

367 5 Discussion

568 5.1 Deciphering the true denudation rates of boulders and soil

369 Our model results show that there exist no unique combination of soil and boulder

denudation rates for any particular site (Fig. <u>65</u>). Which, then, are the most<u>likely</u>

³⁷¹ combinationsplausible combinations of boulder and soil denudation rates? The answer depends

372 on the characteristic exhumation histories of the boulders, and events that could have influenced

373 the accumulation of ¹⁰Be during the course of exhumation. In order to narrow down the ranges of

374 denudation rates for boulders and soils investigated in this study, we address several complicating

factors, such as shielding and toppling of boulders, and compare measured and modelled ¹⁰Be

376 concentrations of soils to each other.

377 5.1.1 Shielding and toppling of boulders

378 When sampling, There exist two ways scenarios to inadvertently introduce bias 379 includeinto our approach of determining boulder denudationerosion rates: (1) sampling of 380 material boulders that remains in situ, but that has have been previously shielded by soil or a 381 other boulders, or and (2) sampling of boulders that has have toppled or rolled downhill, and that 382 areis no longer in situ. In both either cases, the actual production rate for the sample weould be 383 lower than assumed, leading to an artificially high denudation rate estimate. Shielding by 384 boulders is <u>The first scenario is</u> more likely in areas where there are tall, densely-clustered boulders, or at protruding bedrock outcrops such as Piedra de Aguila, where we measured a very 385 386 low ¹⁰Be concentration in sample NB-BR4 (Table 1; Fig. 4A). This sample was taken from a

3	87	bedrock knob close to a cliff in an area accessed by tourists; it is possible that the low
В	88	concentration of our sample is due to shielding by boulders or bedrock blocks that toppled, or
3	89	were manually moved from the sampled area.
3	90	Boulders in steeply sloping areas are more likely to be shielded by soil or topple downhill.
3	91	The second scenario is more likely in areas with steep slopes. In LC, where slopes are generally
3	92	steeper than the other field sites, it is possible that some boulders were not in situ when we
3	93	sampled them: they could have rolled or been overturned on the steep slopes, uncovering a side
В	94	that was previously shielded. They could have also been transiently shielded by soil coming from
3	95	upslope (Fig. 2B3). In addition, there is a significant relationship between protrusion height and
3	96	hillslope angle for LC boulders, indicating that boulders on steeper slopes are either smaller, or
3	97	may be partially buried by upslope soil (Fig. 5D). Indeed, three boulder samples from LC (LC2,
3	98	LC4, and LC18; Table 1) have measured ¹⁰ Be concentrations that are lower than the surrounding
В	99	soil, violating our model assumptions, and suggesting that the sampled boulder surfaces were
4	00	shielded. Two of these amalgamated boulder samples (LC4 and LC18) were collected from
4	01	slopes with rather high angles of 27° and 18° , respectively, and therefore could have include
4	02	toppled downslopeboulders., but ButBoulder sample LC2 however was collected on a ridge with
4	03	a relatively lower slope of 9° (Table 1). For LC2In that case, the low $\frac{10Be}{2}$ concentration could
4	04	stem from shielding by stacked boulders (scenario 1). In NA, one boulder sample (NA15; Table
4	05	1) also has a very low 10 Be concentration and was not included in the model. We did not collect a
4	06	soil sample near the boulder sample NA15, and instead compared its concentration to the adjacent
4	07	surficial soil pit sample of Schaller et al. (2018). Because these samples were not taken exactly
4	08	next to each other, there exists some ambiguity in this comparison. However, the relatively low
4	09	¹⁰ Be concentrations of sample NA15 when compared to other boulder samples in NA suggests
4	10	issues that could be related to shielding or toppling of boulders. <u>Over long timescales, we expect</u>
		10

411	all sampled boulders to be fully exhumed and either weather away completely in place or topple
412	down the hill, eventually ending up in streams where they would be exported from the catchment
413	at a later stage. It is plausible that such a cycle of boulder exposure, exhumation, and transport
414	has operated in the past and will continue into the future. In LC, due to higher hillslope angles
415	and overall higher denudation rates, this cycle seems to be occurring at a faster rate, probably
416	leading to a higher chance of the sampling of boulders that have more recently been exhumed and
417	rolled downhill.
418	5.1.2 Most likelyPlausible ranges for modelled denudation rates
419	Most of For most of our soil samples, have measured ¹⁰ Be concentrations that are similar
420	toagree well with modelled ¹⁰ Be concentrations calculated using our modelled denudation rates
421	(Table 2), supporting suggesting the reliability of the model results assumptions to be reasonable.
422	Positive or negative deviations are expected, however, because (1) soil samples we collected in
423	the field are most likely a mixture between lower concentrations in-soil that is directly exhumed
424	from below, and higher concentration grains eroded from the surrounding boulders,-and (2) soil
425	surrounding boulders could be blocked from moving downslope by the boulders themselves (as
426	shown in Glade et al., 2017), which cwould lower the rate of slow down soil transport and raise
427	soil ¹⁰ Be concentrations, (3) we did not account for shielding of soil by the surrounding boulders,
428	which would lower production rates, and (4), the density of material that eroded from around
429	boulders as they were exhumed could have been lower or variable, whereas for the model we
430	used a uniform density for boulders and soil. If case 4 were true, the modelled soil denudation
431	rates would be lower than they should be (or modelled soil concentrations would be higher than
432	they should be). However, in most cases, the modelled soil concentrations are slightly lower than
433	the measured soil concentrations, which suggests that cases 1 or 2 are common in our field sites.

434	In one case (Casa de Piedras in NA), the measured soil ¹⁰ Be concentration is significantly lower
435	than the modelled soil ¹⁰ Be concentration (Table 2). If the soil was eroding as fast as our
436	measured soil samples indicate, the boulders should be protruding higher. However, Casa de
437	Piedras has a high density of tall boulders. The observed discrepancy could be caused by boulders
438	shielding the soil directly surrounding it from cosmic rays, or by eroding chips with low ¹⁰ Be
439	concentrations of shielded parts of the boulders, perhaps from the base, that erode-fall directly
440	into the soil.
441	Another discrepancy exists in the relationship between measured ¹⁰ Be concentrations and
442	protrusion heights of our sampled boulders. No significant relationship exists between protrusion
443	height and ¹⁰ Be concentration for all samples plotted together (Fig. 5C); this is to be expected as
444	each individual site has a unique local denudation rate. On the other hand, one would expect a
445	relationship between protrusion and concentration for boulders sampled from the same site (i.e. at
446	Cerro Anay ridge in NA, and Santa Gracia Hill and Zebra Hill in SG). At Santa Gracia Hill and
447	Zebra Hill, taller boulders have a higher ¹⁰ Be concentration, as expected, but the highest-
448	protruding boulder sample from Cerro Anay has a lower concentration than the second-tallest
449	sample, perhaps due to toppling of pieces of the tallest boulders. The differential erosion rate
450	between boulders and soil at Cerro Anay ridge is also one of the highest for NA at 5 m Myr ⁻¹
451	(Table 2), indicating relatively rapid exposure of boulders that may raise the risk of boulder
452	toppling. However, there is an overlap in the modelled denudation rates of all three boulder and
453	soil sample pairs from Cerro Anay ridge (Fig. 6A).
454	<u>The lack of a trend between boulder protrusion height and ¹⁰Be concentration could also</u>
455	be due to changing soil denudation rates over time. Taller boulders and boulders with longer
456	residence times (such as those on the slope of Cerro Anay Hill in NA and the slope of Santa
457	Gracia Hill in SG; Table 2), were exhumed during one or more glacial-interglacial cycles; during
1	20

458	such climaetic transitions, soil denudation rates could have changed. Along this vein Similarly,
459	Raab et al. (2019) foundsuggested that soil denudation rates surrounding tors in southern Italy
460	shifted in conjunction with climate changes over the course of tortheir exhumation (around 100
461	ka). However, our methods approach provide yields an average soil denudation rate over the time
462	of boulder exhumation; therefore, we can only speculate whether soil denudation rates were
463	variable. Carretier et al. (2018) analyzed erosion denudation rate data for Chile averaged over
464	decadal and millennial timescales, and found that millennial denudation erosion rates are higher
465	than decadal erosion rates, with the highest discrepancy between integration time periods being in
466	the arid north. However, the authors suggest that this discrepancy is related to increased
467	stochasticity of erosion in arid regions; millennial erosion rates reflect many stochastically
468	erosive events, such as 100-year floods, that decadal rates do not pick uprecord.
469	Given the above caveats and uncertainties, Next, we attempted to identify the most likely
470	plausible range of denudation rates for each sample type and location for all modelled denudation
471	rates. Specifically, we chose identified most plausible denudation rate ranges for samples on
472	Cerro Anay ridge and Casa de Piedras based on their overlap with each other, for samples on
473	Cerro Anay slope based on their overlap with sample NA9 on Cerro Anay ridge, and ranges for
474	Santa Gracia hill ridge and slope and Zebra Hill ridge based on the overlap of modelled rates for
475	each location, respectively (Fig. 65). For LC we chose regard denudation rates near the center of
476	the modelled curves in Figure 5 to be most plausible, based on realistic-reasonable expectations
477	of differential erosion (section 4.2), and considering possible issues with shielding and toppling
478	(section 5.1). These ranges are listed in Table 2 along with measured and modelled 10 Be
479	concentrations of soil samples, and are displayed in Fig. 87 along with previously published soil
 480	(Schaller et al., 2018) and catchment-average denudation rates (van Dongen et al., 2019). In the
481	following section, we discuss the erosional processes that may account for the differences and

482 similarities in denudation rates from bedrock, boulders, soil (this study and Schaller et al., 2018),

483 and stream sediment (van Dongen et al., 2019) within each field site.

484 **5.2** Processes controlling differential erosion

485 <u>5.2.1 Nahuelbuta (NA)-</u>

486 In NA, (based on the modelled denudation rates that we regard to be most plausible), the 487 slowest denudation rates occur on bedrock and boulders, likely because precipitation runs off 488 quickly from exposed bedrock, limiting its chemical alteration (Eppes and Keanini, 2017) and 489 weathering (Hayes et al., 2020), whereas soils erode faster. However, denudation rates for soil 490 surrounding the sampled boulders are lower than denudation rates from the soil pit and the 491 catchment average denudation rates. It is possible that boulders physically block soil from being 492 transported downslope: where a dense clustering of exhumed boulders exists, the regolith will be 493 thinner, and the boulders maylikely retard soil erosion throughout the area in which they are 494 clustered (Glade et al, 2017). Considering boulder protrusion and modelled differential erosion 495 rates, boulders in NA are exposed over a long period (up to 640 Kyr), allowing time to affect the 496 long-term transportation of surrounding soil downslope. Although we did not measure sediment 497 damming upslope of boulders in the field, we did note a small amount of sediment damming for 498 boulders on slopes. Away from exhumed boulders, wWhere soil is thicker and, if where slopes 499 are steep enough, shallow landsliding can occur, as observed in NA by Terweh et al. (2021). In 500 accordance with these observations, van Dongen et al. (2019) found that smaller grains in stream 501 sediment were likely derived from the upper mixed soil layer, and the largest grains were likely 502 excavated from depth, perhaps by shallow landsliding. The smaller grains have denudation rates 503 similar to those presented in this study (Fig. 87), while larger grains have denudation rates similar 504 to deeper soil pit samples from Schaller et al. (2018).

505	Finally, in NA, where bedrock fracture density is higher, denudation rates are also higher
506	(Fig. 87), likely because precipitation infiltrates into fractures, accelerating chemical weathering,
507	regolith formation (St. Claire et al., 2015; Lebedeva and Brantley, 2017), and subsequent
508	vegetation growth, which introduces biotic acids that further accelerate chemical weathering
509	(Amundson et al., 2007). We further speculate that large exhumed boulders in NA are also sites
510	of less-fractured bedrock at depth, as boulders can only be as large as the local fracture spacing
511	allows (e.g. Sklar et al., 2017). Based on the observed differences in soil, boulder, and fractured
512	bedrock denudation rates in NA, and on previous studies that have correlated higher fracture
513	density with more rapid erosion (e.g., Dühnforth et al., 2010; Dibiase et al., 2018; Neely et al.,
514	2019), we suggest that bedrock fractures have an effect on NA's morphology through grain size
515	reduction and differential erosion. Further, the thicker soil cover and shallow landsliding on NA
516	slopes may increase the discrepancy between slowly-eroding, less fractured_bedrock and
517	boulders versus more rapidly-eroding, vegetation-covered hillslopes, eventually causing bedrock
518	and boulders to sit at topographic highs, as we observed in the field.
519	5.2.1 <u>5.2.2 La Campana (LC)</u>
520	In LC we observe the largest range of denudation rates between bedrock, boulders, soil,
521	and stream sediment, and also the highest overall denudation rates of the three field sites. We
522	suspect that both of these characteristics are related to slope angles, which are on average nearly
523	twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the
524	stream sediment samples were taken from an adjacent catchment that does not drain the hillslopes
525	sampled in this study, and the generally low and wide-ranging ¹⁰ Be concentrations in the stream

526 sediment have been related to relatively recent landslides observed in the upper headwaters (van

527	Dongen et al., 2019; Terweh et al., 2021). However, steep slopes are pervasive throughout LC
528	and lead us to suggest that shallow landslides are important erosional processes in this field site.
529	In LC we frequently observed boulder samples with lower ¹⁰ Be concentrations than
530	adjacent soil samples (Table 1, section 5.1), which is inconsistent with our simple model of
531	boulder exhumation (Fig. 3), and is possibly because the sampled boulders were not exhumed in
532	situ (section 5.1.1). Landslides as observed in LC can bring down boulders in the processes of
533	downhill movement, and may cause the excavation of larger blocks from greater depth before
534	their size is reduced in the weathering zone. More vigorous mass wasting is consistent with larger
535	average hillslope grain sizes for LC, as compared to NA and SG (Terweh et al., 2021). In general,
536	the high relief, steep slopes, and high denudation rates suggest that tectonic uplift rates in LC
537	could be higher than assumed for the nearby coast (Melnick, 2016). Modelled differential
538	denudation rates between boulders and soil are the highest of all field sites, and therefore the time
539	needed to reach the measured boulder protrusion heights is the lowest (23 and 7 Kyr; Table 2),
540	suggesting relatively rapid turnover of boulder exposure and movement downslope. However, we
541	did note some sediment damming by boulders on LC slopes (Fig. 2B3), and in all cases in LC the
542	modelled soil denudation rates are lower than measured soil denudation rates, suggesting that
543	boulders are locally suppressing soil denudation to some extent on LC slopes.
544	Finally, although the role that fracturing plays in LC is difficult to assess, note that our
545	bedrock sample has a significantly lower denudation rate than boulders and soils (Fig. 8), despite
546	being on a steep slope (Table 1). Rolling and toppling processes that may be relevant for LC
547	boulders are highly unlikely for the bedrock patch, allowing its nuclide concentration to be high.
548	Likewise, the boulder denudation rate from the ridge sample LC1, where the risk of toppling is
549	likely the lowest, is similar to the bedrock denudation rate. Additionally, LC's Mmediterranean
550	climate features frequent fires, which cause spalling of flakes off rock surfaces. While LC

551	boulders are surrounded by shrubs that occasionally burn, causing spalling of boulder surfaces,
552	the extensive bedrock patch in LC is free of vegetation and therefore at a lower risk for fire-
553	induced erosion.
554	In the semi-arid landscape of SG, as in humid temperate NA, boulders are eroding more
555	slowly than the surrounding soil, but the differences in boulder and soil denudation rates are
556	subtle. In addition, denudation rate differences between ridge and slope samples possibly
557	related to slope angle — are larger than the differences between boulders and soil. Furthermore,
558	unlike in NA, our boulder and soil denudation rates are similar to the soil pit and catchment
559	average denudation rates (Fig. 7), suggesting that erosional efficiencies are similar across
560	different sediment sizes. Uniform ¹⁰ Be concentrations across grain sizes is in accordance with
561	absent landsliding (Terweh et al., 2021)Van Dongen et al. (2019) also measured relatively
562	constant catchment average- ⁴⁰ Be concentrations over seven grain size classes in SG (Fig. 7),
563	which suggests that all grain sizes must have been transported from the upper mixed layer of
564	hillslope soil, and that deep-seated erosion processes are unlikely <u>in accordance with absent</u>
565	landsliding (Terweh et al., 2021). Thus, our results agree with previous findings that erosion in
566	SG is likely limited to grain by grain exfoliation of boulders and the slow diffusive creep of the
567	relatively thin soil cover on hillslopes (Schaller et al., 2018). When bedrock is exhumed, its long
568	residence time on hillslopes allows it to weather slowly in place and reduce in size, with minimal
569	transportation of weathered material by runoff and a low degree of chemical weathering and soil
570	production (Schaller and Ehlers, 2022).
571	Such a narrow range of relatively low denudation rates indicates that very long time
572	periods are necessary to produce relief between hilltops and valleys. Note, however, despite low
573	uplift rates in SG, the total mean basin slope in SG is 17° compared to 9° in NA (van Dongen et
574	al., 2019). This could be due to low MAP resulting in a low erosional efficiency in SG; in order
1	25

575	to achieve denudation rates that match uplift rates, slopes in arid climates must be steeper
576	(Carretier et al., 2018). Although the differences in denudation rates between grain sizes is subtle
577	in SG, soils have higher denudation rates than the boulders they directly surround, suggesting
578	that, if the boulders are <u>initially</u> delineated by fractures at depth, as we infer for NA, fractures
579	could also have an effect on landscape morphology in SG. Additionally, Krone et al (2021) noted
580	that the fractures in a drill core in SG were rimmed by halos of weathered material depleted in
581	soluble elements, and concluded that the fractures act as pathways for fluid transport into the
582	subsurface, which enhances chemical weathering. In summary, we suggest that fractures likely
583	accelerate chemical weathering and erosion in SG, but the resultant differential denudation rates
584	are subtle due to low MAP and low tectonic uplift rates.
585	5.2.3 Santa Gracia (SG)
586	La Campana (LC).
586 587	La Campana (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil,
586 587 588	La Campana (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We
586 587 588 589	La Campana (LC): In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspect that both of these characteristics are related to slope angles, which are on average nearly
586 587 588 589 590	La Compone (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspect that both of these characteristics are related to slope angles, which are on average nearly twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the
586 587 588 589 590 591	La Campana (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspect that both of these characteristics are related to slope angles, which are on average nearly twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the stream sediment samples were taken from an adjacent catchment that does not drain the hillslopes
586 587 588 589 590 591 592	La Campana (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspect that both of these characteristics are related to slope angles, which are on average nearly twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the stream sediment samples were taken from an adjacent catchment that does not drain the hillslopes sampled in this study, and the generally low and wide ranging. ⁴⁰ Be concentrations in the stream
586 587 588 589 590 591 592 593	La Campana (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspect that both of these characteristics are related to slope angles, which are on average nearly twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the stream sediment samples were taken from an adjacent catchment that does not drain the hillslopes sampled in this study, and the generally low and wide ranging ¹⁰ Be concentrations in the stream sediment have been related to relatively recent landslides observed in the upper headwaters (van
586 587 588 589 590 591 592 593 594	La Campana (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspect that both of these characteristics are related to slope angles, which are on average nearly twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the stream sediment samples were taken from an adjacent catchment that does not drain the hillslopes sampled in this study, and the generally low and wide ranging ¹⁰ Be concentrations in the stream scdiment have been related to relatively recent landslides observed in the upper headwaters (van Dongen et al., 2019; Terweh et al., 2021). However, steep slopes are pervasive throughout LC
586 587 588 589 590 591 592 593 594 595	Le Campana (LC): In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspeet that both of these characteristics are related to slope angles, which are on average nearly twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the stream sediment samples were taken from an adjacent catchment that does not drain the hillslopes sampled in this study, and the generally low and wide ranging ¹⁰ Be concentrations in the stream ediment have been related to relatively recent landslides observed in the upper headwaters (van Dongen et al., 2019; Terweh et al., 2021). However, steep slopes are pervasive throughout LC
586 587 588 589 590 591 592 593 594 595 596	Le Campana (LC). In LC we observe the largest range of denudation rates between bedrock, boulders, soil, and stream sediment, and also the highest overall denudation rates of the three field sites. We suspect that both of these characteristics are related to slope angles, which are on average nearly twice as steep as in NA and SG (Table 1; van Dongen et al., 2019). It should be noted that the stream sediment samples were taken from an adjacent catchment that does not drain the hillslopes ampled in this study, and the generally low and wide ranging. ⁴⁰ Be concentrations in the stream ediment have been related to relatively recent landslides observed in the upper headwaters (van Dongen et al., 2019; Terweh et al., 2021). However, steep slopes are pervasive throughout LC and lead us to suggest that shallow landslides are important erosional processes in this field site too.

597	In LC we frequently observed boulder samples with lower ¹⁰ Be concentrations than
598	adjacent soil samples (Table 1, section 5.1), which is inconsistent with our simple model of
599	boulder exhumation (Fig. 3), and is possibly because the sampled boulders were not exhumed in
600	situ (section 5.1.1). Landslides as observed in LC can bring down boulders in the processes of
601	downhill movement, and may cause the excavation of larger blocks from greater depth before
602	their size is reduced in the weathering zone. More vigorous mass wasting is consistent with larger
603	average hillslope grain sizes for LC, as compared to NA and SG (Terweh et al., 2021). In general,
604	the high relief, steep slopes, and high denudation rates in LC suggest that tectonic uplift rates in
605	LC could be higher than assumed for the nearby coast (Melnick et al., 2016). Finally, although
606	the role that fracturing plays in LC is difficult to assess, note that our bedrock sample has a
607	significantly lower denudation rate than boulders and soils (Fig. 7), despite being on a steep slope
608	(Table 1). If we assume that the bedrock patch has a lower fracture density than the boulders
609	based on previous studies that correlate fracture spacing with grain size (e.g. Sklar et al., 2017;
610	Dibiase et al., 2018; Neely et al., 2019), then the slower denudation rate of the bedrock patch
611	could be an effect of fracture spacing in LC.
612	Overall, each field site presents a different pattern of denudation rates between bedrock,
613	boulders, soil, stream sediment, and soil pits. <u>Bdenudation rates those</u> The patterns of differential
614	erosion between the field sites are likely dictated by a combination of tectonics (differences in
615	uplift and fracture spacing) and the local climate regime.
616	In the semi-arid landscape of SG, as in humid-temperate NA, boulders are eroding more
617	slowly than the surrounding soil, but the differences in boulder and soil denudation rates are
618	subtle. This leads to a slow exposure of hillslope boulders, with exposure of current boulder
619	protrusion (based on differential modelled denudation rates) taking up to 870 Kyr (Table 2). In
620	addition, denudation rate differences between ridge and slope samples – possibly related to slope
1	27

621	angle – are larger than the differences between boulders and soil. Furthermore, unlike in NA, our
622	boulder and soil denudation rates are within the same range as the soil pit and catchment average
623	denudation rates (Fig. 8), suggesting that erosional efficiencies are similar across different
624	sediment sizes. Van Dongen et al. (2019) also measured relatively constant catchment average
625	¹⁰ Be concentrations over seven grain size classes in SG (Fig. 8), which suggests that all grain
626	sizes must have been transported from the upper mixed layer of hillslope soil and that deep-seated
627	erosion processes are unlikely, in accordance with absent landsliding (Terweh et al., 2021). Thus,
628	our results agree with previous findings that erosion in SG is likely limited to grain-by grain
629	exfoliation of boulders and the slow diffusive creep of the relatively thin soil cover on hillslopes
630	(Schaller et al., 2018). When bedrock is exhumed, its long residence time on hillslopes allows it
631	to weather slowly in place and reduce in size, with minimal transportation of weathered material
632	by runoff and a low degree of chemical weathering and soil production (Schaller and Ehlers,
633	<u>2022).</u>
634	Such a narrow range of relatively low denudation rates indicates that very long time
635	periods are necessary to produce relief between hilltops and valleys. Note, however, despite low
636	uplift rates in SG, the total mean basin slope in SG is 17° compared to 9° in NA (van Dongen et
637	al., 2019). This could be due to low MAP resulting in a low erosional efficiency in SG, which,; in
638	order to achieve denudation rates that match uplift rates, requires the slopes in arid climates must
639	to be steeper (Carretier et al., 2018). Although the differences in denudation rates between grain
640	sizes is subtle in SG, soils have higher denudation rates than the boulders they directly surround.
641	Additionally, the measured denudation rates of soil surrounding boulders on SG slopes are lower
642	than modeled soil denudation rates (Table 2), indicating that boulders may be prolonging the
643	residence time of the surrounding soil by a small amount, either by blocking its movement
644	downslope or by contributing grains through exfoliation.

645 5.3 Fracture control on larger-scale landscape evolution

646	We have shown that, in our field sites, bedrock erodes the slowest, followed by boulders,
647	and finally soil. In each climate zone, and especially where chemical weathering plays a large
648	role (NA), sediment size is likely controlled by the spacing of bedrock fractures. Once on the
649	surface, large boulders initially delineated by fracture spacing are more difficult to transport than
650	smaller sediment, and therefore locally retard denudation rates. On the landscape scale, such
651	differential erosion should lead to landscape morphologies controlled by fracture spacing
652	patterns. In NA, we were able to measure fracture density in several bedrock outcrops and found
653	that <u>average higher fracture density per sample site</u> is correlated with higher denudation rates
654	(Fig. 5A7). It is plausible that the measured fracture spacing in bedrock outcrops represents the
655	parts of the landscape where bedrock fracture density is the lowest, and it is highest under the soil
656	mantled parts of the landscapes, where fractures are not exposed. We also measured the
657	dimensions of 141 boulders in NA and found that, although there is overlap,-average the
658	distribution of boulder sizes are smaller than sits at the left tail of the distribution of 47 fracture
659	spacing measurements (Fig. 5B), indicating that boulders have reduced in size in the weathering
660	zone prior to and during exhumation. If we assume that hillslope sediment lies on a spectrum with
661	unweathered blocks delineated by fractures on one end, and sediment that has been significantly
662	reduced in size in the weathering zone on the other end (e.g. Verdian et al., 2021), boulders in NA
663	seem to fall somewhere in the middle.
664	Bedrock fracture patterns also likely affect stream incision in a similar way, by dissecting
665	bedrock and reducing sediment size, making it easier to be transported by flowing water. , and we
666	suggest that patterns in fracture density affect the landscape morphology. We were not able to
667	measure fracture density in the other two field sites due to the searcity of bedrock exposure.
668	However, we suspect that fractures may also play a role in their landscape morphology, and <u>T</u> this 29

669	<u>phenomenon</u> may be visible in our field sites on a larger scale, through the similarity of fault and
670	stream orientations.
671	As tectonically-induced faults and fractures are products of the same regional stresses, we
672	assume that regional faults have orientations consistent with fractures in our field sites (c.f.,
673	Krone et al., 2021). Regional faults and smaller fractures have been shown elsewhere-to be
674	closely related: Rodriguez Padilla et al. (2022) mapped fractures resulting from the 2019
675	Ridgecrest earthquakes in bedrock and sediment-covered areas, and found that fracture density
676	decreases from main faults with a power law distribution. They also found that the orientations of
677	faults and fractures were closely matching. Fracture orientation has also been shown to influence
678	stream orientation, presumably because faults and fractures reduce grain size and allow easier
679	transport of hillslope material and directing stream incision (Roy et al., 2016), Roy et al. (2015)
680	modeled stream incision in a landscape dissected by dipping weak zones, meant to resemble
681	fracture or fault zones, and found that in cases with a large contrast in bedrock weakness (>30x),
682	channels migrated laterally to follow the shifting exhumation of the weak zone. In our field sites,
683	<u>w</u> We observe that stream channels in our field sites $(A_{min} \ge 10^5 \text{ m}^2)$ generally follow fault
684	orientations (Fig. 76)., presumably because faults and fractures reduce grain size and allow easier
685	transport of hillslope material and directing stream incision (Roy et al., 2016). This is especially
686	clear in SG, where the north-south striking Atacama Fault System is reflected in the orientation of
687	faults, streams, and also fractures measured in a nearby drill core (Krone et al., 2021; Fig. 76). In
688	LC and NA, despite more variety in fault and stream orientations, faults streams closest to the
689	field sites tend to align with stream fault orientations (Fig. 76). Especially in NA, the larger
690	streams are often nearly perpendicular to each other, similar to rectangular drainage networks,
691	which are often indicative of structural control on drainage patterns (e.g., Zernitz, 1932). We
692	speculate that over geologic time scales, smaller streams are more transient features, whereas the

i

693	larger ones are more persistent. These results suggest that within the same rock type, local
694	fracture patterns induced by regional faults can induce differential denudation in landscapes.
695	Further, such differential denudation rates have the ability to shift the landscape from steady
696	state. If faults are inclined, the location of fractured bedrock will shift over time as bedrock is
697	exhumed and erodes, thus also shifting the locations of streams, valleys, and topographic highs
698	over time, and introducing topographic disequilibrium to the landscape (Roy et al., 2016).
699	In summary, we argue that in NA, and likely plausibly possibly also in SG and LC,
1 700	bedrock fracturing influences landscape morphology by setting grain size and thus dictating
701	patterns of denudation rates on hillslopes and in streams: in situ hillslope boulders likely
702	originated as blocks set by fracture spacing, and after being exhumed, locally suppress
703	denudation as described above Our This interpretation is supported by work in Puerto Rico;
704	Buss et al. (2013) studied corestones from two boreholes cutting through regolith in the Luquillo
705	Experimental Forest, and found that corestones decreased in size with increased chemical
706	weathering and exhumation through the regolith profile. They deduced that the corestones likely
707	started as bedrock blocks delineated by fractures. Further, they found that the borehole drilled
708	near a stream channel contained more highly-fractured bedrock compared to the borehole drilled
709	at a ridge, and inferred that corestone size was larger under the ridge due to lower bedrock
710	fracture density. In accordance with Fletcher and Brantley (2010), they concluded that, if erosion
711	and weathering increase with bedrock fracture density, then the ridges and valleys in their study
712	area could be controlled by fracture density patterns.
713	We therefore offer the following conceptual model: in a landscape with fractured bedrock
714	(Fig. <u>98</u> A), areas with higher fracture density should be sites of smaller <u>hillslope</u> sediment sizes
715	(e.g. Sklar et al., 2017; Neely and Dibiase, 2020), where rainfall can easily infiltrate, conversion

of bedrock to regolith is easiest (St. Claire et al., 2015; Lebedeva and Brantley, 2017), and

717	denudation rates are highest. Over time, precipitation will divergently run off topographic highs
718	and starve bedrock and <u>larger</u> boulders on high points while infiltrating into topographic lows,
719	where streams eventually incise (Bierman, 1994; Hayes et al., 2020; Fig. <u>98B)</u> . Bedrock and
720	boulders on topographic highs erode more slowly than finer sediment and soil, accentuating any
721	elevation differences. Regolith instead, also promotes vegetation growth, which slows runoff,
722	raises rates of infiltration, and enhances chemical weathering (Amundson et al., 2007: Fig. 9B),
723	creating a positive feedback between precipitation and fracture density (Fig. 28B). Additional
724	fractures due to topographic stresses from exhumation may also form at topographic highs as the
725	topography emerges (St. Claire et al., 2015), countering this positive feedback loop (Fig. <u>9</u> &C).
726	Over longer timescales, bedrock with different patterns of fracture density may be exhumed,
727	which can invert landscapes to reflect the new fracture patterns exposed at the surface (Roy et al.,
728	2016). In this way, fracturing, climate, and residence time can operate in conjunction to set the
729	sediment size and morphology of hillslopes and streams within landscapes.
730	To further understand the impact of bedrock fracture density on differential denudation in
731	soil-covered areas, future studies should use other sampling strategies and methods, for example,
732	sampling for cosmogenic radionuclide analysis from hillslopes near road cuts where fractures are
733	visible, pairing such hillslope sampling with geophysical surveys and drill cores, or documenting
734	bedrock cover on ridges versus hillslopes over a wide area.
1	

735 6 Conclusions

In this study, we <u>exploredtested</u> the ability of bedrock patches and large boulders to retard
denudation and influence landscape morphology, in <u>three</u> relatively slowly-eroding landscapes
along a climate gradient in the Chilean Coastal Cordillera with different erosional regimes. Based
on *in_-situ* cosmogenic ¹⁰Be-derived denudation rates of bedrock, boulders and soil, we find that

740	(1) in almost all cases across the three sites studied, soil denudation rates are <u>by ~10-50%</u> higher
741	than the denudation rates of the boulders that they surround, which are more similar to bedrock
742	denudation rates-by10-50%. This pattern does not always hold true-is more complicated in La
743	Campana, where some boulders have lower ¹⁰ Be concentrations than the surrounding soil,
744	perhaps because they were overturned or covered with soil at some point. ; (2) hillslope
745	denudation rates increase with fracture density in NA; and (3) streams tend to follow the
746	orientation of larger faults. These results suggest that exposed bedrock patches and large hillslope
747	boulders affect landscape morphology through differential by slowing denudation rates, : soil
748	erodes from around bedrock patches and boulders, exposing these features over time. Eeventually
749	, the largest boulders and bedrock patches in a landscape should become forming the nucleus for
750	topographic highs-due to their overall lower denudation rates than soil; _therefore, we predict that
751	current bedrock patches on hillslopes are nuclei for future peaks and ridges. On the other hand,
752	our work also suggests that where slopes are close to the angle of repose and where landsliding is
753	observed (-as in La Campana), while bedrock patches erode slowly and likely retard hillslope
754	denudation, hillslope boulders may have a smaller or even negligible effect on suppressing
755	denudation.
756	In addition, we found that bedrock fracturing and faulting accelerates hillslope denudation
757	and stream incision in our field sites: hillslope denudation rates increase with fracture density in
758	NA, and streams tend to follow the orientation of larger faults in all three sites. We infer that
759	bedrock fracture patterns in our field sites set grain sizes on hillslopes, and
760	Our results also support the concept that bedrock patches and boulders represent locations
761	where fracture density is lower, and thus weathering, erosion, and soil formation are suppressed.
762	Precipitation runs off topographic highs where intact bedrock is exposed, and infiltrates into soils
763	on hillslopes and in valleys, promoting chemical weathering below. Bedrock fracture density
I.	22

764	affects denudation rates by damaging bedrock, reducing grain size, and making it easier for
765	sediment to be removed by erosional processes. On a larger scale, our results imply that tectonic
766	preconditioning in the form of bedrock faulting and fracturing influences landscape evolution by
767	impacting the pathway of streams, as well as the migration of ridges, drainage divides and
768	knickpoints, as landscapes erode through layers of bedrock preconditioned by tectonic fracturing
769	over time, and encounter varying levels of resistance depending on the fracture density. $\frac{T_{\Theta}}{T_{\Theta}}$
770	further understand the impact of bedrock fracture density on differential denudation in soil
771	eovered areas, future studies should use other sampling strategies and methods, for example,
772	sampling for cosmogenic radionuclide analysis from hillslopes near road cuts where fractures are
773	visible, pairing such hillslope sampling with geophysical surveys and drill cores, or documenting
774	bedroek cover on ridges versus hillslopes over a wide area.
1	

775 7 Acknowledgements

This work was supported by the German Science Foundation (DFG) priority research 776 program SPP-1803 "EarthShape: Earth Surface Shaping by Biota" (grant SCHE 1676/4-2 to D. 777 778 S.). We are very grateful to the Earthshape management, Friedhelm von Blanckenburg and Todd 779 Ehlers, and the Earthshape coordinators Kirstin Übernickel and Leandro Paulino. We also thank 780 the Chilean National Park Service (CONAF) for providing access to the sample locations and on-781 site support of our research. We also thank Iris Eder and David Scheer for their help in the field 782 and in the laboratory, Cathrin Schulz* for her help in the laboratory, and Steven A. Binnie and 783 Stefan Heinze from Cologne University for conducting AMS measurements.

784 8 Data Availability

Cosmogenic nuclide data <u>and Matlab-scripts of the model presented in this paper will be</u>
made available as a GFZ Data Publication in accordance with FAIR principles. LiDAR data from
the studied catchments is available <u>inat</u> Krüger et al. (2022).

788 9 References

- 789 Amundson, R., Richter, D. D., Humphreys, G. S., Jobbágy, E. G., and Gaillardet, J.: Coupling
- between biota and earth materials in the critical zone, Elements, 3 (5), 327-333,
- 791 https://doi.org/10.2113/gselements.3.5.327, 2007.
- 792 Alaska Satellite Facility Distributed Active Archive Center: ALOS
- 793 PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP191976520), includes Material ©
- JAXA/METI 2009, ASF DAAC [dataset], https://doi.org/10.5067/Z97HFCNKR6VA, 2009.
- 795 Alaska Satellite Facility Distributed Active Archive Center: ALOS
- 796 PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP269644390), includes Material ©
- 797 JAXA/METI 2011, ASF DAAC [dataset], <u>https://doi.org/10.5067/Z97HFCNKR6VA</u>, 2011.
- 798 Alaska Satellite Facility Distributed Active Archive Center: ALOS
- 799 PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP277746590), includes Material ©
- 300 JAXA/METI 2011, ASF DAAC [dataset], <u>https://doi.org/10.5067/Z97HFCNKR6VA</u>, 2011.
- Attal, M., Mudd, S. M., Hurst, M. D., Weinman, B., Yoo, K., and Naylor, M.: Impact of change
- 802 in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather
- 803 River basin (Sierra Nevada, California), Earth Surf. Dynam., 3, 201–222.
- 804 https://doi.org/10.5194/esurf-3-201-2015, 2015.

- Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of
 calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat.
 Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
- 808 Balco, G., Purvance, M.D. and Rood, D.H.: Exposure dating of precariously balanced rocks,
- Quat. Geochronol., 6(3-4), 295-303, https://doi.org/10.1016/j.quageo.2011.03.007, 2011.
- 810 Bierman, P.: Using in situ produced cosmogenic isotopes to estimate rates of Landscape
- 811 evolution: A review from the geomorphic perspective, J. Geophys. Res.: Solid Earth, 99 (B7),
- 812 13885-13896, https://doi.org/10.1029/94JB00459, 1994.
- 813 Boisier, J. P., Alvarez-Garretón, C., Cepeda, J., Osses, A., Vásquez, N., and Rondanelli, R.:
- 814 CR2MET: A high-resolution precipitation and temperature dataset for hydroclimatic research in
- 815 Chile, Geophys. Res. Abstr., 20(Vic), 2018–19739, 2018.
- 816 Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K.,
- 817 Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the
- 818 CRONUS-Earth project, Quat. Geochronol., 31, 188-198,
- 819 https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
- 820 Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D.L.: Production of cosmogenic
- 821 radionuclides at great depth: A multi element approach, Earth Planet. Sc. Lett., 309, (1–2), 1-9,
- 822 https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
- 823 Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan,
- 824 C.: Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature,
- 825 379, 505–510, https://doi.org/10.1038/379505a0, 1996.

- 826 Buss, H.L., Brantley, S.L., Scatena, F.N., Bazilievskaya, E.A., Blum, A., Schulz, M., Jiménez, R.,
- 827 White, A.F., Rother, G. and Cole, D.: Probing the deep critical zone beneath the Luquillo
- 828 Experimental Forest, Puerto Rico, Earth Surf. Proc. Land., 38(10), 1170-1186,
- 829 <u>https://doi.org/10.1002/esp.3409, 2013.</u>
- 830 Callahan, R.P., Riebe, C.S., Pasquet, S., Ferrier, K.L., Grana, D., Sklar, L.S., Taylor, N.J.,
- 831 Flinchum, B.A., Hayes, J.L., Carr, B.J. and Hartsough, P.C.: Subsurface weathering revealed in
- hillslope-integrated porosity distributions, Geophys. Res. Lett., 47(15),
- 833 <u>https://doi.org/10.1029/2020GL088322, 2020.</u>
- 834 Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M.A., Martinod, J., Guyot, J-L,
- 835 Hérail, G., and Riquelme, R.: Review of erosion dynamics along the major N-S climatic gradient
- in Chile and perspectives, Geomorphology, 300, 45-68,
- 837 <u>https://doi.org/10.1016/j.geomorph.2017.10.016</u>, 2018.
- 838 Chilton, K.D. and Spotila, J.A.: Preservation of Valley and Ridge topography via delivery of
- 839 resistant, ridge-sourced boulders to hillslopes and channels, Southern Appalachian Mountains,
- 40 USA, Geomorphology, 365, 107263, https://doi.org/10.1016/j.geomorph.2020.107263, 2020.
- 841 Clair, J. St., Moon, S., Holbrook, W.S., Perron, J.T., Riebe, C.S., and Martel, S.J.: Geophysical
- imaging reveals topographic stress control of bedrock weathering, Geomorphology, 350 (6260),2015.
- Koira, B., Davidson, J., Mpodozis, C., and Ramos, V.: Tectonic and Magmatic Evolution of the
 Andes of Northern Argentina and Chile, <u>Earth Sci Rev. Earth Science Reviews</u>, 18, 303-332,
 1982.

- 847 Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., Staubwasser,
- 848 M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: Cologne AMS,
- 849 a dedicated center for accelerator mass spectrometry in Germany, Nucl. Instrum. Meth., B 294,
- 850 18-23, dx.doi.org/10.1016/j.nimb.2012.04.030, 2013.
- 851 DiBiase, R. A., Rossi, M. W., and Neely, A. B.: Fracture density and grain size controls on the
- relief structure of bedrock landscapes, Geology, 46 (5), 399–402,
- 853 <u>https://doi.org/10.1130/G40006.1</u>, 2018.
- 854 Dietrich, W.E., Bellugi, D.G., Sklar, L.S., Stock, J.D., Heimsath, A.M., and Roering, J.J.:
- B55 Geomorphic transport laws for predicting landscape form and dynamics, Geophys. Monogr.
- 856 Geophysical Monograph-American Geophysical Union, 135, 103-132,
- 857 https://doi.org/10.1029/135GM09, 2003.
- 858 Dühnforth, M., Anderson, R.S., Ward, D., and Stock, G.M.: Bedrock fracture control of glacial
- erosion processes and rates, Geology, 38 (5), 423-426, <u>https://doi.org/10.1130/G30576.1</u>, 2010.
- 860 Eppes, M. C., and Keanini, R.: Mechanical weathering and rock erosion by climate-dependent
- subcritical cracking, <u>Rev. Geophys. Review of Geophysics</u>, 55 (2), 470-508,
- 862 <u>https://doi.org/10.1002/2017RG000557</u>, 2017.
- 863 Fletcher, R.C. and Brantley, S.L.: Reduction of bedrock blocks as corestones in the weathering
- profile: Observations and model, Am. J. Sci., 310(3), 131-164,
- 865 <u>https://doi.org/10.2475/03.2010.01, 2010.</u>

- 866 Glade, R. C., Anderson, R. S., and Tucker, G. E.: Block-controlled hillslope form and persistence
- of topography in rocky landscape, Geology, 45 (4), 311–314, https://doi.org/10.1130/G38665.1,
- 868 2017.
- 869 Glodny, J., Graaefe, K., and Rosenau, M.: Mesozoic to Quaternary continental margin dynamics
- 870 in South-Central Chile (36–42° S): the apatite and zircon fission track perspective, Int. J. Earth
- 871 Sci., 97, 1271–1291, https://doi.org/10.1007/s00531-007-0203-1, 2008.
- 872 Granger, D. E., Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Modulation of erosion on steep
- granitic slopes by boulder armoring, as revealed by cosmogenic 26Al and 10Be, Earth Planet. Sc.
- 874 Lett., 186, 269-281, <u>https://doi.org/10.1016/S0012-821X(01)00236-9</u>, 2001.
- 875 Hayes, N. R., Buss, H. L., Moore, O. W., Krám, P., and Pancost, R. D.: Controls on granitic
- weathering fronts in contrasting climates, <u>Chem. Geol. Chemical Geology</u>, 535, 119450,
- https://doi.org/10.1016/j.chemgeo.2019.119450, 2020.
- Heimsath, A.M., Chappell, J., Dietrich, W.E., Nishiizumi, K. and Finkel, R.C.: Soil production
- 879 on a retreating escarpment in southeastern Australia, Geology, 28(9), 787-790,
- 880 <u>https://doi.org/10.1130/0091-7613(2000)28<787:SPOARE>2.0.CO;2, 2000.</u>
- Kirby, E. and Whipple, K.X.: Expression of active tectonics in erosional landscapes, <u>J. Struct.</u>
 <u>Geol.Journal of Structural Geology</u>, 44, 54-75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
- Krone, L.V., Hampl, F.J., Schwerdhelm, C., Bryce, C., Ganzert, L., Kitte, A., Übernickel, K.,
- 884 Dielforder, A., Aldaz, S., and Oses-Pedraza, R. Perez, J.P.H.: Deep weathering in the semi-arid

- 886 Kügler, M., Hoffmann, T. O., Beer, A. R., Übernickel, K., Ehlers, T. A., Scherler, D., and Eichel,
- J.: (LiDAR) 3D Point Clouds and Topographic Data from the Chilean Coastal Cordillera, V. 1.0,
- 888 GFZ Data Services, <u>https://doi.org/10.5880/fidgeo.2022.002</u>, 2022.
- 889 Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion
- 890 models, Earth Planet. Sc. Lett., 104, 424–439, <u>https://doi.org/10.1016/0012-821X(91)90220-C</u>,
 891 1991.
- 892 Lebedeva, M. I. and Brantley, S. L.: Weathering and erosion of fractured bedrock systems, Earth
- Surf. Proc. Land., 42, 2090–2108, <u>https://doi.org/10.1002/esp.4177</u>, 2017.
- Martel, S.J.: Mechanics of curved surfaces, with application to surface-parallel cracks, Geophys.
 Res. Lett., 38(20), https://doi.org/10.1029/2011GL049354, 2011.
- 896 Melnick, D.: Rise of the central Andean coast by earthquakes straddling the Moho, Nat. Geosci.,
- 897 9, 1–8, <u>https://doi.org/10.1038/ngeo2683</u>, 2016.
- 898 Molnar, P., Anderson, R.S., and Anderson, S.P.: Tectonics, fracturing of rock, and erosion, J.
- Geophys. Res., 112, F03014, <u>https://doi.org/10.1029/2005JF000433</u>, 2007.
- 900 Mutz, S.G. and Ehlers, T.A.: Detection and explanation of spatiotemporal patterns in Late
- 901 <u>Cenozoic palaeoclimate change relevant to Earth surface processes, Earth Surf. Dynam., 7(3),</u>
- 902 <u>663-679, https://doi.org/10.5194/esurf-7-663-2019, 2019.</u>
- 903 Neely, A.B., DiBiase, R.A., Corbett, L.B., Bierman, P.R., and Caffee, M.W.: Bedrock fracture
- 904 density controls on hillslope erodibility in steep, rocky landscapes with patchy soil cover,

- 905 southern California, USA, Earth Planet. Sc. Lett., 522, 186-197,
- 906 <u>https://doi.org/10.1016/j.epsl.2019.06.011</u>, 2019.
- 907 Neely, A.B. and DiBiase, R.A.: Drainage Area, Bedrock Fracture Spacing, and Weathering
- 908 Controls on Landscape-Scale Patterns in Surface Sediment Grain Size, J. Geophys. Res. Earth
- 909 Surf., 125, (10), https://doi.org/10.1029/2020JF005560, 2020.
- 910 Oberlander, T. M.: Morphogenesis of Granitic Boulder Slopes in the Mojave Desert, California,
- 911 J. Geol., 80, 1–20, <u>https://doi.org/10.1086/627710</u>, 1972.
- 912 Oeser, R. A., Stroncik, N., Moskwa, L., Bernhard, N., Schaller, M., Canessa, R., Brink, L. Van
- 913 Den, Köster, M., Brucker, E., Stock, S., Pablo, J., Godoy, R., Javier, F., Oses, R., Osses, P.,
- 914 Paulino, L., Seguel, O., Bader, M. Y., Boy, J., Dippold, M. A., Ehlers, T. A., Kühn, P.,
- 915 Kuzyakov, Y., Leinweber, P., Scholten, T., Spielvogel, S., Spohn, M., Übernickel, K., Tielbörger,
- 916 K., Wagner, D., and von Blanckenburg, F.: Chemistry and microbiology of the Critical Zone
- 917 along a steep climate and vegetation gradient in the Chilean Coastal Cordillera, Catena, 170, 183-
- 918 203, <u>https://doi.org/10.1016/j.catena.2018.06.002</u>, 2018.
- 919 Perron, J.T.: Numerical methods for nonlinear hillslope transport laws, J. Geophys. Res. Earth
- 920 Surf., 116 (F2), https://doi.org/10.1029/2010JF001801, 2011.
- 921 Portenga, E.W. and Bierman, P.R.: Understanding earth's eroding surface with 10Be, GSA
- 922 Today, 21, 4–10, <u>https://doi.org/10.1130/G111A.1</u>, 2011.
- P23 Raab, G., Egli, M., Norton, K., Dahms, D., Brandová, D., Christl, M. and Scarciglia, F.: Climate
- 24 and relief-induced controls on the temporal variability of denudation rates in a granitic upland,
- Earth Surf. Proc. Land., 44(13), 2570-2586, https://doi.org/10.1002/esp.4681, 2019.

926	Roda-Boluda, D.	.C., D'Arcv,	M., McDonald, J	and Whittaker.	A.C.: Lithological	controls on
		, , ,	, , ,	,,		

927 hillslope sediment supply: insights from landslide activity and grain size distributions, Earth Surf.

Proc. Land., 43, 956–977, <u>https://doi.org/10.1002/esp.4281</u>, 2018.

P29 Rodriguez Padilla, A.M., Oskin, M.E., Milliner, C.W. and Plesch, A.: Accrual of widespread rock

p30 damage from the 2019 Ridgecrest earthquakes, Nat. Geosci., 15(3), 222-226, 2022.

Roy, S.-G., Tucker, G.-E., Koons, P.-O., Smith, S.-M., Upton, P.: A fault runs through it:

932 Modeling the influence of rock strength and grain-size distribution in a fault-damaged landscape,

933 J. Geophys. Res. Earth Surf., 121, <u>https://doi.org/10.1002/2015JF003662</u>, 2016.

Roy, S.G., Koons, P.O., Upton, P. and Tucker, G.E.: The influence of crustal strength fields on

935 the patterns and rates of fluvial incision, J. Geophys. Res, Earth Surf., 120(2), 275-299,

936 <u>https://doi.org/10.1002/2014JF003281, 2015.</u>

937 Schaller, M., Ehlers, T.A., Lang, K.A.H., Schmid, M., and Fuentes-Espoz, J.P.: Addressing the

938 contribution of climate and vegetation cover on hillslope denudation, Chilean Coastal Cordillera

939 (26°–38°S), Earth Planet. Sc. Lett., 489, 111–122, <u>https://doi.org/10.1016/j.epsl.2018.02.026</u>,

940 2018.

Schaller, M. and Ehlers, T.A.: Comparison of soil production, chemical weathering, and physical
erosion rates along a climate and ecological gradient (Chile) to global observations, <u>Earth Surf.</u>
<u>Dynam.Earth Surface Dynamics</u>, 10 (1), 131-150, <u>https://doi.org/10.5194/esurf-10-131-2022</u>,
2022.

- 945 Schwanghart, W. and Scherler, D.: Short Communication: Topo Toolbox 2 MATLAB-based
- 946 software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2,
- 947 1–7, <u>https://doi.org/10.5194/esurf-2-1-2014</u>, 2014.
- 948 SERNAGEOMIN, Mapa Geológico de Chile: versión digital, Servicio Nacional de Geología y
- 949 Minería, Publicación Geológica Digital No. 4 [dataset], http://www.ipgp.fr/~dechabal/Geol950 millon.pdf, 2003.
- 951 Shobe, C. M., Tucker, G. E., and Anderson, R. S.: Hillslope-derived blocks retard river incision,
- 952 Geophys. Res. Lett., 43, 5070–5078, https://doi.org/10.1002/2016GL069262, 2016.
- 953 Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. L., and Merces, V.:
- The problem of predicting the size distribution of sediment supplied by hillslopes to rivers,
- 955 Geomorphology, 277, 31–49, <u>https://doi.org/10.1016/j.geomorph.2016.05.005</u>, 2017.
- 956 Sklar, L.S., Riebe, C.S., Genetti, J., Leclere, S. and Lukens, C.E.: Downvalley fining of hillslope
- 957 <u>sediment in an alpine catchment: implications for downstream fining of sediment flux in</u>
- 958 mountain rivers, Earth Surf. Proc. Land., 45(8), 1828-1845, https://doi.org/10.1002/esp.4849,
- 959 <u>2020.</u>
- 960 Small, E.E., Anderson, R.S., Repka, J.L., and Finkel, R.St.: Erosion rates of alpine bedrock
- 961 summit surfaces deduced from in situ 10Be and 26A1, Earth Planet. Sc. Lett., 150, 413-425,
- 962 https://doi.org/10.1016/S0012-821X(97)00092-7, 1997.
- 963 Stone, J.O.: Air pressure and cosmogenic isotope production, J. Geophys. Res. Solid Earth-Journal
- 964 of Geophysical Research: Solid Earth, 105, B10, 23753-23759,
- 965 https://doi.org/10.1029/2000JB900181, 2000.

966	Terweh, S., Hassan, M.A., Mao, L., Schrott, L., and Hoffmann, T.O.: Bio-climate affects
967	hillslope and fluvial sediment grain size along the Chilean Coastal Cordillera, Geomorphology,
968	384, 107700, https://doi.org/10.1016/j.geomorph.2021.107700, 2021.
969	Thaler, E.A. and Covington, M.D.: The influence of sandstone caprock material on bedrock
970	channel steepness within a tectonically passive setting: Buffalo National River Basin, Arkansas,
971	USA, J. Geophys. Res. Earth Surf., 121(9), 1635-1650, https://doi.org/10.1002/2015JF003771,
972	<u>2016.</u>
973	van Dongen, R., Scherler, D., Wittmann, H., and von Blanckenburg, F.: Cosmogenic 10Be in
974	river sediment: where grain size matters and why, Earth Surf. Dynam., 7, 393-410,
975	https://doi.org/10.5194/esurf-7-393-2019, 2021.
976	van Dongen, R.: Discharge variability and river incision along a climate gradient in central Chile.
977	PhD thesis. Potsdam, Germany, 2021.
978	Verdian I.P. Sklar, I.S. Riche, C.S. and Moore, I.R.: Sediment size on talus slopes correlates
770	return, s.r., Skiar, E.S., Riebe, e.S. and Moore, s.K. Sedmicht size on tards stopes concates
979	with fracture spacing on bedrock cliffs: implications for predicting initial sediment size
980	distributions on hillslopes, Earth Surf. Dynam., 9(4), 1073-1090, https://doi.org/10.5194/esurf-9-
981	<u>1073-2021, 2021.</u>
982	von Blanckenburg, F., Hewawasam, T., and Kubik, P.W.: Cosmogenic nuclide evidence for low
983	weathering and denudation in the wet, tropical highlands of Sri Lanka, J. Geophys. Res., 109,
984	F03008, https://doi.org/10.1029/2003JF000049, 2004.
985	Zernitz E R · Drainage patterns and their significance The Journal of Geology [Geol 40 (6)

986 498-521, https://doi.org/10.1086/623976, 1932.

10 Tables

989	
990	Table 1. ¹⁰ Be cosmogenic nuclide sample data.

Sample ID	IGSN ª	Sampling location ^b	Latitude (°N)	Longitude (°E)	Sam ple type °	¹⁰ Be conc. ± <u>2</u> 4σ (×10 ⁵) (atoms g ⁻¹)	¹⁰ Be conc. normalized by SLHL ±21σ (×10 ⁵) (atoms g ⁻¹) ^d	¹⁰ Be production rate (spallation, atoms g ⁻¹ yr ⁻¹)	Site scaling factor °	Slope angle at sample location (°) ^f	Avg. boulder width / protrusi on or fracture density ^g	No. chip take for samp
						Nahuelbuta						
NB-BR1	GFRD1002U	PdA ridge 1	-37.826	-73.035	BR	8.25±0. <u>56</u> 28	2.92±0.240	11.41	2.82	18	7.83	20
NB-BR2	GFRD1002V	PdA ridge 2	-37.821	-73.034	BR	6.92±0. <u>48</u> 24	2.43±0. <u>18</u> 09	11.44	2.85	4	4.75	15
NB-BR3	GFRD1002W	PdA ridge 3	-37.819	-73.032	BR	5.18±0.420	1.86±0. <u>14</u> 07	11.15	2.78	3	2	15
NB-BR4	GFRD10029	PdA ridge 4	-37.825	-73.034	BR	3.85±0. <u>28</u> +4	1.36±0. <u>10</u> 05	11.46	2.84	16	4.78	15
NAS	GFEL10002	PuA slope	-37.620	-73.034	DK	0.00+0.04020	2.36±0. <u>10</u> 00	11.25	2.75	25	4.43	30
NA4	GFEL10003	CdP	-37.817	-73.031	в	9.08±0. <u>64</u> 32	3.49±0. <u>24</u> +2	10.43	2.60	5	0.68	30
NA7	GFEL10006	CA ridge	-37.789	-72.998	В	10.28±0. <u>72</u> 3 6	3.65±0. <u>26</u> 43	11.3	2.81	10	1.52 / 1.00	10
NA8	GFEL10007	CA ridge	-37.789	-72.998	В	8.94±0. <u>62</u> 31	3.18±0. <u>22</u> 44	11.3	2.81	10	3.30 / 2.43	10
NA9	GFEL10008	CA ridge	-37.789	-72.998	В	7.57±0. <u>54</u> 27	2.69±0. <u>18</u> 09	11.3	2.81	10	0.64 / 0.19	10
NA11	GFEL1000A	CA slope	-37.790	-72.999	в	7.67±0. <u>54</u> 26	2.76±0. <u>18</u> 09	11.18	2.78	14	1.90 / 1.60	10
NA15	GFEL1000E	SPH slope	-37.807	-73.013	В	2.84±0. <u>14</u> 06 9	1.12±0.0 <u>6</u> 3	10.24	2.53	18	0.96 /	12
NA5	GFEL10004	CdP	-37.817	-73.031	S	2.32±0.240	0.89±0.0 <mark>8</mark> 4	10.43	2.60	5	N/A	N/A
NA10	GFEL10009	CA ridge	-37.789	-72.998	S	5.04±0. <u>36</u> 18	1.79±0. <u>12</u> 06	11.3	2.81	10	N/A	N//
NA12	GFEL1000B	CA slope	-37.790	-72.999	S	4.27±0. <u>32</u> 46	1.54±0. <u>12</u> 06	11.18	2.78	14	N/A	N//
LC-BR2	GERD1002X	CC slope	-32,938	-71.081	BR	1.83+0.2244	1.38+0.1608	5.75	1.33	39	N/A	15
LC2	GFEL1002J	CC ridge	-32.939	-71.081	В	0.92±0. <u>18</u> 08	0.59±0. <u>12</u> 06	6.25	1.55	9	0.95 /	10
LC4	GFEL1003V	CC slope	-32.938	-71.079	в	0.92±0. <u>16</u> 08	0.66±0.1206	5.77	1.40	27	0.30 /	10
LC11	GFEL1000Q	CG ridge	-32.941	-71.074	в	1.21±0. <u>14</u> 07	0.76±0.0 <mark>8</mark> 4	6.42	1.59	13	1.32 /	10
LC13	GFEL1000S	CG upper	-32.94	-71.073	в	0.73±0. <u>16</u> 08	0.51±0.1206	6.13	1.43	33	0.32 /	12
LC18	GFEL1000Z	CG lower	-32.937	-71.074	в	1.55±0. <u>16</u> 07	1.17±0. <u>12</u> 06	5.43	1.32	18	0.50 /	12
LC1	GFEL1002H	CC ridge	-32.939	-71.081	S	1.54±0. <u>18</u> 09	0.99±0.1206	6.25	1.55	9	0.32 N/A	N//
LC3	GFEL1003W	CC slope	-32.938	-71.079	s	1.03±0. <u>18</u> 08	0.74±0.1206	5.77	1.40	27	N/A	N//
1 C12	GEEL 1000R	CG ridge	-32 941	-71 074	S	0.88+0.0844	0.55+0.063	6.42	1 59	13	N/A	N//
LC14	GFEL1000T	CG upper	-32.94 <u>0</u>	-71.073	S	0.63±0.0 <u>8</u> 37	0.44±0.0 <u>6</u> 3	6.13	1.43	33	N/A	N//
LC19	GFEL1000X	CG lower	-32.937	-71.074	S	1.84±0. <u>14</u> 07	1.39±0. <u>10</u> 05	5.43	1.32	18	N/A	N/
	1	liopo	1			Santa Grácia	1	1		1		
SG8	GFEL10017	SGH ridge	-29.756	-71.166	в	5.94±0. <u>42</u> 21	4.17±0. <u>30</u> 15	5.72	1.42	10	1.10/	10
SG9	GFEL10018	SGH ridge	-29.756	-71.166	в	4.7 <u>0</u> ±0. <u>34</u> 17	3.30±0. <u>24</u> 12	5.72	1.42	10	0.38 /	10
SG11	GFEL1001A	SGH slope 1	-29.758	-71.166	В	3.56±0. <u>26</u> 13	2.61±0.240	5.56	1.36	21	1.30/	9
SG22	GFEL1001M	SGH slope 2	-29.758	-71.166	в	3.85±0. <u>30</u> 45	2.83±0.2244	5.56	1.36	22	0.37 /	1'
<u>SG37</u>	GFEL1002T	ZH ridge	-29.740	<u>-71.156</u>	B	11.46±0.88	8.21±0.62	<u>5.64</u>	<u>1.40</u>	<u>28</u>	<u>1/0.90</u>	10
<u>SG38</u>	GFEL1002S	ZH ridge	-29.740	<u>-71.156</u>	B	7.84±0.56	5.62±0.40	<u>5.64</u>	<u>1.40</u>	28	0.10/ 0.12	<u>10</u>
SG10	GFEL10019	SGH ridge	-29.756	-71.166	S	2.58±0.2211	1.81±0. <u>16</u> 08	5.72	1.42	10	N/A	N/.
SG12	GFEL1001B	SGH slope 1	-29.758	-71.166	S	2.39±0. <u>18</u> 08 9	1.75±0. <u>14</u> 07	5.56	1.36	21	N/A	N//
SG23	GFEL1001N	SGH slope 2	-29.758	-71.166	S	2.1 <u>0</u> ±0. <u>16</u> 08 3	1.54±0. <u>12</u> 06	5.56	1.36	22	N/A	N//
SG36	GFEL1002U	ZH ridge	-29.740	-71.156	<u>s</u>	<u>5.40±0.5</u> 0	3.87±0.36	5.64	1.40	28	N/A	<u>N//</u>

 SG36
 GFEL1002U
 ZH ridge
 292.740
 :7.1.156
 S
 5.40e.050
 3.87±0.36
 5.64
 1.40
 28
 N/A
 N

 *Open access metadia: http://gen.org/insert/IGSN number here]
 *Sample locations: PdA: Piedra de Aquila. CdP: Casa de Piedas. CA: Cerro Anay. SPH: Soill Pt Hill, SCH: Santa Chacie Hill, CC: Cerro Cabra, CG: Cerro Gabra, CG: Cerro Gabra, CG: Cerro Cabra, CG: Cerro Cabra, CG: Cerro Sabra, CB: Cerro Sabra, CB: Cerro Sabra, SPH: Santa Cracia Hill, ZH: Zebra Hill.

 *Sample type abbreviations: BR: bedrock, B: boulders, S: soil.
 *Sample type abbreviations: BR: bedrock, B: boulders, S: soil.

 *Somple type abbreviations: BR: bedrock, B: boulders, S: soil.
 *Sample type abbreviations: BR: bedrock, B: boulders, S: soil.

 *Concentrations were normalized to SHLL (sea level high lattude) using a SLHL production rate of 4.01 atoms g-1 yr⁻¹ (Borchers et al., 2016) and the site's scaling factor.

 *Time constant spallation production rate scaling scheme of Lai (1991) and Stone (2000) (S'I in Balco et al., 2008), calculated taking topographic shielding into account.

 *Conclementary of bedrock (in meters) and width and protrusion measurements (in meters) for boulders. Values are averages of >10 measurements per sample site.

T

Table 2. Modelled denudation rates for soil and boulder samples using the first term of Eq. 1, and comparison of modelled and measured ¹⁰Be concentrations for soil samples. Sample location abbreviations are described in the caption for Table 1.

Sample location	Soil sample ID	Best-fitting modelled soil denudation range rate (cs) (m Myr ⁻¹)	Corresp. modelled range of ¹⁰ Be cone. (×10 ⁵) (atoms g ⁻ ¹) for soil (N _m)	$\frac{\text{Measured}}{^{10}\text{Be conc.}}$ =1 σ (×10 ⁵) (atoms g ⁻¹)	Boulder sample IDs	Best-fitting modelled boulder denudation rate range (εъ) (m Myr ⁻¹)			
Nahuelbuta									
CdP	NA5	15-20	3.61-4.75	2.32±0.10	NA4	10-15			
CA ridge	NA10	15-20	3.89-5.12	5.04±0.18	NA7, NA8, NA9	10-15			
CA slope	NA12	18-20	3.84-4.25	4.27±0.16	NA11	15-18			
La Campana									
CG ridge	LC12	70-90	0.54-0.69	0.88±0.04	LC11	40-60			
CG upper slope	LC14	120-140	0.32-0.37	0.63±0.04	LC13	80-120			
Santa Gracia	Santa Gracia								
SGH ridge	SG10	12-15	2.77 3.41	2.58±0.11	SG8, SG9	10-20			
SGH slope 1	SG12	19-21	1.94-2.13	2.39±0.09	SG11	18-20			
SGH slope 2	SG23	19-21	1.94-2.13	2.1±0.08	SG22	18-20			

Sample location	Soil sampl e ID	Best-fitting modelled soil denudation range rate (ϵ_s) (m Myr ⁻¹)	Corresp. modelled range of ¹⁰ Be conc. (×10 ⁵) (atoms g ⁻¹) for soil (N _m)	$\begin{array}{c} Measured \\ {}^{10}Be \ conc. \\ \pm 2\sigma \ (\times 10^5) \\ (atoms \ g^{-1}) \end{array}$	Boulder sample IDs	Best-fitting modelled boulder denudation rate range (ϵ_b) (m Myr ⁻¹)	Differential erosion rate (boulder vs. soil; m Myr ⁻¹)	Time needed for boulder exposure (Kyr)
Nahuelbuta								
CdP	NA5	15-20	3.61-4.75	2.32±0.20	NA4	10-15	5	136
CA ridge	NA10	15-20	3.89-5.12	5.04±0.36	NA7, NA8, NA9	10-15	5	200, 486, 38
CA slope	NA12	18-20	3.84-4.25	4.27±0.32	NA11	15-18	2.5	640
La Campan	а							
CG ridge	LC12	70-90	0.54-0.69	0.88±0.08	LC11	40-60	30	23
CG upper slope	LC14	120-140	0.32-0.37	0.63±0.08	LC13	80-120	30	7
Santa Graci	a							
SGH ridge	SG10	12-15	2.77-3.41	2.58±0.22	SG8, SG9	10-12	2.5	320, 48
SGH slope 1	SG12	19-21	1.94-2.13	2.39±0.18	SG11	18-20	1	870
SGH slope 2	SG23	19-21	1.94-2.13	2.10±0.16	SG22	18-20	1	240
ZH ridge	SG36	6.5-7.5	4.78-5.45	5.40±0.50	SG37, SG38	4-5.5	2.25	400, 53

11 Figures

Commented [EL1]: Changes to this figure: Added Zebra Hill to the SG panel

1006 Figure 1. Field site locations and features. A) Map of mean annual precipitation in central Chile, 1007 with field sites marked by red stars. Precipitation data from the CR2MET dataset, by the Center 1008 for Climate and Resilience Research (CR²) (Boisier et al., 2018), provides an average for the time 1009 period 1979-2019. World Terrain Base map sources are Esri, USGS, NOAA. B-D: Hillshade 1010 images from 12.5-m ALOS PALSAR digital elevation models, of B) Santa Gracia (SG), C) La 1011 Campana (LC), and D) Nahuelbuta (NA). Sample locations and sample names are shown, with 1012 symbol shape and color indicating the sample type (see legend in lower left panel). Black outlines 1013 delineate the catchments from which the catchment average sample (star) was taken (the 1014 catchment from La Campana does not fit within the bounds of the map and therefore is not 1015 shown). Blue lines indicate streams. Soil pit sample data are from Schaller et al. (2018), and 1016 catchment average sample data are from van Dongen et al. (2019).

1018

1019 Figure 2. Field photos showing the various surfaces sampled, including bedrock, boulders and

1020 soil. A: Nahuelbuta, A1) Bedrock (sample NB-BR1). A2) Fractured bedrock, in transition

1021 between unfractured bedrock and boulders (sample NB-BR2). A3) Smaller boulders surrounded

1022 by soil (sample NA7). B: La Campana, B1) Bedrock (sample LC-BR2). B2) Bedrock

transitioning to large boulders and soil. B3) Boulders and soil on a hillside (samples LC13 and

1024 LC14). C: Santa Gracia, C1) Boulders on Zebra Hilla hillside delineated by fractures. C2) Large 1025 boulders on the ridge of Santa Gracia Hill (sample SG8). C3) Soil with minimal boulders on the

1026 slope of Santa Gracia Hill (samples SG22 and SG23).

Commented [EL2]: Changes to this figure: added more context to the scene including other boulders exhuming before and after the boulder of interest, added thicker outline to boulder of interest to make it stand out, soil fades now to the color of bedrock to imply soil-saprolite transition

1030

1031

1032 1033

1034

1035

1036

1037

Figure 3. Schematic image showing the process of boulder exhumation. A) Overview of the setting: a mixed soil- and bedrock- covered hillslope where sediment size decreases with decreasing fracture spacing. B) During phase 1, the boulder is buried, and accumulates nuclides at a rate governed by the soil denudation rate, ϵ_s . C) Phase 1 ends when the boulder breaches the soil surface. D) During phase 2, the boulder itself is eroding at a rate of ϵ_b , and the surrounding soil continues to erode at a rate of ϵ_s . Phase 2 lasts for a time period t_2 that ends with our sampling.

C) Santa Gracia A) Nahuelbuta B) La Campana 1.6 5637 NA7 NA4 Bedrock LC19 LC-BR2 3.5 Boulders 1.4 ₹ NA8 🔶 Soil ^oBe concentration (atoms g⁻¹ x 10⁵) LC18 NB-BR1 6 3 SG38 1.2 NA11 NA9 LC1 IB-BR2 2.5 5 NA3 SG8 SG36 LC11 LCE NB-BR3 NA10 0.8 4 2 LC4 SG9 NA12 LC12 SG22 1.5 NB-BR4 0.6 LC13 3 SG11 NA15 NA 5610 0.4 SG12 LC14 5623 0.5 0.2 PdA SPH CGIs CCs ZH CdP CAr CAS

1039 Figure 4. Measured ¹⁰Be concentrations normalized to reference production rate at sea-level high 1040 latitude for- A) Nahuelbuta, B) La Campana, and C) Santa Gracia; note different scales of y-axes. 1041 X-axes are not numerical but rather show the sampling locations, also reported in Table 1. show the sample size (cm) of bedrock, boulder and soil samples. For bedrock samples, the sample size 1042 1043 indicates the fracture density at the sample site. For boulder samples, the sample size indicates the 1044 average width (b-axis) of boulders from which we collected chips for an amalgamated sample. Soils are labeled <0.1 cm. Labels next to data points provide sample IDs, also reported in Table 1045 1046 1. Gray labels at the bottom of panels are the sample locations. PdA: Piedra de Aguila, CdP: Casa

0

Commented [EL3]: Changes to this figure: added Zebra Hill in SG

Commented [EL4]: New figure

represent the standard deviation of all fracture spacing measurements for each location. B)
 Measurements of iIndividual fracture spacing measurements and individual boulder sizes
 measurements, where boulder size is the average of the x and y axes of each boulder, where the z axis is the protrusion height. C) Average boulder protrusion height plotted against measured ¹⁰Be

1060 concentrations normalized to reference production rate at sea-level high latitude for each field

- 1061 site. Error bars represent the standard deviation of all boulder protrusion height measurements for
- 1062 each location. D) Average boulder protrusion height plotted against hillslope angle. A linear
- 1063 regression model is fit through LC datapoints.
- 1064

Commented [EL5]: Changes to this figure: Added Zebra Hill in SG

¹⁰⁷⁷ 1078

- 1079 Figure <u>76</u>. Rose diagram plots and maps showing fault and stream orientations for Nahuelbuta
 1080 (top row), La Campana (middle row), and Santa Gracia (bottom row). For each field site, the
 1081 columns show from left to right: (1) major faults digitized from geological map
- 1082 (SERNAGEOMIN, 2003), within ~50 km (black) and ~25 km (red, NA and LC only) of the
- sampling site (blue star); (2) rose diagram of fault orientations from the maps in column 1,

1084 constructed using 100 m long, straight fault segments and 36 bins, with orientations of faults <25 1085 km from NA and LC in red; (3) a map of the studied catchments and the drainage network, with 1086 green, black, and blue streams indicating minimum upstream areas (A_{min}) of 10⁴, 10⁵, and 10⁶ m², 1087 respectively, derived from one-meter resolution LiDAR DEMs (Kügler et al., 2022).; (4-6) rose 1088 diagrams (72 bins) of stream orientations for different A_{min} . All maps and rose diagrams are 1089 oriented with the top being north.

1090

Commented [EL6]: Changes to this figure: Added Zebra Hill data

1091 1092

1093 Figure 7-8. Overview of new and previously published denudation rates $\underline{P}(\text{data from this study})$ 1094 areis shown by solid symbols and previously-published data areis shown by hollow symbols), 1095 Soil pit data is from Schaller et al. (2018), and catchment average data is from van Dongen et al. 1096 (2019). Catchment average denudation rates from various sediment grain sizes (from left to right 1097 for each field site: 0.5-1, 1-2, 2-4, 4-8, 8-16, 16-32, and 32-64 mm). Bedrock denudation rates are 1098 calculated using the CRONUS online calculator v2.3 (Balco et al., 2008). Boulder and soil 1099 denudation rates are estimated using our model and reflect the most plausiblelikely denudation 1100 rates as described in section 5.1.2. Denudation rates for each location within a field site are 1101 separated by thin gray bars, and locations are labeled at the top of the chart. Samples that were 1102 not included in the model (one sample from Nahuelbuta and 3 samples from La Campana) are 1103 also not included here. Data from this study is shown by solid symbols and previously-published 1104 data is shown by hollow symbols.

- 1105 1106
- 1107
- 1108
- 1109

Commented [EL7]: Changes to this figure: horizontal fractures now move up with uplift; new non-topographic surface parallel fractures in panel C in blue

- 1 Figure <u>98</u>: Schematic illustration showing influence of bedrock fractures on landscape evolution.
- (A) Bedrock with different fracture densities is to different degrees infiltrated by rain and ground
- 1114 water, which leads to differences in chemical weathering, soil formation and vegetation growth,
- 1115 resulting in different hillslope sediment sizes. (B) Differential denudation between highly
- 1116 fractured and less fractured areas induce relief growth <u>under slow but persistent uplift</u>, which
- 1117 further promotes spatial gradients in chemical weathering, hillslope sediment size, and
- denudation. (C) Growing relief increases topographic stresses and formation of new fractures (red) at topographically high positions (e.g. St. Clair et al., 2015), and non-topographic surface-
- 1120 parallel fractures (dark blue) (e.g. Martel, 2011).
- 1121