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Abstract. We propose a new deep-learning architecture HIDRA2 for sea level and storm surge
:::
tide

:
modeling, which is ex-

tremely fast to train and apply, and outperforms both our previous network design HIDRA1 and the
:::
two

:
state-of-the-art nu-

merical ocean model
::::::
models

:
(a NEMO engine with sea level data assimilation

:::
and

:
a
::::::::
SCHISM

:::::
ocean

::::::::
modeling

:::::::
system), over

all sea level bins and all forecast lead times. The architecture of HIDRA2 employs novel atmospheric, tidal and SSH feature

encoders, as well as a novel feature fusion and SSH regression block. HIDRA2 was trained on surface wind and pressure fields5

from a single member of ECMWF atmospheric ensemble and on Koper tide gauge observationsduring years 2006–2018, and

evaluated on the data from June 2019 to December 2020. .
:::
An

::::::::
extensive

:::::::
ablation

:::::
study

::::
was

:::::::::
performed

::
to

:::::::
estimate

:::::::::
individual

::::::::::
importances

::
of

:::::
input

:::::::
encoders

:::
and

::::
data

:::::::
streams.

:
Compared to HIDRA1, the overall mean absolute forecast error is reduced by

13.9 %
::::
13 %, while on storm surge events it is lower by even a larger margin of 25.1 %

:::::
25 %. Consistent superior performance

over HIDRA1 as well as NEMO
:::
over

::::::
general

::::::::::
circulation

::::::
models is observed in both tails of the sea level distribution:

::::
low

:::
tail10

:::::::::
forecasting

::
is

:::::::
relevant

:::
for

::::::
marine

:::::
traffic

:::::::::
scheduling

:::
to

::::
ports

::
of
::::::::

northern
:::::::
Adriatic

:::::
while

::::
high

:::
tail

::::::::
accuracy

:::::
helps

::::::
coastal

:::::
flood

:::::::
response. Power spectrum analysis indicates that HIDRA2 most accurately represents the energy density peaks

:::
peak

:
centered

on the two lowest Adriatic wind-induced free oscillation eigenmodes (seiches) among all tested models
:::::
ground

:::::
state

:::
sea

::::::
surface

:::::::::
eigenmode

:::::::
(seiche)

:::
and

::::::
comes

:::::
close

::::::
second

::
to

::::::::
SCHISM

::
in

:::
the

::::::
energy

:::::
band

::
of

:::
the

::::
first

::::::
excited

:::::::::
eigenmode. To assign model

errors to specific frequency bands covering diurnal and semi-diurnal tides and the lowest two
:::
two

::::::
lowest basin seiches, sea15

level band-pass filtering of several historic storm surge events is applied
::::::
spectral

:::::::::::::
decomposition

::
of

:::
sea

::::::
levels

:::::
during

:::::::
several

::::::
historic

::::::
storms

::
is

:::::::::
performed. HIDRA2 performs well across all frequency bands and most accurately predicts amplitudes and

temporal phases of the Adriatic basin seiches. This is shown to be ,
::::::
which

::
is an important forecasting benefit due to the high

sensitivity of total Adriatic storm surge sea
::
the

:::::::
Adriatic

::::::
storm

:::
tide

:
level to the phase

:::::::
temporal

:
lag between peak tide and peak

seiche.20

1 Introduction

Global mean sea level rise, related to anthropogenic climate change
:::::::::::::::
(Arias et al., 2021), is causing a worldwide increase in

coastal flooding frequency
::::::::::::::::::::
(Taherkhani et al., 2020) and is leading to a myriad of negative consequences for coastal commu-

nities, civil safety and economies
:::::::::::::::::
(Ferrarin et al., 2020). Shallow semi-enclosed coastal regional basins like Northern Adriatic
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(North Central Mediterranean Sea) are facing growing threats of coastal inundation and erosion (Ferrarin et al., 2020), sea25

water
:::::::
seawater intrusions in freshwater reservoirs and are worsening the conditions for marine traffic. Northern Adriatic ports

like Venice, Koper and Trieste, but also other cultural landmark towns like Chioggia or Piran, have been – or will be – forced

to take expensive preventive measures to mitigate their exposure.

The problem of sea level forecasting on the Northern Adriatic Shelf (see Fig. 1 for the shelf location and depth) is two-fold:

(i) high sea levels lead to severe flooding of densely populated coastal towns, while (ii) low sea levels may effectively inhibit30

large marine cargo due to very shallow depths (often below 15 meters) of marine waterways on the shelf and especially in the

Gulf of Trieste. Reliable forecasting of both tails, high and low, of sea level distribution is therefore imperative for services like

civil safety and cargo scheduling activities in local ports.
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Figure 1. Topography and bathymetry of the Adriatic region. Abbreviations used on the map are as follows: TS - Trieste, KP - Koper, GoT

- Gulf of Trieste, VE - Venice, N Adr Shelf - Northern Adriatic Shelf, S Adr Pit - Southern Adriatic Pit, OT - Otranto Strait. Direction

:::
The

:::::::
direction

:
of Scirocco is marked with a

::
the

:
red arrow. The image was created by the authors based on EMODnet bathymetry data,

available at https://portal.emodnet-bathymetry.eu/ (last access: 8 June 2022) and Copernicus European Digital Elevation Model, available at

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1-0-and-derived-products/eu-dem-v1.0 (last access: 8 June 2022).

The two distribution tails, however, represent two dynamically separate problems. High sea levels always occur due to

intense pressure lows and corresponding strong winds during cyclonic activity in the basin, while extremely low sea levels35

typically occur through a combination of prolonged periods of high atmospheric pressure and spring tides.

Equilibrium ocean response to slow changes in air pressure is captured by the inverse barometer effect, while the wind

set-up of the sea level occurs through the vertical momentum flux across the air-sea interface. Dominant winds in the Adriatic

basin are southeasterly Scirocco, blowing along the major axis of the basin (see Fig. 1), and the north-easterly cross-basin
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Bora. Strong Scirocco events lead to severe storm surges, excitation of basin seiches (Bajo et al., 2019) and potentially severe40

flooding in the Northern Adriatic. Adriatic along-basin seiches have eigenperiods of 21.5 hours (fundamental eigenmode) and

10.9 hours (first excited eigenmode), see e.g. Medvedev et al. (2020)
:::::::::::::::::::
(Medvedev et al., 2020), and decay on the timescale of

days, mostly due to radiation losses through Otranto (Cerovecki et al., 1997).

::
In

:::
this

:::::
paper

:::
we

::::
will

::::::
adhere

::
to

:::
the

:::::::::::
terminology,

::::::::
proposed

::
in

::::::::::::::::::
(Gregory et al., 2019):

:::
(i)

:::
the

::::
term

::::
sea

::::
level

:::
will

::::::
denote

::::
total

::::::::::
time-varying

:::::
local

:::::
water

:::::
depth

::
at

:::
the

:::
tide

::::::
gauge

::
in

::::::
Koper,

:::
(ii)

:::
the

::::
term

:::
sea

:::::::
surface

:::::
height

:
is
:::
the

::::::
height

::
of

:::
sea

:::::
level

:::::
above

:::
(or45

::::::
below)

:::
the

::::::::
reference

::::::::
ellipsoid,

:::
(iii)

:::
the

:::::
term

:::::
storm

:::::
surge

::::::
denotes

:::
the

::::::::
elevation

::
or

:::::::::
depression

:::
of

:::
the

:::
sea

::::::
surface

::::
with

:::::::
respect

::
to

:::
the

::::::::
predicted

:::
tide

::::::
during

:
a
::::::
storm,

:::
and

::::
(iv)

:::
the

::::
term

:::::
storm

::::
tide

::
is

:::
the

:::
sea

::::::
surface

::::::
height,

:::::::
elevated

::::::
during

:
a
::::::

storm
::
by

::
a

:::::
storm

:::::
surge.

The key difficulty of sea level forecasting in the Adriatic basin arises from high sensitivity of total sea level to the phase

lag between the gravitationally generated tides (independent from meteorological forcing) and meteorologically generated50

basin seiches (independent from gravitational forcing). This sensitivity can translate reliable atmospheric forecasts with very

limited errors in timing and trajectory of the cyclone into substantial errors in the sea level forecast. Probabilistic ensemble

forecasting of sea level envelopes with error variance estimation (Žust et al., 2021; Ferrarin et al., 2020; Bernier and Thompson,

2015; Mel and Lionello, 2014) was therefore explored to tackle this drawback. However, the ensemble sea level forecasting is

numerically expensive, requires specialized expensive hardware and introduces delays in prediction. To avoid the high numeric55

cost of ensemble sea level forecasting, computationally efficient machine-learning-based ensemble models have recently been

explored (Žust et al., 2021). While these models require a substantial amount of training data to learn the complex relations for

reliable predictions, the inference is numerically cheap– for example, .
:::
For

::::::::
example,

::::::::::
single-point

::::::
Koper

:::
sea

::::
level

::::::::::
predictions

::::
from

:
the neural network HIDRA1 ensemble (Žust et al., 2021) is

:::
are

:
a million times faster than the operational numerical

ocean model ensemble based on NEMO engine
::::::::
full-basin

::::::::::
operational

::::::
NEMO

:::::
ocean

:
(Madec, 2016) at Slovenian Environment60

Agency.
::
It

::
is

:::
true

::::
that

::::::::
HIDRA1

:::::::::
computes

:::::::::
prediction

:::
for

:
a
::::::

single
:::::::
variable

::
in
::

a
::::::
single

:::::
point,

:::::
while

::::::
ocean

::::::
models

::::::::
compute

:::::::::::
4-dimensional

::::::::
evolution

:::
of

:
a
:::::
broad

:::
set

::
of

::::::
oceanic

:::::::::
properties

:::
but

::
in

:::
the

:::::::::
operational

:::::::::::
environment.

::::::
Faster

:::::
model

:::::::::
prediction

:::::
times

:::::::
however

:::::
come

::::
with

:::::::::
immediate

::::::
benefits

:::
for

::::::::::
downstream

:::::::
warning

:::::::
issuing

:::
and

::::
civil

::::::
rescue

:::::::::
operations.

Machine learning has thus been explored by several research groups for single-point sea level forecasting. The early ap-

proaches (Imani et al., 2018) were based on classic machine learning models such as support vector machines (Vapnik, 1999)65

with radial basis function kernels. In their work, Pashova and Popova (2011) and Karimi et al. (2013) utilized shallow fully

connected neural networks, but due to simplistic network architectures that did not utilize the numerical atmospheric forecast,

they could only report the desired accuracy for short temporal horizons. Ishida et al. (2020) used long short-term memory

(LSTM) (Hochreiter and Schmidhuber, 1997) networks together with several atmospheric variables to improve one-hour pre-

diction into the future , but did not expand the prediction horizon. Braakmann-Folgmann et al. (2017) predicted further in time70

by applying a combination of LSTMs and convolutional neural networks, but at a very coarse level. Autoregressive neural

networks were considered in (Hieronymus et al., 2019) to increase the temporal resolution and the prediction horizon. Most

recently, a convolutional neural network HIDRA1 (Žust et al., 2021) with a specialized architecture to utilize atmospheric data,

sea surface heights and astronomic tides was proposed. To the best of our knowledge, HIDRA1 is currently the most accurate
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machine-learning sea surface height prediction model with a several days long prediction horizon at an hourly resolution. But75

while HIDRA1 performed favorably in comparison to the NEMO model used in that study, it failed to beat the NEMO setup at

very high and very low ends of sea level distributions. In other words, extreme sea levels (coastal floods on one end and very

low sea levels on the other), which interest us the most, were not yet captured with sufficient reliability and present an open

challenge for machine learning methods.

In this paper we propose HIDRA2, our latest attempt at sea level forecasting using deep learning. In contrast to the previous80

version, HIDRA2 presents a novel architecture with new atmospheric, tidal and SSH feature encoders, as well as a novel feature

fusion and SSH regression block. Additional
:::
An

::::::::
additional

:
conceptual novelty is that HIDRA2 predicts the full SSH rather

than the residual (i.e., the difference between SSH and astronomic tide) as is the case for HIDRA1. The new model extracts

relevant information from different spatial locations in the atmosphere signal and predicts the SSH with a three-days horizon

at an unprecedented accuracy, outperforming HIDRA1 as well as the
:::
two state-of-the-art NEMO model

::::
ocean

:::::::
models.85

The paper is organized as follows. Section 2 introduces sea level and atmospheric model data and performance measures

used in our analysis. Section
:
3 details the new HIDRA2 architecture and the numerical ocean model setup, used as the per-

formance baseline. Section
:
4 reports the analysis of the HIDRA2 architecture ,

:::::::::
(including

::
an

::::::::
extensive

:::::::
ablation

::::::
study)

:
and

provides detailed quantitative as well as qualitative comparison
::::::::::
comparisons with the state-of-the-art

::::::::
numerical

:::::
ocean

::::::
models.

Conclusions and outlook are drawn in Sect. 5.90

2 Training and evaluation datasets

2.1 Sea level training data

Sea surface height (SSH) observations during the period 2006–2018 were retrieved from the Koper Mareographic Station

(45◦ 33′ N, 13◦ 44′ E; see Fig. 2 for location), which is maintained by the Slovenian Environment Agency (ARSO) and is part

of the European Sea Level Network (Pérez Gómez et al., 2022). Observations are obtained in 10-minute intervals, using both a95

float-type sensor and an additional radar sea level sensor, and they undergo subsequent quality control at ARSO (Pérez Gómez

et al., 2022). Hourly data points are extracted to get the signal used in HIDRA2 training and evaluation.

The tidal signal in the sea level is independent of atmospheric processes and can be computed by tidal analysis and prediction

models. The tidal contribution to Koper SSH considered in this study is estimated from hourly instantaneous SSH values in

one-year segments using the UTIDE Tidal Analysis package for Python (Codiga, 2011). The total sea level series is then100

decomposed into a tidal and a residual part, where we define the sea level residual as the arithmetic difference between the

total sea level and the tidal sea level. According to the ARSO operational protocol, the SSH is classified as a flood if it is higher

than Θfloods = 300 cm
:::
300

:
cm. Floods thus constitute 0.43 %

::::::
0.41 %

:
of all training data.

2.2 Atmospheric training data
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Figure 2. HIDRA2 input domain and dataset. The leftmost panel depicts ECMWF grid (white dots) and Koper tide gauge location (red

circle). Three panels on the right depict snapshots of ECMWF atmospheric fields used during training.

The atmospheric
::::::::::
Atmospheric

:
input used for HIDRA2 training was retrieved from the European Centre for Medium-Range105

Weather Forecasts (ECMWF) Ensemble Prediction System (Leutbecher and Palmer, 2007). The ECMWF ensemble forecasts

come as a global atmospheric ensemble of fifty
::
50

:
members with a 0.125◦ arc degree spatial resolution and a 3-hour temporal

resolution. The training dataset used in this study consists of (i) 10-meter winds and (ii) mean sea level air pressure from a

single
::::
fixed

::::::
(42nd) atmospheric ensemble member during the period 2006–2018.

:::::::
Number

::
42

::::
was

::::::
chosen

::::::::
randomly

::
to

::
the

::::::
extent

:::
that

::
it

:
is
::
a
::::::
tribute

::
to

:::
the

:::::::
ultimate

::::::
answer

::::
from

:::
the

::::::::::
Hitchhiker’s

::::::
Guide

::
to

:::
the

::::::
Galaxy

:::::::::::::
(Adams, 1979).

:::
Of

::::::
course,

::::
over

:::::::::
multi-year110

::::
time

:::::::
intervals,

::::
this

:::::::
member

::
is

:::::::::
completely

:::::::::
statistically

:::::::::
equivalent

::
to

:::::::
random

:::
use

::
of

:::
any

:::::
other

:::::::
member

::
of

:::
the

::::::::
ECMWF

::::::::
ensemble

::::::::
prediction

:::::::
system.

::
In

:::::
other

::::::
words,

:::
we

:::::
could

:::
use

::::
any

:::::
other

::::::::
ensemble

:::::::
member

::
–
::
or

::::::
choose

::
a
:::::::
different

:::::::
random

:::::::
member

:::::
each

:::
run

:
–
:::::::
without

::::::::::
substantially

::::::::
affecting

:::
the

::::::
results. All ECMWF input fields were standardized and cropped to the Adriatic basin,

represented by a 57× 73 spatial grid (see Fig. 2). The forecasts were linearly interpolated to hourly timesteps to match the

SSH temporal resolution. To simplify the training protocol, a single atmospheric sequence is constructed by concatenating the115

first 24 hours of daily consecutive ECMWF forecasts into the final atmospheric sequence used in training. HIDRA2 does not

require explicit annotation of whether a location point belongs to land or sea, thus land masks are not generated.

2.3 Evaluation data

The evaluation input dataset for both HIDRAs and NEMO is disjoint from the training dataset
:::::
(years

:::::::::::
2006–2018) and consists

of ECMWF atmospheric predictions and Koper sea levels between 01 June 2019 and 31 December 2020. This period was120

chosen due to challenging conditions and unusually high incidence of floods. We use the ECMWF daily predictions, each

containing fifty
::
50 ensemble members with three-days prediction lead time. The data are standardized and the dimensionality

of the atmospheric data is reduced in the same fashion as described in the Sect. 2.2, except that for inference, the full
:::
(i.e.

::::::::
containing

:::
all

::::::::
ensemble

:::::::::
members) ECMWF three-day forecast is presented to the model. The floods represent 1.2 %

:::::
1.1 % of

the test dataset.125
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2.4 Performance measures

Standard measures, i.e., the mean absolute error (MAE), the root mean square error (RMSE) and the model bias are used to

evaluate prediction performance. To reflect the practical suitability, we additionally calculate the prediction accuracy as a ratio

between the predictions which are within Θacc = 10 cm
::
10 cm from the ground truth and all predictions. The threshold Θacc

::::
This

::
10

:
cm

:::::::
threshold

:
reflects an acceptable deviation from the ground truth and was determined through discussion with the130

operational forecasting service at ARSO. The metrics are calculated globally by considering all prediction points, as well as

separately only on floods to reflect the prediction performance at these critical rare events.

To further probe the flood event prediction capabilities, we make use of the standard performance measures from detection

literature: precision Pr , recall Re and the F1 measure F1 . Firstly, we need to define the flood event and then define the

notion of the event being detected. Both of these have been defined in discussion with operational forecasters at ARSO.135

The anchor (i.e., temporal point) of a flood event is defined as a
:::
the

::::
time

::
of

:::
the

:
local maximum in an SSH sequence above

Θfloods = 300 cm
:::
300

:
cm. If the predicted flood event anchor is within a 3 h margin (before or after) from the nearest ground

truth flood event anchor, it is considered a true positive TP , otherwise it is a false positive FP . A flood event in the ground

truth is considered a false negative FN if there is no matching flood event anchor in the predicted SSH. Like in the accuracy

definition, the tolerance of Θacc = 10 cm
::
10

:
cm is applied, meaning that predictions below Θfloods:::

300
:
cm are also considered140

as TP when they appear in
:::::
within

:
the margin of Θacc::

10
:
cm, and that false positives with ground truth within Θacc ::

10 cm are

ignored. The precision and recall are then calculated as

Pr =
TP

TP +FP
, Re =

TP

TP +FN
, (1)

while the F1 measure that summarizes the detection performance, i.e.,

F1 = 2
Pr ·Re
Pr +Re

, (2)145

is defined as the harmonic mean between precision and recall.

3 Numerical models

3.1 HIDRA2

The proposed HIDRA2 is the second generation of a deep neural model for sea surface height prediction, with HIDRA1 (Žust

et al., 2021) being the first. The new architecture is shown in Fig. 3. The input data is encoded by three encoders: the wind and150

pressure sequences for the past 72 h are processed and merged by the Atmospheric encoder (Sect. 3.1.1), the tidal signal for

the future 72 h is encoded by the Tidal encoder, and the sea surface height measurements coupled with the tide for the past

24 h are encoded by the SSH encoder (Sect. 3.1.2). The outputs of all three encoders are re-calibrated, fused with the past 72 h

SSH and regressed into the final SSH hourly predictions for the future 72 h by the Fusion-regression block (Sect. 3.1.3). The

following subsections
::
A

:::::
single

:::::::::
prediction

:::
run

:::
of

::::::::
HIDRA2

:::::
model

::::::
creates

::
a
:::::::
72-hour

:::
sea

:::::
level

:::::::::
timeseries

:::
for

:::::
Koper

::::::::
location.155

::::::::::
Subsections

:::::
below detail the individual blocks.
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Figure 3. The HIDRA2 architecture. The Atmospheric encoder embeds the wind and pressure sequences with learnable temporal subsam-

pling and pattern prototype matching to extract relevant features from different geographic locations and fuse them temporally into a single

feature embedding. The Tidal and SSH encoders encode the future tide evolution and the past SSH and tide observations, respectively. All

features are re-calibrated, fused with the past 72 h SSH and regressed into the final SSH predictions by the Fusion-regression block. Notation

a:b indicates hourly data points from the interval (a,b], while the prediction point is at the index 0.

3.1.1 Atmospheric encoder

The atmospheric data for the Adriatic basin at a given time-step is represented by a 57×73 spatial grid, i.e., an image. HIDRA2

assumes that coarse spatial resolution of atmospheric data contains enough information to provide satisfactory results, so it first

downsamples the atmospheric data to 9× 12 grid by an average pooling operation.160

The Atmospheric encoder is composed of two stages. In the first stage (shown in Fig. 4), the sequences of the wind and

pressure images are independently processed by their respective encoding blocks, which use the same architecture. The wind

image sequence of 96 h (the past 24 h and future 72 h) is divided into 24 groups of four consecutive hours, which are processed

independently. The spatial and temporal dimension of each group is reduced by a learnable 2D convolutional layer with a 3×3

kernel, stride 2 and 64 output channels1. A ReLU activation and Dropout layers are applied, followed by a prototype matching165

:::::::::::
convolutional

:
layer with 512 learnable 4× 5 prototypes (i.e. convolutional kernelsof input map size ). They extract

:::::::
kernels,

:::::
which

:::
are

::
by

::::
size

:::::
equal

::
to

:::
the

:::::
input,

::::::::
meaning

:::
that

::::::::::
convolution

::
is

:::::::::
essentially

:
a
::::
dot

::::::
product

:::::::
between

:::::
each

:::::
kernel

::::
and

:::
the

:::::
input.

:::
The

::::::::
operation

::::::
yields

:
a
::::::
higher

::::
value

::
if
::::::
kernel

::
is

::::::
similar

::
to

:::
the

:::::
input,

::
so

:::
we

:::::
refer

::
to

:
it
:::
as

:
a
::::::::
prototype

::::::::
matching

:::::
layer.

::
It

:::::::
extracts

features from different spatial positions, thus producing a 512-dimensional feature vector per group, i.e., 24 temporal vectors

of size 512. The same processing architecture is applied to the pressure image sequence to produce 24 vectors of size 512. The170

two outputs are then concatenated to form a mixed set of 24 wind-pressure features of size 1024.

The second stage of the Atmospheric encoder (Fig. 5) extracts the temporal atmospheric features by considering the con-

secutive wind-pressure features extracted by the first stage. A 1D convolutional layer with the kernel temporal dimension size

1Note that the number of output channels is equal to the number of different kernels used in the layer.
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Figure 4. The first stage of the Atmospheric encoder. The input are four consecutive hours with two wind channels (this case), or pressure.

3×3 convolution is applied, followed by a prototype matching layer, outputting a single vector of size 512. Note that 24 independent passes

are performed in parallel for the entire atmospheric input sequence. The variables k and n denote the kernel size and the number of output

channels, respectively.

Figure 5. The second stage of the Atmospheric encoder. Features from all time points and both wind and pressure are processed with a 1D

convolution, followed by two blocks with residual connections. The last convolution reduces feature dimensionality. The variables k and n

denote the kernel size and the number of output channels, respectively.

5 and with 256 output channels2 is applied, entangling the information from temporal segments equivalent to 20 h in length.

Note that because we are using a convolutional layer instead of the fully connected layer, the number of learnable parameters of175

the entire Atmospheric encoder is independent of the forecast horizon. Each of the obtained 20 features3 is then independently

processed by a network containing two blocks of residual connections, each involving 1D convolution with kernel temporal

dimension size 1 (i.e., 1× 256 kernels), a SELU activation (Klambauer et al., 2017) and a dropout layer. Finally, each of the

obtained twenty 256-dimensional features are convolved by 32 1× 256 kernels to reduce their dimensionality to 20× 32.

3.1.2 Tidal and SSH encoders180

Both the tidal and SSH encoders use the same architecture, the only difference is in the size of the encoders’ input. Fig.
:::::
Figure 6

depicts the SSH encoder, which takes as the input the past 72 h SSH measurements and the tide concatenated into a 72× 2

2Note that the sizes of the kernels in the 1D convolutional layer are 1024× 5, but with the first dimension matching the size of the input features, the

convolution displacements are only along the second dimension, hence the 1D convolutional direction implied by the layer’s name.
3The fact that the number of output segments is equal to the 20 h timespan is coincidental.
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Figure 6. The SSH encoder encodes a concatenation of the past SSH and tide by a 1D convolution, followed by two blocks with residual

connections, max-pooling temporal reduction and convolution-based feature reduction. The variables k and n denote the kernel size and the

number of output channels, respectively.

input tensor and processes them in a similar fashion to the second stage of the Atmospheric encoder: the input is processed

by convolution with 256 3× 2 kernels, which is followed by two consecutive residual blocks, a subsampling max-pooling

layer and a final convolutional layer to reduce the dimensionality of features to 17× 16. The Tidal encoder follows the same185

architecture, the only difference is that the input is the tide forecast for the next 72 h.

3.1.3 Fusion-regression block

Atmospheric, Tide and SSH encoders produce temporal features of different importances and sizes. To account for that, the

features are re-calibrated by normalization with means and variances of the features calculated during training, and then denor-

malized with learned weights and biases. The form of normalization follows the batch normalization layer (Ioffe and Szegedy,190

2015), which applies a 0.9 momentum for updating the running means and variances during training. The normalized features

are then concatenated and mixed by a fully connected layer, reducing their final dimension from 1184 to 512 (left part of the

Fig. 7). The obtained 512-dimensional domain context feature vector thus contains rich atmospheric and sea-surface height

information from all time points and all parts of the input domain.

While the encoding and mixing operations extract the domain context, the explicit surface height information might not195

well be retained in the extracted feature vector. To re-inject this information, the obtained domain context feature vector is

concatenated with the timeseries of past observed SSH before passing to the final regression block. The latter is composed of

two fully connected layers with 584 units, SELU activations and residual connections, followed by a fully connected layer with

72 outputs for the 72 h prediction horizon (see Fig. 7).

3.1.4 The network training200

HIDRA2 is trained end-to-end using mean squared error (MSE) loss between the predictions and the ground truth. We train

the model using the AdamW optimizer (Loshchilov and Hutter, 2017) with standard parameter values (learning rate 1e−4, and

the running average damping parameters β1 = 0.9 and β2 = 0.999), and apply the cosine annealing (Loshchilov and Hutter,

9



Figure 7. The Fusion-regression block firstly re-calibrates the features (the C symbol), then concatenated features are passed to a dense layer,

which fuses features and reduces their dimensionality. Undistorted SSH is appended and processed with two residual blocks. The final dense

layer outputs the predictions. The variable n denotes the number of output channels.

2016) learning schedule to gradually reduce the learning rate during training to 1e−5. The training batch size is set to 512 data

samples, and the model is trained for 60 epochs, with 1000 batches in each epoch
::
40

::::::
epochs. Training takes approximately 1.5205

hours on a single computer with NVIDIA Geforce RTX 2080 TI graphics card, while the inference of a single 72 h prediction

for one member of the atmospheric ensemble takes only 4m
:
4 ms.

3.1.5 Summary of differences to HIDRA1

While there are many differences between HIDRA2 and HIDRA1, we summarize only the major conceptual ones for a clearer

exposition of the contributions. HIDRA1 uses wind, pressure and 2 m temperature from ECMWF predictions, while our pre-210

liminary study showed that the new HIDRA2 architecture does not benefit from the temperature, thus only wind and pressure

are considered. HIDRA1 concatenates all atmospheric inputs at a timestep and encodes them by Resnet (He et al., 2016) blocks.

While Resnet excels in computer vision tasks that rely on high-level semantic feature abstraction, we argue that tailored shal-

lower encoders are more appropriate for the extraction of meaningful atmospheric patterns. HIDRA2 thus separately encodes

the wind and pressure by shallow encoders, which apply spatial pattern features extraction, and then mixes the features from the215

two atmospheric variables by extracting temporal patterns. While this allows HIDRA2 to extract multiple spatial patterns in the

data, only a single set of spatial weights is used to fuse the atmospheric features at a given time-step in HIDRA1, consequently

reducing its expressive power. HIDRA1 first averages four-hour atmospheric input data to temporally subsample the input,

while HIDRA2 considers per-hour inputs and learns the appropriate spatio-temporal subsampling to maximize its predictive

power. Another advantage of HIDRA2 is that it encodes the SSH input and mixes it with the atmospheric features early in the220

network to create a domain context feature vector before the final regression, while HIDRA1 considers only the atmospheric

data for the context vector. Finally, HIDRA1 predicts the SSH residual (i.e., the difference between SSH and the astronomic

tide), while HIDRA2 directly predicts the full SSH.

3.2 NEMO ocean model
:::::
Ocean

:::::::
models

10



::
In

:::
this

::::::
section

:::
we

::::::
briefly

:::::::
describe

::::
two

:::::::
different

:::::::::
numerical

:::::
ocean

::::::::
modeling

::::::
setups

::::
used

:::
for

::::::::::::
benchmarking

::::::::
HIDRA2.

::::
The

::::
two225

:::::
setups

:::::
differ

::
in

:::::::
several

::::::::
important

::::::::
respects.

::::
One

::
is

:::::
based

::
on

:::::::
NEMO

:::::
ocean

::::::
engine

:::::::::::::
(Madec, 2016)

:::
and

:::
the

:::::
other

:::
on

::::::::
SCHISM

::::::::::::::::
(Zhang et al., 2016)

::::::::
modeling

:::::::::::
environment.

::::::
NEMO

:::::
setup

::
is

::::::::
described

::
in

::::
more

:::::
detail

::
in

:::::
Sect.

::::
3.2.1

:::
and

::
it
::
is

:
a
::::::::::
forecasting

:::::
setup.

:::::::
SCHISM

:::::
setup

::
is

::::::::
described

::
in

:::::
Sect.

::::
3.2.2

:::
and

::
it
::
is

:
a
:::::::::
reanalysis

::::
setup

::::::::::::::::::
(Toomey et al., 2022).

::::
For

::::::
brevity

:::
we

:::
will

::::
refer

::
to
:::
the

::::
two

:::::
setups

::::::::
presented

::::::
below

:::::
simply

:::
as

::::::
NEMO

::
or

:::::::::
SCHISM.

3.2.1
::::::
NEMO

::::::
ocean

:::::
model230

The Copernicus Marine Environment Monitoring Service (CMEMS) product MEDSEA_ANALYSISFORECAST_PHY_006-

_013 (see Clementi et al. (2021)), was used as a challenging numeric baseline
:::
one

::
of

::::
two

::::::::
numerical

::::::::
baselines

:
for HIDRA2.

This product is based on a Mediterranean basin configuration of the NEMO ocean model (Madec, 2016), and provides daily

ocean forecasts for sea surface height above the geoid, temperature, salinity, circulation and mixed layer depth. The model

domain spans the entire Mediterranean basin with a 1◦/24
::::::
(1/24)◦

:
resolution and has 141 unevenly spaced vertical levels.235

The model solutions are operationally constrained to near-real-time observations using a 3D variational assimilation scheme

of temperature, salinity and along-track satellite sea level anomaly observations. The atmospheric forcing to the CMEMS

model is provided by the ECMWF. Further details about the modeling setup can be found in (Clementi et al., 2021). In this

study, an SSH timeseries at the closest point to Koper tide gauge was extracted from the Mediterranean ocean model forecast.

Henceforth, we will be referring to this modeling product simply as NEMO240

3.2.2
::::::::
SCHISM

:::::
ocean

::::::
model

:
A
:::::::::
barotropic

:::::
setup

::
of

::::::::
SCHISM

:::::
storm

:::::
surge

:::
and

:::::::::
wind-wave

::::::::
modeling

:::::::::::
environment

::::::::::::::::::
(Toomey et al., 2022)

:::
was

::::
used

::
as

::
a
::::::
second

::::::::
numerical

:::::::
baseline

:::
for

::::::::
HIDRA2.

:::
In

:::
this

:::::
study,

::
a
:::::
single

::::
SSH

:::::::::
timeseries

::::
from

::::::::
SCHISM

:::::::::
reanalysis

::::::::::::::::::
(Toomey et al., 2022)

::
at

:::
the

:::::
closest

:::::
point

::
to

:::::
Koper

::::
tide

:::::
gauge

::::
was

:::::::
extracted

::::
and

::::
used

:::
for

::::::::::
comparisons

::
to

:::::::
HIDRA

:::::::
models.

::::::::
SCHISM

:::
runs

:::
on

::
an

:::::::::::
unstructured

::::
mesh

::::::::
covering

::
the

:::::
entire

::::::::::::
Mediterranean

:::::
basin

:::
and

:::::::::
extending

:::
into

:::
the

:::::::
Atlantic

:::::
ocean

::
in

:::
the

::::
west.

:::
Its

:::::
lateral

::::::::
boundary

::
is

:::::
forced

:::
by245

::
an

::::::::::
equilibrium

:::::::
inverted

::::::::
barometer

:::::
ocean

::::::::
response

::
to

::::::::::
atmospheric

::::::::
pressure,

:::::
while

::
its

:::::::
surface

::::::
forcing

:::::::
consists

::
of

:::::
ERA5

:::::::
surface

:::::
fields.

::::::::
SCHISM

::::::::::
unstructured

::::
grid

::::::
allows

:::
for

::::
very

::::
high

::::::
coastal

:::::::::
resolutions,

::::::::
reaching

:::::
some

:::
200

:
m

::::
close

::
to

:::
the

::::
coast.

The NEMO sea level forecast, denoted as ynemo

3.2.3
:::::
Ocean

::::::
model

:::::
offset

::::::::::
adjustment

::::
Both

::::::
NEMO

::::
and

::::::::
SCHISM

:::
sea

::::::
levels,

:::::::
denoted

::::
here

::::::
jointly

:::
as

::::::
ymodel, at any given location reflects

:::::
reflect

:
departures from250

the local geoid and hence does
::
do

:
not represent the absolute local depth of the water. The latter is furthermore also driven by

low-frequency processes on the scales of many weeks or months which are often difficult to capture for regional basin models

on synoptic timescales. The NEMO SSH predictions are therefore
::::
Prior

::
to

:::::::::::::
benchmarking,

:::::
model

::::::
results

::::::::
therefore

::::
have

::
to

:::
be

offset-adjusted to obtain the Koper location total sea level
::::
total

:::
sea

:::::
levels

:
(required by port authorities and civil rescue) as
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follows. A time-averaged NEMO
:::::
model

:::::::
(NEMO

::
or

:::::::::
SCHISM) SSH offset ϵn on the n-th hour of the forecast day is defined as255

ϵn = n−1
n∑

k=1

[
ynemomodel

::::
(tk)− ykp(tk)

]
, (3)

where ykp(t) is the observed Koper sea level. The

::::
Each

::::
day,

:::
the value of ϵ12 is then subtracted from ynemo(t)

::::::::
subtracted

::::
from

::::::::
ymodel(t)

:
to ensure a zero bias for the first 12 h

of the forecast
:::::
model day. Note that, despite this correction

:::::::::
adjustment, the complete forecast

:::::::
72-hour

:::::::
modeled time-series still

exhibits
:::
may

::::
still

::::::
exhibit

:
a non-zero bias. A similar bias correction

::::::
Similar

:::::
offset

:::::::::
adjustment

:
is not required in

:::
for HIDRAs,260

since they predict the full SSH and learn to appropriately adjust for the bias
::::
offset

:
automatically.

4 Results and discussion

4.1 HIDRA2 architecture analysis

As noted in Sect. 2, HIDRA2 was trained on the period 2006–2018 and evaluated on the period between 01 June 2019 and

31 December 2020. For evaluation, a single prediction is obtained by averaging predictions over all fifty
::
50 ECMWF ensem-265

ble members. In the following we analyze the architectural choices of HIDRA2. The prediction of full SSH is justified in

Sect. 4.1.1, while Sect. 4.1.2 reports an ablation study
:::
that

:::::
aims

::
to

::::::::
determine

:::
the

::::
role

::
of

:::::::
specific

::::::::
encoders

:::
and

:::::
types

::
of

:::::
input

:::
data. The results of all experiments are collected in Table 1.

4.1.1 Predicting the full SSH vs
:::
the

:
residual

A valid hypothesis can be made that predicting the residual (i.e., the difference between the full SSH and the tide) might be270

more beneficial than predicting the full SSH, since the network parameters might be better utilized by focusing only on the part

of SSH not affected by the astronomic tide. In fact, HIDRA1 (Žust et al., 2021) does exactly this .

:
–
::
it
:::::::
accepts

:::
and

::::::::
forecasts

:::
the

::::::::
residual.

:
To explore this hypothesis, HIDRA2 was modified to predict only the residual

(HIDRA2res), by replacing the SSH input in the SSH encoder by
:::
with

:
the residual, as well as replacing the SSH with the

residual in the Fusion-regression block. Results in Table 1 indicate a slight overall performance increase
:::::
similar

:::::::
overall275

::::::::::
performance

:
when only the residuals are considered in HIDRA2. However, considering only storm surges

::::::
stormy

::::::
periods, we

observe a substantial increase of the prediction error (+12.7 %
::::::::
+17.4 % MAE). This means that full SSH prediction is very

beneficial for predicting floods, while incurring only a small drop in the overall performance. This is an acceptable trade-off

that justifies the full SSH prediction

:
A
:::::::
possible

::::::::::
explanation

::
of

::::
this

::::::::
somewhat

:::::::::
surprising

:::::::
behavior

:::::
could

::::::
perhaps

:::
be

::::::
related

::
to

::::::::
nonlinear

:::::::::
interactions

::::::::
between

::::
tides280

:::
and

:::::
storm

::::::
surges:

::::
both

::::
tides

::::
and

:::::
storm

::::::
surges

::::::
modify

::::
local

:::::
water

:::::
depth

:::::
which

:::::::
impacts

::::
their

::::
own

:::::::::
barotropic

:::::
wave

::::::::::
propagation

:::::
speeds

::::
and

::::::::::
topographic

::::::::::::
amplifications,

:::::
which

:::::::::
ultimately

:::::
define

:::
the

:::::
onset

::::
time

:::
and

:::
the

:::::::::
amplitude

::
of

:::
any

::::::
coastal

:::::
flood

::
in

::::::
Koper.

::::
Such

::::::::::
interactions

:::
are

::::::::::
non-existent

::::::
during

::::
calm

:::::::::
conditions

:::
but

::::
they

:::
do

::::
play

:
a
::::
role

::::::
during

::::::
stormy

::::::
periods

::::::::::::::::::
(Ferrarin et al., 2022)

:
.
::::::
Perhaps

::::::::
HIDRA2

::
is
::::
able

::
to
:::::::::

anticipate
::::::
certain

::::::
aspects

:::
of

::::::::
nonlinear

::::::::
tide-surge

:::::::::
couplings.

::::
This

::::::::::
explanation

::
is
::::
also

:::::::::
consistent

12



Table 1. Performance of ablated HIDRA2 designs evaluated over all sea level bins (the Overall columns) and only on storm surge
:::
tide

events (Storm surge events
::::
Storm

:::
tide

:::::
events column).

:::
The

::::::::
evaluation

:::::
period

::::
spans

::
01

::::
June

:::::::
2019–31

::::::::
December

:::::
2020,

::::
which

::
is
:::::::::
completely

:::::::::
independent

::::
from

::
the

::::::
training

::::
data.

::::
The

::
top

:::
row

:::::
shows

::::::::::
performance

::
of

:::::::
HIDRA2

::::::::
predicting

::
the

:::::::
residual,

:::
next

::::
three

::::
rows

::::
show

:::::::::::
performances

:
of
:::::::

encoder
:::::::
ablations,

:::
the

:::::::
following

::::
three

::::
rows

::::::::
correspond

::
to

::::
SSH

::::
input

:::::::
ablations

:::
and

:::::::::::
re-calibration.

:::
The

:::::
bottom

::::
row

:::::::::
corresponds

:
to
:::
the

::::
final

:::::
version

::
of

::::::::
HIDRA2.

Overall Storm tide events

MAE RMSE Bias Acc MAE RMSE Bias Acc Re Pr F1

modification [cm] [cm] [cm] [%] [cm] [cm] [cm] [%] [%] [%] [%]

HIDRA2res 4.10
:::
4.11 5.81

:::
5.84 -0.43

::::
-0.69

:
92.89

::::
92.77 10.94

::::
11.47 15.29

::::
15.52 -8.36

::::
-9.13 59.57

::::
57.20 85.06

::::
76.16 96.32

::::
91.27 90.34

::::
83.03

HIDRA2\atmE 7.54 11.40 -0.67
::::
-0.53

:
75.55

::::
75.75 27.81

::::
27.86 34.25

::::
34.28 -25.44

:::::
-26.21 23.44

::::
23.01 45.45

::::
41.72 89.74

::::
91.30 60.34

::::
57.27

HIDRA2\tidE 4.62
:::
4.60 6.37 -0.25

::::
-0.02 90.43

::::
90.66 10.86

::::
10.57 14.76

::::
14.82 -8.18

::::
-7.74 57.42

::::
61.94 83.12

::::
78.81 94.81

::::
92.25 88.58

::::
85.00

HIDRA2\sshE 4.21
:::
4.24 5.90

:::
5.97 0.10

::::
-0.37

:
92.49

::::
92.45 10.47

::::
10.80 14.45

::::
15.01 -7.66

::::
-8.09 59.57

::::
61.08 85.71

::::
80.13 96.35

::::
93.80 90.72

::::
86.43

HIDRA2\tidI 4.22
:::
4.24 5.93

:::
5.96 -0.25

::::
-0.47

:
92.36

::::
92.28 10.62

::::
10.65 14.48

::::
14.74 -7.92

::::
-7.63 59.14

::::
58.92 84.42

::::
80.13 96.30

::::
93.08 89.97

::::
86.12

HIDRA2\sshI 4.21
:::
4.23 5.89

:::
5.93 -0.17

::::
-0.36

:
92.56

::::
92.59 10.38

::::
11.04 14.21

::::
15.14 -7.70

::::
-7.99 60.00

::::
58.49 86.36

::::
82.78 96.38

::::
91.24 91.10

::::
86.81

HIDRA2\norm 4.15
:::
4.14 5.83

:::
5.85 0.19

::::
-0.03

:
92.72 10.11

::::
10.38 14.10

::::
14.35 -7.37

::::
-7.48 61.29

::::
60.43 86.36

::::
81.46 95.68

::::
92.48 90.78

::::
86.62

HIDRA2 4.16
:::
4.12 5.83

:::
5.82 0.36

:::
0.21

:
92.78

::::
92.89 9.71

:::
9.77 13.80

::::
14.07 -6.72

:::
-5.99 63.44

::::
64.52 89.61

::::
84.11 95.83

::::
91.37 92.62

::::
87.59

::::
with

:::
the

::::
fact,

:::::::
detailed

::
in

::::::
Section

:::::
4.1.2,

::::
that

::::::
among

::
all

::::::::::::::
atmospherically

:::::
driven

:::::::
models

:::
the

:::::::
de-tided

::::::
version

::::::::::
HIDRA2res::::::

shows285

::
the

:::::
worst

:::::::::::
performance

::::::
during

:::::
storm

:::
tide

::::::
events,

:::::
while

:::::::
versions

::::::::::::
incorporating

::::
tides

:::::
come

::::::
closest

::
to

::::::::
HIDRA2

:::
(see

::::
Fig.

::
8).

4.1.2 Ablation study:
:::
the

:::::::::::
importance

::
of

::::::::
encoders

::::
and

:::::
input

::::
data

Three HIDRA2 modifications were considered
::
An

:::::::
ablation

:::::
study

::::
was

:::::::
executed

:
to evaluate the importance of individual en-

coders : HIDRA2 without the Atmospheric encoder (HIDRA2\atmE), HIDRA2 without the Tidal encoder (
:::
and

:::::
input

::::
data

:::::
types.

::
To

:::::::
estimate

:::::::
encoder

:::::::::::
importances

:::
we

:::::::
removed

::::
each

:::
of

:::
the

::::::::
encoders

::
in

:
a
:::::::
separate

::::::::::
experiment

::::
(and

::::::::
withheld

::
all

:::
of

::::
their

:::::
input290

::::
data,

:::
see

::::
Fig.

::
3)

::::
and

:::::::
retrained

::::
thus

::::::::
obtained

::::::
ablated

::::::::
network.

::::::::
Ablation

:::::::
training

:::
and

:::::::::
evaluation

:::::
were

:::::::::
conducted

::
on

::::::::
identical

::::::
datasets

:::
as

::::
with HIDRA2\tidE), :

:::::
years

::::::::::
2006–2018

:::::::::
represented

:::
the

:::::::
training

:::
set

::::
and

:::
the

::::
time

:::::::
window

:::::::
between

:::
01

::::
June

:::::
2019

and
::
31

:::::::::
December

::::
2020

::::::
served

::
as

:::
an

::::::::::
independent

::::::::
validation

:::
set.

:::::
Note

:::
that

:::::::::
regardless

::
of

:::
the

::::::
encoder

:::::
input,

:
HIDRA2 without the

SSH encoder (HIDRA2\sshE). The results in the Table 1 show that MAE increases with each modification, particularly during

storm surge events. Removal of the Atmospheric encoder results in the most significant performance drop, indicating that295

the atmospheric features convey by far the most relevant predictive information. A significant performance drop is observed

as well when removing the Tidal encoder. The SSH encoder has the smallest impact, yet still importantly contributes to the

prediction accuracy during storm surge events
:::::
always

:::::::
receives

::::::::::
unencoded

::::
SSH

::::
data

:::::::
directly

::::
into

::
its

:::::::::::::::
fusion-regression

:::::
block

::::::
(bottom

::::::::
dataflow

::::::
branch

::
in

:::
Fig.

:::
3).

Note that two types of
:::
The

:::::::::
following

::::::
encoder

::::::::
ablations

:::::
were

:::::::::
performed:300
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1.
:::::::
Removal

::
of

:::
the

:::::::::::
Atmospheric

:::::::
encoder

::::::::::::::
(HIDRA2\atmE).

::::::::
Network

::::::::::::
HIDRA2\atmE::::::::

obtained
::
no

::::::::::
atmospheric

:::::
input

::::
data

:::
but

:
it
:::
did

::::::
receive

:::::
SSH

:::
and

::::
tidal

::::
data.

:

2.
:::::::
Removal

::
of

::::
the

::::
Tidal

:::::::
encoder

::::::::::::::
(HIDRA2\tidE).

::::::::
Network

::::::::::::
HIDRA2\tidE :::::::

obtained
:::
no

::::
tidal

:::::
input

::::
data

:::
for

::::
tidal

::::::::
encoding

:::
but

:
it
:::
did

::::::
receive

:::::
SSH

:::
and

::::
tidal

::::
data

:::::::
through

::
the

:::::
SSH

::::::
encoder

::::
and

::::::::::
atmospheric

::::
data

:::::::
through

:::
the

::::::::::
Atmospheric

::::::::
encoder.

3.
:::::::
Removal

:::
of

:::
the

::::
SSH

:::::::
encoder

::::::::::::::
(HIDRA2\sshE).

::::::::
Network

:::::::::::::
HIDRA2\sshE :::::::

received
:::::::::::
atmospheric

:::
and

:::::
tidal

::::
data

:::::::
through305

::::::::::
Atmospheric

::::
and

::::
Tidal

::::::::
encoders,

:::
but

::
it
:::
did

:::
not

::::::
receive

::::
any

::::
SSH

:::::
input

::
via

:::
the

:::::
SSH

:::::::
encoder.

:::
The

::::::
results

::
in

:::
the

:::::
Table

:
1
:::::
show

:::
that

:::::
MAE

::::::::
increases

::::
with

::::
each

:::::::::::
modification,

:::::::::
particularly

::::::
during

:::::
storm

::::::
events.

::::::::
Removal

::
of

:::
the

::::::::::
Atmospheric

:::::::
encoder

::::::
results

::
in

:::
the

:::::
most

::::::::
significant

:::::::::::
performance

:::::
drop,

::::::::
indicating

::::
that

:::
the

::::::::::
atmospheric

:::::::
features

::::::
convey

:::
by

:::
far

::
the

:::::
most

:::::::
relevant

::::::::
predictive

::::::::::
information.

::
A
:::::::::
significant

:::::::::::
performance

::::
drop

::
is

:::::::
observed

::
as

::::
well

:::::
when

::::::::
removing

:::
the

:::::
Tidal

:::::::
encoder.

:::
The

::::
SSH

:::::::
encoder

:::
has

:::
the

::::::::
smallest

::::::
impact

::
on

::::::
overall

:::::::::::
performance,

:::
yet

::::
still

::::::::::
importantly

:::::::::
contributes

::
to
:::
the

:::::::::
prediction

::::::::
accuracy310

:::::
during

:::::::
storms.

:::
Two

::::::
further

::::::::
ablations

:::::
were

::::
then

:::::::::
performed

::::::::
regarding

:::
the

::::
data

:::::
types

::
of

:::
the

:::
sea

::::
level

:
input data (the SSH and the tide)

:
,
:::
see

:::
Fig.

::
3)

::::::
which are considered in the SSH encoder. Further

::
We

:::::::
retained

:
HIDRA2 modifications were thus explored to evaluate

their importance: a version with
::::
with

::
all

:::::
three

::
of

::
its

::::::::
encoders

:::
but

:::::::
provided

:::
the

::::
SSH

:::::::
encoder

::::
with

:::::::
limited

:::
sea

::::
level

:::::
input:

:

1.
:::::::
Removal

:::
of the tidal input omitted

:
to

:::
the

:::::
SSH

:::::::
encoder

:
(HIDRA2\tidI)and a version without

:
.
::
In

::::
this

::::
case

:::
the

:::::
SSH315

::::::
encoder

::::::::
received

::
as

::::
input

::::
only

::::
total

:::
sea

:::::
level.

:

2.
:::::::
Removal

::
of

:
the SSH input (HIDRA2\sshI). ::

In
:::
this

::::
case

:::
the

::::
SSH

:::::::
encoder

:::::::
received

::
as

:::::
input

::::
only

::::
tidal

:::
sea

:::::
level.

The results in Table 1 show that the removal of each leads to a consistent but moderate increase of the errors overall.

However, the errors increase substantially during storm surge events
::::::
storms, indicating the importance of using both types of

inputs.320

We observe a similar situation when removing the atmospheric and SSH/tide feature re-calibration in the Fusion-regression

block (HIDRA2\norm). Results in Table 1 indicate that feature normalization does not affect performance in normal conditions,

but it substantially contributes to the prediction accuracy on storm surges
:
of

:::::
storm

:::::
tides. A closer inspection of HIDRA2\norm

showed that the scale of the tidal features is four times larger than the scale of the atmospheric features. Inclusion of the re-

calibration blocks, however, remedies this by making the scales of all features (atmospheric, SSH and tidal) approximately the325

same.

:::::
Figure

::
8

::::::
depicts

:::::::::::
performances

::
of
:::::::

ablated
::::::::
HIDRA2

:::::::
versions

:::::
across

:::
all

:::
sea

::::
level

:::::
bins.

::::
Even

::::::
though

:::::
most

:::::
global

:::::::::::
performance

::::::
metrics

::
of

::::::::
HIDRA2

::::::::
(depicted

:::
in

:::::
Table

::
1)

:::
are

:::
the

:::::
best,

:::
Fig.

::
8
::::::::
indicates

:::
that

:::
for

::::
low

:::
sea

::::::
levels,

::::::::::
HIDRA2res:::::::

exhibits
:::::::
slightly

:::::
lower

:::::
errors.

::::::::
HIDRA2,

::::::::
however,

::::::::
performs

:::::::::::
substantially

:::::
better

::
in

:::
the

:::::::
flooding

::::::
regime

:::::
above

:::
300

:
cm.

::::
This

::::::
further

:::::::::::
substantiates

:::
our

::::
final

:::::
choice

:::
of

:::
the

:::::::
HIDRA2

:::::::::::
architecture.330
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Figure 8.
::::
Mean

:::::::
Absolute

:::::
Error

:::::
(MAE)

::
of
::::::
ablated

:::::::
HIDRA2

::::::
designs

:::::::
evaluated

::::
over

::
all

:::
sea

::::
level

::::
bins.

::::::
Vertical

:::
red

:::
line

:::::::
indicates

::
the

:::::::
flooding

:::::::
threshold

::
in

::::
Piran.

::::::::::
Performance

::
of

::
all

::::::
models

:::
was

:::::::
evaluated

::
on

:
a
:::
01

:::
June

:::::::
2019–31

::::::::
December

::::
2020

::::::
dataset,

::::
which

::
is
:::::::::
completely

:::::::::
independent

:::
from

:::
the

::::::
training

::::
data.

4.2 Comparison with the state-of-the-art
:::::::::
numerical

:::::
ocean

:::::::
models

HIDRA2 is compared to
:::
with

:
HIDRA1 (Žust et al., 2021), which is currently the state-of-the-art in machine-learning SSH pre-

diction , and to NEMO (Madec, 2016) , which presents a
::::::::::::::::::::
(Sonnewald et al., 2021),

::::
and

::::
with state-of-the-art geophysics-based

SSH prediction method
::::::::
numerical

::::::
ocean

::::::::
modeling

::::::
setups

:::::::
NEMO

:::::::::::::
(Madec, 2016)

:::
and

::::::::
SCHISM

::::::::::::::::::
(Toomey et al., 2022). The

methods are evaluated
::
on

:::
an

::::::::::
independent

::::
time

:::::::
window

:::
(01

:::::
June

:::::::
2019–30

:::::::::
December

:::::
2020)

::::
and with respect to different SSH335

values in
:::
(see Sect. 4.2.1), Sect. 4.2.2 reports performance with respect to the lead times, while spectral analysis is reported in

Sect. 4.2.3. The last two sections discuss performance on historical storm surge events (Sect. 4.2.4) and the forecast spectral

decomposition of these events (Sect. 4.2.5).

4.2.1 SSH forecast performance

The overall prediction performance and performance restricted to storm surge events are shown in Table 2. HIDRA2 outper-340

forms both HIDRA1and NEMO
:
,
::::::
NEMO

::
as

::::
well

::
as

::::::::
SCHISM overall as well as on storm surges

:::::
during

::::::
storms, yielding a lower

MAE/RMSE and higher accuracy. While HIDRA1 achieves a lower bias, its RMSE/MAE are substantially higher – HIDRA2

outperforms HIDRA1 in MAE by 13.9 %
::::::
12.7 % overall, and by 25.1 % on the storm surges

::::::
24.6 %

::::::
during

:::
the

:::::
storm

::::
tide

:::::
events. NEMO achieves the highest precision of flood detection (Pr = 100 %), meaning that all detected floods are true posi-

tives. However, this comes at a cost of missing several floods
::
But

:::::
while

:::
all

::::::::
NEMO’s

::::::::
predicted

:::::
floods

:::::
were

::::
true,

:::
not

::
all

::::::
floods345

::::
were

::::::::
predicted, resulting in a

::
its low recall of Re= 68.83 %

:::::::::::
Re= 63.58 %. A similar situation is observed for HIDRA1. The

recalls for these two methods (NEMO: 68.83 %
:::::::
63.58 % and HIDRA1: 79.22 %

:::::::
74.17 %) are substantially lower than that of

HIDRA2 (Re= 95.83 %
::::::::::::
Re= 84.11 %), which detects nearly all of the floods with few false positives

:::::
many

::::
more

::::::
floods

::::
with
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Table 2. Performance of HIDRA1, HIDRA2and
:
, NEMO

:::
and

:::::::
SCHISM over all sea level bins (the Overall columns) and only during storm

surge
:::
tide events (Storm surge events

::::
Storm

:::
tide

:::::
events columns). Performance of using the tide as SSH prediction

:::
Tidal

::::::
forecast

:
is included

for reference.
::::::::
Evaluation

:::::
period

::::
spans

:::
01

:::
June

:::::::
2019–31

::::::::
December

::::
2020,

:::::
which

::
is

::::::::
completely

::::::::::
independent

::::
from

::
the

::::::
training

::::
data.

Overall Storm tide events

MAE RMSE Bias Acc MAE RMSE Bias Acc Re Pr F1

[cm] [cm] [cm] [%] [cm] [cm] [cm] [%] [%] [%] [%]

Tide 13.82 18.86 -5.13 47.45 55.75 59.45 -55.75 0.00 0.00 / /

NEMO 6.54 8.52 -1.23 79.14 13.03 17.09 -11.24 49.68 68.83
::::
63.58 100.00 81.54

::::
77.73

:::::::
SCHISM

:::
5.57

:::
7.50

:::
0.20

::::
85.06

::::
11.04

::::
14.70

::::
-6.19

::::
57.63

::::
78.81

::::
89.47

::::
83.80

HIDRA1 4.83
:::
4.72 6.87

:::
6.73 0.09

::::
-0.26 89.83

::::
90.04 12.97

::::
12.95 18.02

::::
17.65 -10.53

:::::
-10.66 54.62

::::
53.76 79.22

::::
74.17 99.19

::::
94.12 88.09

::::
82.96

HIDRA2 4.16
:::
4.12 5.83

:::
5.82 0.36

::::
0.21 92.78

::::
92.89 9.71

:::
9.77 13.80

::::
14.07 -6.72

:::
-5.99 63.44

::::
64.52 89.61

::::
84.11 95.83

::::
91.37 92.62

::::
87.59

:::::
fewer

::::
false

::::::::
negatives. The excellent tradeoff

:::::::
trade-off between the precision and recall of HIDRA2 is reflected in its F1 score

(92.62 %
:::::::
87.59 %), which is substantially higher than that of NEMO (81.45 %)and

::::::::
77.73 %),

:
HIDRA1 (88.09 %

:::::::
82.96 %)

:::
or350

::
the

::::
next

::::
best

::::::::
SCHISM

::::::::
(83.80 %).

For detailed analysis, we visualize the MAE values of the tested methods with respect to the sea level heights in Figure
:::
Fig. 9.

On storm surges, NEMO outperforms HIDRA1, while HIDRA2 consistently outperforms both HIDRA1 and NEMO by up

to several . In the low sea level distribution tail,
:::::
shows

:::
the

::::::
lowest

:::::
errors

::
at
:::
all

:::
sea

:::::
level

::::
bins.

:::::::
During

:::::
storm

:::::
tides,

:::::::
NEMO

::::::::::
outperforms HIDRA1exhibits a lower MAE (by 4 ) than NEMO , while HIDRA2 again outperforms

:::
and

::::::::
SCHISM

::::::::::
outperform355

both HIDRA1 and NEMO by 2 and 7
:::::
several cm, respectively. The solid .

:::::
Solid HIDRA2 performance in the low end of the sea

level distribution is particularly important to note because of its potentially high significance to cargo
:::::
marine

::::::
traffic scheduling

in the very shallow seas surrounding the Port of Koper, which is currently restricted only to the
:
to
:

periods of high tides. In

summary, HIDRA2 outperforms both
::
all

:
state-of-the-art methods for all sea level heights, thus displaying its remarkable a

:::::
solid

prediction skill in moderate as well as extreme values of the sea surface height.360

4.2.2 Performance with regard to forecast lead time

We next analyzed how the prediction lead time affects the prediction errors. Fig.
:::::
Figure 10 shows the MAE scores with respect

to the prediction lead time for the values between 1 h and 72 h. The MAE of the prediction gradually increases with the

lead time for all the tested methods. While overall being a solid performer with MAE well below 10 cm, NEMO exhibits

the highest MAE and also the highest MAE variance. Clear signals are observed with 12 h and 24 h periods in the NEMO365

MAE. Since NEMO includes tides, we suspect this periodicity stems mostly from the errors in either amplitude or phase of the

tidal part of the NEMO sea level signal but further research would be necessary to properly substantiate this claim.
::::::::
SCHISM

:::::
shows

:::::
better

:::::::::::
performance

::::::
(lower

:::::
MAE)

::::
than

:::::::
NEMO

:::
but

:::::::
exhibits

::::::
similar

::::::::::
periodicity

::
in

::::::
errors. Interestingly, while HIDRA2

consistently outperforms HIDRA1 for all lead times, the shapes of the MAE curves show resemblance. While the 12 h period
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Figure 9. HIDRAand
:
, NEMO

:::
and

:::::::
SCHISM performances with regard to sea level bins (grey histogram in the bottom layer). The coastal

flood threshold Θfloods is marked with a vertical red line.
:::::::::

Performance
::
of

::
all

::::::
models

:::
was

:::::::
evaluated

:::
on

:
a
::
01

::::
June

:::::::
2019–31

::::::::
December

::::
2020

:::::
dataset,

:::::
which

::
is

::::::::
completely

::::::::::
independent

::::
from

::
the

::::::
training

::::
data.

Figure 10. MAE score of HIDRAand
:
, NEMO

::
and

:::::::
SCHISM

:
models with regard to prediction lead time (between 1 h and 72 h).

:::::::::
Performance

:
of
:::

all
:::::
models

::::
was

:::::::
evaluated

::
on

:
a
:::
01

:::
June

:::::::
2019–31

::::::::
December

::::
2020

::::::
dataset,

:::::
which

:
is
:::::::::
completely

:::::::::
independent

::::
from

:::
the

::::::
training

::::
data.

does not seem to be present in the MAE curves of these two models, their 24 h period is clearly present. Further research370

would, however, be required to substantiate and explain the observed MAE curve behavior.
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4.2.3 Spectral analysis

To investigate the spectral properties of the modeled and observed SSH timeseries, spectral densities were computed on
:::
we

::::::::
computed

:::::::
spectral

:::::::
densities

::
of

:
the HIDRA2, HIDRA1and NEMO ,

:::::::
NEMO

:::
and

::::::::
SCHISM

:
predictions. Unless otherwise stated,

all time-series analyzed in this section were obtained by concatenating (in time) the first 24 hours of each daily HIDRA2,375

HIDRA1 and NEMO three-day forecast. Spectral densities (shown in Fig. 11) were then computed as absolute values of a 1D

Fast Fourier Transform of the respective series over a fixed frequency domain of (1 h)−1 − (72 h)−1.

Figure 11. Spectral density of SSH timeseries from
::
the

:
Koper tide gauge, HIDRA2, HIDRA1 and

:::::::
compared

::::
with

:
NEMO

:::
(left

:::::
panel)

:::
and

:::::::
SCHISM

::::
(right

:::::
panel), during

:::::::::
independent

::::::::::::
cross-validation time window between 01 June 2019 and 31 December 2020. Sharp peaks at

(roughly) 12 and 24 hours indicate the presence of tides, while the two dashed vertical red lines mark the periods of the two lowest Adriatic

sea level eigenmodes.
:::
For

:::::
clarity,

::
all

::::::
plotted

::::::
spectral

::::::
densities

::::
were

::::::
filtered

::::
using

::
a

:::::::
3rd-order

::::::::::::
Savitzky-Golay

::::::
24-point

::::::
window

::::
filter.

Figure 11 indicates that all methods adequately represent the tidal dynamics in Koper. The energy content around the two

lowest basin eigenmodes is, however, more discriminatory: NEMO
::::
(Fig.

:::
11,

:::
left

::::::
panel)

:
clearly underestimates the spectral

density both around the ground state seiche (at 21.5 h period) and around the first excited state (10.9 h period). Similar380

behavior was noticed in our previous work with an independent configuration of NEMO (Žust et al., 2021).
::::::::
SCHISM,

:::
on

:::
the

::::
other

:::::
hand,

::::::::::::
overestimates

:::
the

::::::
energy

::
in

:::
the

::::::
ground

:::::
state

:::::
seiche

:::::
band,

::::
but

:::::::::
reproduces

:::
the

::::
first

::::::
excited

::::
state

::::::
energy

:::::
very

::::
well

::::
(Fig.

:::
11,

::::
right

::::::
panel).

:
HIDRA1 underestimates the energy of this part of the signal as well, but nevertheless does a bit better

by packing more energy density in these two bands. Predictions of HIDRA2 are clearly the closest to the observations in both

bands – this model does not underestimate the spectral density around the 21.5 peak at all and it is the only method that exhibits385

a clear peak at the
::
the

:::::::
ground

::::
state

:::::
seiche

:::::
band,

:::
but

:::::
come

:::::
close

::::::
second

::
to

::::::::
SCHISM

::::::
around

:::
the 10.9 h period.
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It appears that HIDRA2 is capable of generating a seiche-like behavior in its predictions. Spectral density, however, discards

the temporal component of the signal, and adequate spectral density in the (21.5 h)−1 and (10.9 h)−1 frequency bands

says little about whether Adriatic seiches are generated by HIDRA2 at the appropriate times, namely during the storm surge

events
:::::
storms. To inspect this aspect of HIDRA

::::::::
HIDRA2 behavior, we now proceed to analyze the predictions during several390

historic storm surges
:::
tides.

4.2.4 Performance during historic storm surge events
:::::
storms
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Figure 12.
:::::::::
Comparison

::
of
:::::::
HIDRA2

::::::::
ensemble

:::
(top

:::::
row),

:::::::
HIDRA1

:::::::
ensemble

::::::
(second

:::::
row),

::::::
NEMO

::::::
forecast

:::
run

::::
(third

::::
row)

:::
and

::::::::
SCHISM

:::::::
reanalysis

:::
run

::::::
(fourth

:::
row)

::::::
during

::
the

::::::::
November

:::::
2019

::::::
flooding

:::::::
sequence

::
in

:::
the

:::::::
Northern

:::::::
Adriatic.

::::::::::::
Semi-transparent

::::::
regions

::
in

:::
the

:::
top

:::
two

::::
plots

::::
depict

:::
the

:::::::::::::::
minimum-maximum

:::::::
envelope

::
of

::::
each

::::::
HIDRA

::::::::
ensemble.

Historic Adriatic storm surge
:::
tide

:
events are used to qualitatively compare the HIDRA2 performance with the state-of-the-

art. Storm surges
:::
tides

:
in question occurred during November and December 2019 and were of historic proportions by any

criterion. The Slovenian coast was flooded over ten times in a single month and sea levels in Venice were among the highest395

ever observed. Furthermore, the events in November 2019 turned out to be difficult to model due to the formation of a transient

and very localized low pressure over the Gulf of Venice, which went unresolved in most models (Cavaleri et al., 2020). These
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events, along with those from December 2019, therefore represent a highly challenging benchmark for any atmospheric model

and even more for any downstream SSH prediction method.
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Figure 13. Comparison of HIDRA2 ensemble (top), HIDRA1 ensemble (middle) and NEMO deterministic run (bottom) during the

November 2019 flooding sequence in the Northern Adriatic. Semi-transparent regions in the top two plots depict the minimum-maximum

envelope of each HIDRA ensemble
::::
Same

::
as
:::
Fig.

::
12

:::
but

::
for

::::::::
December

:::::
2019.

Figure 12 shows HIDRA2, HIDRA1and NEMO ,
::::::
NEMO

::::
and

::::::::
SCHISM

:
SSH forecasts for the Adriatic storm surge

:::
tide

:
of400

November 2019. None of the models successfully predicted the first and highest sea level peak on 12 November 2019, but

HIDRA2and NEMO both
:
,
::::::
NEMO

::::
and

::::::::
SCHISM

::
all

:
give a better forecast than HIDRA1

:::::
whose

:::::
mean

:::
sea

::::
level

::::
does

:::
not

:::::
even

::::::
surpass

:::
the

:::::::
flooding

::::::::
threshold. As noted in Cavaleri et al. (2020), this peak was difficult to forecast due to the delicate timing

between the peak of winds and the peak of the full moon tide, combined with the formation of an unresolved local pressure

disturbance over the west coast of Northern Adriatic. Relative timing of these influences turned out to be a sine qua non for405

a successful prediction – neither the winds nor pressure were, in themselves, in any way extraordinary. It is further shown in

Cavaleri et al. (2020) that this particular storm surge
:::
tide could have been up to 25 cm higher had this scenario evolved 12

hours earlier when tidal peaks were themselves higher.

The peak on 13 November is slightly better predicted by
::::::::
maximum

:::::::
members

:::
of both HIDRAs than by NEMO

:
or

::::::::
SCHISM,

with HIDRA2 exhibiting a somewhat lower forecast spread than HIDRA1. Apart from this peak, all methods
:::::
models

:
captured410

the sea level variability quite well, which is in itself an implicit testament to the high skills of ECMWF atmospheric products.
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Figure 14. Comparison of HIDRA2 ensemble
::::

spread
::
at
::::::
forecast

::::
day

:
1
:
(top

::::
panel), HIDRA1 ensemble

:::
day

:
2
:

(middle
::::
panel) and NEMO

deterministic run
::
day

::
3 (bottom

::::
panel),

:
during the December 2019 flooding sequence

:::
2020

:
in the Northern Adriatic

:::::
Koper. Semi-transparent

regions in the top two plots depict the minimum-maximum envelope
::::
range of each HIDRA

::
the

:::::::
HIDRA2

:
ensemble.

Floods of December 2019 are another example of HIDRA2 superior performance over HIDRA1 and NEMO
:::
both

::::::
ocean

::::::
models

::
in

:::::
Koper. SSH observations and predictions in Koper during this period are depicted in Fig. 13. Several conclusions

about HIDRA2 behavior may be reached with regard to this particular flood. HIDRA2 ensemble appears to be closest to the

observations and exhibits a substantially lower forecasting spread than the HIDRA1 ensemble. Low forecasting spread is ac-415

ceptable when in conjunction with a well-behaved ensemble mean. In this case, the HIDRA2 ensemble mean is in excellent

agreement with the observations. The same could be said for HIDRA1, albeit to a lesser degree. NEMO, however, completely

misses the first two peaks between 15 and 17 December, slightly underestimates (like HIDRA1) the highest peak on 23 Decem-

ber, and overall underestimates the minimum-maximum range of the sea level variations, corresponding to poorly predicted

ebb levels after 23 December.
::::::::
SCHISM

:::::::
predicts

:::
the

::::
first

::::
two

:::::
peaks

:::
but

:::::::::::::
underestimates

:::
the

:::::
peaks

:::::
after

:::
23

:::::::::
December.

:
The420

vertical sea level range is much better captured by both HIDRAs, especially by HIDRA2. This result is consistent with our

demonstration that HIDRA2 exhibits the lowest error in both the high and the low tail of sea level distributions (Fig. 11).

Comparison of HIDRA2 ensemble spread at forecast day 1 (top panel), day 2 (middle panes) and day 3 (middle panel),

during December 2020 in Koper. Semi-transparent regions in the plots depict the minimum-maximum range of the HIDRA2

ensemble.425
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To inspect the behavior of the ensemble forecast spread, three timeseries were created from daily (72 h long) forecasts during

evaluation time window between 01 June 2019 and 31 December 2020. The first timeseries was constructed by concatenating

each first day (i.e., 1–24 h of forecast) from each of the daily forecasts, thus containing predictions with lead times of 1–24 h

on each respective day in the evaluation time window. The second and the third timeseries were constructed by concatenating

25–48 h (49–72 h) of forecast on each respective day in the evaluation time window. All three timeseries for the December430

2020 floods are shown in Fig. 14. As expected, from the growing ensemble spread in the atmospheric forcing, HIDRA2 spread

is growing with forecast lead time as well. As we draw closer to a particular flooding event, the forecast spread drops, indicating

an increased prediction certainty.

4.2.5 Spectral decomposition of forecasts during storm surge events
::::::
storms

To investigate the performance in geophysically relevant energy bands, we band-pass filtered the observed and the predicted435

SSH signals in energy bands, centered around four important periods: semi-diurnal tide (12 h period), diurnal tide (24 h period),

fundamental basin along-axis eigenmode (21.5 h period) and first excited along-axis eigenmode (10.9 h period).

Although incomplete, this SSH decomposition allows qualitative estimation of the excitation intensity of the basin eigen-

modes during a particular stormsurge, and also helps to qualitatively assign forecasting errors to specific frequency bands.

However, since the amplitudes of filtered signals in Fig. 15 directly depend on the filter bandwidths, they should not be inter-440

preted as direct contributions to the sea level due to respective geophysical phenomena (i.e., two tidal signals, two eigenmodes).

They should rather be read strictly as an additional insight into the model performance within a specific band with reference to

filtered observations in the same band.

We applied a fifth-order Butterworth band-pass filter with the sampling rate of (1h)−1. Low and high cutoff frequencies,

which define the semi-diurnal filtering band ∆ω12, were set to ∆ω12 = [(12.5h)−1,(11.5h)−1]. Similarly, diurnal cutoff fre-445

quencies were set to ∆ω24 = [(24.5h)−1,(23.5h)]−1. Fundamental seiche filtering band was estimated from Fig. 11 to be

∆ω21.5 = [(20h)−1,(24h)−1] which is also consistent with the seiche window used in Vilibić (2006). Finally, the first excited

eigenmode band is defined as ∆ω10.9 = [(11.4h)−1,(10.5h)−1]. An example of this decomposition for November 2019 is

shown in Fig. 15.
:::
For

::::::
brevity

:::
we

::::
only

:::::
show

::::::
results

::
for

:::
the

:::::::
NEMO

:::::
model

::
in

:::
the

:::::
main

::::
body

::
of

:::
the

::::::
paper.

:::::::
Identical

:::::::
analysis

:::
and

::::::
related

::::::
figures

:::
for

:::
the

::::::::
SCHISM

:::::
model

:::
are

::::::::
available

::
in

:::
the

::::::::::::
supplementary

:::::::
material

::
to
::::
this

:::::
paper.

:::::
They450

:::::::
illustrate

:::
that

::::::::
SCHISM

:::::::
exhibits

::::
very

:::::
solid

::::::::::
performance

::
in

:::
the

::::::
seiche

::::::
energy

:::::
bands.

:

All models exhibit
::
an

:
underestimation of the amplitude but are otherwise in phase with the observations in the ∆ω12 band.

In ∆ω24, NEMO seems to be performing very well, with HIDRA2 slightly underestimating the range of the signal in this band.

In the band ∆ω21.5 NEMO is again closest to filtered observations while both HIDRA models overpredict the vertical range of

the observed signal. Band ∆ω10.9 is underpredicted in all models, but seems best (or rather least poorly) resolved by HIDRAs,455

with NEMO additionally exhibiting a substantial phase shift in the signal.

In any case, since both tidal bands and the ground state seiche are reliably predicted by all models, the reason for the

forecasting errors must lie in the higher frequency bands with periods below 10.9 hours. This seems consistent with the
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Figure 15. Comparison of total Koper SSH observations and forecasts (top panel) and their Band-Pass Filtered signals (bottom four panels)

over four bands, centered around four geophysically relevant periods (semi-diurnal and diurnal tides and two lowest along-axis basin eigen-

modes). Time window of the SSH signal spans the
:::
from

:
7 November 2019 to 19 November 2019. Note

::
the

:
different vertical scale in the

bottom ∆ω10.9 panel.

occurrence of highly transient and localized low pressure over Venice mentioned in Cavaleri et al. (2020) and will be the

subject of further research.460

Similar remarks can be made regarding the December 2019 coastal flooding, depicted in Fig. 16. This event marked a sub-

optimal performance of NEMO, which is systematically underestimating SSH peaks and the overall vertical range of the SSH

variability during this time window (Fig. 16, top panel). This caused NEMO to miss four floods out of eight. HIDRA models

perform better, with HIDRA2 most reliably predicting all the flood peaks, most notably those on 15, 16 and 23 December

2019.465
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Figure 16. Same as Fig. 15, but for December 2019 coastal floods.

The second and third panels in Fig. 16 demonstrate that all models are reliable in the diurnal tidal band ∆ω24 but that

HIDRA2 overestimates the signal in ∆ω12. Since the overall performance of HIDRA2 is the best of all three models, it is

unclear whether overshoots in ∆ω12 could be interpreted as compensations for the underestimations in the nearby ∆ω10.9

band. The bottom two panels in Fig. 16, however, indicate that part of the modeling errors stem from their underestimation of

the basin seiches.470

In the ∆ω21.5 band, the HIDRA2 predictions most closely resemble the observations, followed by HIDRA1 and then NEMO

(which is most severely underestimating this part of the signal). HIDRA2 is also the most reliable method in ∆ω10.9 – but

it nevertheless systematically underestimates the observations. HIDRA1 and NEMO performances are significantly worse,

reaching one-half of the amplitude of HIDRA2 and one-third that of the observations. Poor performances of HIDRA1 and

NEMO in ∆ω21.5 and ∆ω10.9 bands are simply another reflection of the fact depicted in Fig. 11, namely that both of these475

models struggle to generate an appropriate amount of energy in the bands around free oscillation eigenmodes.

24



5 Conclusions

This study presents a deep-learning based sea level model HIDRA2, suitable for operational sea level ensemble modeling due to

its speed and accuracy. This work is a conceptual continuation of our previous attempt at sea level forecasting (Žust et al., 2021)

and represents a substantial advancement over the first version (HIDRA1), setting a new state-of-the-art in machine learning480

SSH forecasting. The new architecture is validated by
::::::::
extensive ablation studies. The performance is benchmarked against the

current state-of-the-art Mediterranean
:::::::::
forecasting setup of NEMO ocean model with sea level data assimilation, (available as

part of Copernicus Marine Service)
::::
and

::::::
against

:
a
::::::::::::
multi-decadal

::::::::
reanalysis

:::
run

::
of

:::
the

::::::::
SCHISM

::::::
model

::::::::::::::::::
(Toomey et al., 2022)

::
on

::
an

::::::::::
unstructured

::::
grid

::::
with

::::
very

::::
high

:::::::
coastal

::::::::
resolution. We demonstrate that HIDRA2 outperforms both HIDRA1 and NEMO

::
as

::::
well

::
as

:::::::::
numerical

:::::
ocean

::::::
models

:
across all sea level bins. We further show that HIDRA2 most

:::
very

:
accurately represents485

the energy contents in the bands around relevant geophysical periods (diurnal and semi-diurnal tides, and the lowest two free

oscillation basin eigenmodes).

Performance is analyzed over several historic storm surge events
::::::
during

::::::
several

::::::
historic

::::::
storms. Spectral decomposition of

the total sea level signal into bands centered around tides and basin seiches is carried out to assign modeling errors to specific

energy bands of the predicted sea levels. HIDRA2 consistently outperforms the other models by demonstrating the highest490

::::::
exhibits

::::
high

:
skill in exciting the ground state Adriatic basin seiche at the appropriate time and with the appropriate phase and

amplitude.

HIDRA2 is a good example of how
::
the

:
entanglement of deep-learning and geophysics may lead to reliable and numerically

cheap models, which are able to mimic complex physical phenomena on the level of the best numerical physical models.

Nevertheless, several extensions could be additionally explored. One possible extension is data ingestion from several tide495

gauges along the Adriatic coast and verification of whether the prediction accuracy at individual locations improves in such

a multi-point prediction setup. Another extension is the inclusion of real-time in-situ measurements such as synoptic obser-

vations, satellite scatterometer and wind measurements. It would be interesting to migrate HIDRA2 to other
::::::::::::
Mediterranean

:::::::
locations

::
or
:::::

other
:
semi-enclosed basins like the Baltic Sea

:
,
:::
the

::::
Red

:::
Sea

:
or the Chesapeake Bay to validate generalization to

other locations
::::::::
investigate

:::
its

::::::::::::
generalization

::::::::
properties. These will be some

::::::
objects of our future works

::::::
research.500

Code and data availability. Implementation of HIDRA2 and the code to train and evaluate the model is available in the Git repository

https://github.com/rusmarko/HIDRA2 (last access: 9 November 2022). We also include HIDRA2 weights pretrained on 2006–2018 and

predictions for all 50 ensembles on June 2019–December 2020. The persistent version of HIDRA2 source code is available at https://

doi.org/10.5281/zenodo.7307365 (Rus et al., 2022a). Training and evaluation of the model were performed on the datasets available at

https://doi.org/10.5281/zenodo.7304086 (Rus et al., 2022c). Sea level datasets employed in this paper are available at https://doi.org/10.505

5281/zenodo.7277108 (Rus et al., 2022b).
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6 Additional forecasting examples

5.1 December 2020

Coastal flood on 8 December 2020 is significantly underpredicted in HIDRA1 and even more so in NEMO. HIDRA2 demonstrates

much better performance. Decompositions of the sea level signal into ∆ωi bands indicate that tidal bands are predicted well in510

all three models. The leading cause of NEMO model SSH underestimation clearly lies in the misrepresented amplitude of the

fundamental basin seiche.

Same as Fig. 15, but for December 2020 coastal floods.
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Rus, M., Fettich, A., Kristan, M., and Ličer, M.: Training and Test Datasets for HIDRA2, https://doi.org/10.5281/zenodo.7304086, 2022c.

Sonnewald, M., Lguensat, R., Jones, D. C., Dueben, P. D., Brajard, J., and Balaji, V.: Bridging observations, theory and numerical simulation600

of the ocean using machine learning, Environmental Research Letters, 16, 073 008, https://doi.org/10.1088/1748-9326/ac0eb0, 2021.

Taherkhani, M., Vitousek, S., Barnard, P., Frazer, N., Anderson, T. R., and Fletcher, C. H.: Sea-level rise exponentially increases coastal flood

frequency, Scientific Reports, 10, https://doi.org/10.1038/s41598-020-62188-4, 2020.

Toomey, T., Amores, A., Marcos, M., and Orfila, A.: Coastal sea levels and wind-waves in the Mediterranean Sea since 1950 from a high-

resolution ocean reanalysis, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.991504, 2022.605

Vapnik, V.: The nature of statistical learning theory, Springer science & business media, 1999.

Vilibić, I.: The role of the fundamental seiche in the Adriatic coastal floods, Continental Shelf Research, 26, 206–216,

https://doi.org/https://doi.org/10.1016/j.csr.2005.11.001, 2006.
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