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Abstract  
The resilience of river catchments and the vital socio-ecological services they provide are threatened 

by the cumulative impacts of future climatic, land use and socio-economic change. Stakeholders who 

manage freshwaters require tools for increasing their understanding of catchment system resilience 

when making strategic decisions. However, unravelling causes, effects and interactions in complex 

catchment systems is challenging, typically leading to different system components being considered 

in isolation.  

In this research, we tested a five-stage participatory method for developing a BN model to simulate the 

resilience of the Eden catchment in eastern Scotland to future pressures in a single trans-disciplinary 

holistic framework. The five-stage participatory method involved co-developing a BN model structure 

by conceptually mapping the catchment system and identifying plausible climatic and socio-economic 

future scenarios to measure catchment system resilience. Causal relationships between drivers of future 

change and catchment system nodes were mapped to create the BN model structure. Appropriate 

baseline data to define and parameterise nodes that represent the catchment system were identified with 

stakeholders.   

The BN model measured the impact of diverse future change scenarios to a 2050 time-horizon. We 

applied continuous nodes within the hybrid equation-based BN model to measure the uncertain impacts 

of both climatic and socio-economic change. The BN model enabled interactions between future change 

factors and implications for the state of five capitals (natural, social, manufactured, financial and 

intellectual) in the system to be considered providing stakeholders with a holistic catchment scale 

approach to measure the resilience of multiple capitals and their associated resources. We created a 

credible, salient and legitimate BN model tool for understanding the cumulative impacts of both 

climatic and socio-economic factors on catchment resilience based on stakeholder evaluation. BN 

model outputs facilitated stakeholder recognition of future risks to their primary sector of interest, 

alongside their interaction with other sectors and the wider system. Participatory modelling methods 

improved the structure of the BN through collaborative learning with stakeholders, while providing 

stakeholders with a strategic systems-thinking approach for considering river basin catchment resilience
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1. Introduction  1 
Freshwaters are essential for human life through the provision of drinking water and food production, 2 
regulation of climate and benefits to culture and well-being. Due to the multiple ecosystem services 3 
provided, freshwaters have become an exploited common resource and human activity threatens their 4 
ability to provide these vital services (Dodds et al., 2013, Heathwaite, 2010, Vörösmarty et al., 2010). 5 
Driven by both population and economic growth, the availability, quality and biodiversity of 6 
freshwaters are in decline, with projected changes in climate, land-use, population demographics and 7 
societal behaviour expected to accelerate negative trends (Boretti and Rosa, 2019, United Nations, 8 
2015, Wada et al., 2016). With the pressures freshwaters face, stakeholders including governments, 9 
environmental protection agencies and businesses must work together to ensure that freshwater 10 
resources are resilient to the impacts of environmental change and can continue to provide ecosystem 11 
services both now and in the future.  12 

Resilience was first introduced by (Holling, 1973) as the ability of ecological systems to absorb 13 
disturbances and retain their functions in the face of change. Adger (2000), later defined social resilience 14 
as the ability of groups and communities to cope with social, political and environmental change. The 15 
crossover between social and ecological theories led to the theory of socio-ecological system resilience 16 
(Cretney, 2014, Folke, 2006). Decision-makers must be able to understand how a system shifts from 17 
one state to another (Renaud et al., 2010) to inform resilient water management and allow freshwater 18 
systems to bounce back and adapt to variability, uncertainty and transformation (Brown, 2015). At a 19 
catchment scale, stakeholders often have competing demands on access to high-quality water for 20 
activities such as food production and drinking water supply, leading to complex interactions in socio-21 
ecological systems. Different water uses within a catchment can lead to compounding negative impacts 22 
on freshwater resources (Pahl-Wostl, 2007). For example, in agriculture, the application of fertilisers to 23 
grow food is a source of diffuse pollution, while discharge from wastewater treatment systems leads to 24 
point source pollution (Crossman et al., 2013). Water is shared between competing stakeholders and, 25 
aquatic ecosystems that also rely on clean water (Falkenmark, 2003). Hence, to ensure resilient water 26 
resources, an understanding of the complexity of socio-ecological systems is required (Pahl-Wostl et 27 
al., 2011, Plummer and Baird, 2021). 28 

Consideration of potential future change scenarios adds further complexity when considering the 29 
resilience of freshwater resources. Focussed on managing complexity and changes which pose 30 
challenges for socio-ecological systems, resilience is understood as the ability to cope with diverse 31 
shocks and stressors due to climatic and socio-economic change (Rodina, 2019). The extent of future 32 
impacts on water systems is uncertain due to uncertainties in the scale of climatic and socio-economic 33 
factors, including population and land-use change (Holman et al., 2016). Harrison et al. (2016) 34 
highlighted that climate impact assessments that did not consider the complexities of socio-economic 35 
drivers and cross-sectoral interactions could lead to over-or under- underestimations of future impacts, 36 
highlighting the need for stakeholder participation in the consideration of future change impacts.  37 

Participatory modelling approaches improve understanding of socio-ecological systems and 38 
environmental problems (Gray et al., 2018). Stakeholder engagement is a key element of participatory 39 
modelling, where the involvement of diverse stakeholder groups provides valuable conceptual 40 
knowledge of system components and their relationships (Hare, 2011). Stakeholders as components of 41 
socio-ecological systems was recognised by Walker et al. (2002), who proposed that stakeholders 42 
should lead the development of conceptual system modelling as a first step in analysing resilience.  43 

In a review of participatory modelling methods, Voinov and Bousquet (2010) presented Bayesian 44 
Networks (BNs) as a participatory modelling approach. Bayesian Networks are probabilistic graphical 45 
models that represent the causal probabilistic relationships between a set of random variables (Horný, 46 
2014). A BN consists of two key components; a directed acyclic graph which represents the 47 
dependencies between nodes in a system and conditional probabilities which quantify the strength of 48 
the dependences between nodes(Kaikkonen et al., 2021;Pearl, 1986). Nodes and their relationships 49 
within a system are easily visualised, allowing the network structure to be assessed, modified and 50 
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discussed by experts and stakeholders who know the system being represented by the BN (Aguilera et 51 
al., 2011).  52 

BNs can be used as a resilience analysis tool due to the ability to enable the participation of stakeholders 53 
in the development of conceptual system modelling and their application to explore future pathways by 54 
analysing “what if?” scenarios (Phan et al., 2019;Moe et al., 2019). The ability of BNs to handle 55 
uncertainty and complexity had made them a widely used approach in the field of water resource 56 
management (Phan et al., 2016;Castelletti and Soncini-Sessa, 2007). Moe et al. (2021) suggested BNs 57 
can improve environmental risk assessment, which is demonstrated by (Wade et al., 2021) who applied 58 
a BN model to measure the risks of multiple stressors on water quality and quantity.  59 

Common applications of BN models use discrete variables (Aguilera et al., 2011) involving the division 60 
of continuous variables into many distinct states (Mayfield et al., 2020). Discrete BN models face the 61 
limitations of discretisation, including a reduction of statistical accuracy and loss of information (Chen 62 
and Pollino, 2012;Xue et al., 2017). Hybrid BNs include both discrete and continuous variables to 63 
overcome discretisation limitations and make best use of available environmental data (Aguilera et al., 64 
2013), however, their application in environmental risk assessment is scarce (Moe et al., 2021). 65 
Knowledge gaps related to the application of BN models highlighted by Moe et al. (2021) include 66 
consideration of cumulative stressors in risk assessment models (Landis, 2021) and the integration of 67 
ecological and socioeconomic aspects. 68 

Addressing the knowledge gaps described, we tested the ability of a BN model to enable stakeholders 69 
to engage with complexity and uncertainty associated with 1) holistic understanding of complex 70 
catchment systems and the relationships between natural and social factors and 2) simulate the 71 
cumulative impacts of uncertain future climatic and socio-economic change in a single framework, 72 
using participatory BN methods.   73 

2. Methods  74 

2.1. Study Area: Eden Catchment 75 
Our research focused on the River Eden catchment in eastern Scotland, in collaboration with the 76 
Scottish Environment Protection Agency (SEPA) – Scotland’s environmental regulator – and Scottish 77 
Water – a statutory corporation that provides water and sewerage services across Scotland. The River 78 
Eden catchment was identified as an appropriate case study due to deteriorating water quality trends 79 
which are attributed to the influence of both diffuse and point source pollution from multiple sectors 80 
within the catchment.  81 

The Eden catchment (320 km2) is situated in the Fife region in eastern Scotland (Fig. 1). The river Eden 82 
originates in the Ochil Hills to the east of the catchment, flowing through predominantly arable 83 
agricultural land (51%; (Morton et al., 2020) much of which is high-quality agricultural land on fertile 84 
soils (Environmental Change Network, 2021;Macgregor and Warren, 2016). The river Eden then flows 85 
east through the urban settlement of Cupar. A further eight tributary water bodies can be found in the 86 
catchment. 87 

SEPA continue to monitor the ecological status of water bodies in the catchment as part of the European 88 
Union (EU) Water Framework Directive (WFD) obligation to produce River Basin Management Plans 89 
(RBMPs).  Despite the UK’s exit from the EU, the WFD legislation remains in place in Scotland.  In 90 
2019, the upper stretch of River Eden was classified as being in poor ecological status and the lower 91 
stretch of the River Eden stretch was classified as being in moderate ecological status.  92 

Waterbody reactive phosphorus (RP) concentration is a key parameter that contributes to the poor and 93 
moderate classifications. A strategic study carried out by Scottish Water (2020) identified the Eden 94 
catchment as being heavily impacted by high concentrations of RP and at risk of further deteriorating 95 
water quality. The high RP concentrations are caused by wastewater discharges from Scottish Water 96 
wastewater treatment work assets (Fig.1.), diffuse pollution sources from agriculture, private septic 97 
tanks, and in-stream phosphorus release from sediments during low flows.  98 
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Modelling and monitoring carried out in the water quality strategic study provide an understanding of 99 
the current ecological status of the catchment. The need for a complimentary future-focussed, systems-100 
thinking tool to address the water quality and water resource issues in the catchment was identified by 101 
SEPA and Scottish Water.  The tool would be required to support the trial of a new decision-making 102 
method called One Planet Choices1, co-developed by SEPA and Scottish Water, in the Eden catchment 103 
(SEPA, 2020). The Eden catchment was selected due to the current complexity of both water quality 104 
and quantity issues, with the added complexity of multiple contributing sectors.  105 

The One Planet Choices pilot project aims to deliver a future-focussed systems-based approach to 106 
decision-making to help identify solutions that are resilient to future challenges. The method aims to 107 
take account of interdependencies between both natural and human systems to achieve good ecological 108 
status and also deliver wider benefits through the identification of both innovative and collaborative 109 
management solutions.  One Planet Choices takes account of a range of capitals, including natural, 110 
social, manufactured, financial and intellectual. Specific resources are considered for each capital. For 111 
example strength of community relationships for social capital; energy and chemical demands for 112 
manufactured capital; and monetary costs and benefits for financial capital.  113 

To inform innovative and collaborative management solutions, an understanding of the extent to which 114 
water quality and quantity issues will change in the future and the extent to which different sectors will 115 
contribute to catchment issues now and in the future is required. Our methods involved stakeholder 116 
participation in the mapping of the socio-ecological system and important relationships that currently 117 
contribute to the water quality issues in the catchment and plausible climatic and socio-economic future 118 
scenario pathways to measure future catchment system resilience.119 

                                                           
1 A visual description of the One Planet Choices approach can be found by following this link.  

https://vimeo.com/804313679/1139d31b45
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120 
Figure 1:  The River Eden Catchment, Fife, Scotland. Land cover data provided by Morton et al. (2020). Acknowledgements: Catchment 

boundary provided by National River Flow Archive. River network provided by the EU-Hydro River Network Database (Gallaun et al., 2019). 

Map created in ArcGIS Pro (Esri Inc, 2021). 
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2.2. BN Model Construction 121 
To construct a BN model to meet the needs of the One Planet Choices framework we developed a five-122 
stage participatory approach (adapted from Pollino and Henderson (2010)) (described in detail in 123 
sections 2.2.1 to 2.2.5 and shown in Fig. 2, Pane 1). Based on the ladder of participation outlined by 124 
Basco-Carrera et al. (2017) we identified two stakeholder groups to be involved in the research. As 125 
direct research users, One Planet Choices method developers from SEPA and Scottish Water, who 126 
participated in co-design and decision-making throughout the research, are referred to as the “project 127 
team”. The second group of stakeholders, with direct knowledge of the socio-ecological system in the 128 
Eden catchment, are referred to as “catchment stakeholders” who participated at various levels from 129 
discussion and consultation.  130 

2.2.1. Stage 1: Discuss model aim and objectives 131 
To understand knowledge needs and confirm the appropriateness of a BN model approach, we held six 132 
initial engagement meetings with the project team (Fig. 2. Pane 2A). Stakeholder needs were defined 133 
within the model aim: to measure the resilience of the catchment system to the impact of future shocks 134 
and changes and their influence on key capital resources.  135 

Objectives identified to achieve the model aim included: 1) ensure systems-thinking by mapping the 136 
socio-ecological interactions in the catchment; 2) measure the impacts of continuing current practices 137 
and trends into the future, called the future Business As Usual (BAU), shocks of extreme events and 138 
diverse pathways for future climatic and socioeconomic change to a 2050 time-horizon; 3) use a holistic 139 
capitals approach to measure the current and future health of the catchment; 4) identify specific aspects 140 
of the catchment system that are least resilient to the impacts of future change. 141 

Further discussions involved setting model boundaries (Jakeman et al., 2006). A previous rapid 142 
assessment by Scottish Water and SEPA using the One Planet Choices method and water quality source 143 
apportionment modelling in GIS identified the need to focus the work on the following five waterbody 144 
sub-catchments: Lower Eden (6200), Upper Eden (6201), Ceres Burn (6202), Foodieash Burn (6205) 145 
and Fernie Burn (6206) (see S1 Fig.S1.) of the supplementary material for a visual representation). Each 146 
waterbody sub-catchment is either not meeting good ecological status currently, or is at risk of not 147 
achieving good status in the future.  148 

Reactive phosphorus (RP) was identified as the specific parameter to reflect water quality. Wastewater, 149 
land management and water resource systems were identified as critical for influencing RP 150 
concentrations in the catchment based on previous scoping and dependency mapping exercises during 151 
the mentioned rapid assessment. Catchment stakeholders with a knowledge of each of the three critical 152 
systems (wastewater, water resource and land management) within both SEPA and Scottish Water were 153 
selected to participate in model co-construction.   154 

To give an overall measure of the resilience of the catchment system, the project team required the 155 
model to take a holistic approach to investigate current and future impacts on five key capitals and their 156 
associated capital resources. Capitals identified by the project team included; natural capital and 157 
resources related to the quality and quantity of air, water and land. Social capital relates to the 158 
relationships and impacts on local communities. Manufactured capital, specifically the conditions of 159 
assets and changes in the use of energy and chemicals. Financial capital regarding changes in costs and 160 
incomes associated with resource use, asset conditions and changes in environmental conditions. 161 
Intellectual capital focuses on the potential changes in the reputation of sectors within the catchment. 162 

Model section headings (Figure 2) were agreed with the project team at the outset to clarify the 163 
modelling purpose with different stakeholder groups and ensure that the elicited cause-and-effect 164 
relationships were linear.  165 
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 166 

Figure 2: Model section headings used to ensure a linear cause-and-effect Bayesian Network model structure during participatory methods 167 

2.2.2. Stage 2: Construct conceptual catchment system model   168 
We conducted a series of focus groups (Fig.3. Pane 2B) to construct the BN model with stakeholders 169 
who had knowledge of the three critical systems: wastewater, water resource and land management. A 170 
total of 12 stakeholders participated in the focus groups, who were each given a specific identifier code 171 
based on their knowledge of the catchment system. Codes and critical system associations for all 172 
participants can be found in S2 Table S1, of the supplementary material.  173 

A five-step process (Fig.3. Pane 3) was used to construct the BN model with the focus groups. The aims 174 
of both the model building and model boundaries were explained to participating stakeholders as a first 175 
step. The second step identified appropriate nodes under each boundary heading using GeNIe modeller 176 
(version 2.4.4601.0) (BayesFusion, 2017). Political, economic, social, technological, environmental 177 
and legal headings taken from the PESTEL analysis framework (Yüksel, 2012) provided a basis for 178 
supporting node selection under the ‘future change’ heading. The ‘influence on the catchment system’ 179 
heading was used to support stakeholders in the identification of important nodes that define the system 180 
and the potential ‘consequences of change’ that could occur due to the influence of future impacts. 181 
Identification of ‘capital resources’ within the catchment was determined by the pre-defined five key 182 
capitals - natural, social, manufactured, financial and intellectual - and the important system-specific 183 
nodes identified by stakeholders. The key ‘capitals’ were used to summarise the outputs of the model. 184 

In the third step, stakeholders mapped the causal relationships between nodes identified under each 185 
heading, representing the direction of cause and effect relationships (Borsuk et al., 2004). In step four, 186 
a variable log was used to define each node and the metrics in which they should be measured. The 187 
variable log was also used in step five to record the data that stakeholders believed would be relevant 188 
for model parameterisation. Data for model parameterisation was collected in collaboration with both 189 
stakeholders from the project team, and those who participated in the focus groups. During the 190 
collection of data, catchment-specific information, such as the specific wastewater treatment works and 191 
their locations, were also identified. Data, metric and catchment specific information provided by 192 
stakeholders for each model variable informed the spatio-temporal resolution of the model. 193 

A model description is presented in S3, Table S2 of the supplementary material, which describes all 194 
nodes included in the BN model, model equations, discretisation, data used for model parameterisation, 195 
justification for node inclusion and all decisions made during model construction and parameterisation. 196 
The supporting parameter values for each node in the model are also provided in S3, Table S3 of the 197 
supplementary material. 198 
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 199 

200 
Figure 3:  Five-stage participatory approach used to create the Bayesian Network model (Pane 1). Stakeholder engagement 

activities involved in each stage of model construction (Pane2). Five-step process used during stakeholder focus groups (Pane 

3). 
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2.2.3. Stage 3: Parameterise model 201 
We developed a hybrid BN model based on the modelling aim and the data available. Hybrid BN models 202 
include both discrete and continuous nodes, where the relationships between continuous nodes can be 203 
represented as equations (Marcot and Penman, 2019). Discrete nodes adopt a set of states which 204 
describe different conditions and continuous nodes adopt a finite number of values presented as 205 
statistical distributions (BayesFusion, 2017). Our model contained 417 nodes, 623 arcs and 23 sub-206 
models. Despite not being a spatial model, there are some geographical considerations included to 207 
represent five sub-catchments. Across the five sub-catchments the model included 10 wastewater assets, 208 
two public water drinking assets, four land-cover types, four crop types and septic tanks. Dividing the 209 
model into sub-catchments resulted in repetition of nodes and arcs.  210 

Discrete choice nodes were used to represent and simulate different future pathway scenarios. The 211 
model incorporates Representative Concentration Pathways (RCPs) as the basis for measuring changes 212 
in climatic factors, using the UK Met Office (United Kingdom) Climate Projections 18, (Lowe et al., 213 
2018). The RCPs were coupled with Shared Socio-economic Pathways (SSPs) to simulate socio-214 
economic factors of change. We used the latest SSP narratives for the UK produced by Pedde et al. 215 
(2021) to frame the direction of change for the socio-economic factors such as population and land 216 
cover. We coupled three RCPs and SSPs for inclusion in the model as a deterministic choice node to 217 
allow for a range of scenarios; RCP2.6 was coupled with the Green Road narrative, RCP6 was coupled 218 
with the Middle of the Road narrative and RCP8.5 was coupled with the Fossil Fuelled Development 219 
narrative. We defined the coupled scenarios using the SSPs narrative names (Van Vuuren et al., 2014), 220 
except for the Middle of the Road narrative which was defined as the future Business As Usual (BAU) 221 
pathway, based on interpretations made by the stakeholder project team.  222 

Under the model boundary heading ‘future change’, precipitation change, land-cover change and 223 
population change nodes were identified by stakeholders. We used equation-based nodes to quantify 224 
the extent of future change and create a relationship with the discrete choice nodes that represent the 225 
three different pathway scenarios – Green Road, Business As Usual and Fossil Fuelled Development - 226 
allowing model users to perform varying scenarios of the BN model.   227 

Catchment-specific precipitation anomalies for probabilistic projections from the UK Climate 228 
Projections User Interface were used to quantify future precipitation change for each of the RCPs 229 
represented in the model (S4, Table S4). We used the mean annual precipitation rate anomaly to 230 
represent precipitation change for annual scenarios. To represent shocks to the system, we used extreme 231 
exceedance percentile values for seasonal summer (Q5 exceedance) and winter precipitation (Q95 232 
exceedance) anomalies.  233 

Population projection data provided by an internal Scottish Water Growth Model to 2030 was used to 234 
quantify likely future population change. The data provided included both the raw and real population 235 
equivalents (PE) which represent the populations that are served by water assets in the catchment. Real 236 
PE projections are based on local authority strategic and local development plans. Raw PE projections 237 
use likely future population projections supplied by the National Registers of Scotland. Real PE 238 
projections are conservative in comparison to raw PE projections. The raw and real PE projections were 239 
extrapolated to 2050, using different considerations of how population growth might change to 2050 240 
based on the SSP narratives, and input from stakeholders with knowledge of conditions in the 241 
catchment. Projected PE change value to 2050 for the differing scenarios in comparison to the average 242 
PE 2016-2019 at locations with the Eden catchment are provided in S4 (Table S5 and Figure S3) of the 243 
supplementary material.  244 

Land cover change projections to 2050 were quantified using UKCEH land cover vector maps 1990, 245 
2007 and 2015-2019 (Morton et al., 2020) in ArcGIS Pro (version 2.58.0) (Esri Inc, 2021) to analyse 246 
current and historic land cover change in the catchment. We applied a story and simulation approach 247 
(Alcamo, 2008;Rounsevell and Metzger, 2010) to change the percentage cover of each land cover type 248 
in each of the five waterbody sub-catchments. Percentage changes were based on the analysis of land 249 
cover trends from 1990 -2019, the different SSP narratives and the local knowledge of stakeholders to 250 
ensure the total possible land cover for the catchment could not be exceeded and the changes in land 251 
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cover types were realistic. The percentage cover was converted to hectares (Ha) for each land cover 252 
type in each of the waterbody sub-catchments (S4, Figure S4-S8). Projected land cover change values 253 
in comparison to 2019 land cover for the entire catchment are provided in S4 Figure S9. Section S4 254 
includes a detailed description of how land cover values were derived.   255 

A combination of monitoring data, processed-based model outputs and literature were used to represent 256 
baseline conditions of system states. Where supporting continuous data was available, we fitted 257 
truncated normal prior distributions by calculating the mean and standard deviation from available 258 
values. Truncated normal distributions were fitted to avoid negative values, where appropriate. 259 
Secondly, where longer data records were available, we used a built in GeNIe function to fit a custom 260 
prior distribution (histogram) to time-series data. Where available data was limited to a single 261 
deterministic value and statistical moments could not be calculated, we applied scenario modelling 262 
using the diverse coupled future pathways as a best available method for representing uncertainty.    263 
Equations linked the chain of cause (parent) and effect (child) relationships from ‘Future Change’ nodes 264 
to ‘Catchment System’ nodes, to ‘Capital Resource’ nodes and finally to ‘Capital Output’ nodes. The 265 
model was updated using the default GeNIe software hybrid forward sampling algorithm. The algorithm 266 
computes 10,000 samples from the prior probability distributions of parentless nodes, which it then 267 
used to generate samples in child nodes of the prior parent node distribution(s), generating probability 268 
distributions. Summary statistics (mean, standard deviation, minimum and maximum) were derived 269 
from the probability distributions for each node, which were compared for different current and future 270 
pathway scenarios.   271 

Continuous nodes were discretised into four states: resilient, low-risk, moderate- and high-risk based 272 
on the expert knowledge of stakeholders. A manual discretisation method (Beuzen et al., 2018) was 273 
used for nodes where state threshold values were defined by stakeholders and documented (e.g. asset 274 
and environmental licences). Where defined values were not available, we used a combination of 275 
manual and unsupervised equal interval discretisation methods (Aguilera et al., 2011;Beuzen et al., 276 
2018;Chen and Pollino, 2012). Manual methods set the resilient state threshold value based on current 277 
conditions and an upper limit value as an unlikely value to exceed, in most cases an infinity value. The 278 
‘uniformize’ function in GeNIe allowed for equal widths for low, moderate and high-risk state threshold 279 
values. We presented a dual representation of continuous nodes using a discretised child node to support 280 
the communication of the results using both summary statistics (median and standard deviation) 281 
available in continuous outputs and the probability of model outputs falling into agreed risk classes 282 
available in discrete variables 283 

For all capital and many capital resource nodes identified, either no defined metric or supporting data 284 
were available. To measure the resilience of capital and capital resource values we designed a novel 285 
approach using nested IF statement equations whereby each discretised state in a parent node, from 286 
‘resilient’ to ‘high-risk’, was assigned a value of zero, one, two or three and the scores for each child 287 
node were summed. For example, if a parent node was within a resilient state threshold a value of zero 288 
was assigned. As multiple parent nodes were associated with capital and capital resource variables, the 289 
sum of the ‘IF’ statement was used to determine their overall state. The ‘IF’ statement indexing method 290 
follows the ‘one out, all out’ approach applied to the evaluation of Good Ecological Status in the EU 291 
Water Framework Directive, as described in Carvalho et al., (2019). The ‘one out all out’ approach 292 
adopts the precautionary principle to prevent masking of undesirable outcomes when averaging scores 293 
and provides an easy and transparent way of measuring overall variable states. Discretising and 294 
indexing continuous nodes represent the probability of the states for capitals and their associated 295 
resource nodes, which can be compared across different future scenarios. A detailed example of the IF 296 
statement indexing method is provided in S5 of the supplementary material.  297 

2.2.4. Stage 4: Evaluate model 298 
The BN model structure was validated using expert opinion (Marcot et al., 2006) during the engagement 299 
focus group sessions (Figure 3, Pane 2B) with stakeholders from SEPA and Scottish Water. We then 300 
presented the BN model to additional stakeholders during two workshops for validation (Figure 3, Pane 301 
2C). These additional stakeholders were chosen to represent the views of other sectors and provide 302 
catchment-specific knowledge and expertise. A total of 11 stakeholders participated across the two 303 
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workshops, seven of which did not participate in the focus groups (see S2 Table S1 for additional codes 304 
and associations). The first workshop included eight attendees and the second included seven attendees. 305 
We used the credibility, salience and legitimacy evaluation criteria (Falconi and Palmer, 2017) to 306 
measure the success of the participatory approach at each stage of the BN model construction. 307 

Model performance was evaluated using a goodness of fit method (Aguilera et al., 2011) using 52 bi-308 
monthly observed RP concentrations in micrograms per litre (µg/l) collected in sub-catchment 6200 309 
collected between 2017-2019, (Scottish Water, 2020) . We fitted a histogram using the custom function 310 
tool in GeNIe to create an ‘observed phosphorus concentration (µg/l) 6200’ variable, which was both 311 
parentless and childless. We evaluated sub-catchment 6200 as this is the catchment outlet for all sub-312 
catchments. Computing the ‘current’ model scenario, we compared the median, standard deviation and 313 
discretised class probabilities – informed by the WFD classification boundaries for the sub-catchment 314 
– for both the modelled RP concentrations and observed RP variables to evaluate model goodness of 315 
fit.  316 

A % Bias method (Eq.1) applied by Glendell et al., (2022), with a departure of +/−50% from 317 
observations considered behavioural, was used to further evaluate model performance: 318 

 320 

(Eq. 1)                                                     %𝐵𝑖𝑎𝑠 =  
𝑋𝑠𝑖𝑚−𝑋𝑜𝑏𝑠

𝑋𝑜𝑏𝑠
 319 

Where 𝑋𝑠𝑖𝑚 is the modelled RP concentration (µg/l) and 𝑋𝑜𝑏𝑠 is the observed RP concentration (µg/l). 321 

A one-at-a-time parameter sensitivity analysis was conducted to determine which input variables 322 
contributed the greatest variability to model outputs (Wohler et al., 2020, Hamby, 1994). We used the 323 
target variable RP concentrations (µg/l) at the 6200 catchment outlet to determine the sensitivity of the 324 
model to diffuse pollution phosphorus loads and point source wastewater phosphorus loads. The 325 
sensitivity analysis compared the median RP concentration (µg/l) for the current scenario against the 326 
+/- 20% difference for diffuse arable, pasture and septic tank P sources, and wastewater P sources while 327 
holding other input values constant. 328 

2.2.5. Stage 5: Test model scenarios  329 
We tested model scenarios by presenting scenario outputs during the second workshop. After presenting 330 
model outputs during the series of workshops, the iterative cycle returns to the first stage of discussing 331 
the model aim and objectives. A seventh meeting (Pane 2A) was conducted by the project team to 332 
provide a final evaluation of the BN model based on the aims and objectives set out at the beginning of 333 
the participatory approach.  334 

3. Results  335 

3.1. Model structure  336 

Focus groups (Figure 3 Pane 2B) and workshops (Figure 3 Pane 2C) provided opportunity for 337 
stakeholders from wider sectors to build and evaluate the graphical BN model structure. An initial 338 
conceptual model structure was presented as a system diagram of the key nodes included in the BN 339 
model (Figure 4), with arrows representing cause and effect relationships between nodes. Stakeholder 340 
feedback on the representativeness of the model structure of the Eden catchment is also presented in 341 
Figure 4. A detailed visualisation of the model is provided in S3 Figure S2 of the supplementary 342 
material.  343 

Despite the majority of stakeholders describing the BN model structure as ‘mostly representative’ of 344 
the Eden catchment system, other participants were less convinced. To increase consensus, the wider 345 
group of stakeholders were taken through stages 1-4 of the participatory approach to discuss what the 346 
BN model should aim to achieve and how the model structure could be improved.  347 

Stakeholders highlighted that consideration of the food production system and its resilience to the 348 
impacts of future change was excluded from the model, as mentioned by LM6:  349 
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“… ultimately we’ve also got to remember the positives of what land managers are doing for the rural 350 
countryside and what they bring and the benefits to the countryside and ultimately they are producing 351 
food for a nation…” – LM6.  352 

To improve representation, nodes such as crop cover, yields, fertiliser costs and farm margins were 353 
added to the model structure. The impacts of future climatic change, such as increased drought, and 354 
fertiliser price shocks - due to potential future shortages in rock phosphate - were established as factors 355 
that could impact the food production system in the catchment. 356 

“…phosphate fertiliser is going to be a decreasing resource because there are only 50-100 years of 357 
phosphorus rock reserve left in the world…” – EP1. 358 

The model structure was adapted and presented back to the wider stakeholder group during a second 359 
workshop. Updating the model structure was seen to improve model representation of the Eden 360 
catchment system and the influence of future change, as seen in the stakeholder feedback from the 361 
second workshop (Figure 4). Participants highlighted that the model structure helped them to 362 
conceptualise the impacts future change might bring to their sector and the catchment.  363 

 “…it is a good way of understanding (the catchment system) and maybe farmers do need to think 364 
outside to box a bit more and think of the impact it (agriculture) is having…” – LM6  365 

“I think it’s also … a first chance that many of us on the call are really having our eyes open to what 366 
the next 30-year might look like in terms of political, social and climate changes.” – WW1. 367 

3.2. Catchment resilience – Capital Outputs  368 
After improving the model structure, scenarios were carried out to measure the impact of future change 369 
on the catchment system. Model outputs provided an overview of the conditions of the five key capitals 370 
represented within the catchment system. Capital outputs for four diverse scenarios - ‘Current’ 371 
conditions, ‘Business As Usual’ to 2050, ‘Green Road’ extreme low precipitation (GR ExLP) to 2050, 372 
and ‘Fossil Fuelled Development’ extreme high precipitation (FFD ExHP) to 2050 - are presented 373 
(Figure 5).   374 

We found that under current conditions, all capitals were mainly within a low risk-state. Results can be 375 
interpreted as: for natural capital, 51% of the 10,000 BN model scenarios were within a low-risk state, 376 
49% were within a moderate-risk state and 0% were within resilient or high-risk states.  377 

In the future BAU scenario – which assumes annual precipitation change rates associated with RCP 6 378 
and a continuation of current trends in population and land cover change to 2050 – risk to natural capital 379 
shifts from low to moderate-risk, 64% of simulations were within a moderate-risk state. Social, 380 
manufactured, financial and intellectual capitals remained predominantly within low-risk states, 381 
however, there was an increase in observations within moderate-risk compared to current conditions.    382 

In the GR ExLP scenario - which assumes the Q5 value for summer precipitation anomaly projections 383 
associated with RCP 2.6, lower population growth and a reduction in pasture land cover – we observed 384 
an increase towards resilience in all capitals. For intellectual capital, the majority of samples were within 385 
a resilient state (75%). For natural and financial capital, there was a shift from moderate to low-risk, 386 
compared to current conditions. An increase in observations within a resilient state was evident for 387 
social and manufactured capitals compared to current conditions.  388 

In the FFD ExHP scenario – which assumed the 95% exceedance value for winter precipitation anomaly 389 
projections associated with RCP 8.5, population growth increased urbanisation and a shift from natural 390 
to agricultural land cover –an increase in risk was observed for all capitals. The risk to natural capital 391 
shifted predominantly to moderate-risk (98%), with a small proportion of observations within a high-392 
risk state (1%). Social, manufactured, financial and intellectual capitals all shifted from low to 393 
moderate-risk states compared to current conditions. 394 

395 
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396 

Figure 4: Conceptual Bayesian Network model structure and feedback on model representativeness of the Eden Catchment before (a) and 

the updated model structure (b) with stakeholder feedback from workshop 1 (c) and workshop 2 (d).  

 

b) Conceptual Bayesian Network structure, Workshop 2 

c) Stakeholder feedback, Workshop 1 d) Stakeholder feedback, Workshop 2 

a) Conceptual Bayesian Network structure, Workshop 1 
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397 
Figure 5: Probability of resilient-high-risk states for each capital under diverse future pathway scenarios 
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3.3. Catchment resilience – Capital Resource Outputs  398 
The cause and effect structure of the BN model enabled the investigation of catchment resilience beyond 399 
the overview of capital states. Further investigation of catchment resilience is achieved using a manual 400 
sensitivity analysis to identify parent nodes with the greatest influence on overall capital states. Using 401 
the example of natural capital, Figure 6 presents a visualisation of the state of all natural capital resource 402 
nodes. Outputs are presented for the four diverse scenarios of current and future conditions in the 403 
catchment.  404 

Under current conditions, surface water quality, surface water flows and air quality were all most likely 405 
to be within a low-risk state. Outputs highlighted that 85% of soil quality observations were within a 406 
moderate-risk. Groundwater quality is 100% resilient across all four scenarios. 407 

In the future BAU scenario to 2050, the majority of observations for surface water quality, surface water 408 
flows and air quality remained within a low-risk state, however, there was a shift from low to moderate-409 
risk states compared to current conditions. An increase in high-risk observations (23%) was evident for 410 
soil quality, which remained predominately within a moderate-risk state.  411 

An improvement towards resilience was evident for surface water quality, surface water flows and air 412 
quality nodes in the GR ExLP scenario to 2050. Soil quality remained mainly within a moderate-risk 413 
state, despite a shift from moderate to low-risk observations in comparison to current conditions.   414 

Increasing risk was evident in the FFD ExHP scenario for surface water quality, surface water flows, 415 
air quality and soil quality. Surface water quality, surface water flows and air quality shifted from 416 
predominantly low to moderate-risk in comparison to current conditions. High-risk observations were 417 
evident in both surface water quality (12%) and surface water flows (13%). Soil quality conditions 418 
shifted to 89% of observations within a high-risk state419 

420 



Page 17 of 34 
 

421 
Figure 6: Probability of resilient-high-risk states for each capital resource under diverse future pathway scenarios 
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3.4. Sub-catchment system resilience   422 
Capital (Figure 5) and capital resource (Figure 6) outputs are representative of the entire catchment 423 
condition. A deeper investigation of catchment resilience was achieved through investigation at the sub-424 
catchment scale. A visual representation of surface water quality - specifically for RP concentrations 425 
(μg/l) at the sub-catchment scale – is presented in Figure 7 using probabilities (%) for discrete 426 
resilience/risk states under both current and diverse future scenarios. Median RP concentrations (μg/l) 427 
derived from continuous model outputs are also presented for each of the different sub-catchments for 428 
the different future scenarios in Figure 7.  429 

Simulating current conditions (Figure 7, Pane a), low-risk was the most probable state for RP 430 
concentrations in waterbodies sub-catchments 6200 (median RP: 157.63 (μg/l), 41% low-risk), 6201 431 
(median RP: 146.32 (μg/l), 46% low-risk) and 6205 (median RP: 101.04 (μg/l), 52% low-risk). 432 
Modelled RP concentrations in waterbody sub-catchments 6202 and 6206 were predominately within a 433 
resilient state.  434 

As the discretisation of surface water quality at the sub-catchment scale is determined by WFD high to 435 
poor ecological status thresholds for RP, discrete outputs can also be interpreted as follows: in 436 
waterbody sub-catchment 6200, the majority of the 10,000 simulations for RP concentrations (μg/l) 437 
were within a low-risk state (41%) or moderate WFD ecological status boundary (78-191 μg/l).  438 

In the future BAU scenario (Figure 7, Pane b), surface water quality deteriorated in waterbody sub-439 
catchment 6200, with moderate-risk being the most probable state (42%) compared to current 440 
conditions, with an increase in median RP concentrations to 168.30 μg/l. Despite staying mainly within 441 
a low-risk state, a shift towards moderate-risk in both waterbodies and an increase median RP 442 
concentrations were observed in sub-catchments 6201 and 6205. In waterbodies 6202 and 6206, the 443 
probability of resilience increased, which was evident in decreased in median RP concentrations in both 444 
sub-catchments. 445 

Increased risk was evident for waterbody sub-catchments 6200 and 6201 in the GR ExLP to 2050 446 
(Figure 7, Pane c). There was equal probability of low and moderate-risk (40%) in waterbody sub-447 
catchment 6200. Using a precautionary approach, the water body is represented as moderate-risk. 448 
Waterbody sub-catchment 6201 remained predominantly within a low-risk state (44%), however, 449 
median RP concentrations (152.32 μg/l) increased compared to current conditions. Improvement 450 
towards resilience was evident in waterbody sub-catchment 6205 compared to current conditions, 451 
despite a low-risk being the most probable state (48%). Waterbody sub-catchments 6202 and 6206 452 
remained predominantly within a resilient state.  453 

In the FFD ExHP scenario (Figure 7, Pane d), waterbody sub-catchments 6200 and 6201 both shifted 454 
from low to mainly moderate-risk states (46 and 52%, respectively) compared to current conditions. 455 
Waterbody sub-catchment 6205 remained predominantly within a low-risk state (56%), while 456 
waterbody sub-catchments 6202 and 6206 remained predominantly resilient. Increases in median RP 457 
concentrations in all waterbodies demonstrated an increase in risk compared to current conditions. 458 
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 459 

Figure 7: Probability of resilient-high-risk states and median reactive phosphorus concentrations in micrograms per litre in each water 

body sub-catchment under (i) current conditions scenario, (ii) future Business as Usual scenario to 2050, (iii) future Business as Usual 

scenario to 2050, (iii) Green Road extreme low precipitation scenario to 2050 and (iv) Fossil Fuelled Development extreme high 

precipitation scenario to 2050. Acknowledgements: catchment boundary provided by the National River Flow Archive. River network 

provided by the EU-Hydro River Network Database (Gallaun et al., 2019). Map created in ArcGIS Pro (Esri Inc, 2021) 
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Continuous outputs determined median RP loads (kg/day) from wastewater effluent and diffuse (arable, 460 
pasture, urban and septic tanks) sources at each waterbody sub-catchment (see Supplementary Material 461 
S6, Figures S10-13). Using the example of waterbody sub-catchment 6200, median RP loads for both 462 
current and diverse future pathway scenarios are presented in Figure 8. Currently, diffuse sources 463 
contributed the majority of RP (27.11 kg/day) in waterbody sub-catchment 6200, compared to 464 
wastewater effluent sources (23.26 kg/day). The total RP load was 50.37 kg/day.  465 

 466 

Figure 8: Median reactive phosphorus source loads (kg/day) in waterbody sub-catchment 6200 for Current, future Business 467 
as Usual (BAU), Green Road Extreme Low Precipitation (GR EXLP) and Fossil Fuelled Development Extreme High 468 
Precipitation (FFD EXHP) scenarios 469 

Source proportions shifted under the future scenarios with wastewater effluent sources being the main 470 
contributor in the future BAU and FFD ExHP scenarios. Total median RP loads (kg/day) increased in 471 
the future BAU (54.80 kg/d) and FFD ExHP (88.22 kg/day) scenarios compared to current conditions. 472 
In the GR ExLP scenario, a reduction in total median RP loads (38.08 kg/day) was evident and diffuse 473 
sources remained the main source of RP (19.50 kg/day).   474 

The model structure enabled further investigation of RP sources. Using the example of wastewater 475 
effluent loads in waterbody sub-catchment 6200, Figure 9 presents median RP loads (kg/day) at Cupar 476 
wastewater treatment works (WwTW) in sub-catchment 6200 for the current and future scenarios. 477 
Currently, Cupar WwTW contributed a median RP load of 5.51 kg/day. An increase in median RP loads 478 
was evident in the future BAU (8.93 kg/day) and FFD ExHP (16.35 kg/day) scenarios compared to 479 
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current conditions. In the GR ExLP scenario, RP loads decreased (5.36 kg/day) compared to current 480 
conditions.  481 

             482 

3.5. Model evaluation  483 
We evaluated the model performance by comparing the modelled current RP concentrations (μg/l) with 484 
a simulation of observed RP concentrations (μg/l) at the catchment outlet in waterbody sub-catchment 485 
6200 (Table 1). The model underestimated the median RP concentration (157.63 μg/l) at the catchment 486 
outlet compared to the observed simulated median RP concentration (168.82 μg/l). A greater standard 487 
deviation was observed in the model simulation (361.7 μg/l) compared to the observed simulation 488 
(109.3 μg/l).  489 

Based on the discrete output (Figure 10), the model underestimated the RP concentration compared to 490 
the observed simulation. The most probable state for RP concentrations in the observed simulation was 491 
moderate risk (44% probability) - or poor WFD status - compared to the modelled scenario which 492 
estimated low-risk - or moderate ecological status – (41% probability). The modelled RP concentrations 493 
were more widely distributed, which is evident in a 2% probability of high-risk - or bad ecological 494 
status - compared with 0% in the observed simulation.   495 

When evaluating the goodness of fit using the % bias correction (Table 2) 43% of observations were 496 
within the +/- 50% behavioural threshold, 31% of simulated values were above the 50% acceptable 497 
threshold, and 26% were below the 50% acceptable threshold. 498 

The results of the parameter sensitivity analysis are presented in Table 3. Changes in point source RP 499 
loads have a greater influence on RP concentrations (µg/l) compared to diffuse sources in sub-catchment 500 
6200 in the current scenario. A 20% increase in point source loads resulted in an 8.4% increase in RP 501 
concentrations, while a 20% reduction resulted in an 8.1% reduction in concentrations. Of the diffuse 502 
sources, arable sources had the greatest influence on RP concentration with a 20% increase yielding a 503 
4.9% increase in concentration, while a 20% reduction resulted in a 6.5% reduction in concentrations.504 

Figure 9: Median reactive phosphorus source loads (kg/day) at Cupar wastewater treatment works 

for Current, future Business as Usual (BAU), Green Road Extreme Low Precipitation (GR EXLP) 

and Fossil Fuelled Development Extreme High Precipitation (FFD) scenarios 
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Table 1: Summary statistics of observed and modelled current reactive phosphorus concentrations (ug/l) at the Eden 505 
catchment outlet waterbody sub-catchment 6200 506 

Summary Statistics 

Observed Simulated 

Reactive Phosphorus (μg/l) 

6200 Outlet 

Model Simulated 

Reactive Phosphorus (μg/l) 

6200 Outlet 

Median (μg/l) 168.82 157.63 

Standard Deviation 109.34 361.65 

 507 

 508 

 509 

Table 2: % Bias of modelled vs observed reactive phosphorus concentrations (ug/l) at the Eden catchment outlet waterbody 510 
sub-catchment 6200 511 

% Bias % Probability 

Under (-50%) 26% 

Optimal 43% 

Over (+50%) 31% 

512 

Figure 10: Comparison between probabilities of observed and modelled reactive phosphorus concentration 

in micrograms per litre at Eden catchment outlet in waterbody sub-catchment 6200 
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Table 3: Sensitivity analysis of selected diffuse and point source input variables and their influence on reactive phosphorus 513 
concentrations in sub-catchment 6200 514 

515 

 

Variable 

Diffuse 

Arable 

Phosphorus 

Sources 

Diffuse 

Pasture 

Phosphorus 

Sources 

Diffuse 

Septic Tank 

Phosphorus 

Sources 

Wastewater 

Phosphorus 

Sources 

Scenario 

Current Median 

Reactive Phosphorus 

Concentration (µg/l) 

157.63 

+20% 

Source Load Increase 

Median Reactive 

Phosphorus 

Concentration (µg/l) 

165.82 160.04 163.41 172.21 

% Change 4.9 1.5 3.5 8.4 

-20% Source Load 

Reduction 

Median Reactive 

Phosphorus 

Concentration (µg/l) 

148.15 154.39 153.49 145.94 

% Change -6.5 -2.1 -2.7 -8.1 
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4. Discussion  516 

4.1 Participatory process for BN model construction   517 
Düspohl (2012) highlighted the scarcity of literature evaluating participatory BN modelling processes. 518 
To address this gap, we evaluate the ability of our BN model to increase stakeholder understanding of 519 
catchment system resilience to the cumulative impacts of future change using the credibility, salience 520 
and legitimacy criteria set out by Falconi and Palmer (2017) throughout our discussion.  521 

The first stage of our participatory approach - discussing model aims and objectives - helped understand 522 
the knowledge gaps of the One Planet Choices project team, which was critical when developing a 523 
credible modelling process. The first knowledge gap identified by the project team required the BN 524 
model to provide a systems-thinking approach that mapped the complex socio-ecological interactions 525 
within the Eden catchment. Creating and evaluating the conceptual BN model structure in stages 2 and 526 
4 of the participatory process were important in ensuring the perspectives of stakeholders across sectors 527 
were considered when mapping the catchment system. Our findings presented in Figure 4 provide 528 
evidence that stakeholders viewed the BN model structure as ‘mostly representative’ of the Eden 529 
catchment system. We believe achieving a ‘very representative’ structure was limited by our inability 530 
to consider all human and non-human systems in the catchment. The model was strategic in including 531 
the critical wastewater, land management and water resource systems within five waterbody sub-532 
catchments. We applied an iterative approach to include the food production system, based on the input 533 
of additional stakeholders to improve the model representativeness of the model, however, there were 534 
limitations in time and resource to consider all catchment systems. Consulting the needs of the ‘project 535 
team’ as end-users of the model helped reach agreement on the model structure and justify that it was 536 
fit-for-purpose. 537 

Using a BN model as an appropriate tool for mapping complex socio-ecological systems was validated 538 
by the project team when evaluating the aim and objectives of the model at a final project meeting after 539 
testing model scenarios in stage 5. Using the iterative five-stage process enabled the aim and objectives 540 
of the model to be evaluated by the project team, further ensuring the modelling approach was credible. 541 
To achieve legitimacy, participatory modelling should include a process of iteration that allows 542 
feedback from participants. The flexibility of BN models allows the model structure to be updated in 543 
real-time, which was effective during focus group sessions with sub-system stakeholders groups using 544 
the GeNIe software. Future regular updating of the model structure and its assumptions should be 545 
considered to address the issue of unforeseen future shocks, an example being an abrupt geopolitical 546 
shock and its impacts on global food and fertiliser prices. 547 

When presenting the full model, as is in S3, Figure S2, it was difficult for stakeholders to follow and 548 
comment on important variables and cause-and-effect relationships. We therefore used simplified 549 
versions, such as in Figure 4, to visually represent the model. The simplified models more effective for 550 
eliciting stakeholder opinions on the model structure in a workshop setting, which was used to update 551 
the model in GeNIe. Recording and analysing participant feedback during each workshop helped build 552 
a greater evidence base that the BN model was effective in mapping the complex socio-ecological 553 
catchment system. The example quote by LM6 above demonstrates the BN model helped participants 554 
consider how their sector impacted the system and the need to think beyond their own sector’s role 555 
within the catchment system. Our findings support Voinov and Bousquet (2010), who considered BN 556 
models as a tool for understanding complex systems and facilitating knowledge sharing.  557 

4.2. Measuring catchment scale resilience  558 
In a review of BN applications in water resource management, Phan et al. (2019) identified the majority 559 
of applications solely focussed on water quality management. Few studies consider multiple concerns 560 
such as surface water quality, surface water flows, groundwater quality, air quality and soil quality 561 
within one model structure. Our findings presented in Figure 5 and Figure 6 demonstrate the ability to 562 
apply a participatory BN model that measures the impacts of both current and future conditions on 563 
multiple capitals and their associated resources. Presenting the multiple capital outputs addressed the 564 
knowledge needs of stakeholders in providing a holistic catchment scale approach.  565 
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Measuring the cumulative impacts across diverse coupled representative concentration and shared 566 
socioeconomic pathways to a 2050 time-horizon reduced the possibility of over or under-estimation of 567 
future impacts on water environments (Holman et al., 2016); addressing a further stakeholder 568 
knowledge need (Adams et al., 2022).  Moe et al. (2019) is an example where both climatic and 569 
socioeconomic change is considered for the time-horizon 2050-2070 using a discrete BN model. We 570 
build on the application of BN models that investigate the impacts of future climatic and socioeconomic 571 
change by utilising continuous nodes within the hybrid equation-based BN model structure to measure 572 
both climatic and socioeconomic stressors, which are rare in the literature (Moe et al., 2021).  573 

Transferring the data and stakeholder knowledge into the hybrid-equation based structure was enabled 574 
by the ability of BN models to integrate multiple sources of data (Pham et al., 2021). The capacity of 575 
BN models to include continuous nodes is seen as a limitation (Uusitalo, 2007;Sperotto et al., 2017), 576 
however, we find the opposite to be true in our study. Despite limited monitoring data available in the 577 
Eden catchment, our BN model was able to simulate distributions to quantify nodes using summary 578 
statistics from other process-based model outputs. For example, only mean and standard deviation 579 
values were available for wastewater flow nodes, equation nodes enabled distributions to be created, 580 
providing 10,000 simulated outputs which could be discretised based on flow license information to 581 
represent risk. The variable log, (S3, Table S2) was used as a platform to record decisions made and 582 
data collected during focus groups and workshops, increasing model salience. Ensuring stakeholders 583 
were involved in the process of data identification, built end-user trust and increased model credibility. 584 

Investigating the influence of cumulative future change impacts on specific areas of the catchment 585 
system assisted stakeholders to engage with the complexity of understanding socio-ecological systems 586 
and the impacts of diverse future pathways. Typical methods for identifying nodes that have the greatest 587 
influence on model outputs include causal probabilistic inference (Hobbs, 1997;Tang et al., 2016) and 588 
sensitivity analysis (Troldborg et al., 2022). Achieving typical methods requires discretisation of 589 
continuous nodes in the hybrid BN model network, which leads to imprecision (Borsuk, et al., 2012) 590 
and loss of information (Barton et al., 2008;Ames et al., 2005). Instead, we devised a manual sensitivity 591 
analysis for investigating specific model nodes that had the greatest influence on catchment system 592 
resilience, without the need to trigger network discretisation. Our manual approach involved dual 593 
representation of continuous nodes, presenting both probability function outputs and creating a 594 
discretised child node.  595 

Manual backward investigation of the model created storylines from the capital outputs to specific sub-596 
catchment nodes, an example being our presented results from Figure 5 to Figure 9. In our experience, 597 
we found the combination of both continuous and discrete model outputs to be more meaningful to 598 
stakeholders during project meetings and workshops. The ability to discretise surface water quality 599 
nodes within each sub-catchment based on specific WFD ecological status threshold values provided 600 
users with an improved representation of both current and future uncertainty. Transparency in the 601 
selection of discretisation methods and discretisation boundary values is important as the discretisation 602 
of continuous nodes leads to loss of information. To achieve transparency, we applied both manual and 603 
unsupervised equal intervals where appropriate to discretise nodes in the BN model (S3, Table S3). For 604 
decision-makers faced with the issues of system complexity and uncertainty, generating useful 605 
information that effectively communicates scientific outputs is a challenge (Liu et al., 2008;Callahan et 606 
al., 1999). Discretised outputs of continuous nodes provided stakeholders with a way of quantifying 607 
both the resilience of the catchment system and the uncertainty in the modelled outputs.  608 

Continuous outputs quantified the impacts of future change on sub-catchment-specific nodes. For 609 
example, the ability to quantify RP concentrations (µg/l)  at each sub-catchment waterbody helped 610 
stakeholders conceptualise the extent to which water quality in the catchment could be impacted in the 611 
future under diverse pathway scenarios. Investigations of future scenarios highlighted that in the future 612 
BAU scenario (Figure 7, Pane b) median RP concentrations (µg/l) increased compared to current 613 
conditions in sub-catchments 6200, 6201 and 6205 and decreased in sub-catchments 6202 and 6206. 614 
Figure 8 for sub-catchment 6200 (and Figures S8-12) show increases in total RP loads (kg/day) in sub-615 
catchments 6200, 6201 and 6205, while the total RP loads in sub-catchment 6202 and 6206 decreased, 616 
particularly for wastewater sources. The changes in total RP can be seen in the source apportionment 617 
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between wastewater and diffuse sources, as well as the trends in climate, population and land cover 618 
change. Wastewater sources increase in sub-catchments where the population is projected to increase, 619 
while diffuse sources are expected to increase in all sub-catchments. 620 

In the Green Road and Fossil-Fuelled Development Extreme Precipitation scenarios, the influence of 621 
precipitation change and catchment processes are evident. Total RP loads (kg/day) are reduced in all 622 
sub-catchments in the GR ExLP scenario due to reductions in diffuse run-off. The lower likelihood of 623 
wastewater spills contributing untreated effluent to wastewater source loads are also reduced in the GR 624 
ExLP scenario. RP concentrations (µg/l) were greater in the GR ExLP scenario compared to the current 625 
scenarios in sub-catchments 6200 and 6201, despite the reductions in total RP loads in both sub-626 
catchments (Figure 8 and Figures S8-12). We believe these concentration increases are due to the 627 
reduction in river flow volumes in the extreme low precipitation rate scenario, meaning regulating 628 
diluting functions are absent and RP concentrations increase. We are unable to investigate the influence 629 
of flows in the sub-catchments where RP concentrations decreased compared to current conditions 630 
(6202, 6205 and 6206) as observed river flow volume data were not available for all sub-catchments 631 
(see SM Table 2 for more information on how surface water quality is measured absence of river flow 632 
volume data).  633 

In the FFD ExHP scenario, increases in RP concentrations (µg/l) compared to current conditions are 634 
evident in all sub-catchment waterbodies, which is attributed to increases in total RP loads (kg/day). 635 
Increased precipitation rates increase diffuse run-off, wastewater effluent flows and the likelihood of 636 
effluent spills. For sub-catchments 6200 and 6201, despite increases in river flow volumes from 637 
increased precipitation, RP source loads into the waterbodies was greater than the dilution capacity. 638 

Despite 46% of the % bias observations falling within the +/- 50% acceptable model performance 639 
(Table 2), results from the goodness of fit evaluation demonstrate that the model underestimated current 640 
median RP concentrations (µg/l) at the catchment outlet in sub-catchment 6200 and the probable risk 641 
class. Simulated concentrations were more widely distributed, as compared to the observed data, as is 642 
evident in the 2% of observations within a high-risk state for simulated concentrations, compared to 0% 643 
for observed concentrations. A wider distribution in simulated RP values using a hybrid BN model was 644 
also found by Glendell et al., (2022). We concur with their considerations that both the quality and the 645 
low temporal resolutions of observed data may be responsible for this discrepancy. 646 

The BN model was considered an appropriate method for analysing the resilience of freshwater 647 
catchments by the project team at the final evaluation meeting. Our participatory process and methods 648 
can be replicated to create future BN models that incorporate diverse stakeholder knowledge to address 649 
end-user needs and support interdisciplinary resilience assessments. Our findings enabled stakeholders 650 
to gain new perspectives on how future scenarios may influence their specific sectors (Figure 9) and 651 
how their sector impacted other sectors and environmental conditions within the catchment system 652 
(Figure 7), promoting social learning as described by Basco-Carrera et al. (2017). Identifying specific 653 
aspects of the catchment system that are least resilient to the impacts of future change will allow 654 
decision-makers to target both the areas of the catchment where adaptive management is required and 655 
the extent of action required in the face of potential future shocks and changes. Recognising the 656 
influence that all sectors have on water quality issues in the catchment highlighted the need for 657 
collaborative action. 658 

4.3. Limitations and outlook  659 
It’s important to highlight that the BN model was effective as a strategic tool to meet the needs of 660 
participating stakeholders to investigate the resilience of catchment systems. Compared to other 661 
modelling options - such as process-based modelling – BN models could be both a resource and cost-662 
effective option to conduct resilience assessments. Despite being effective as a strategic resilience tool, 663 
the BN model is limited in its ability to provide a detailed resilience assessment due to the lack of both 664 
temporal and spatial scales built into the model. For example, in this study, we considered future 665 
precipitation change anomalies using the UKCP18 25 km grid square data which is limited compared 666 
to the possible use of UKCP18 2.2 km grid square precipitation change anomaly data. Temporal and 667 
spatial scales could be applied to build on dynamic BN model applications such as (Molina et al., 2013) 668 
who assessed the impacts of climatic and land-use change on groundwater systems over 5-year time 669 
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slices covering 30 years (2070-2100), or spatial BN model applications such as (Troldborg et al., 2022) 670 
who applied a spatial BN model to investigate field-level pesticide pollution risk at a small catchment 671 
scale. Applying these methods would allow for assessment of their effectiveness compared to process-672 
based modelling to provide a detailed resilience assessment.   673 

Having multiple workshops created difficulties when trying to achieve consistent participant numbers 674 
across all workshops. Eliciting formal feedback at the end of each workshop for the catchment 675 
stakeholder participants was also challenging. For future improvement, we recommend testing the 676 
inclusivity of meetings or further focus groups and workshops, with wider catchment stakeholders, to 677 
give structured formal feedback sessions on the model structure and outputs.   678 

Using our findings, we will assess the ability of the BN model to inform the identification of adaptive 679 
management options and test their effectiveness in increasing the resilience of the Eden catchment in 680 
future research. With the same group of workshop participants, we will use the outputs presented in this 681 
study to test if they inform innovative and collaborative management options. The BN model structure 682 
will be updated to test the effectiveness of management scenarios in parallel with both the current and 683 
future scenarios.  684 

5. Conclusion  685 
Using the Eden catchment case study, our research applied participatory methods to create a Bayesian 686 
Network (BN) model that addressed the needs of stakeholders to increase their understanding of 687 
catchment-scale resilience to the cumulative impacts of future change. We identified four stakeholder 688 
knowledge needs that the BN model would aim to address: 1) ensure systems-thinking by mapping the 689 
socio-ecological interactions in the catchment; 2) measure the impacts of future Business As Usual 690 
(BAU) change and shocks of extreme events and future pathways to a 2050 time-horizon; 3) use a 691 
holistic capitals approach to measure the overall future catchment health; and 4) identify specific aspects 692 
of the catchment system that are least resilient to the cumulative impacts of future change.  693 

Applying an iterative five-stage participatory process to construct the BN model achieved a systems-694 
based understanding of socio-ecological interactions within the catchment. The model provided an 695 
effective tool for understanding system complexity and enabling knowledge sharing between 696 
stakeholders. Our hybrid equation-based BN model facilitated investigation of diverse future pathway 697 
scenarios, providing stakeholders with a strategic tool to measure the cumulative impacts of both 698 
climatic and socioeconomic changes to 2050.  699 

Our findings provided a holistic assessment of catchment scale resilience, demonstrating the possibility 700 
to apply a participatory BN model to consider the impacts of both current and future conditions on 701 
multiple capitals and their associated resources. The BN model structure enabled identification of 702 
specific areas of the catchment which were least resilient to future change pathways, enabling 703 
stakeholders to recognise the risks to their individual sectors, while also understanding their influence 704 
on the wider system and sectors.  705 

We found that a BN model is a credible, salient and legitimate strategic tool for addressing the 706 
stakeholder knowledge needs about catchment resource resilience. Improvements to the BN model 707 
could involve the addition of spatial and temporal scales to take the tool beyond a strategic resilience 708 
tool. Future research will test the ability of the BN model to inform the identification and test the 709 
effectiveness of adaptive management options identified by stakeholders.  710 
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