Developing a Bayesian network model for understanding river catchment resilience under future change scenarios

Supplementary Material

Kerr J. Adams^{1, 2}, Christopher (Kit) A. J. Macleod², Marc J. Metzger¹, Nicola Melville³, Rachel C. Helliwell², Jim Pritchard³, Miriam Glendell²

¹University of Edinburgh, School of Geoscience, Edinburgh, Scotland,

²Scottish Environment Protection Agency, Strathallan House, Stirling, Scotland,

³The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland

Correspondence to: Kerr J. Adams (kerr.adams@ed.ac.uk)

S1: River Eden waterbody sub-catchments

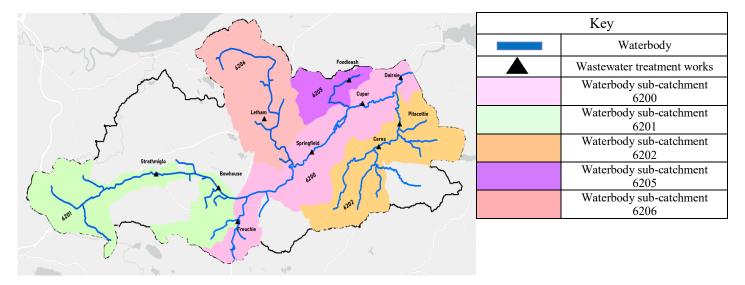


Figure S1: Eden catchment sub-catchment selected by stakeholders to be included in the Bayesian network model. *Acknowledgements: Catchment boundary provided by National River Flow Archive. River network provided by the EU-Hydro River Network Database (Gallaun et al., 2019) Map created in ArcGISPro (Esri Inc, 2021).*

S2: Participating stakeholders *Table S1: Stakeholder participant code and descriptions*

Stakeholder Code	Code Description	Wastewater (WW) Focus Group Participants	Land Management (LM) Focus Group Participants	Water Resource (WR) Focus Group Participants	Workshop 1 Participants	Workshop 2 Participants
ww	Stakeholders with knowledge of the wastewater system in the Eden catchment	WR1	WW1 ^a	WW1ª		
LM	Stakeholders with knowledge of the land management system in the Eden catchment		CM1	WR2	WW2ª	WW2ª
WR	Stakeholders with knowledge of the water resource system in the Eden catchment		LM1		EPla	EP2 ^b
EP	Stakeholders with a knowledge of environmental protection (EP)	WW2	LM2		EP2 ^b	CM2 ^b
СМ	Stakeholders with a knowledge of catchment management (CM) and systems	Takeholders with a knowledge of catchment LM3 hanagement (CM)		WR3	CM1ª	LM7 ^b
a	Stakeholders who participated in focus groups		LM4		LM6 ^b	LM8 ^b
b	Stakeholders who didn't participate in focus groups		LM5		LM7 ^b WR4 ^b	WR4 ^b

S3: Model description and parameter values *Table S2: Model description.*

Node Name	Identifier	Туре	Equation	States &	& Discre	etisation if applicable.	Supporting Information
Future Change sub-n	nodel						
						n Road (GR)	Deterministic input node for model simulation under a range of
Scenario	i	Deterministic				As Usual (BAU)	plausible scenario pathways. State identifiers are taken from (O'Neill et
Beenano				Fossil		Development (FFD)	al., 2017) and stakeholder interpretations to represent the diverse
						Current	pathways.
				Ext	reme Lo	w Rainfall (ExLR)	Deterministic input node for executing BAU precipitation change, and
Precipitation Change	j	Deterministic		Annual			precipitation change for extreme low (Q5) and high (Q95) precipitation
				Extr	Extreme High Rainfall (ExHIR)		change.
					Green	Road & ExLR	
					Green	Road & BAU	
						Road & ExHIR	
						U & ExLR	
						U & BAU	Deterministic node that combines Precipitation Anomaly with the
Climate Precipitation	CPC	Deterministic				J & ExHIR	Simulation node to enable the selection of precipitation anomaly
Choice	010	Determinette				D & ExLR	scenarios under the different diverse future pathway scenarios.
						D & BAU	
						& ExHIR	
						ent & ExLR	
				Current & BAU			
						nt & ExHIR	
		Equation		State	Fr o m	То	Equation node that selects the precipitation change anomaly distribution β for each future simulation <i>i</i> and precipitation change simulation <i>j</i> . Values for β are derived from the UK Climate Projection User Interface
			$PA = \beta_{ii}$	ExLR	0	0.75	product Anomalies for probabilistic projections (25km) over UK, 1961- 2100 (Lowe et al., 2018). Anomalies take the coupled RCP distributions
Precipitation Change	РА			Annual	0. 75	1.1	for <i>i</i> and <i>j</i> . Annual temporal averages are used for Annual state to represent the incremental predicted change. To represent shocks to the
Anomaly (%)		Equation	$\mu = \mu_{ij}$	ExHIR	1. 1	2.5	system, Q95 values for seasonal winter to represent a extreme high precipitation scenario (ExHP) and the summer Q5 value is applied for extreme low precipitation scenario (ExLP) as these represent the most extreme possible changes. The data is selected for the 1981-2010 baseline period, in grid cell 337500.00, 712500.00, during the time slice 2040-2069 (2050's) using all sampling methods.
						GR	Deterministic node that sets acquires a population equivalent change
						BAU	 values i. Values for derived from the Scottish Water Population Growth Model. The Growth Model provides Real and Raw estimations of
						FFD	Population Equivalents (PE) to the year 2030. For the Green Road
							scenario (GR), the lower Real PE estimate for 2030 remains consistent for 2050 to reflect as shared-socioeconomic pathway (SSP) narrative
Population Change	PC	Deterministic	-			Current	which suggests population growth will stagnate in urban areas and migration to more rural areas will increase. For the Business As Usua (BAU) the Real PE trend for 2030 is extrapolated to 2050. For the Fossil Fuelled Development scenario (FFD), the Raw PE value for 20 is extrapolated to 2050 as RAW PE provides an upper estimate of population growth, particularly in urban areas, which is reflected in th SSP narrative for FFD. Narratives are derived from Pedde, et al.

					GR		Deterministic variable that sets land cover change values for <i>i</i> . Current
					BAU		and project future value are derived from UKCEH land cover vector
Land Cover Change	LCC	Deterministic			FFD		maps (Morton et al., 2020). Extrapolations of historical land cover change, interpretations from the SSP narratives (Pedde, at al., 2021) and
					Current		catchment specific knowledge provided by stakeholders were used to create projections for different land cover areas.
Wastewater sub-mode	el						
				State	From	То	Stakeholders highlighted the Dry Weather Flow, <i>DWf</i> , at wastewater
				Resilient	0	с	treatment works (WwTWs), <i>k</i> , in the catchment as an important variable that represents the wastewater system. Stakeholders highlighted that
				L	с	b_l	- changes in PC_{ik} under simulations <i>i</i> could influence DWf at works <i>k</i> .
				М	b_l	u	The distribution β represents a truncated distribution of the current DWf
Dry Weather Flow (Ml/d)	DWf	Equation	$DWf_{ik} = \beta_k + PC_{ik} \times \gamma_k$	Н	u	inf	at WwTW, <i>k</i> , derived from effluent flow summary statistics provided in the Scottish Water Strategic Study. We simulated effluent flows using the summary statistics to generate 365 data outputs, then calculated a Q80 value of the outputs, which was highlighted by stakeholders as the values used to derive asset dry weather flow values. We use the Q80 values as the mean and the standard deviations of the values to derive β_k . <i>PC_{ik}</i> is multiplied by γ_k which is the 1 PE value of 200 litres per day wastewater sewage flow contribution (Mara, 2006) fwhich is converted to MI/d and added to β_k . The 200 litres per day standard was confirmed by participants during model development focus groups. Resilient states threshold <i>c</i> is the <i>DWf</i> licence condition for <i>k</i> . Anything
							three times greater than the licence condition value is set as the threshold value for high risk (H) u . Thresholds for states low (L) and moderate (M) risk, b_l uniformised between c and u Ml/d.
							Stakeholders highlighted that the flow of effluent discharge Ef at WwTWs k as a significant wastewater system variable. Changes in PA_{ij} and PC_{ik} under different simulations i were identified as potentially influencing Ef_{ik} .
Daily Effluent Flow (Ml/d)	Ef	Equation	$Ef_{ik} = \beta_k \times PA_{ij} + PC_{ik} \times \gamma_k$		63		To measure potential impacts on Ef_{ik} we derived the distribution β_k to represent the current Ef distribution for k , derived from the Scottish Water Strategic Study. We multiply current Ef distributions with the % anomaly change in PA_{ij} which is assumed to lead to a change in run-off and infiltration which currently influence Ef . PC_{ik} is multiplied by the 1 PE value of 200 litres per day waste sewage flow γ_k and added to β_k to represent the influence of changes in PC_{ik} on Ef .
						Discretisation of states is based on the >3 DWf (3 DWf) licence condition at setting for storm overflow detailed in the SEPA Supporting Guidance (WAT-SG-13) document which is a standard threshold set for calculating the Flow to Full Treatment (FFT) limit for WwTWs. The FFT for values for each WwTW k is described as anything three times greater than DWF leads to the risk of the sewer overflow. The resilient threshold c is therefore set as three times the DWf at treatment works k. The high risk threshold u is set at six times the DWF. Thresholds for states low (L) and moderate (M) risk, b ₁ are uniformised between c and u Ml/d.	
Daily Influent Flow (Ml/d)	If	Equation	$If_{ik} = Ef_{ik} \times \gamma_k$		63		The change in influent flow <i>If</i> was also highlighted as being influence by PA_{ij} and PC_{ik} by stakeholders. We use an equation node representing the change in influent flow <i>If</i> based on the change in <i>Ef</i> using the value

							γ_k to represent the difference between <i>If</i> and <i>Ef</i> . The value γ_k is used due to the limited <i>If</i> data available in the catchment. The only WwTW in the catchment with <i>If</i> data available was Cupar, where a reduction in flow volume after the treatment process was evident in the annual flow returns data from 2015 – 2019 provided by Scottish Water when comparing influent and effluent flows. We calculated the difference between influent and effluent flows using annual flow returns data to derive γ_k which is applied to each WwTWs <i>k</i> . The <i>If</i> node is discretised using the same methods as <i>Ef</i> .
				State	Fr o m	То	Stakeholders highlight that risk of spill events SE under different simulations <i>i</i> could occur due to changes in If_{ik} in waterbody sub catchments <i>s</i> . Spills (SP _{is}) occur if the node If_{ik} exceeds its <i>c</i> resilience
				Resilient	0	с	threshold. We use statement equations IF_{eq} to index the prior distributions of parent node If_{ik} based on their discretised state
				L	с	b 1	thresholds. Each prior state discrete threshold for If_{ik} resilient to high-
Spill Event	SP	Equation	$SE_{is} = IF_{eq}(If_{ik})$	М	b1	b ₂	risk, was assigned a value of zero, one, two or three based on the values
				Н	b ₂	u	of <i>c</i> , <i>u</i> , and <i>b</i> . For SP_{is} the sum of If_{ik} of prior If_{ik} values is as follows: $IF(If_{ik} \ge u, 3, IF(If_{ik} \ge b, 2, IF(If_{ik} \ge c, 1, 0))$. We set the resilience threshold <i>c</i> for SP_{is} as a value for one, as anything greater than the value of one would mean at least one treatment works <i>k</i> is likely to spill. The upper value <i>u</i> set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_i and b_2 are uniformised values between <i>c</i> and <i>u</i> .
				State	Fr o m	То	Equation node representing the change in Reactive Phosphorus (P) based on the inverse change in PA_{ij} , change in PC_i and change in Ef_i . The current concentration of P is represented using the distribution β for
				Resilient	0	с	each of the different WwTW k. Current effluent P concentration (mg/l) are taken from the Scottish Water Eden Water Quality Strategic Study.
				L	с	b	The inverse of PA_{ij} is applied to represent the change in <i>P</i> concentration due to the change in dilution. Lower flows lead to higher concentrations
Wastewater			$D = (\theta \times (1 + 1 - DA) + DC)$	М	b	u	of P, meaning when PA_{ij} decreases the P concentration increases. PC_{ik} is
Phosphorus Load (kg/d)	Phosphorus Load P Equation $P_{ik} = (\beta_k \times (1 + 1 - PA_{ij}) + PC_{ik}) \times Ff$	$P_{ik} = (\beta_k \times (1 + 1 - PA_{ij}) + PC_{ik} \times \gamma_k) \times Ef_{ik}$	н	u	inf	multiplied by the calculated P concentration (mg/l) per PE γ, based on the current PE for WwTW k. The P concentration is multiplied by Ef to provide the daily effluent P load (kg/d). The node is discretised using the current mean P load for each k as the resilient threshold, which is calculated by multiplying the current P concentration by the current Ef. Anything greater than the current P load is seen as an increased risk, as higher loads demonstrate poor outcomes for both the environment and wastewater system. The high risk (H) value u is calculated as 3 times the c. The values for L and M risk are then uniformised between c and u (kg/d).	
Bio Resource (m ³ /d)	BR	Equation	$BR_{ik} = If_{ik} \times \gamma_k \times 1000$.,	Volumes of Bio resource <i>BR</i> (m ³ /d) was identified as a significant wastewater system node. Changes in <i>BR</i> due to the influence was simulations <i>i</i> is measured based on a change in <i>If</i> . Su et al. (2019) highlight that an increase in If_{ik} can lead to an increase in bio resource concentrations and accumulations. The relationship between <i>If</i> and <i>BR</i> volume is derived by analysing the relationship between <i>If</i> and <i>BR</i> volume is derived by analysing the relationship between flows and sludge volumes at WwTW in the catchment to create an average <i>BR_k</i> volume (m ³ /d) per <i>If_k</i> (MI/d) to provide a (m ³ /l/d) value o for each <i>k</i> which is represented by γ_k . The γ_k value is multiplied by <i>If_{ik}</i> , then multiplied by 1000 to convert the value to (m ³ /d). The <i>BR_{ik}</i> node is discretised by setting the resilient threshold <i>c</i> as the current volume of <i>BR_k</i> . The high risk threshold is set as three times the current <i>c</i> value. Thresholds for states low (L) and moderate (M) risk, <i>b₁</i> are uniformised between <i>c</i> and <i>u</i> m ³ /d.

Total Phosphorus Load (kg/d)	TPL	Equation	$TPL_{is} = \sum P_{ik} + IF(If_{ik} \ge c, 1.05, 0)$			υ	Equation node representing the relationship between overflow spills and P_{ik} loads. As the concentration of P is higher for untreated spill events, the P_{ik} load in the event the If exceeds the 3DWf threshold is added to the effluent P load to generate the Total Phosphorus Load (TPL) of WwTWs k in water body sub-catchment s. The Scottish Water Zular Study Sets a suitable concentration of 1.05 mg/l of P for spill events, which is multiplied by the spill volume. The discretisation of the TPL_{is} sets the resilient c value as the current TPL for each water body sub catchment s which is derived from the Scottish Water Eden Water Quality Strategic Study, the high risk u value is set as three times the c value. The values for L and M risk are then uniformised between c and u (kg/d).	
				State	Fr o m	То	As energy demands within the wastewater system <i>EDW</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in energy demand <i>EDW</i> under the	
			Resilient	0	с	influence of differing simulation <i>i</i> at wastewater treatment works <i>k</i> in waterbody sub catchment <i>s</i> . As the Bio Resource is the final node described by stakeholders in the wastewater system, which is a measure		
			L	с	b_1	of both flows and accumulations of bio resource materials that require treatment and transportation, we assume any change in bio-resource		
	Energy Demand Wastewater EDW			М	b1	b2	volumes (m ³ /day) under simulation <i>i</i> at wastewater treatment works <i>k</i> BR_{ik} leads to a change in EDW_{ik} . We measure ΔEDW_{ik} using IF	
		Equation	$EDW_{iks} = \sum IF_{eq}(BR_{ik})$	н	b2	u	statement equations IF_{eq} to index the prior distributions of parent node BR_{ik} based on their discretised state thresholds. Each prior state discrete threshold for BR_{ik} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For EDW_{ik} the IF_{eq} of prior BR_{ik} values is as follows: $IF(BR_{ik} \ge b_2, 3, IF(BR_{ik} \ge b_1, 2, IF(BR_{ik} \ge c, 1, 0)$. For the indexed node ΔEDW_{ik} the resilient threshold <i>c</i> is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index value of all nodes (three times the number of parent nodes). Threshold values for high and moderate risk, b_1 and b_2 are uniformised values between <i>c</i> and <i>u</i> .	
Chemical Demand Wastewater	CDW	Equation	$CDW_{is} = IF_{eq}(TPL_{is})$			ű	As chemical demands within the wastewater system <i>CDW</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in chemical demand <i>CDW</i> under the influence of differing simulation <i>i</i> in waterbody sub catchment <i>s</i> . As there was no data available to measure the current chemical demands wastewater treatment works we assume that a change in total P loads <i>a</i> under different simulation <i>i</i> in in waterbody sub catchment <i>s</i> . TPL _{is} lead to a change in <i>CDW</i> _{is} . We measure <i>CDW</i> _{is} using IF statement equation <i>IF</i> _{eq} to index the prior distributions of parent node <i>TPL</i> _{is} based on the discretised state thresholds. Each prior state discrete threshold for <i>TPL</i> _{is} , resilient to high-risk, was assigned a value of zero, one, two o three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For <i>EDW</i> _{ik} the <i>IF</i> _{eq} of prior <i>TPL</i> _{is} values is as follows: <i>IF</i> (<i>TPL</i> _{is} $\geq b_2$, 3, <i>IF</i> (<i>TPL</i> _{is} \geq $b_1, 2, IF(TPLis \geq c_1, 0).For the indexed node \Delta CDW_{is}, we applied the same discretisationmethod as EDWik.$	
Asset Compliance and Capability Wastewater	ACW	Equation	$ACW_{is} = \sum IF_{eq}(DWF_{ik}, SP_{is})$			"	The compliance and capability of manufactured assets in the wastewater system ACW was seen as an important manufactured capital resource due to the role of assets in providing wastewater services and meeting	

Land Management s	ub-model				licence and environmental standards. Stakeholders highlighted that the influence of future simulations <i>i</i> could influence <i>ACW</i> in waterbody sub catchments <i>s</i> in the future. We measure the current and future ability of ACW_{ls} , using nodes DWF_{ik} and SP_{ls} to determine if assets exceed their DWF licence condition and if they are capable of handling extreme flow events. We calculate ACW_{is} using IF statement equations IF_{eq} to index the prior distributions of parent node DWF_{ik} and SP_{is} based on their discretised state thresholds. Each prior state discrete threshold for both DWF_{ik} and SP_{is} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For ACW_{is} the sum of IF_{eq} of prior DWF_{ik} and SP_{is} values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0)$. For the indexed node ACW_{is} we applied the same discretisation method as EDW_{ik} .
					Equation node the represents land cover area A (Ha) for each simulation
Land Cover (Ha)	LC	Equation	$LC_{ivs} = A_{ivs}$	See Supporting Information	 <i>i</i> were applied to land cover categories <i>v</i> in waterbody sub-catchments <i>s</i>. Changes in Land Cover was highlighted by stakeholders as a factor for future change that would influence future water and chemical demands which would influence water availability and quality. UKCEH land cover vector maps 1990, 2007 and 2019 (Morton et al., 2020) were used to analyse historic land cover change in the catchment. Extrapolations of land cover change, interpretations from both the SSP narratives and catchment specific knowledge provided by stakeholders were used to create projections for different land cover areas <i>A</i> for simulations <i>i</i>. Current conditions for land cover categories <i>v</i> are represented using the 2019 UKCEH land cover vector map data for the catchment. Land cover percentage proportions of <i>v</i> in sub-catchment water bodes <i>s</i> are taken from the Scottish Water Strategic Study to derive the area <i>A</i> of land cover, while improved grasslands and coniferous land cover area decreases. The GR narrative assumes a more intensive move from improved grassland land cover to woodland and semi-natural grasslands. For GR assumes an increase in arable land due to the nature of the catchment being prime agricultural land. Urban land cover is reduced in the GR narrative as populations move to more rural areas of the catchment. The FFD narrative assumes a more intensive move from the FFD narrative assumes a more intensive move from the FFD narrative assumes a more intensive move from the FFD narrative assumes a more intensive move from the FFD narrative due to population increases in urban areas of the catchment. The FFD narrative due to population increases in urban areas of the catchment.
Septic Tanks	ST	Equation	$ST_{is} = T_{is}$	See Supporting Information	The number of septic tanks <i>T</i> for simulation <i>i</i> in waterbody sub- catchments <i>s</i> . Stakeholders identified that septic tanks influence water quality in the catchment. The current number if septic tanks T in water-body sub-catchment s was taken from the Eden Water Quality Strategic Study. The BAU narrative assumes that the number of septic tanks in the catchment will remain the same. A 20% increase in septic tanks is assumed for the GR narrative as more people move to rural areas. For the FFD narrative a 20% decrease

							in septic tank numbers T is assumed due to population intensification in
							urban areas.
							States and their discretisation were set based on the number of septic tanks for the different simulations <i>i</i> , in waterbody sub catchments <i>s</i> .
				State	Fr o m	То	The application demand of P, PD, to agricultural land (kg/d) under varying simulations <i>i</i> for land cover type v in water body sub-catchment <i>s</i> was highlighted as an important land management system component.
				Resilient	0	С	The demand for P is influenced by the proportion of different land cover
				L	с	b 1	categories LCivs and their associated P demands per Ha, which is
Land Cover				М	b ₁	u	represented as a coefficient γ_{vs} for different land covers v in water body
Phosphorus Applications(kg/d)	Phosphorus PD Equation $PD_{ivs} = LC_{ivs} \times \gamma_{vs}$	н	u	inf	sub catchments s. Current P (kg/d) loadings taken from a ADAS UK Ltd model of rural diffuse pollution provided by SEPA. P loadings per Ha of each land cover type v in water body sub-catchment s are calculated to quantify coefficients for \(\gamma_{vs}\). The discretisation of PD_{ivs}\) sets the resilient c value as the current P loadings for each land cover type in each water body sub catchment s which, the high risk u value is set as two times the c value. Thresholds for states low (L) and moderate (M) risk, b ₁ are uniformised between c and u (kg/d).		
Septic Tank Phosphorus (kg/day)	STP	Equation	$STP_{is} = ST_{is} \times \gamma_{is}$				The volume of P from Septic Tanks, <i>STP</i> , (kg/d) under varying simulations <i>i</i> was highlighted as an important land management system node. Current P (kg/d) loadings from septic tanks are taken from a ADAS UK Ltd model of rural diffuse pollution provided by SEPA. P loadings per <i>ST</i> in water body sub-catchment <i>s</i> are calculated to quantify coefficients for γ_{vs} . <i>STP</i> _{is} is calculated by multiplying <i>ST</i> _{is} by γ_{is} . The discretisation of <i>STP</i> _{is} sets the resilient <i>c</i> value as the current P loadings for <i>STP</i> _{is} , the high risk <i>u</i> value is set as two times the <i>c</i> value. Thresholds for states low (L) and moderate (M) risk, b_i are uniformised between <i>c</i> and <i>u</i> (kg/d).
Diffuse Phosphorus (kg/d)	DP	Equation	$DP_{ivs} = (PD_{ivs} + STP_{is}) \times PA_{ij}$	(7			Stakeholders highlighted that the applications of sources $PD_{i\nu s}$ (kg/d) are a diffuse source of surface water quality issues in the catchment. The volume of diffuse $PD_{i\nu s}$ sources are likely to be influenced by changes in PA_{ij} , with increases in high intensity rainfall likely to increase the proportion of $PD_{i\nu s}$ to surface waters (Heathwaite, et al., 2004), which is represented in the equation. The discretisation of $PD_{i\nu s}$ sets the resilient c value as the current diffuse P loadings for in each water body sub catchment <i>s</i> which are provided in the Scottish Water Eden Water Quality Strategic Study, the high risk u value is set as three times the c value. Thresholds for states low (L) and moderate (M) risk, b_1 are uniformised between <i>c</i> and <i>u</i> (kg/d).
Irrigation Demand (ML/year)	ID	Equation	$ID_{is} = \beta_s \times \Delta LC_{ivs} \times (1 + 1 - PA_{ij})$				Stakeholders highlighted irrigation demand, <i>ID</i> , in the catchment could be influenced by changes in land cover and climate. The node focuses on surface water abstractions as stakeholder's highlighted increases in ID could impact future surface water flows. Current <i>ID</i> in each waterbody sub catchment, <i>s</i> , is represented as a truncated normal distribution β_s , where mean and standard deviation values are quantified by analysing annual irrigation abstraction licence return data (MI/year) from 2008-2019 provided by SEPA. To quantify the potential change in <i>ID</i> _{is} the equation node multiplies the current <i>ID</i> β_s with the % change in <i>LC</i> _{ivs} , ΔLC_{ivs} , to represent the change in irrigation demand the catchment. β_s , is also multiplied by the inverse of <i>PA</i> _{1j} in crepresent the potential change in <i>ID</i> _{is} due to a reduction of <i>PA</i> _{1j} increasing demand and increases in <i>PA</i> _{1j} increasing demand. The discretisation of <i>ID</i> _{is} sets the resilient <i>c</i> value as 50% of the sum of all licence volumes

							(ML/year) in each waterbody sub catchment <i>s</i> . The high risk value <i>u</i> is set as the total licence volume (ML/day) in each waterbody sub catchment <i>s</i> . The values for L and M risk, <i>b_i</i> , are then uniformised between <i>c</i> and <i>u</i> (ML/day).
Groundwater Nitrate (mg/L)	GN	Equation	$GN_{is} = \beta_s + (\Delta LC_{ivs} \times \gamma_{vs}) \times PA_{ij}$				Stakeholders highlighted that groundwater nitrate concentrations (mg/l), GN, was an important node in the catchment system due to its influences drinking water quality, particularly as the catchment falls within a Nitrate Vulnerable Zone (NVZ). The influence of land cover change and precipitation change were identified as important nodes that could influence drinking water groundwater sources in the future (Smart et al., 2011). Current GN concertation in water bodies sub catchments <i>s</i> which include drinking water boreholes are represented as a truncated normal distribution β_s , where mean and standard deviation values are quantified by analysing groundwater nitrate samples (mg/l) from 2008- 2019 provided by SEPA. To quantify the potential change in GN , the equation node adds the a change in GN concentration to β_s by multiplying the sum of change in ΔLC_{ivs} (Ha) with N loadings per Ha of each land cover type v in water body sub-catchment <i>s</i> calculated to quantify coefficients for γ_{vs} . β_s , is also multiplied by PA_{ij} to represent the potential change in GN_i due to an increase of PA_{ij} increasing Nitrate leaching rates to groundwater, particularly during higher intensity rainfall events. The discretisation of GN_{is} sets the resilient <i>c</i> value as 50% of the mean threshold values indicative of risks to the quality of water being abstracted, or intended to be abstracted, for human consumption (mg/l) (Scottish Government, 2015). The high risk value <i>u</i> is set as the mean threshold value of 37.5 mg/l. The values for L and M risk, b_l , are then uniformised between <i>c</i> and <i>u</i> (mg/l).
			$EDLM_{is} = IF_{eq}(ID_{is})$	State	Fr o m	То	As energy demands within the land management system <i>EDLM</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in energy demand <i>EDLM</i> under the
				Resilient	0	с	influence of differing simulation <i>i</i> in waterbody sub catchment <i>s</i> . Stakeholder identified the irrigation activities as a key source of energy
				L	с	bı	use in the land management system. As there was no data available to measure current energy use from irrigation abstraction, we use the node ID_{is} as a measure of the potential direction of change in $EDLM_{is}$. We
Energy Demand Land				М	\mathbf{b}_1	b ₂	calculate $EDLM_{is}$ using IF statement equations IF_{eq} to index the prior distributions of parent node ID_{is} based on their discretised state
Energy Demand Land Management	EDLM	Equation		Н	b ₂	u	thresholds. Each prior state discrete threshold for ID_{is} , resilient to high- risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For $\Delta EDLM_{is}$ the IF_{eq} of prior ID_{is} values is as follows: $IF(ID_{is} \ge b_2, 3, IF(ID_{is} \ge b_1, 2, IF(ID_{is} \ge c, 1, 0))$. For the indexed node $EDLM_{is}$ the resilient threshold <i>c</i> is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient index threshold value. The upper value <i>u</i> set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_i and b_2 are uniformised values between <i>c</i> and <i>u</i> .
Chemical Demand Land Management	CDLM	Equation	$CDLM_{is} = IF_{eq}(PD_{ivs})$		•	.,	As chemical demands within the land management system <i>CDLM</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in chemical demand <i>CDLM</i> under the influence of differing simulation <i>i</i> in waterbody sub catchment <i>s</i> . Stakeholder identified the phosphorus applications as a key source of chemical use in the land management system. As there was no data available to measure current chemical use from P applications for land

							cover types <i>v</i> , we use the node PD_{ivs} for land cover types arable and pasture as a measure of the potential direction of change in $CDLM_{is}$. We calculate $EDLM_{is}$ using IF statement equations IF_{eq} to index the prior distributions of parent node PD_{ivs} based on their discretised state thresholds. Each prior state discrete threshold for PD_{ivs} resilient to highrisk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For $CDLM_{is}$ the sum of $\sum_{vs}^{i} IF_{eq}$ of prior PD_{ivs} values for land cover types arable and pasture is as follows: $IF(PD_{ivs} \ge b_{2,r}3, IF(PD_{ivs} \ge b_{1,r}2, IF(PD_{ivs} \ge c, 1, 0)$. For the indexed node $CDLM_{is}$ the resilient threshold <i>c</i> is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_i and b_2 are uniformised values between <i>c</i> and <i>u</i> .
Water Resource sub-	model	1					
Public Commercial Demand	PCD	Deterministic	-		GR BAU FFD Current		Deterministic node used to enable varying values for public commercial water resource demand. Stakeholders highlight that the demand for water resource by commercial business could change in the catchment under the varying future pathway simulations <i>i</i> . The water utility business, Scottish Water will have to account for potential changes in commercial demand.
Leakage	L	Deterministic			GR BAU FFD Current		Deterministic node used to enable varying values for leakage in from assets as part of the water resource delivery system. Stakeholders highlight that leakage rates could change in the future due to aging assets and the influence of high intensity rainfall under the varying future pathway simulations <i>i</i> . The water utility business, Scottish Water will have to account for potential changes in leakage rates.
				State Resilient L M	From 0 c b/	T o c b ₁ u	Stakeholders highlighted that the demand for drinking water and water resource services WA is likely to change in the future due to changes in population served in the catchment PC , the demand by commercial business PCD and leakage from assets L. The current demand for water resources (ML/day) B_r is derived by analysing
Water Resource Abstraction Demand (Ml/d)	WA	Equation	$WA_{it} = (\beta_t + (PC_{it} \times \gamma)) \times PCD_{it} \times L_{it}$	Н	u	inf	annual abstraction data for all Scottish Water boreholes in the catchment from 2014-2018 provided by SEPA and Scottish Water. The change in <i>PC</i> under simulation <i>i</i> for the entire catchment <i>t</i> is multiplied by the coefficient γ which represents the normal consumption rate of 165 l/d per person per day identified by Scottish Water to represent the influence of PC on WA for the entire catchment <i>t</i> . The β_t distribution is also multiplied by a % change in <i>PCD_{it}</i> and L_{it} . As there is limited data to represent changes in <i>PCD_{it}</i> and L_{it} , therefore % change values for different simulations <i>i</i> are used to represent a direction of change associated with interpretations of SSP narratives. A % reduction in demand and leakage is assumed for the GR simulation due to the associated increased efficient use of water described in the narrative. For the BAU and FFD narrative a % increase values are assumed, with a greater % increase value for the FFD simulation. The resilient threshold value <i>c</i> is set at 75% of the nominal borehole capacity (Ml/day) of all boreholes in the catchment and the high risk threshold values <i>c</i> and <i>u</i> (ML/day).

				State	Fr o m	То	Stakeholder identified that the supply capacity (Ml/day) of water resources was a significant component of the catchment system, which could be influenced by groundwater nitrate concentrations GN_{is} (mg/)
				Н	-10	u	and changes in the age and condition of assets AC under simulation <i>i</i> . The current borehole capacity β_a (ML/day) is derived by analysing abstraction rate data for all Scottish Water boreholes <i>a</i> in the catchment
				М	u	bı	from 2012-2019 provided by Scottish Water. The β_a is multiplied by AC_{it} to account for the potential impact of future asset conditions. As
Water Resource Supply Capacity (Ml/day) SC Equation				L	b_1	с	there was limited data on the conditions of water resource assets in the catchment, a % change value was assigned for AC_{it} . All simulations GR, BAU and FFD assumed a % reduction in capacity due to changes in
	$SC_{it} = \beta_a \times AC_{it} \times IF(GN_{is} \ge u, 0, 1)$	Resilient	с	inf	$\begin{array}{c} AC_{it} \text{ based on the assumption that as assets age their efficiency} \\ \text{decreases. The FFD had a greater % decrease than BAU and BAU has a greater % decrease than GR. Stakeholder highlighted that future GN_{is} concentrations in groundwater was a potential risk as high concentrations would lead to safe drinking water standards being exceeded. An IF statement is used to represent that IF GN_{is} exceeds its high risk value u of 37.5 mg/l then a zero value should be returned as safe drinking water standard would be exceeded. The resilient threshold value c is set at 75% of the nominal borehole capacity (Ml/day) of all boreholes in the catchment and the high risk threshold values u is set at 95% of the nominal borehole capacity. The values for L and M risk, b1, are then uniformised between c and u (ML/day).$		
Resilience of Eden Supply (Ml/day)	RS	Equation	$RS_{it} = SC_{it} + \beta_{ooc} - WA_{it}$			ŭ	Stakeholders highlight that calculation of future supply and demand would provide the best measure of the resilience of the water resource system supply (Ml/day) RS in simulations <i>i</i> across catchment <i>t</i> . The supply volume is measured by calculating the difference between the supply capacity SC_{it} and the abstraction demand WA_{it} . Stakeholders identified that supply capacity in <i>t</i> is supplemented by a supply source out with the catchment. The volume of water supplied from out of the catchment <i>RSOC</i> is represented by β_{ooc} . A truncated distribution for β_{ooc} was derived using demand for water resources (ML/day) analysing annual abstraction data for the <i>RSOC</i> source from 2014-2018 provided by SEPA and Scottish Water. We use the demand data as a proxy for the supply capacity and is added to SC_{it} . The resilient threshold value <i>c</i> is set at as a positive value where $SC_{it} > WA_{it}$ (Ml/day) and the high risk threshold value <i>u</i> is set at zero where a negative value would suggest $WA_{it} > SC_{it}$ which would lead to a deficit in supply volumes.
Resilience of Outside of Catchment Supply (Ml/day)	RSOC	Equation	$RSOC_{it} = SC_{it} - WA_{it}$			u	Stakeholders highlighted that the abstracted water in the catchment is supplied to populations outside of the catchment boundary <i>RSOC</i> . The supply volume is measured by calculating the difference between the supply capacity SC_{it} and the abstraction demand WA_{it} . The outside of catchment supply is not supplemented by any other source and is dependent on the supply from within the Eden catchment. We include $RSOC_{it}$ as a node to measure if there is enough supply capacity SC_{it} (ML/day) to supply populations both inside and outside of the catchment. The resilient threshold value <i>c</i> is set at as a positive value where $SC_{it} > WA_{it}$ (ML/day) and the high risk threshold value <i>u</i> is set at zero where a negative value would suggest $WA_{it} > SC_{it}$ which would lead to a deficit in supply volumes.
Energy Demand Water Resources	EDWR	Equation	$EDWR_{it} = IF_{eq}(WA_{it})$	State	Fr o m 0	То	As energy demands within the water resource system <i>EDWR</i> were highlighted by stakeholders as a manufactured capital resource we measured the potential change in energy demand <i>EDWR</i> under the influence of differing simulation <i>i</i> across the catchment <i>t</i> . Stakeholder
				Resment	0	с	influence of affering sinulation t across the catchinelit t. Stakeholder

			I				
				L	с	bı	identified the abstraction of drinking water as a key source of energy use in the water resource system. As there was no data available to
				М	b_1	b ₂	measure current energy use from drinking water abstraction, we use the
							node WA_{it} as a measure of the potential direction of change in $EDWR_{it}$.
							We calculate $EDWR_{it}$ using IF statement equations IF_{eq} to index the
							prior distributions of parent node WA_{it} based on its discretised state thresholds. Each prior state discrete threshold for WA_{it} , resilient to
							high-risk, was assigned a value of zero, one, two or three based on the
							values of c, u, and b. For $EDWR_{it}$ the IF_{eq} of prior WA_{it} values is as
				Н	b_2	u	follows: $IF(WA_{it} \ge b_2, 3, IF(WA_{it} \ge b_1, 2, IF(WA_{it} \ge c, 1, 0))$.
						_	For the indexed node $EDWR_{it}$ the resilient threshold c is set at 25% of
							the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent
							nodes (at least 75%) must fall within a resilient index threshold value.
							The upper value <i>u</i> set as the maximum possible index value of all nodes
							(3 times the number of parent nodes). Threshold values for high and
							moderate risk, b_1 and b_2 are uniformised values between c and u . As chemical demands within the water resource system <i>EDWR</i> were
							highlighted by stakeholders as a manufactured capital resource we
							measured the potential change in chemical demand <i>CDWR</i> under the
							influence of differing simulation <i>i</i> across the catchment <i>t</i> . Stakeholder
							identified the treatment of abstracted drinking water as a key source of
							chemical use in the water resource system. As there was no data available to measure current chemical use from drinking water
							abstraction, we use the node WA_{it} as a measure of the potential
Chemical Demand Water Resources	CDWR	Equation	$CDWR_{it} = IF_{ea}(WA_{it})$.,	direction of change in CDWR _{it} . We calculate CDWR _{it} using IF
water Resources		-					statement equations IF_{eq} to index the prior distributions of parent node
							WA_{it} based on its discretised state thresholds. Each prior state discrete
							threshold for WA_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , and <i>b</i> . For <i>CDWR</i> _{it} the
							IF_{eq} of prior WA_{it} values is as follows: $IF(WA_{it} \ge b_2, 3, IF(WA_{it} \ge b_2, 3))$
							$b_1, 2, IF(WA_{it} \ge c, 1, 0).$
							For the indexed node $\Delta CDWR_{it}$ we applied the same discretisation
							method as $EDWR_{it}$.
							The capability of manufactured assets <i>ACWR</i> to supply water resource to populations both within and out with the catchment <i>t</i> was identified
							by stakeholders as a key manufactured capital of the water resource
							system. Stakeholders highlighted that the influence of future simulations
							<i>i</i> could influence $ACWR_{it}$ in the future. As there was no specific data
							available to measure current asset capability to supply water resource,
							we use the nodes RS_{it} and $RSOC_{it}$ as a measure of the current and potential direction of change in $ACWR_{it}$. We calculate $ACWR_{it}$ using IF
Asset Capability Water	ACWR	Equation	$ACWR_{it} = \sum IF_{eq}(RS_{it}, RSOC_{it})$.,	statement equations IF_{eq} to index the prior distributions of parent node
Resources		Ĩ					RS_{it} and $RSOC_{it}$ based on their discretised state thresholds. Each prior
							state discrete threshold for both RS_{it} and $RSOC_{it}$, resilient to high-risk,
							was assigned a value of zero, one, two or three based on the values of c , u and h For $ACWP$, the sum of IE of prior PS_{r} and $PSOC_{r}$ values
							<i>u, and b.</i> For $ACWR_{it}$ the sum of IF_{eq} of prior RS_{it} and $RSOC_{it}$ values, which we will denote as α is as follows: $IF(\alpha \ge u, 3, IF(\alpha \ge u))$
							b, 2, $IF(\alpha \ge c, 1, 0)$.
							For the indexed node $ACWR_{it}$ we applied the same discretisation
							method as <i>EDWR</i> _{it} .

Customer Complaints	CuC	Equation	$CuC_{it} = \sum IF_{eq}(RS_{it}, RSOC_{it})$				The potential complaints of customers <i>CuC</i> due to interruptions of water resource both within and out with the catchment <i>t</i> was identified by stakeholders as a key social and intellectual capital risk associated with the water resource system. Stakeholders highlighted that the influence of future simulations <i>i</i> could influence <i>CuC_{lt}</i> in the future. As there was no specific data available to measure current <i>CuC_{it}</i> , we use the nodes <i>RS_{it}</i> and <i>RSOC_{it}</i> as a measure of the current and potential direction of change in <i>CuC_{it}</i> , assuming that if there is no interruption to supply there will be no complaints and if there is an interruption to supply then there is the potential for complaints. We calculate <i>CuC_{it}</i> using IF statement equations <i>IF_{eq}</i> to index the prior distributions of parent node <i>RS_{lt}</i> and <i>RSOC_{it}</i> based on their discretised state thresholds. Each prior state discrete threshold for both <i>RS_{lt}</i> and <i>RSOC_{it}</i> , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of <i>c</i> , <i>u</i> , <i>and b</i> . For <i>CuC_{it}</i> the sum of <i>IF_{eq}</i> of prior <i>RS_{lt}</i> and <i>RSOC_{it}</i> values, which we will denote as <i>a</i> is as follows: <i>IF</i> ($\alpha \ge b_2$, 3, <i>IF</i> ($\alpha \ge b_1$, 2, <i>IF</i> ($\alpha \ge$ <i>c</i> , 1,0). For the indexed node <i>CuC_{lt}</i> we applied the same discretisation method as <i>EDWR_{lt}</i> .
Food Production sub-	model		1	1			
Crop Cover (Ha)	СС	Equation	$CC_{izt} = A_{izt}$	See supporting information.			Stakeholders highlighted that food production was an important component of the catchment, as it is predominantly covered in arable land. Stakeholders highlighted The area A of different crop types z grown in the catchment CC could vary under different simulations i across the catchment t. The current A_{izz} by calculating the average current % proportion of crop cover z in the catchment based upon analysis of the UKCEH Land Cover® Plus: Crops © 2016-2020 UKCEH. © RSAC. © Crown Copyright 2007, Licence number 100017572. We then convert the % proportion to a Ha proportion using the LC_{ivs} area for arable land cover category for each simulation i. States and their discretisation were set based on the land cover value for the different simulations i, for different crop cover types z
				State	Fr o m	То	Crop yields $CY(t/ha)$ could for crop type z differ under future change simulations i and precipitation change j across the catchment t. To measure current CY for crop types z we analysed crop yield data from
				Н	0	u	2010-2019 available from the Scottish Agriculture Tables from the
				М	u	bı	Economic Report 2020 to produce a truncated normal distribution β_{ijzt} . For future simulation types <i>i</i> and precipitation change <i>j</i> we applied a
				L	b 1	с	range of crop yield values taken from The Farm Management Handbook
Crop Yields (t/Ha)	СҮ	Equation	$CY_{ijzt} = \beta_{ijzt}$	Resilient	c	inf	2020/21 produced by SAC Consulting. Lower yield range values are applied to extreme precipitation change simulations from the Farm Management Handbook. For all simulations an increase in yield (t/ha) is applied for each simulation based on UK SSP narratives, with FFD simulation applying the highest yield increase and GR having the lowest yield increase. The resilient threshold value c is set at as the current mean yield (t/ha) for crop types z. The high risk threshold u is set at 50% of the c value (t/ha). The values for L and M risk, b ₁ , are then uniformised between c and u (t/ha).
Crop Price (£/t)	СР	Equation	$CP_{izt} = \beta_{izt}$	State Resilient L	Fr o m 0 c	To c b	Crop Prices <i>CP</i> (\pounds/t) for crop type <i>z</i> could differ under future change simulations <i>i</i> across the catchment <i>t</i> . To measure current <i>CP</i> for crop types <i>z</i> we analysed crop price data from 2010-2019 available from Scottish Agriculture Tables from the Economic Report 2020 to produce a truncated normal distribution β_{izt} . Future <i>CP</i> _{izt} value assumptions β_{izt}
		l		М	b	u	follow an increase in price based on SPP narratives, where FFD

				Н	u	inf	assumes the greatest increase (15%), BAU (10%) and GR (5%) to give an estimation of direction of change. The resilient threshold value c is set at as the current mean price (\pounds/t) for crop types z . The high risk threshold u is set at 50% of the c value (\pounds/t). The values for L and M risk are then uniformised between c and u (\pounds/t).
Fertiliser Costs (£/ha)	FCost	Equation	$FCost_{izt} = \beta_{izt}$			u	Fertiliser Costs <i>FCost</i> (£/ha) for crop type <i>z</i> could differ under future change simulations <i>i</i> across the catchment <i>t</i> . To measure current <i>FCost</i> for crop types <i>z</i> we analysed literature parameters of Fertiliser costs 2016-2020 available from The Farm Management Handbooks produced by SAC Consulting to produce a truncated normal distribution β_{izt} . Future <i>FCost</i> _{izt} β_{izt} value assumptions are based on SPP narratives and the input from stakeholders in regard to concerns regarding future P supplies. The GR simulation assumes a decrease on costs (10%), BAU assumes an increase in costs (10%) and FFD assumes a higher increase (50%).The resilient threshold value <i>c</i> is set at as the current mean cost (£/ha) for crop types <i>z</i> . The high risk threshold u is set as double the <i>c</i> value (£/ha). The values for L and M risk, b ₁ , are then uniformised between <i>c</i> and <i>u</i> (£/ha).
Total Crop Margin (£M)	ТСМ	Equation	$TCM_{ijt} = \sum_{z} (A_{izt} \times CY_{ijzt} \times CP_{izt}) - (FCost_{izt} \times A_{izt})$				The total crop margin <i>TCM</i> (£M) was identified as a key representation of food production in the catchment. To calculate the sum of TCM under simulation <i>i</i> for precipitation simulation <i>j</i> for all crop types <i>z</i> for the entire catchment <i>t</i> by multiplying the area <i>A</i> (ha) of each crop type <i>z</i> with the total yield <i>CY</i> (<i>t</i> /Ha) for each crop type <i>z</i> , to give the total tonnage of each crop type <i>z</i> which is then multiplied by the price <i>CP</i> (£/t) of each crop type <i>z</i> to give the total output (£M). The cost of fertiliser <i>FCost</i> (£/ha) for each crop type <i>z</i> multiplied by <i>A</i> for crop type <i>z</i> which is subtracted from the total output (£M). We acknowledge that there are other node and fixed costs which influence the margins of <i>z</i> however, there was limited data available to consider these costs. We therefore only consider the nodes we can measure to provide a strategic consideration of how margins, based on the nodes included, will differ between current and future simulations. To measure <i>TCM</i> _{<i>ijt</i>} the equation calculates the sum of income minus costs for all crop types <i>z</i> . The resilient threshold value <i>c</i> is set at as the current mean cost (£/ha) for crop types <i>z</i> . The high risk threshold <i>u</i> is set at 50% of the <i>c</i> value (£/ha). The values for L and M risk are then uniformised between <i>c</i> and <i>u</i> (£/ha).
Capital Resources su	b-model						
				State	Fr o m	То	Stakeholders identified surface water flows SWF (ML/day) as a significant natural capital resource in the catchment, which could be influence by future climatic change PA_{ij} and demands for irrigation
				H1	0	u1	ID_{is} Current flows (ML/day) for each waterbody sub catchment s is
				M1	u1	b 1	represented by a customised distribution β_s which was derived by
				Ll	b 1	c	analysing river discharge data 2010-2019 for available waterbodies s provided by SEPA. The distribution of β_s is multiplied by the potential
Surface Water Flows	SWF	Equation	$SWF_{is} = \beta_s \times PA_{ij} - \frac{ID_{is}}{\gamma}$	Resilient L2	c b ₂	b ₂ b ₃	anomaly change in PA_{ii} . Simulated changes in ID_{is} - which is converted
(Ml/day)	5.01	Equation	γ	M2	b ₂	U3 U2	from MI/yr to ML/day using γ – is subtracted from SWF _{is} . As there can
				H2	u ₂	inf	be high risk of low flows (H1) and high flows (H2), two high risk threshold values u_1, u_2 are derived by taking the Q5 and Q95 (ML/day) values from the analysed river discharge data for waterbodies <i>s</i> . The resilient threshold value <i>c</i> set as the median value of the river discharge data. The values for L and M are uniformised between <i>c</i> and both u_1 and u_2 (ML/day).

	1	1		1	-		
				Ct-t-	Fr	T	The quality of surface water SWQ was a current issue in the catchment,
				State	0	То	particularly in regard to P concentrations ($\mu g/l$) due to the influence of
				Resilient	m 0	с	effluent loads TPL_{is} (kg/day) and diffuse loads DP_{ivs} (kg/day), as
				I	c	b1	highlighted by stakeholders. Surface water flows SWF_{is} (ML/day)
				M	b1	u	were also identified as influencing P concentrations, with higher flows
				101	U	ŭ	diluting concentrations and low flows having the opposite effect on P
							concentrations. To simulate both current and future influence of TPL_{is} .
							DP_{ivs} and SWF_{is} on SWQ_{is} EQ ₁ where SWF_{is} data was available,
			TPLis+DPins				applying the unit conversion coefficient γ .
Surface Water Quality			$EQ_{1}. SWQ_{is} = \frac{TPL_{is} + DP_{ivs}}{SWF_{ic}} \times \gamma$				
unace water Quanty (μg/l)	SWQ	Equation	EQ2. $SWQ_{is} = \beta_s \times \Delta TPL_{is} \times$				Where SWF_{is} wasn't available we use EQ ₂ , which derives a
(µg/1)			ΔDP_{ins}				customised distribution β_s for current RP concentrations using random
			IDS				water quality sampling data 2010-2019 provided by SEPA at the end of
				Н	u	inf	waterbodies s. The influence of future TPL_{is} and DP_{ivs} on SWQ_{is} is
							estimated by multiplying β_s by the % change in ΔTPL_{is} and ΔDP_{ivs} as
							a measure of the direction of change in RP concentrations.
							For both EQ ₁ and EQ ₂ the resilient c threshold value is set as the
							good/moderate Water Framework Directive (WFD) status threshold
							$(\mu g/l)$ determined by SEPA for each waterbody s. The high risk value
							threshold u is set as the poor/bad WFD status threshold. The L and M
							risk threshold value b_l is set as the moderate/poor WFD status threshold.
						•	Stakeholders highlighted that soil in the catchment is important for
							supporting and protecting the natural environment and food production.
							Currently, soil is at risk to the impacts of intense and prolonged rainfall
							events. The potential future change in extreme rainfall events was seen
							as an influencing factor on future soil erosion SE_{is} . To measure the
							current risk of soil erosion we analysed maps of the risk of soil erosion by water produced by Lilly & Baggaley (2018) using ArcGIS pro for
							each waterbody sub-catchment s to produce point raster data for mineral
							soil risk class. The soil risk maps give each raster point one of nine of
Soil Erosion	SE	Equation	$SE_{is} = \beta_s \times PA_{ij}$.,	the risk classification values which are divided evenly between low,
Don Erobion	52	Equation					moderate and high. We assigned each risk classification with a value of
							between zero and eight. Values of risk classification were analysed in
							each waterbody sub catchment s to produce a truncated distribution
							β_s of current risk of soil erosion by water. To estimate the potential
							impact of changes in rainfall on SE_{is} , we multiply β_s by PA_{ij} . The
							resilient c threshold value is set at the lowest risk classification value
							and the high risk threshold values u is set using the first high risk
							classification value. The M risk value b_1 is set using the first moderate
					Fr		risk classification value.
				State	Fr 0	То	As surface water flow SWF_{is} was highlighted by stakeholders as a key natural capital resource. We measured the overall state of SWF in the
				State	m	10	catchment t under simulations i. We calculate the overall capital
				Resilient	0	с	resource state values using IF statement equations to index the prior
			Σ	L	c	b ₁	distributions of parent nodes SWF_{is} based in their discretised state
Surface Water Flow	SWFC	Equation	$SWFC_{it} = \sum IF_{eq}(SWF_{is})$	M	bı	b ₂	thresholds. Each prior state discrete threshold, resilient to high-risk, was
		·	s			-	assigned a value of zero, one, two or three based on the values of c, u1,
				1			u_2 , b_1 , b_2 , b_3 . For <i>SWFC</i> _t the sum $\sum_{s}^{i} IF_{eq}$ of prior <i>SWF</i> _{is} values is as
				Н	b_2	u	follows:
							$IF(SWF_{is} \le u_1, 3, IF(SWF_{is} \le b_1, 2, IF(SWF_{is} \le c, 1, IF(SWF_{is} \ge c, 1)))$
							$u_2, 3, IF(SWF_{is} \ge b_3, 2, IF(SWF_{is} \ge b_2, 1, 0).$

							For the indexed capital resource node $SWFC_l$ the resilient threshold c is set at 25% of the total nodes included in the equation. The 25% value is selected as it ensures that for a capital resource to be resilient, the majority of parent nodes (at least 75%) must fall within a resilient index threshold value. The upper value u set as the maximum possible index value of all nodes (3 times the number of parent nodes). Threshold values for high and moderate risk, b_l and b_2 are uniformised values between c and u . The discretisation method is consistent for all capital resources and their capitals.
Surface Water Quality	swqc	Equation	$SWQC_{it} = \sum_{s} IF_{eq}(SWQ_{is})$	State Resilient L M H	Fr o m 0 c b ₁ b ₂	To c b ₁ b ₂ u	As surface water quality SWQ_{is} was highlighted by stakeholders as a key natural capital resource we measured the overall state of SWQ in the catchment <i>t</i> under simulations <i>i</i> . We calculate the overall capital resource state values using IF statement equations index the prior distributions of parent nodes SWQ_{is} based on their discretised state thresholds. Each prior state discrete threshold for SWQ_{is} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For $SWQC_{it}$ the sum $\sum_{s}^{l} IF_{eq}$ of prior SWQ_{is} values is as follows: $IF(SWQ_{is} \ge b_2, 3, IF(SWQ_{is} \ge b_1, 2, IF(SWQ_{is} \ge c_1, 0)$. We apply the same discretisation methods described for all capital resources as described for the node $SWFC$.
Flood Risk	FR	Equation	$FR_{is} = \sum IF_{eq}(SWF_{is})$			ű	As stakeholders highlighted the risk of flooding as a potential impacts due to the influence of future change on SWF_{is} , we measure flood risk under differing simulations <i>i</i> in waterbody sub catchment <i>s</i> values FR_{is} using IF statement equations to index the prior distributions of parent nodes SWF_{is} based on their discretised state thresholds. Each prior state discrete threshold, resilient to high-risk, was assigned a value of zero, one, two or three based on the values of, u_2 , b_2 , b_3 only as lower flows would not influence flood risk. For FR_{is} the sum IF_{eq} of prior SWF_{is} values is as follows: $IF(SWF_{is} \ge u_2, 3, IF(SWF_{is} \ge b_3, 2, IF(SWF_{is} \ge b_2, 1, 0)$. We apply the same discretisation methods described for all capital resources as described for the node $SWFC$.
Soil	S	Equation	$S_{it} = \sum_{s} IF_{eq}(SE_{is})$			"	As soil was highlighted as a key natural capital resource, we use the same equation as $SWQC_{lt}$ provide a measure of the state of soils under the influence future simulations <i>i</i> for the overall conditions in the catchment <i>t</i> . We apply the same discretisation methods described for all capital resources as described for the node $SWFC_{lt}$.
Air Quality	AQ	Equation	$AQ_{it} = \sum_{st}^{AQ_{it}} IF_{eq}(EDW_{is}EDLM_{is}EDWR_{it})$			ú	Air quality AQ was identified as a key natural capital resource, summarised by stakeholders as a reflection of the amount of emissions produced in the catchment t. Stakeholders highlighted that the influence of future simulations i could influence AQ_{it} in the future. As there was no specific data available to measure current AQ_{it} , we use the nodes EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$ as to measure of the potential direction of change in AQ_{it} as stakeholder identified the relationship between energy demand and emissions. We calculate AQ_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$, resilient to high- risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For AQ_{it} the sum of IF_{eq} of prior EDW_{is} , $EDLM_{is}$ and $EDWR_{it}$ values, which we will denote as α is as follows: : $IF(\alpha \ge b_{2,3}, IF(\alpha \ge b_{1,2}, IF(\alpha \ge c, 1, 0)$.

				Fo	for the indexed node AQ_{it} we applied the same discretisation method
					as SWFC.
Groundwater Quality	GWQ	Equation	$GWQ_{it} = \sum_{s} IF_{eq}(GN_{is})$	su c c c c c c c c c c c c c c c c c c c	Air quality GWQ was identified as a key natural capital resource, mmarised by stakeholders as a reflection of the amount of emissions produced. Stakeholders highlighted that the influence of future simulations <i>i</i> could influence GWQ in the catchment <i>t</i> GWQ_{it} in the future. As stakeholders specifically highlight GN_{is} as the specific compound of interest when discussing GWQ . The proportions of the atchment are also designated as a Nitrate Vulnerable Zone (NVZ). To the assure of the current conditions and potential direction of change we use GN_{is} as an indicator of GWQ_{it} . We calculate GWQ_{it} using IF tatement equations IF_{eq} to index the prior distributions of parent node N_{is} based on their discretised state thresholds. Each prior state discrete ureshold for GN_{is} , resilient to high-risk, was assigned a value of zero, ne, two or three based on the values of c, u, and b. For GWQ_{lt} apply a IF_{eq} of prior GN_{is} values, as follows: $IF(GN_{is} \geq b_2, 3, IF(GN_{is} \geq b_1, 2, IF(GN_{is} \geq c, 1, 0)$. or the indexed node GWQ_{it} we applied the same discretisation method as $SWFC$.
Energy Demand Change SW	SWED	Equation	$SWED_{it} = \sum_{st} IF_{eq}(EDW_{is}, EDWR_{it})$	sta der int <i>EL</i> c <i>ED</i> ont	The change in energy demand, specifically for Scottish Water assets, was identified as a key manufactured capital resource <i>SWED</i> . takeholders required an overall understanding of the change in energy mand under simulations <i>i</i> for all Scottish Water related systems in the catchment <i>t</i> , <i>SWED_{it}</i> . Differentiating the energy demand across different sectors in the catchment would allow for the extent of the fluence on each sector to be measured. We used the nodes <i>EDW_{is}</i> and <i>DWR_{it}</i> to measure of the potential direction of change in <i>SWED_{it}</i> . We calculate <i>SWED_{it}</i> , using IF statement equations <i>IF_{eq}</i> to index the prior distributions of parent node <i>EDW_{is}</i> and <i>EDWR_{it}</i> based on their discretised state thresholds. Each prior state discrete threshold for <i>DW_{is}</i> and <i>EDWR_{it}</i> , resilient to high-risk, was assigned a value of zero, e, two or three based on the values of c, u, and b. For <i>SWED_{it}</i> the sum f <i>IF_{eq}</i> of prior <i>EDW_{is}</i> and <i>EDWR_{it}</i> values, which we will denote as <i>a</i> is as follows: <i>IF</i> ($\alpha \ge b_2$, 3, <i>IF</i> ($\alpha \ge b_1$, 2, <i>IF</i> ($\alpha \ge c$, 1, 0). For the indexed node <i>SWED_{it}</i> we applied the same discretisation method as <i>SWFC</i> .
Chemical Demand Change SW	SWCD	Equation	$SWCD_{it} = \sum_{st} IF_{eq}(CDW_{is}, CDWR_{it})$	d cl d as	he change in chemical demand, specifically for Scottish Water related systems, was identified as a key manufactured capital resource <i>SWCD</i> . Stakeholders required an overall understanding of the change in chemical demand under simulations <i>i</i> for all Scottish Water related systems in the catchment <i>t</i> , <i>SWCD_{it}</i> . Differentiating the chemical demand across different sectors in the catchment would allow for the extent of the influence on each sector to be measured. We used the nodes <i>CDW_{is}</i> and <i>CDWR_{it}</i> to measure of the potential direction of hange in <i>SWCD_{it}</i> . We calculate <i>SWCD_{it}</i> using IF statement equations <i>IF_{eq}</i> to index the prior distributions of parent node <i>CDW_{is}</i> and <i>CDWR_{it}</i> based on their discretised state thresholds. Each prior state discrete threshold for <i>CDW_{is}</i> and <i>CDWR_{it}</i> , resilient to high-risk, was ssigned a value of zero, one, two or three based on the values of c, u, and b. For <i>SWCD_{it}</i> the sum of <i>IF_{eq}</i> of prior <i>CDW_{is}</i> and <i>CDWR_{it}</i> values, which we will denote as <i>a</i> is as follows: <i>IF</i> ($\alpha \ge b_2$, 3, <i>IF</i> ($\alpha \ge$ b_1 , 2, <i>IF</i> ($\alpha \ge c$, 1, 0). For the indexed node <i>SWCD_{it}</i> we applied the same discretisation method as <i>SWFC</i> .

Asset Compliance & Capability	ACC	Equation	$ACC_{it} = \sum_{st} IF_{eq}(ACW_{is}, ACWR_{it})$	u	Stakeholders required an overall understanding of the change in asset compliance and capability under simulations <i>i</i> for related Scottish Water related systems in the catchment <i>t</i> , ACC_{lt} . We used the nodes ACW_{ls} and $ACWR_{it}$ to measure of the potential direction of change in ACC_{it} We calculate ACC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node ACW_{is} and $ACWR_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for CDW_{is} and $CDWR_{it}$, resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For ACC_{it} the sum of IF_{eq} of prior ACW_{is} and $ACWR_{it}$ values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge c, 1, 0)$. For the indexed node ACC_{it} we applied the same discretisation method as $SWFC$.
Energy Demand Change LM	LMED	Equation	$LMED_{it} = \sum_{s} IF_{eq}(EDLM_{is})$	u	The change in energy demand, specifically for the land management system, was identified as a key manufactured capital resource <i>LMED</i> . Stakeholders required an overall understanding of the change in energy demand under simulations <i>i</i> for all land management systems in the catchment <i>t</i> , <i>SWED</i> _{<i>it</i>} . Differentiating the energy demand across different sectors in the catchment would allow for the extent of the influence on each sector to be measured. We used the node <i>EDLM</i> _{<i>is</i>} to measure of the potential direction of change in <i>LMED</i> _{<i>it</i>} We calculate <i>LMED</i> _{<i>it</i>} using IF statement equations IF_{eq} to index the prior distributions of parent node <i>EDLM</i> _{<i>is</i>} based on their discretised state thresholds. Each prior state discrete threshold for <i>EDLM</i> _{<i>is</i>} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For <i>LMED</i> _{<i>it</i>} the sum of IF_{eq} of prior <i>EDLM</i> _{<i>is</i>} values, which we will denote as <i>a</i> is as follows: $IF(EDLM_{is} \ge b_2, 3, IF(EDLM_{is} \ge b_1, 2, IF(EDLM_{is} \ge c, 1, 0)$. For the indexed node <i>LMED</i> _{<i>it</i>} we applied the same discretisation method as <i>SWFC</i> .
Chemical Demand Change LM	LMCD	Equation	$LMCD_{it} = \sum_{s} IF_{eq}(CDLM_{is})$	u	The change in energy demand, specifically for the land management system, was identified as a key manufactured capital resource <i>LMED</i> . Stakeholders required an overall understanding of the change in energy demand under simulations <i>i</i> for all land management systems in the catchment <i>t</i> , <i>SWED</i> _{<i>it</i>} . Differentiating the energy demand across different sectors in the catchment would allow for the extent of the influence on each sector to be measured. We used the node <i>EDLM</i> _{<i>is</i>} to measure of the potential direction of change in <i>LMED</i> _{<i>it</i>} We calculate <i>LMED</i> _{<i>it</i>} using IF statement equations IF_{eq} to index the prior distributions of parent node <i>EDLM</i> _{<i>is</i>} based on their discretised state thresholds. Each prior state discrete threshold for <i>EDLM</i> _{<i>is</i>} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For <i>LMED</i> _{<i>it</i>} the sum of IF_{eq} of prior <i>EDLM</i> _{<i>is</i>} values, which is as follows: $IF(EDLM_{is} \ge b_2, 3, IF(EDLM_{is} \ge b_1, 2, IF(EDLM_{is} \ge c, 1, 0)$. For the indexed node <i>LMED</i> _{<i>it</i>} we applied the same discretisation method as <i>SWFC</i> .
Community Relationship	CRS	Equation	$CRS_{it} = \sum_{st}^{CRS_{it}} IF_{eq}(SP_{is}, FR_{is}, SWQ_{it}, AQ_{it}, CuC_{it})$	u	The relationship with local communities <i>CRS</i> in the catchment <i>t</i> was identified as a key social capital resource by stakeholders. Stakeholders highlight that the influence of simulations <i>i</i> for could influence <i>CRS</i> _{it} in the future. As there is no specific measure for community relationship, stakeholders highlight dt at current and future conditions of nodes SP_{is} , FR_{is} , SWQ_{it} , AQ_{it} and CuC_{it} could influence CRS_{it} . We calculate CRS_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes SP_{is} , FR_{is} , SWQ_{it} , AQ_{it} and CuC_{it} based on their

					discretised state thresholds. Each prior state discrete threshold for $SP_{is}, FR_{is}, SWQ_{it}, AQ_{it}$ and CuC_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For CRS_{it} the sum of IF_{eq} of prior CRS_{it} values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0))$. For the indexed node CRS_{it} we applied the same discretisation method as $SWFC$.
Water Treatment & Supply Costs	WTS	Equation	$WTS_{it} = \sum IF_{eq}(SWED_{it}, SWCD_{it}, ACC_{it})$		Changes in costs associated with the treatment and supply of water resources WTS in the catchment t was identified as a key financial capital resource by stakeholders. Stakeholders highlight that the influence of simulations i for could influence WTS_{it} in the future. Stakeholders identified that future conditions of nodes $SWED_{it}$, $SWCD_{it}$ and ACC_{it} could influence WTS_{it} . We calculate WTS_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes $SWED_{it}$, $SWCD_{it}$ and ACC_{it} based on their discretised state thresholds. Each prior state discrete threshold for $SWED_{it}$, $SWCD_{it}$ and ACC_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For WTS_{it} the sum of IF_{eq} of prior $SWED_{it}$, $SWCD_{it}$ and ACC_{it} values, which we will denote as α is as follows: $IF(\alpha \ge u, 3, IF(\alpha \ge b, 2, IF(\alpha \ge c, 1, 0))$. For the indexed node ACC_{it} was pulsed the same discretisation method as $SWFC$.
Food Production	FPF	Equation	$FPF_{it} = \sum IF_{eq}(TCM_{ijt}, LMED_{it}, LMCD_{it},)$	ч	Changes in income and costs associated with food production <i>FPF</i> in the catchment <i>t</i> was identified as a key financial capital resource by stakeholders. Stakeholders highlight that the influence of simulations <i>i</i> for could influence <i>FPF_{it}</i> in the future. Stakeholders identified that current and future conditions of nodes TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$ could influence <i>FPF_{it}</i> . We calculate <i>FPF_{it}</i> using IF statement equations IF_{eq} to index the prior distributions of parent nodes TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$ based on their discretised state thresholds. Each prior state discrete threshold for TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$, resilient to high- risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For <i>FPF_{it}</i> the sum of IF_{eq} of prior TCM_{ijt} , $LMED_{it}$ and $LMCD_{it}$ values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0)$. For the indexed node <i>FPF_{it}</i> we applied the same discretisation method as $SWFC$
Reputation Capital Ouputs	R	Equation	$R_{it} = \sum_{st} IF_{eq}(SP_{is}, FR_{is}, CuC_{it})$	u.	The reputation of sectors R in in the catchment t was identified as a key intellectual capital resource by stakeholders. Stakeholders highlighted that the influence of simulations i for could influence R_{it} in the future. As there was no specific measure of reputation, we used the nodes identified by stakeholders that they believe influence reputation. Stakeholders identified SP_{is}, FR_{is} and CuC_{it} could influence R_{it} . We calculate R_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes SP_{is}, FR_{is} and CuC_{it} based on their discretised state thresholds. Each prior state discrete threshold for SP_{is}, FR_{is} and CuC_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For R_{it} the sum of IF_{eq} of prior SP_{is}, FR_{is} and CuC_{it} values, which we will denote as α is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0)$. For the indexed node R_{it} we applied the same discretisation method as $SWFC$

Natural Capital	NC	Equation	$NC_{it} = \sum IF_{eq}(SWQC_{it}, SWFC_{it}, AQ_{it}, S_{it}, GWQ)$	ű	The overall measure of natural capital NC in in the catchment t was required by stakeholders. Stakeholders highlighted that the influence of simulations i for could influence NC_{it} in the future. As there was no specific measure of natural capital, we used the natural capital resource nodes identified by stakeholders to measure both the current and future condition of natural capital NC_{it} . Stakeholders identified $SWQC_{it}$, $SWFC_{it}$, AQ_{it} , S_{it} and GWQ_{it} as capital resources for NC_{it} . We calculate NC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes $SWQC_{it}$, $SWFC_{it}$, AQ_{it} , S_{it} and GWQ_{it} , based on their discretised state thresholds. Each prior state discrete threshold for $SWQC_{it}$, $SWFC_{it}$, AQ_{it} , S_{it} and GWQ_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For NC_{it} the sum of IF_{eq} of prior $SWQC_{it}$, $SWFC_{it}$, AQ_{it} , S_{it} and GWQ_{it} , $ca \ge a$ so follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0)$. For the indexed node NC_{it} we applied the same discretisation method as $SWFC$
Social Capital	SC	Equation	$SC_{it} = IF_{eq}(CRS_{it})$	α	The overall measure of social capital <i>SC</i> in in the catchment <i>t</i> was required by stakeholders. Stakeholders highlighted that the influence of simulations <i>i</i> for could influence <i>SC</i> _{it} in the future. As there was no specific measure of social capital, we used the social capital resource node <i>CRS</i> _{it} identified by stakeholders to measure both the current and future condition of social capital <i>SC</i> _{it} . We calculate <i>SC</i> _{it} using IF statement equations <i>IF</i> _{eq} to index the prior distributions of parent node <i>CRS</i> _{it} based on their discretised state thresholds. Each prior state discrete threshold for <i>CRS</i> _{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For <i>SC</i> _{it} the <i>IF</i> _{eq} of prior <i>CRS</i> _{it} values is as follows: <i>IF</i> (<i>CRS</i> _{it} $\geq b_2$, 3, <i>IF</i> (<i>CRS</i> _{it} $\geq c$, 1,0). The overall discretised output for <i>SC</i> _{it} will be equal to <i>CRS</i> _{it} , however, we retain both nodes to ensure model structure continuity. For the indexed node <i>SC</i> _{it} we applied the same discretisation method as <i>SWFC</i> .
Manufactured Capital	МС	Equation	$MC_{it} = \sum IF_{eq}(SWED_{it}, SWCD_{it}, LMED_{it}, LMC)$	u	The overall measure of manufactured capital <i>MC</i> in in the catchment <i>t</i> was required by stakeholders. Stakeholders highlighted that the influence of simulations <i>i</i> for could influence MC_{it} in the future. As there was no specific measure of manufactured capital, we used the manufactured capital resource nodes identified by stakeholders to measure both the current and future condition of manufactured capital MC_{it} . Stakeholders identified $SWED_{it}$, $SWCD_{it}$, $LMED_{it}$, $LMCD_{it}$ and ACC_{it} as manufactured capital resources for MC_{it} . We calculate MC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes $SWED_{it}$, $SWCD_{it}$, $LMCD_{it}$ and ACC_{it} based on their discretised state thresholds. Each prior state discrete threshold for $SWED_{it}$, $SWCD_{it}$, $LMED_{it}$, $LMCD_{it}$, nd here, $resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For MC_{it} the sum of IF_{eq} of prior SWED_{it}, SWCD_{it}, LMED_{it}, LMCD_{it} and ACC_{it} values, which we will denote as \alpha is as follows: IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0). For the indexed node MC_{it} we applied the same discretisation method as SWFC.$
Financial Capital	FC	Equation	$FC_{it} = \sum IF_{eq}(WTS_{it}, FPF_{it})$	ű	The overall measure financial capital FC in in the catchment t was required by stakeholders. Stakeholders highlighted that the influence of

				simulations <i>i</i> for could influence FC_{it} in the future. As there was no specific measure of financial capital, we used the financial capital resource nodes identified by stakeholders to measure both the current and future condition of financial capital FC_{it} . Stakeholders identified WTS_{it} and FPF_{it} as financial capital resources for FC_{it} . We calculate FC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent nodes WTS_{it} and FPF_{it} assigned a value of zero, one, two or three based on the values of c, u, and b. For FC_{it} the sum of IF_{eq} of prior WTS_{it} and FPF_{it} values, which we will denote as a is as follows: $IF(\alpha \ge b_2, 3, IF(\alpha \ge b_1, 2, IF(\alpha \ge c, 1, 0))$. For the indexed node FC_{it} we applied the same discretisation method as SWFC.
Intellectual Capital	IC	Equation	$IC_{it} = IF_{eq}(R_{it})$	The overall measure of intellectual capital SC in in the catchment t was required by stakeholders. Stakeholders highlighted that the influence of simulations i for could influence IC_{it} in the future. As there was no specific measure of intellectual capital, we used the intellectual capital resource node R_{it} identified by stakeholders to measure both the current and future condition of intellectual capital IC_{it} . We calculate IC_{it} using IF statement equations IF_{eq} to index the prior distributions of parent node R_{it} based on their discretised state thresholds. Each prior state discrete threshold for R_{it} , resilient to high-risk, was assigned a value of zero, one, two or three based on the values of c, u, and b. For IC_{it} the IF_{eq} of prior R_{it} values is as follows: $IF(R_{it} \ge b_2, 3, IF(R_{it} \ge$ $b_1, 2, IF(R_{it} \ge c, 1, 0)$. The overall discretised output for IC_{it} will be equal to R_{it} , however, we retain both nodes to ensure model structure continuity. For the indexed node IC_{it} we applied the same discretisation method as SWFC.

Table S3: Node parameter values.

Node							Parameter	Values							Parameter Source		Discretis	ation	
	,		L			_		β^{I}				PO	C/A/T				<i>L</i> .	h.	
	ı	J	к	s/a	V	Z	М	SD	Trunc	γ	GR	BAU	FFD	Current		C	b1	b_2	u
	GR	ExLR					0.74	0.03							UK Climate				
	GR	BAU					1.044	0.05							Projection User				
Precipitation	GR	ExHIR					1.36	0.06							Interface product Anomalies for				
Change	BAU	ExLR					0.72	0.04								States an	. diagnotica d	haaad an i	
Anomaly (%)	BAU	BAU					1.048	0.05							projections (25km)	probabilistic States are discret		ble in SMTable 1.	
	BAU	ExHIR					1.4	0.05							over UK, 1961-2100	anu a	ie available i	II SIVI I AUIC	51.
	FFD	ExLR					0.67	0.04							· ·	for β .			
	FFD	BAU					1.056	0.06							101 p.				
	FFD	ExHIR					1.49	0.07											

¹ M represents the mean value, SD represents the standard deviation and Trunc represents the truncated values for the distribution which is typically zero to prevent values being non-negative.

		 Cupar	6200	 	1.39	0.4	0	0.002	1408	2816	5554	0	Scottish Water Eden	3.2	6.4		9.6
		 Springfield	6200	 	0.89	0.13	0	0.002	6	12	668	0	Water Quality	1.17	2.34		3.51
		 Freuchie	6200	 	0.26	0.07	0	0.002	-176	-352	-387	0	Strategic Study. We	0.28	0.56		0.84
		 Dairsie	6200	 	0.09	0.01	0	0.002	37	74	178	0	simulated effluent	0.1	0.2		0.3
		 Strathmiglo	6201	 	0.56	0.08	0	0.002	-153	-306	-367	0	flows using effluent	0.28	0.56		0.84
		 Bowhouse	6201	 	1.53	0.24	0	0.002	-178	-356	1116	0	flow summary	1.94	3.89		5.83
		 Ceres	6202	 	0.25	0.03	0	0.002	-170	-340	-374	0	statistics to generate	0.27	0.54		0.81
Dry Weather		 Pitscottie	6202	 	0.03	0.005	0	0.002	-15	-30	-36	0	Q80 value of the outputs to derive β .	0.04	0.08		0.12
Flow (Ml/day)		 Letham	6206	 -	0.06	0.009	0	0.002	-27	-54	-65	0	SMTable 1 for y. PC Values for GR, BAU and FFD are derived from Scottish Water Growth Model	0.07	0.14		0.21
													outputs.				
		 Cupar	6200	 	2.27	1.14	0	0.002	1408	2816	5554	0	Scottish Water Eden	9.6	14.4		19.2
		 Springfield	6200	 	1.14	0.29	0	0.002	6	12	668	0	Water Quality	3.51	5.27		7.02
		 Freuchie	6200	 	0.66	0.18	0	0.002	-176	-352	-387	0	Strategic Study. We	0.84	1.26		1.68
		 Dairsie	6200	 	0.13	0.07	0	0.002	37	74	178	0	used survey samples where available and	0.3	0.45		0.6
Daily Effluent		 Strathmiglo	6201	 	0.81	0.42	0	0.002	-153	-306	-367	0	SAGIS outputs in	0.84	1.26		1.68
Flow (Ml/day)		 Bowhouse	6201	 	2.16	1.02	0	0.002	-178	-356	1116	0	absent survey	5.83	8.73		11.64
		 Ceres	6202	 	0.35	0.175	0	0.002	-170	-340	-374	0	statistics for β .	0.81	1.22		1.62
		 Pitscottie	6202	 	0.05	0.025	0	0.002	-15	-30	-36	0	statistics for p.	0.12	0.18		0.24
		 Letham	6206	 	0.117	0.04	0	0.002	-27	-54	-65	0	SMTable 1 for γ .	0.21	0.32		0.42
Daily Influent Flow (Ml/day)															fluent Flow a scretisation a Flow	s Daily Et	
		 	6200	 										1	4.67	8.33	12
Cuill Essent		 	6201	 										0.5	2.33	4.17	6
Spill Event		 	6202	 										0.5	2.33	4.17	6
		 	6206	 										0.25	1.17	2.08	3
		 Cupar	6200	 	2.6	1.6	0	0.0002	1408	2816	5554	0		5.4	10.8		16.2
		 Springfield	6200	 	3.7	1.6	0	0.0004	6	12	668	0		5.96	11.92		17.88
		 Freuchie	6200	 	4.42	2.59	0	0.0032	-176	-352	-387	0		2.46	4.92		7.38
		 Dairsie	6200	 	2.7	1.8	0	0.0002	37	74	178	0	Values for the current	0.34	0.68		1.02
		 Strathmiglo	(201										effluent P	1.54	3.08		4.62
Phosphorus			6201	 	2.1	1.3	0	0.0014	-153	-306	-367	0		1.54	5.00		
		 Bowhouse	6201	 	2.1 2.8	1.3 1.4	0	0.0014 0.0003	-153 -178	-306 -356	-367 1116	0	concentration (mg/l) β	5.94	11.88		17.82
Load (kg/d)							-						concentration (mg/l) β are taken from the				
Load (kg/d)	-	Bowhouse	6201	 	2.8	1.4	0	0.0003	-178	-356	1116	0	concentration (mg/l) β are taken from the Scottish Water Eden	5.94	11.88		17.82
Load (kg/d)		 Bowhouse Ceres	6201 6202	 	2.8 2.5	1.4 1.5	0	0.0003 0.0016	-178 -170	-356 -340	1116 -374	0	concentration (mg/l) β are taken from the	5.94 0.8	11.88 1.6		17.82 2.4
Load (kg/d)		 Bowhouse Ceres Pitscottie	6201 6202 6202	 	2.8 2.5 4.2	1.4 1.5 2.5	0 0 0 0	0.0003 0.0016 0.0191	-178 -170 -15	-356 -340 -30	1116 -374 -36	0 0 0	concentration (mg/l) β are taken from the Scottish Water Eden Water Quality Strategic Study. SMTable 1 for γ .	5.94 0.8 0.19	11.88 1.6 0.38		17.82 2.4 0.57
Load (kg/d)		 Bowhouse Ceres Pitscottie Letham	6201 6202 6202 6206	 	2.8 2.5 4.2 2.3	1.4 1.5 2.5 1.4	0 0 0	0.0003 0.0016 0.0191 0.0002	-178 -170 -15 -27	-356 -340 -30 -54	<u>1116</u> -374 -36 -65	0 0 0	concentration $(mg/l) \beta$ are taken from the Scottish Water Eden Water Quality Strategic Study.	5.94 0.8 0.19 0.24	11.88 1.6 0.38 0.48		17.82 2.4 0.57 0.72
Load (kg/d)		 Bowhouse Ceres Pitscottie Letham Cupar	6201 6202 6202 6206 6200	 	2.8 2.5 4.2 2.3	1.4 1.5 2.5 1.4	0 0 0	0.0003 0.0016 0.0191 0.0002 0.0003	-178 -170 -15 -27 	-356 -340 -30 -54	1116 -374 -36 -65 	0 0 0 0	concentration (mg/l) β are taken from the Scottish Water Eden Water Quality Strategic Study. SMTable 1 for γ .	5.94 0.8 0.19 0.24 6.7	11.88 1.6 0.38 0.48 13.4		17.82 2.4 0.57 0.72 20.1
		 Bowhouse Ceres Pitscottie Letham Cupar Springfield	6201 6202 6202 6206 6200 6200	 	2.8 2.5 4.2 2.3	1.4 1.5 2.5 1.4	0 0 0 	0.0003 0.0016 0.0191 0.0002 0.0003 0.0091	-178 -170 -15 -27 	-356 -340 -30 -54 		0 0 0	concentration (mg/l) β are taken from the Scottish Water Eden Water Quality Strategic Study. SMTable 1 for γ .	5.94 0.8 0.19 0.24 6.7 10.33	11.88 1.6 0.38 0.48 13.4 20.66	 	17.82 2.4 0.57 0.72 20.1 30.99

		 	Bowhouse	6201			 		0.0009						1.98	3.96		5.94
0.53 1.16	-																	2.85
Image	-															-		1.74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-				-													1.74
															-		-	64.5
Pace problem	Total																	23.4
Image Image <th< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>3.12</td></th<>					1				1			-						3.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Load (kg/day)								-						-			0.72
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-				-			-			1			12
Under Market warf -			1												0.5	-		6
Mask old P -																		6
Chemical Deminand Wastewater <	Wastewater											-						3
Chemial Demiad Wateware												-						3
Ubmand Wastewater <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td> </td> <td></td> <td>3</td>					-		 											3
Maske Mark <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td>3</td>		 					 											3
Asst Compliance and Capability Image: Compliance Compliance and Capability Image: Compliance Compliance Compliance and Capability Image: Compliance Complianc	Wastewater																	3
Compliance and Capability WaskwaterImage: start of the start o	Asset																10.42	15
and Capability Wastewater image wastewater image wast																	-	9
Wastewater Image: constraint of the constrai				6202										1		3.5	6.25	9
442 531 885 885 6200 Urban 546 642 728 520 6201 Arable 551 937 1191 1103 6201 Arable 551 937 1191 1103 6202 Arable 174 132 270 193 6202 Arable 1007 1007 1057 997 6205 Pasture 116 119 124 111 6205 Pasture 126 1340 168 187				6205		1												6
Image: constraint of the		 		6200	Arable		 			3589	3729	3833	3485					
Image: constraint of the	-	 		6200	Pasture		 			442	531	885	885					
Image: constraint of the	F	 			-		 											
Image: construct of the construction of the																		
Land Cover (Ha) 174 132 270 193 UKCEH land cover vector maps (Morton et al., 2019) as det determine A. States are discretised based on and are available in SMTa Land Cover (Ha) 6202 Arable 2573 2673 2773 2499 6205 Arable 1007 1027 1057 997 6205 Arable 116 119 124 111 6206 Arable 126 1340 1703 1576 6206 Arable -	-																	
Land Cover (Ha) 2673 2673 2173 2499 Vector mans (More al., 2019) used to el., 2019) used to el., 2019 States are discretised based on and are available in SMTa 1061 1388 1715 1633 1007 1007 1075 997 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-						 											
(Ha) 6202 Pasture 1061 1388 1715 1633 etal.s and are available in SMTa 1007 1007 107 997 997 determine A. determine A.<	Land Cover	 			Arable		 			2573					States are	discretised	based on a	1 values
1007 1027 1057 997 determine J. 94 140 168 187 94 140 168 187 94 110 124 111 6206 Vrban 1025 1340 1703 1576		 		6202	Pasture		 			1061	1388	1715	1633					
6205 Urban 116 119 124 111 6206 Arable 2433 2528 2669 2362 6206 Pasture 1025 1340 1703 1576 6206 Urban <	(110)	 		6205	Arable		 			1007	1027	1057	997	determine A.	und u			
2433 2528 2669 2362 6206 Pasture 1025 1340 1703 1576 6206 Urban <		 		6205	Pasture		 			94	140	168	187					
2433 2528 2669 2362 6206 Pasture 1025 1340 1703 1576 6206 Urban <	-	 		6205	Urban		 			116	119	124	111					
6206 Pasture 1025 1340 1703 1576 6206 Urban </td <td>F</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>	F	 					 											
6206 Urban	-	 					 											
136 113 90 113 Scottish Water Eden Water Quality Strategic Study provided the current no of T. See SMTable 1 for GR, BAU and FFD values. States are discretised based on and are available in SMTa Septic Tanks (No of) 6202 56 47 38 47 State gic Study provided the current no of T. See SMTable 1 for GR, BAU and FFD values. States are discretised based on and are available in SMTa	-		-		-		 											
Image: Septic Tanks (No of) Image: Septic Tank (No of) Image: Septic T					1									0 1 1 1 1 1				
Septic Tanks (No of) 56 47 38 47 Strategic Study provided the current no of T. See States are discretised based on and are available in SMTa 24 14 8 14 Strategic Study provided the current no of T. See States are discretised based on and are available in SMTa </td <td>-</td> <td></td>	-																	
Septer Lands (No of) 24 14 8 14 provided the current no of T. See SMTable1 for GR, BAU and FFD values. States are discretised based on and are available in SMTa (No of) 24 14 8 14 provided the current no of T. See SMTable1 for GR, BAU and FFD values. and are available in SMTa	-																	
Image: No of I Image																		
Image: Constraint of the system of the sy	(No of)			0203				1		24	14	0	14		and a	re available	in SMTab	le 1.
6200 Pasture 0.0064 0.00057 0.0073 0.0073 0.03 0.45 8.3 12.45 1.5 2.25 1.5		 		6206			 			74	62	50	62	SMTable1 for GR,				
Image: Physical constraints Image: Constraints <t< td=""><td></td><td> </td><td></td><td>6200</td><td>Arable</td><td></td><td> </td><td></td><td>0.0037</td><td></td><td></td><td></td><td></td><td></td><td>12.77</td><td>19.16</td><td></td><td>25.54</td></t<>		 		6200	Arable		 		0.0037						12.77	19.16		25.54
Phosphorus Applications (kg/day) 6200 Septic Tank 0.073 Values for y taken from the ADAS UK Ltd model of rural diffuse pollution provided by SEPA. 8.3 12.45 1.5 2.25 0.0008 0.83 1.2.5		 		6200	Pasture		 		0.0064						5.7	8.55		11.4
Phosphorus Applications (kg/day) 6200 Seplic Tank 0.073 from the ADAS UK Ltd model of rural diffuse pollution provided by SEPA. 8.3 12.45		 		6200	Urban		 		0.00057					Values for	0.3	0.45		0.6
(kg/day) 6201 Arable 0.00042 Ltd model of rural diffuse pollution provided by SEPA. 6201 Pasture 0.0008 diffuse pollution provided by SEPA. 1.5 2.25 0.83 1.25 0.83 1.25		 		6200			 		0.073					from the ADAS UK	8.3	12.45		16.6
6201 Pasture 0.0008 provided by SEPA.		 		6201	Arable		 		0.00042						1.5	2.25		3
		 		6201	Pasture		 		0.0008						0.83	1.25		1.66
- $ -$		 		6201	Septic Tank		 		0.015					provided by SEFA.	0.93	1.4		1.86
6202 Arable 0.0011 0.0011	ł	 		6202			 		0.0011						2.8	4.2		5.6

		 	6202	Pasture	 			0.0014						2.23	3.35		4.46
		 		Septic	 									-			
		 	6202	Tank	 			0.018						0.83	1.25		1.66
		 	6205	Arable	 			0.0005						0.52	0.78		1.04
		 	6205	Pasture	 			0.00017						0.03	0.045		0.06
		 	6205	Urban	 			0.00007						0.01	0.015		0.02
		 	6205	Septic Tank	 			0.015						0.21	0.32		0.42
		 	6206	Arable	 			0.00001					-	0.034	0.056		0.078
		 	6206	Pasture	 			5 0.00001					-	0.017	0.026		0.034
				Septic				1					-				
		 	6206 6200	Tank	 			0.0008						0.05 27	0.08		0.1 54
T . 1 D . C		 											-			-	
Total Diffuse		 	6201 6202		 								4	2.9 5.84	4.35 8.76		5.8
Phosphorus (kg/day)		 			 												11.68
(kg/day)		 	6205 6206		 								4	0.77	1.16 0.15		0.2
		 	6206	Arable	 			0.001						0.1	0.15		0.2
		 							-								
		 	6201	Urban	 3.41	0.29		0.0001					Values for β and γ	18.75	28.13		37.5
Groundwater		 		Septic Tank				0.00006					derived using groundwater nitrate				
Nitrate (mg/l)				Arable				0.0013					samples (mg/l) from				
			(201	Urban	4.07	0.2		0.00013	1				2008-2019 provided	10.75	20.12		27.5
		 	6201	Septic	 4.07	0.2		0.00007					by SEPA.	18.75	28.13		37.5
				Tank				0.00007									
		 	6200		 93	82	0						Values for β derived	625	937.5		1250
Irrigation		 	6201		 44	57	0						using annual irrigation	542	813		1084
Demand		 	6202		 55	75	0						abstraction licence	193.5	290.3		387
(ML/year)		 	6206		 21	16	0						return data (Ml/year) from 2008-2019	96.5	144.8		193
		 	6200		 								provided by SEPA.	0.25	1.17	2.08	3
Energy			6200		 								-	0.25	1.17	2.08	3
Demand Land		 	6201											0.25	1.17	2.08	3
Management		 	6202		 								-	0.25	1.17		3
		 	6206		 									0.25	2.33	2.08	6
		 	6200		 								-	0.5	2.33	4.17	6
Chemical														0.5	2.33		-
Demand Land		 	6202		 											4.17	6
Management		 	6205		 								4	0.5	2.33	4.17	6
		 	6206		 									0.5	2.33	4.17	6
Public	GR	 			 			0.95					Values y are used for				
Commercial	BAU	 			 			1.05					node PCD_{it} in the		de is determi		
Demand	FFD	 			 			1.1					equation for node WA	th	ere is no dis	cretisation	
	Current	 			 			1					(see SMTable 1).				
	GR	 			 			0.95					Values y are used for				
Leakage	BAU	 			 			1					node L_{it} in the		de is determi		
	FFD	 			 			1.05					equation for node WA	th	ere is no dis	cretisation	l .
	Current	 			 			1					(see SMTable 1).			1	1
Water Resource		 			 7.71	0.58		0.00016	743	1,486	6,339	0	Values for β derived using annual	7.5	8.5		9.5

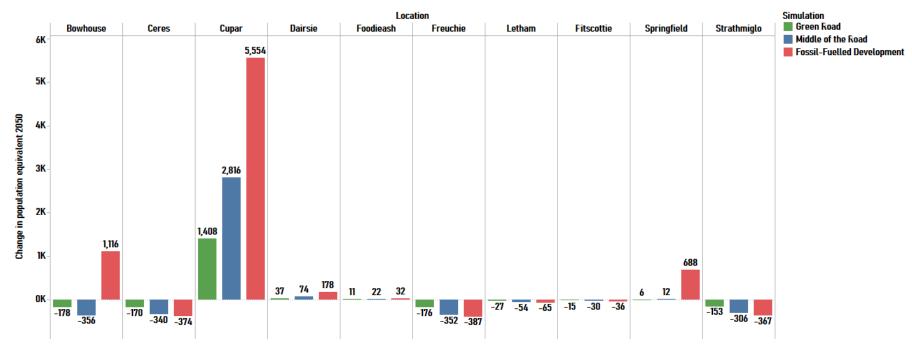
Demand (Ml/day)															Scottish Water boreholes in the catchment from 2014- 2018 provided by SEPA and Scottish Water. The coefficient γ which represents the normal consumption rate of 165 1/d per person per day identified by Scottish Water				
	GR									0.98					Values y are used for				
Asset	BAU									0.98					node AC_{it} in the		le is determi		
Conditions	FFD									0.95					equation for node SC	the	ere is no disc	retisation.	
	Current									1					(see SMTable 1).		-		
				aı				Custom							Custom values for β	5	3		1
Water Resource Supply Capacity			-	a ₂				Custom							derived using annual abstraction rate data for all Scottish Water boreholes <i>a</i> in the catchment from 2012- 2019 provided by Scottish Water	5	3		1
Resilience of Eden Supply (Ml/day)		-	_				0.97	0.12	0						The β values represent β_{ooc} used in the RS node equation are derived from the 2014-2018 abstraction data provided by SEPA and Scottish Water (see SMTable 1).	0.5	0.25		0
Resilience of Out of Catchment Supply (Ml/day)		-	-		-	-		-	-	-	-	-		-	-	0.5	0.25		0
Energy Demand Water Resources																0.25	1.17	2.08	3
Chemical Demand Water Resources																0.25	1.17	2.08	3
Asset Capability Water Resources								-			-					0.5	2.33	4.17	6
Customer Complaints Water Resources											-					0.5	2.33	4.17	6
Crop Cover						Wheat					5595	5758	5866	5432	Values for A we use	States are	discretised b	ased on a	irrent 4
(Ha)						Barley					6700	6896	7026	6505	the UKCEH Land	states are	values fo		AICIII A
(114)						Potato					1233	1269	1293	1197	Cover® Plus: Crops ©		values iv		

				 	Oilseed				 412	423	431	399	2016-2020 maps and SSP narratives.				
Crop Yield	GR	BAU		 	Wheat	8.62	0.94	0	 								
(t/Ha)	BAU	BAU		 	Wheat	9.03	0.94	0	 								
	FFD	BAU		 	Wheat	10	0.94	0	 								
	Current	BAU		 	Wheat	8.21	0.94	0	 					8.1	6.1		4.1
	All	ExLR/E xHIR		 	Wheat	6	0.94	0	 								
	GR	BAU		 	Barley	6.33	0.48	0	 				For β values we use a combination of crop				
	BAU	BAU		 	Barley	6.63	0.48	0	 				yield data from 2010-				
	FFD	BAU		 	Barley	7.5	0.48	0	 				2019 available from	6.00	4.50		2.02
	Current	BAU		 	Barley	6.03	0.48	0	 				the Scottish	6.03	4.52		3.02
	All	ExLR/E xHIR		 	Barley	4	0.48	0	 				Agriculture Tables from the Economic				
	GR	BAU		 	Potato	36.31	1.9	0	 				Report 2020 and crop				
	BAU	BAU		 	Potato	38	1.9	0	 				yield values taken				
	FFD	BAU	-	 	Potato	39.78	1.9	0	 				from The Farm	42.2	21 65		21.1
	Current	BAU		 	Potato	34.8	1.9	0	 	-			Management	42.2	31.65		21.1
	All	ExLR/E xHIR		 	Potato	30	1.9	0	 				Handbook 2020/21 produced by SAC				
	GR	BAU		 	Oilseed	3.91	0.44	0	 				Consulting.				
	BAU	BAU		 	Oilseed	4.1	0.44	0	 								
	FFD	BAU		 	Oilseed	5	0.44	0	 					2.72	2 70		1.07
	Current	BAU		 	Oilseed	3.72	0.44	0	 					3.72	2.79		1.86
	All	ExLR/E xHIR		 	Oilseed	3	0.44	0	 								
	GR			 	Wheat	152.9 9	23.14	0	 								
	BAU			 	Wheat	160.2 7	23.14	0	 					145.7	109.2		72.9
	FFD			 	Wheat	167.5 6	23.14	0	 								
	Current			 	Wheat	145.7	23.14	0	 -								
	GR			 	Barley	146.2 7	28.4	0	 								
	BAU			 	Barley	153.2 3	28.4	0	 	-			For β values we use	139.3	104.5		69.7
	FFD			 	Barley	160.1	28.4	0	 				crop price data from 2010-2019 available				
Crop Price (£/t)	Current			 	Barley	139.3	28.4	0	 				from Scottish				
()	GR			 	Potato	174.1	23.5	0	 				Agriculture Tables				
						182.3		-					from the Economic				
	BAU			 	Potato	8 190.6	23.5	0	 				Report 2020	165.8	124.4		82.9
	FFD			 	Potato	7	23.5	0	 				-				
	Current			 	Potato	165.8	23.5	0	 				4			L	
	GR			 	Oilseed	322.8 2	40.4	0	 								
	BAU		-	 	Oilseed	339.2 4	40.4	0	 					308.4	231.3		154.2
	FFD		-	 	Oilseed	354.6 6	40.4	0	 	1							
	Current			 	Oilseed	308.4	40.4	0	 								

r	GR	T	<u> </u>	r	Wheat	161.1	23.75	0	r			1	1				1	
	GR	 			wheat	188.3												
	BAU	 			Wheat	7	23.75	0							179.4	269.1		358.8
	FFD	 			Wheat	296	23.75	0										
	Current	 			Wheat	179.4	23.75	0										
	GR	 			Barley	150.2 1	21.71	0										
	BAU	 			Barley	175.2 5	21.71	0						For β values we use	166.9	250.4		333.8
Fertiliser Cost	FFD	 			Barley	250.3 5	21.71	0						literature parameters of Fertiliser costs				
(£/ha)	Current	 			Barley	166.9	21.71	0						2016-2020 available				
	GR	 			Potato	177.8 4	21.27	0						from The Farm Management				
	BAU	 			Potato	207.5	21.27	0						Handbooks produced	197.6	296.4		395.2
	FFD	 			Potato	296.4	21.27	0						by SAC Consulting.	197.0	290.4		393.2
	Current	 			Potato	197.6	21.27	0										
		 				117.3		÷										
	GR	 			Oilseed	6	18.8	0										
	BAU	 			Oilseed	136.9 2	18.8	0							130.4	195.6		260.8
	FFD	 			Oilseed	195.6	18.8	0										
	Current	 			Oilseed	130.4	18.8	0										
Total Crop Margin (£M)		 													17	12.75		8.5
		 	6200				Custom	1		365				Custom values for β				
Surface Water Flows (Ml/day)		 	6201				Custom	L		365				derived from river discharge data 2010- 2019 provided by SEPA.		2		
		 	6200						1000					Custom values for β	78	191		1046
Courfe on Western		 	6201			1			1000	-	-			derived from water	67	170	-	996
Surface Water Quality (µg/l)		 	6202				Custom	L		-	-			quality sampling data	75	186	-	1034
Quanty (µg/I)		 	6205				Custom	L						2010-2019 provided	72	197		1015
		 	6206				Custom	L						by SEPA.	71	178		1015
		 	6200			3.1	1.1	0						Values for β derived	1	3		5
		 	6201			3.6	1.14	0						from maps of the risk	1	3		5
Soil Erosion		 	6202			3.62	1.1	0						of soil erosion by	1	3		5
Son Elosion		 	6205			3.7	0.96	0						water produced by	1	3		5
		 	6206			3.93	1.45	0						Lilly & Baggaley (2018).	1	3		5
Surface Water Flow (Capital Resource)		 													0.5	2.33	4.17	6
Surface Water Quality (Capital Resource)		 													1.25	5.83	10.42	15
Flood Risk		 	6200												0.25	1.17	2.08	3
FIOOU KISK		 	6201												0.25	1.17	2.08	3

² Surface water flows node is discretised using c, u_1 , u_2 , b_1 , b_2 and b_3 values (see SMTable1). For sub catchment 6200, the values are as follows: $u_1 = 98.5$, $b_1 = 172.75$, c = 247, $b_2 = 679.5$, $b_3 = 895.75$, $u_2 = 1112$. For sub catchment 6201, the values are as follows: $u_1 = 10.54$, $b_1 = 19.87$, c = 29.2, $b_2 = 63.64$, $b_3 = 98.67$, $u_2 = 133.41$.

6 1 (6 1)	1	1			r		r	r		1		r r	
Soil (Capital Resource)	 	 	 			 		 	 	1.25	5.83	10.42	15
Air Quality	 	 	 	-		 		 	 	1.25	5.83	10.42	15
Groundwater										0.5	2.33	4.17	6
Quality	 	 	 			 		 	 	0.3	2.55	4.1/	0
Energy													
Demand	 	 	 			 		 	 	1.25	5.83	10.42	15
Change SW													
Chemical													
Demand	 	 	 			 		 	 	1.25	5.83	10.42	15
Change SW													
Asset													
Compliance &													
Capability	 	 	 			 		 	 	1.25	5.83	10.42	15
(Capital													
Resource)													
Energy													
Demand	 	 	 			 		 	 	1	4.67	8.33	12
Change LM													
Chemical													
Demand	 	 	 			 		 	 	1.25	5.83	10.42	15
Change LM													
Community	 	 	 			 		 	 	1.75	8.17	15.58	21
Relationship	 	 	 			 		 	 -	1.75	0.17	15.56	21
Water													
Treatment &	 	 	 			 		 	 	0.75	3.5	6.25	9
Supply Costs													
Food	 	 	 			 		 	 	0.75	3.5	6.25	9
Production	 	 	 			 		 	 				-
Reputation	 	 	 			 		 	 -	1.25	5.83	10.42	15
Natural Capital	 	 	 			 		 	 -	1.25	5.83	10.42	15
Social Capital	 	 	 			 		 	 -	0.25	1.17	2.08	3
Manufactured										1.25	5.83	10.42	15
Capital	 	 	 			 		 	 	1.23	3.83	10.42	15
Financial										1	2.67	4.33	6
Capital	 	 	 			 		 	 	1	2.07	4.33	0
Intellectual										0.25	1.17	2.08	3
Capital	 	 	 			 		 	 	0.23	1.1/	2.08	3


S4: Scenario Assumptions

Extreme Low Rainfall Extreme High Rainfall Simulation Business As Usual Green Road RCP 2.6, annual, 50th percentile. RCP 2.6, winter months, 95th percentile. RCP 2.6, summer months, 5th percentile. % Mean, Standard Deviation -26, 3.3 4.38, 5.28 36.31, 6.11 Business As Usual RCP 6, summer months, 5th percentile. RCP 6, annual, 50th percentile. RCP 6, winter months, 95th percentile. % Mean, Standard Deviation -27.15, 3.6 4.76, 5.42 40.33, 5.04 Fossil Fuelled Development RCP 8.5, summer months, 5th percentile. RCP 8.5, winter months, 95th percentile. RCP 8.5, annual, 50th percentile. % Mean, Standard Deviation -32.94, 3.64 5.63, 5.93 48.51, 6.68 Precipitation Anomaly (%) Scale -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

Table S4: Precipitation rate anomaly (%) in the Eden catchment under multiple future simulations (Lowe, et al., 2018).

TableS5: Average population equivalent at locations within the Eden catchment. Data provided by Scottish Water data 2016-2019.

Location	Bowhouse	Ceres	Cupar	Dairsie	Foodieash	Freuchie	Letham	Pitscottie	Springfield	Strathmiglo
Current Population Equivalent	5731	1301	13712	424	38	1350	403	106	7650	1102

FigS2: Projected change in population equivalent numbers for each simulation to 2050 in comparison to current population equivalents at locations within the Eden. Projections are derived from Scottish Water growth model. Acknowledgement: Figure created using Tableau Software LLC 2021 (version 2020.4.1)

Land Cover	Arable	Broadleaf Woodland	Coniferous Woodland	Freshwater	Heath/Bog	Improved Grassland	Semi-Natural Grassland	Urban
Current Area (Ha)	16081	3300	1079	86	147	8893	543	1206
Current %	51	11	3	0.3	0.5	28	2	4

Table S6: 2019 land cover in hectares (Ha) and % in Eden catchment (Morton, et al., 2020).

Figure S3: Projected difference in land cover in hectares (Ha) in 2050 in the Eden catchment for each simulation in comparison to current land cover (Morton, et al., 2020). Acknowledgement: Figure created using Tableau Software LLC 2021 (version 2020.4.1)

S5: Capital indexing method

Capital & Capital Resource Discrete Indexing Method

Surface water quality example

Stakeholders wish to know the overall resilience of surface water quality in the catchment. For the multiple waterbodies in catchment the project team have define the measure for surface water quality to be the concentration if RP (μ g/l). Each waterbody has a distinct state boundaries to determine their state based on WFD directive status:

Table S7. Discusto state houndary	a manual of our use stines also and sources	concentrations at each sub established water bed
Table S/ Discrete state boundary	v example for reactive phosphorus (concentrations at each sub-catchment waterbody
	Proprieta Provensional Provension Provide Provension Provide P	

Waterbody	6200 – I R Concer State Bo Values	P itration oundary	R Concen State Bo	6201- Discrete RP Concentration State Boundary Values (μg/l)		6202 - Discrete RP Concentration State Boundary Values (μg/l)		6205 - Discrete RP Concentration State Boundary Values (µg/l)		Discrete P tration pundary (µg/l)
State	From	То	From	То	From	То	From	То	From	То
Resilient	0	78	0	67	0	75	0	72	0	71
Low Risk	78	191	67	170	75	186	72	179	71	178
Moderate Risk	191	1048	170	996	186	1034	179	1015	178	1015
High Risk	1048	4184	996	3984	1034	3102	1015	4060	1015	4060

There is no measure of overall catchment surface water quality, therefore we index the resilience for surface water quality in each waterbody using IF statements, as explained for waterbody 6200 below:

Table S8: IF statement indexing values based on discrete boundary values for reactive phosphorus concentration in waterbody sub-catchment 6200

Waterbody	6200 – Discrete I State Boundary		IF Statement Value
State	From	То	
Resilient	0	78	0
Low Risk	78	191	1
Moderate Risk	191	1048	2
High Risk	1048	4184	3

The IF statement equation for 6200 would be:						
IF 6200 RP > 78, 1, IF 6200 RP > 191, 2, IF 6200 RP >						
1048, 3, ELSE, 0.						

For overall surface water quality, we take the sum of all IF statements for each of the waterbodies included in the study and discretise the node surface water quality as:

Table S9: IF statement indexing values based on discrete boundary values for overall surface water quality

Capital Re	source Surface Wa	ter Quality	IF Statement Value
State	From	То	
Resilient	0	1.25	0
Low Risk	1.25	5.83	1
Moderate Risk	5.83	10.42	2
High Risk	10.42	15	3

As there are five waterbody parent nodes for capital resource SWQ, the maximum sum of IF statements is 15.

The resilient threshold value is set at 25% of the total number of parent node nodes. 25% of 5 = 1.25.

Therefore, for a capital resource, or capital, to be considered resilient overall, 75% of the parent nodes must also be resilient.

Low and moderate risk upper threshold values are uniformised between 1.25 and 15.

An example simulation is demonstrated below:

Table S10: Sum if IF statement indexing example for overall surface water quality

RP simulation outputs	Index IF	Sum of IF	Capital resource surface water
at waterbodies	statement value	statement values	quality
RP in $6200 = 104 \ \mu g/l$ RP in $6201 = 190 \ \mu g/l$ RP in $6202 = 60 \ \mu g/l$ RP in $6205 = 97 \ \mu g/l$ RP in $6206 = 40 \ \mu g/l$	6200 = 1 6201 = 2 6202 = 0 6205 = 1 6206 = 0	4	Overall surface water quality is at low risk

Surface water quality is a parent node of natural capital, in the above example, surface water quality would carry an index IF statement value of 1 into the sum of IF statement equation with all other natural capital parent nodes.

S6: References

- Esri Inc.. ArcGIS Pro (version 2.58.0), Esri Inc. Available: <u>https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview</u>, 2018.
- Gallaun, H., Dohr, K., Puhm, M., Stumpf, A. & Huge, J.: EU-Hydro River Net User Guide 1.3. Copernicus Land Monitoring Service Reference Data: EU-Hydro. European Environment Agency: Copernicus Land Monitoring Service, 2019.

Lilly, A. B., N.J.: Soil erosion risk map of Scotland (partial cover). In: James Hutton Institute, 2018.

Lowe, J. A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., Edwards, T. & Fosser, G. UKCP18 science overview report. Met Office Hadley Centre: Exeter, UK, 2018.

Mara, D. D. Natural wastewater treatment. CIWEM, England, 2006.

Morton, R. D., Marston, C. G., O'Neil, A. W. & Rowland, C. S.: Land Cover Map 2019 (land parcels, GB). NERC Environmental Information Data Centre, <u>https://doi.org/10.5285/44c23778-4a73-4a8f-875f-89b23b91ecf8, 2020</u>.

O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., Van Ruijven, B. J., Van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M. and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169-180, <u>https://doi.org/10.1016/j.gloenvcha.2015.01.004,</u> 2017.

Pedde, S., Harrison, P. A., Holman, I. P., Powney, G. D., Lofts, S., Schmucki, R., Gramberger, M., and Bullock, J. M.: Enriching the Shared Socioeconomic Pathways to co-create consistent multisector scenarios for the UK, Science of The Total Environment, 756, 143172, https://doi.org/10.1016/j.scitotenv.2020.143172, 2021.

Su, J., Wang, L., Zhang, Y. & Gu, Z.: A Numerical Study on Influent Flow Rate Variations in a Secondary Settling Tank. Processes, 7, <u>https://doi.org/10.3390/pr7120884</u>, 2019.