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Abstract. Simulation models are widely used in urban drainage engineering and research, but they are known to include errors 

and uncertainties that are not yet fully realised. Within the herein developed framework, we investigate model adequacy across 

multiple sites by comparing model results with measurements for three model objectives: ‘surcharges’ (water level rises above 

defined critical levels related to basement flooding), ‘overflows’ (water levels rise above a crest level), and ‘everyday events’ 10 

(water levels stay below the top of pipes). We use multi-event hydrological signatures, i.e. metrics that extract specific 

characteristics of time series events in order to compare model results with the observations for the mentioned objectives 

through categorical and statistical data analyses. Furthermore, we assess the events with respect to sufficient or insufficient 

categorical performance, and good, acceptable, or poor statistical performance. We also develop a method to reduce the 

weighting of individual events in the analyses, in order to acknowledge uncertainty in model and/or measurements in cases 15 

where the model is not expected to fully replicate the measurements. A case study including several years of water level 

measurements from 23 sites in two different areas shows that only few sites score as “sufficient categorical performance” in 

relation to the objective ‘overflow’, and that sites do not necessarily obtain good performance scores for all the analysed 

objectives. The developed framework however highlights that it is possible to identify objectives and sites for which the model 

is reliable, and we also suggest methods for assessing where the model is less reliable and needs further improvement, which 20 

may be further refined in the future.  

1 Introduction 

Danish utility companies invest 800 million EUR annually in upgrading and rehabilitating urban drainage systems and 400 

million EUR annually in operation of the existing systems (DANVA, 2021), which corresponds to 150 and 75 EUR per capita 

annually. The investments often rely on simulations with physics-based deterministic models, which are widely used in the 25 

urban drainage practice community for several decades. The model simulations are applied for many different purposes 

including e.g.: prioritising areas for redesign and optimization, making comparative assessments of optimal designs, comparing 

with measurements on a regular basis, and as important features in digital twins (Pedersen et al., 2021a). The models tends to 

gradually become more complex and include increasing levels of detail, and the model software to be equipped with 
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professional output presentation interfaces, and thus expectations to the applicability of models from stakeholders such as 30 

municipal regulators and utilities are increasing (e.g. Fenicia and Kavetski, 2021). But still however, the uncertainty of the 

model results is (practically) not exhibited with the models. George Box once said: “All models are wrong, but some are 

useful” (Box, 1979). With increasing expectations to the models, the question to ask back is: “How useful are the models 

then?” The general aim of this paper is thus to explore systematic methods that can potentially be automated, for evaluating 

site-specific performance of large, detailed, distributed urban drainage models across a range of different model objectives.  35 

 

In the future, digital twins of urban drainage systems are expected to be a part of the toolbox in many utility companies (SWAN, 

2022). The model performance assessment tool developed in this paper applies to a living operational digital twin (Pedersen 

et al., 2021a), and is used to assess whether the model used within the digital twin is suitable for replicating certain 

events/situations. A living operational digital twin is a virtual copy of the current physical system, and can be held up and 40 

compared with reality, as measured through sensor observations from the system. Learnings from the evaluation of the 

operation model in relation to the real-world observations can be transferred to other model types, such as planning or design 

models, and thereby improve the basis for decision-making regarding future investments.  

 

Several studies in the hydrology and environmental modelling community have highlighted and discussed model performance 45 

in relation to diagnosing of model fidelity (Gupta et al., 2014). This applies e.g. in relation to scientific research reporting 

(Fenicia and Kavetski, 2021) and in relation to choosing the best model parameters from several sets of parameters based on 

Principal Component Analysis (PCA) (e.g. Euser et al. (2013)). Determining a best model parameter set can be accommodated 

by e.g. post-processing of errors from historical data (Ehlers et al., 2019) or signature-based evaluation (Gupta et al., 2008). 

Research has focused on quantifying the uncertainty in model output, e.g. by using the Generalized Likelihood Uncertainty 50 

Estimator (GLUE) method (Beven and Binley, 1992). Developing error models that compensate for the lacking adequacy may 

provide better model results in the short term and for certain purposes, but the opportunity to detect the actual source of the 

underlying errors that dominate a model may be missed (Gupta et al., 2014, 2008; Pedersen et al., 2022).  

 

The assessment of model adequacy relies on observations from the system. Monitoring is not always easy, as urban drainage 55 

systems are rough environments, e.g. with particles that can settle and clog equipment, and flow meters that have difficulties 

measuring flow correctly when the pipe is partly filled. Water level meters are acknowledged to be fairly accurate, but they 

can suffer from missing data values, which can be tackled using several methods, as described in Clemens-Meyer et al. (2021). 

In the present paper, model evaluation is conducted for sites with only level meters installed, because in the future low-cost 

level meters are expected to be installed at an increasing number of sites in urban drainage systems (Eggimann et al., 2017; 60 

Kerkez et al., 2016; Shi et al., 2021). This will provide an opportunity for using all of these observations in the model 

evaluation, provided that the model evaluation methodology is improved and more structured than today in hydrology (Gupta 

et al., 2012) and urban drainage.  
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In this paper, up to 11 years of level-measurements from 23 measurement sites located in two case areas operated by VCS 65 

Denmark (Danish utility company) are used to demonstrate several site-specific model evaluation methods. Every site can 

provide information about the model performance. However, manual inspection of the observations is practically impossible 

(too labour intensive), and the utility company therefore needs automatic calculation of the model performance (through 

comparison of model results with measurements) for specific conditions at each site. The utility company aims for such 

analyses to provide a geographical overview of the model performance across several model objectives, which can in the future 70 

be applied as an automatic and scalable tool across hundreds of measurement sites to help prioritise information and determine 

where and when further investigations are needed for error diagnosis of the models.  

 

Determining whether a modelled time series is replicable, i.e. consistent with observations in real life, can be done by applying 

hydrologic signatures. Signatures are metrics that extract certain characteristics from time series of hydrological events, such 75 

as the peak level, or the duration of water level above a given level. Signatures have been applied in general hydrology for 

many years, and many different signatures (primarily based on flow as the measured variable) have been developed (McMillan, 

2020a, b). Applying signatures from multiple events based on time series of measured water level have recently proven to be 

a promising tool for diagnosing errors in urban drainage models (Pedersen et al., 2022). By combining signatures with other 

variables characterising the direct (in-sewer) or indirect environment (“surrounding states”), tendencies can potentially be 80 

detected. With many sites and many signatures to analyse, it is easy to lose one’s bearings, and an assessment of the model 

adequacy is therefore needed to (1) get an overview of model performance, and (2) prioritise where model diagnosing efforts 

should be placed – for different model objectives and for different measurement sites.  

 

This paper goes in depth with how model performance can be assessed for large, detailed, distributed urban drainage models 85 

across a range of different model objectives. However, the recognition of ‘acceptable’ model and data uncertainties needs to 

be addressed. A model performance assessment should not be affected by events that lie way off target in relation to the known 

modelling capabilities and limitations. The urban drainage community has only recently started developing tools for anomaly 

detection in the urban drainage system caused by physical events, e.g. pipe blockage, pumps that did not start as planned, and 

other sudden activities in the system (Palmitessa et al., 2021; Clemens-Meyer et al., 2021). Uncertainty in input data, such as 90 

unrealistic representation of rain events due to spatial variability, has not to the authors awareness been investigated. This 

paper thus proposes a method for identifying events that models are not expected to replicate and that, therefore, should have 

less weight or be excluded from the model evaluation.  

 

The investigated methods are explained in Section 2, including an overall framework for model adequacy assessment, three 95 

model objectives studied in detail (‘surcharge’, ‘overflow’ and ‘everyday’ events), the context definition (including signature 

definitions and method for weighting of individual events), the categorical and statistical methods used, and the overall criteria 
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employed for assessing overall model performance. Section 3 describes the study area, model and data used, Section 4 presents 

and discusses our results, and Section 5 summarises our conclusions. 

2 Methods  100 

2.1 Framework for model adequacy assessment 

To assess model performance, we suggest following five steps (Figure 1). A short introduction to each step will be provided 

here, and later subsections will go into details. The first step is to identify the overall model objective. We need to start by 

determining which objective it is that we wish to assess based on the model simulations, is it e.g. the model’s ability to replicate 

an overflow or are we maybe more interested in everyday rain events? The next step is to establish the context, based on the 105 

model objective. Signatures related to overflows are not relevant when looking at everyday rain events, and vice versa. 

Categorical analysis is conducted as the next step, and here the events are categorised in accordance with the chosen objectives. 

For instance, if modelling of overflows is the objective, then we can identify if the modelled and observed water level of the 

event raises above a defined threshold, i.e. the crest level of an overflow structure. The true positives are the events where both 

model results and observations occur in the same category, and a statistical analysis of the true positive events can be carried 110 

out in order to assess whether they perform well. Finally, an assessment is made as to which ‘traffic-light’ categories the model 

belongs for each site. This procedure does not serve to fix anything, but solely to indicate how well the model is able to 

replicate the defined objectives. 

 

 115 

Figure 1. Identified steps (blue boxes) for assessing model performance.   

2.2 Model objectives  

The utility company defined the objectives based on their interest in model output. The reliability of the operation model is 

analysed for three objectives in this paper: surcharges (water level rises above defined critical levels related to basement 

flooding), overflows (water levels rise above an overflow weir crest level), and everyday rain events (water levels stay below 120 
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the top of pass-forward pipe). These objectives are especially important, as model results are used to support decision-making 

in relation to future investments. If the model does not mirror physical behaviour adequately, investments can made based on 

false premises - potentially leading to human injury or environmental damage that could have been prevented. 

 

A more in-depth description of the objectives that will be investigated in the paper is given below (cf. the illustration in Figure 125 

2):  

 

Surcharges: Situations where peak water levels in manholes rise above defined critical surcharge levels (CSL), In VCS the 

CSL is generally set at 1.5 m below ground level to mirror the typical level of basements, unless the crest level (CL) or top-

of- pipe (TOP) is within the range of 1.5 m. The CSL must not be exceeded more often than every second year, to provide the 130 

optimal service level as required by the utility company (Odense Kommune, 2011).  

 

Overflow: Situations where the water level rises above the crest level and overflows occur. The overflow criterion only applies 

to sites equipped with an overflow weir (either internal or external).  

 135 

Everyday rain: Situations where water levels are below the top of the pass-forward pipe (TOP) or a crest level (CL) if this is 

lower. Such events occur for minor rain events that do not lead to exceedance of the pipe capacity, overflow or surcharge, but 

that occur quite often. In Denmark the design of a full-running pipe has to include a rain with a 2-year return period.  The 

terminology relating to everyday rain is adopted from Sørup et al. (2016). 

 140 

The above definition of model objectives means that the water levels in the range between the critical surcharge level 

(CSL)/overflow crest level (CL) and the top of the pipe (TOP) are not included in the analyses. This is intentional, because 

water levels in this range are often very dynamic due to the limited volume available in the manholes, and model-to-observation 

fits are thus expected to be poor in this range. 
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 145 

Figure 2. Illustration of the three model objectives in relation to water levels in the system. Overflow occurs for events where the 

water level rises the crest level (CL). Surcharge applied to events where the water level rises above the critical surcharge level (CSL), 

which is defined as 1.5 m below ground level (GL) - or, if crest level (CL) or top-of-pipe (TOP) is within the range of 1.5 m, then that 

level will be the CSL. Everyday events are when the water levels observed or modelled is below the top of the pipe (or CL if this level 

is lower) and above the invert level (IL) (or zero-point (ZP) if this level is higher).  150 

2.3 Context definition 

Methods for handling unrealistic anomalies can be found in literature (e.g. Clemens-Meyer et al., 2021). For this study the 

simple data cleaning approach by Pedersen et al. (2021b) was applied, using five techniques (low data quality determined by 

the SCADA system manufacturer, manually removed data, out of physical bounds considering the specific sensor, frozen 

sensor signal, and outlier data as assessed by an operator). Erroneous observation data were interpolated up to 5 min and 155 

otherwise replaced with NaN (not-a-number) values. 

 

Since the three objectives are related to rain induced events and not dry weather conditions, a time-varying event definition 

was applied for the time series with a focus on water levels that are above the water level variations on a normal dry weather 

day influenced by infiltration-inflow (Pedersen et al., 2022). These events were found for the observed and modelled time 160 

series, separately and jointly; the joint events were applied in this study.  

2.3.1 Signatures  

Signatures are metrics that extract specific characteristics of a time series event, as illustrated for water levels in Figure 3. Peak 

level, duration and Area Under Curve (AUC) were previously described in Pedersen et al. (2022). Where the two first are 

standard parameters used in common practice, the third (AUC) calculates a ‘surrogate volume’ for an event from a reference 165 

level (similar to the area under a flow hydrograph, but with a different unit). Relevant signatures must be selected for each 

objective, in order to evaluate the model performance. Selection of signatures (Table 1) was here based on an assessment 

conducted by the author group, including discussion of this topic with a group of utility experts in hydraulic modelling. The 
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relevant signatures for the objective “surcharge” are: peak level, duration above the CSL and AUC above CSL. Signatures 

relevant for the objective “overflow” are: duration above CL and AUC above CL. Peak level is not of interest for the overflow 170 

objective, and therefore it is not included. The relevant signatures for the objective “everyday events” are: peak level, number 

of peaks, the AUC between the zero-point (ZP)/invert level (IL) and the TOP/CL (the range of relevance, see Figure 2) and 

the maximum level rate of change (5 min smoothing window). These were chosen based on an assessment that they will 

provide valuable insights into the everyday event. Further analyses could have been conducted to support the relevance, but 

that lies outside the scope of this paper.  175 

 

Figure 3. Simple representation of signatures. 

Table 1. Relevant signatures included for the analysis of three defined model objectives.  

Signature name Description 

Surcharge  

Peak level The peak level of the event 

Duration above CSL Duration of time that the level is above the CSL 

AUC above CSL Area Under Curve, calculated with reference to the CSL  

Overflow  

Duration above CL Duration of time that the level is above the CL 

AUC above CL Area Under Curve, calculated with reference to the CL 

Everyday event  

Peak level The peak level of the event 

No. of peaks Number of local peaks identified. The time series is converted to a rolling median of 5 min, and 

peaks are identified by applying the scipy-code ‘find_peaks’ with a prominence of 3 cm and a 

width of 2 minutes (Virtanen et al., 2020).   

AUC between ZP/IL – TOP/CL Area Under Curve, calculated with lower threshold (maximum level of either ZP or IL) and upper 

threshold (minimum level of either TOP or CL) 

Max level rate of change (5 min 

resolution)  

The maximum level rate of change within a rolling window of 5 min duration.  
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2.3.2 Weighting of individual event in the categorical and statistical analyses 

A model should, in theory, be able to replicate all measured events. However, in practice, this is often not the case, because 180 

uncertainties can potentially be identified in several model locations (including the model context, input, structure and 

parameters (Figure 4)), and because the system and the sensors can exhibit abnormal behaviour not included in the model 

setup. These events, where anomalies occur, constitute an outlier in relation to a model’s performance, as the model is not 

made to handle these issues. Referring to Figure 4, this would indicate a location of uncertainty in the context area, as the 

model does not have the primary focus to handle all situations. It is also generally accepted that the model output is very 185 

sensitive to the input of rain, in terms of spatial coverage. When an intense storm event only affects a limited physical area, 

where only few rain gauges are monitoring the rainfall, the corresponding rainfall input may not be correct, generating high 

degrees of uncertainties in the model. This uncertainty may be reduced with rain radar input, but this possibility has not been 

investigated in this study. The same occurs for the sensors. If the sensor’s range is shorter than the water level that it is 

measuring, this may affect the time series of the observations, but not necessarily all the signatures would be affected. An 190 

upper limit of the sensors may furthermore be exceeded by the water level, and the peak level will reach a limitation, and 

thereby be wrong. However, the signature duration above CL may not be wrong, if only the sensor is placed above the crest 

level. 

 

In this study a method was developed to reduce the weighting of individual events in the categorical and statistical analyses, 195 

in order to acknowledge uncertainty in model and/or measurements in cases where the model is not expected to fully replicate 

the measurements. The weights for each event were, for this analysis, calculated based on the following rules.  

• Events, where the peak level has reached the upper sensor limitation were given a weight of zero for the signatures: peak 

level, AUC above CL and AUC above CSL.  

• Events, where there is a known system anomaly were given a weight of zero for all signatures. Known system anomalies 200 

were identified based on manual inspection of the outlier events.  

• Events, where the rain input uncertainty is particularly high, quantified by the coefficient of variation (CV) of the rain 

depth of the rain gauges within a 5 km surrounding (Pedersen et al., 2022), were given a weight from zero to one. The 

weight w was calculated as w = 1-CV. For CV>0.5, the weight was calculated as w = 0.5*(1-CV), and for CV>1, the 

weight was set to 0.  205 

The weights were the same for the joint events, i.e. combining of both modelled and observed input. 
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Figure 4. Illustration of the location of uncertainties in models. Adapted from a table in Pedersen et al. (2022). 

2.4 Categorical analysis 210 

Analysing model performance for specific objectives suggests that events can fall into different categories (e.g. overflow or 

no overflow). For relevant signatures, the categorical analysis aims to identify for each event if observed and modelled results 

are above or below a given threshold, e.g. the crest level for the objective ‘overflow’ (Figure 5). If both a modelled and 

observed event is above the threshold, the event is categorised as a true positive (TP). If the number of TPs, relative to the 

false positives (FP - modelled, but not observed threshold exceedance) and false negatives (FN - not modelled, but observed 215 

threshold exceedance), is too low, then the model simulation of the events is not correct, categorically speaking, and the 

confidence, or trust in the model is low. 

 

Several metrics can be applied to assess the categorical performance of the model, however for this analysis, where we are 

dealing with rare events, the metrics should not include the true negatives (TN). The metrics chosen is thus the Critical Success 220 

Index (CSI) (Bennett et al., 2013), which takes the true positives (TP) compared to all observed or modelled positives (TP, FP 

and FN).  

 

��� �  ��
���	��	
      (1)  

 225 

For this categorical analysis, the weights introduced above were considered, so that events with w<0.5 were disregarded. 
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Figure 5. Contingency tables (right) are used to categorise each event according to whether it is above or below a given threshold. 

The grey dashed line (left) is the 1:1 line, and the blue points are the signatures for each event (modelled vs. observed value). 

2.5 Statistical analysis 230 

The events categorised as true positives can be assessed statistically. Scatterplots of multi-event signature comparisons can be 

made with observation signature values for each event on the horizontal axis and modelled values on the vertical axis. An 1:1 

line indicates the perfect model-to-observation fit (Figure 6), and three different ways of analysing the scatterplots were 

assessed in this paper: linear regression (Figure 6, left), an indicator function (Figure 6, middle) and the normalised root-mean-

square-errors (RMSE) method (Figure 6, right).  235 

 

Figure 6. Three methods of statistical analyses of the true positive events, where both simulated and observed values are in the same 

category: linear regression (left), an indicator function (middle) and normalised root-mean-square-errors (RMSE) (right). The grey 

dashed lines are the 1:1 lines, and the blue points are the signatures for each event (modelled vs. observed values).            

2.5.1 Linear regression  240 

Linear regression is a simple statistical method to assess whether there is a correlation between two variables, in this case: 

observed and modelled signature values. If there is a cluster along a straight line, this will indicate a correlation of the two 
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variables. A weighted least squares (WLS) regression model was used to include the individual event weights (cf. section 

2.3.2), A fixed intercept of zero was used, as the theory indicates that this would be the optimal solution. The slope β was 

found by minimizing the weighted sum of squares (WSS) (eq. 2):  245 

 

�  from min (���(�, ��� � ∑ �����,� − ��,�������� �     (2) 

 

where yo is the signature observation value, ym is the signature modelled value, e is the event number and we is the weight of 

event e. The model is found adequate if the slope is 1. In practical terms, the WLS regression was conducted with the python 250 

package scikit-learn, Linear regression with sample weights (Pedregosa et al., 2011).  

 

Four assumptions need to be valid to conduct weighted linear regression; linearity (linear relationship between yo and ym), 

homoscedasticity (the variance of the residuals is the same for all yo), independence (the residuals are independent of each 

other), normality (the residuals are normally distributed) (Olive, 2017).  255 

2.5.2 Indicator function 

The score for the indicator function has a binary output: I. If the event is within the acceptance criteria (AC) (eq. 3) (“Indicator 

functions”, Lectures on probability theory and mathematical statistics, 2022), indicated by the purple area in Figure 6, I will 

have a value of 1 (Eq. 3), and a total score across all events was calculated by considering the weights introduced in section 

2.3.2 (Eq. 4):  260 

 

� ! ("� ∶� $1     &' " ∈ )�
0     &' " ∉ )�    (3) 

,-./" �  ∑ 012 ∗ 456578
∑ 456578

     (4) 

 

A good comparison gives a value of 1, as all events will be within the indicator function’s acceptance criteria. The acceptance 265 

criteria were for this analysis made by a combination of a relative and an absolute criterion and were, for all sites, assessed to 

be the same as indicated in Table 2.  
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Table 2. Values representing the acceptance criteria for different signatures. The acceptance criteria are the combination of both 

the relative and absolute scale. The absolute values relate to the 1:1 line and the relative scale gives the slope-range of acceptance, rv 270 
is the relative value in this case 0.7. ym is the modelled signature value and yo is the observed signature value.  

Relative scale rv >  
9:
9;

 < 
�

<= 

 

0.7 > 
9:
9;

 < 1.43   

Absolute scale  

Signature  

Peak level [m] ym = yo +/-   0.1 

Duration above CSL [min] ym = yo +/- 20 

Duration above CL [min] ym = yo +/- 20 

AUC above CSL [m*min] ym = yo +/-   2 

AUC above CL [m*min] ym = yo +/-   5 

AUC between ZP/IL – TOP/CL [m*min] ym = yo +/- 10 

No of peaks [-] ym = yo +/-   2 

Max level rate of change (5 min resolution) [m/min] ym = yo +/-   0.01 

 

2.5.3 Normalised RMSE 

The RMSE function calculates the vertical distance (of modelled values) to the 1:1 line, to find the residuals in the model 

performance (Figure 6). RMSE is directly related to data and needs to be normalised to be (meaningfully) compared across 275 

sites and signatures. This can be achieved by dividing with e.g. the maximum value of the observations, or the interquartile 

range (IQR(y0)) of the observations (the difference between the 75th and the 25th percentile). As the maximum value relies on 

extreme events, this is not considered as constituting a robust solution, and the IQR was thus chosen as the normalisation value 

(eq. 5): 

 280 

>?�@(�A>� �  B8
6 ∑ (9:C9D�E6578

0FG (9D�      (5) 

 

The smaller the RMSE(IQR) value the better the model performance.  

2.5.4 Score 

An individual score (slope, score, or normalised RMSE, respectively) for each signature was calculated, which can be 285 

summarized to one score for the given objective.  
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Q      (6) 

 

score is the different score functions given by eq. 2, 4 and 5. s denotes signature, m is the method (either linear regression, 290 

indicator function or normalised RMSE), z is the total number of relevant signatures for the given objective. The optimal score 

is individual for the three methods, and direct comparison is therefore not possible.  

2.6 Assessment criteria of the model performance score 

As a last – and illustrative – step, the scoring of the model performance was categorised as indicated in Figure 1. The categorical 

analysis outcome was classified as either ‘sufficient’ or ‘insufficient’, and the statistical analysis outcome was classified by 295 

means of a ‘traffic light’ assessment (green=good performance, yellow= acceptable performance, red=poor performance). The 

criteria for which score falls into each assessment category were solely based on experience from the author group (Table 3). 

One consideration was not to be too ‘hard’ on the model, as it is expected that several other factors affecting the weights were 

not included in the calculations. There is limited prior experience dealing with criteria as such, as the method and the ambition 

to conduct multi-site analysis is new. Prospectively, future experience with the methods will strengthen the choice of criteria.  300 

Table 3. The criteria for the categorisation of the model performance. Solely based on the utility company’s preferences. x denotes 

the output from each method (slope, score, RMSE(IQR)).  

 Linear regression Indicator function Normalised RMSE 

Categorical 

Sufficient CSI ≥ 0.6 

Insufficient CSI < 0.6 

Statistical 

Ideal value 1 1 0 

Green 0.70 > x < 1.43 x > 0.70 x < 0.60 

Yellow 0.40 > x < 2.50 x > 0.40 x < 1.20 

Red 0.40 ≤ x ≥ 2.50 x ≤ 0.40 x ≥ 1.20 

3 Study area, model and data 

The analysis covers two case areas: Bellinge and Dalum, in the utility company VCS Denmark’s service area. The areas are 

characterised by being suburban areas with minor surface gradients. The urban drainage system analysed is a combined system 305 

and both areas are upstream from a main collecting pipe transporting the combined sewage to the treatment plant. The case 

areas for this study includes 23 sites with water level meters installed as highlighted in Figure 7. Some sites contain more than 

one level meter. The normal flow direction of the wastewater is illustrated, as are the combined sewer overflow locations 

(green dots). In Dalum, there are many ‘ring-connections’, where the combined sewage can be directed to several catchment 

areas in case of high water levels. This is however not indicated in the sketch.  310 
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The applied model is a semi-distributed ‘integrated urban drainage model’ (Bach et al., 2014). It includes a lumped-conceptual 

rainfall-runoff module that calculates runoff to a distributed, physics-based pipe flow module, computationally carried out in 

the software Mike Urban (DHI, 2020). The model setup is described in detail in Pedersen et al. (2021b) and is openly 

accessible. The rainfall-runoff is based on the time-area model (model A) – infiltration-inflow to pipes is not included. The 315 

model includes app. 3,500 nodes, and the imperviousness of sub-catchments was calculated based on a categorisation of the 

surface from satellite data using spectral analysis. Rain input was measured by two rain gauges in the proximity of the study 

area (Figure 1). The hydraulic reduction factor was set at 0.9 and the model was run continuously for app. 10 years (2010-

2021) with a time step of 5 sec in the pipe-flow module. Water level time series from 23 sites in the study area are included in 

the analyses; these have durations between 2 and 11 years and include between 127 and 2,246 rain induced events with the 320 

event definition described in Pedersen et al. (2022). Observations and model output are in this paper presented in water level 

time series with a temporal resolution of 1 min.  

 

Further description of sites and models implemented in Mike Urban and SWMM are available in Pedersen et al. (2021b) for 

Bellinge, and Pedersen et al. (2022) provides a description of three sites in these areas: F67F47Y, G73F010 and 325 

G71F05R_LevelBasin, including information about the horizontal area of the structure, the levels, crest widths and 

imperviousness and total areas.  
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Figure 7. Observation sites in the case areas. Many internal connections between the different areas are present in Dalum, but these 

are not illustrated in the figure. The node names in the centre of the sub-catchments refer to the connected manholes downstream. 330 

Background  map  is  from  OpenStreetMap  (2022)  (©  OpenStreetMap  contributors  2022.  Distributed  under  the  Open  Data  Commons 
Open Database License (ODbL) v1.0.). 
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4 Results and discussion 

4.1 Direct time series comparisons for different objectives 

The time series analysed were split into events, as illustrated for six examples of events in Figure 8. The different events are 

examples of surcharge, overflow and everyday events in the different columns, and the rows indicate two different sites 335 

(F64F46Y (Figure 8a-c) and F70F70Y_LevelSump (Figure 8d-f)). Observed water levels (red dots and line) and modelled 

water levels (blue lines) are plotted, and weights (cf. section 2.3.2) and signatures related to the specific objectives are shown 

in the top right-hand corner of each panel. The grey areas illustrate the range in which the peak of the observed and modelled 

water levels should be, to be considered true positives and be included in the statistical analysis. Each event can be visually 

interpreted, and different model replications can be seen for the events. Figure 8e illustrates how the model replicates the 340 

objective overflow even though the model does not replicate the rest of the event. In this specific case, the event is not replicated 

well below crest level due to a missing global control setting for the pump emptying this site. The opposite is seen for Figure 

8a, where the objective surcharge is not replicated very well (a heavy overestimation of the peak level by the model), but the 

rest of the event shows better performance. However, this is of no interest if we are aiming to figure out the performance for 

critical surcharge levels. Figure 8d-f clearly illustrates a difference in the lower sensor limitation, ZP and IL. As illustrated in 345 

Figure 8f, the area of interest is limited to the level between ZP and TOP. This also illustrates that with the given objectives in 

this paper, the water level range between TOP to CL for site F70F70Y_LevelSump will not be included in the analyses.  

 

In the top right-hand corner of all panels in Figure 8, the weights of the events are indicated, cf. section 2.3.2. “Weight rain” 

refers to weights calculated from the spatial rainfall information, and “weight obs.” refers to weights determined from 350 

information about known system anomalies and the sensor upper limitation. Figure 8b and Figure 8d show a very low weight 

on the rain, indicating that these events will not be valued highly in the further analysis. Furthermore, it is seen that Figure 8d 

has reached the upper sensor limitation and the entire event will therefore get a weight equal to 0 for peak level and AUC 

above CSL. The duration is not affected by the sensor upper limitation and therefore this signature will still count in the further 

analysis of this signature, however still with a weight of 0.23 from the rain gauge uncertainty.  355 
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Figure 8. Examples of timeseries plotted for two sites (rows): F<64F46Y (a-c) and F70F70Y_LevelSump (d-f). The objectives are 

illustrated in the columns as surcharge, overflow and everyday events respectively. The values indicated in the top right-hand corner 

of each subplot indicate the values of the signatures for the three objectives for the modelled event (blue) and the observed event 

(red). The weights of the rain gauge uncertainty are indicated as well as the ‘weight obs’ which is a combination of the weights from 360 
known system anomalies and indications of whether the sensor reached an upper limitation. 

4.2 Illustration of different categorical and statistical scores 

To illustrate the procedure of categorical and statistical analysis, multi-event signature comparison plots are shown for three 

sites for the objective “overflow” in Figure 9. Multi-event signature comparison plots for all signatures and objectives across 

all 23 sites can be found in the supplementary material. Each column in Figure 9 illustrates a signature, peak level, duration 365 

above CL and AUC above CL, respectively. The grey areas on the peak level comparison plots illustrate the range of true 

positives for the objective “overflow”. The weight of the events is indicated by the coloured scale, where events assigned a 

weight of 0 (red colour) do not have any influence on the output of the methods. The true positives for the objective “overflow” 

are plotted in the last two columns. Important elements are illustrated for the three investigated statistical analyses: linear 

regression (with slope as a black dashed line), indicator function (with the purple area as acceptance criteria) and the normalised 370 

RMSE (with the IQR indicated by vertical blue lines (Q25 and Q75)). The score values from the three methods are indicated 

below each subplot.  
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Figure 9. Multi-event signature comparison plots for different sites (rows) and signatures (columns). Left column: the true positive 375 
ranges are indicated (grey area), where peak level is above CL for both observed and modelled events. Middle and right columns: 

the true positive events are the only events plotted for the two signatures: duration above CL and AUC above CL. Illustration of 

important elements of for the three methods: linear regression (dashed black line), indicator function (acceptance criteria with 

purple) and normalised RMSE (blue lines indicating IQR). The weight of each event is illustrated with the colour bar. The 1:1 line 

is plotted with a grey dashed line. The score of the statistical methods is indicated below the multi-event signature comparison plot. 380 
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For linear regression, Figure 9c illustrates an event at modelled value 15, which is identified with an uncertain rain gauge 

input, given the weight of zero and therefore does not affect the slope. The slope from the linear regression is, on the other 

hand, affected in Figure 9i, where a few very large observation values force a low slope gradient even though modelled values 

seem to be higher at low observation values. For Figure 9e and f the slope is very close to the 1:1 line, indicating a close to 

perfect fit with the model. For the indicator function, the purple area illustrates the area where the acceptance criteria are met. 385 

Events that are within this area have an indictor value of 1, and their weights are counted in the numerator of Eq. (1), whereas 

the sum of all the weights are counted in the denominator. The area of acceptance is of great importance as can be seen for 

F64F46Y (Figure 9c), where many events are inside the acceptance criteria, which is also indicated by the score of 0.99. The 

absolute acceptance criteria are the same for all sites for each signature. It can be discussed if the acceptance criteria should 

be the same for all sites, or if there is site-specific interest that should be taken into account, especially when the utility company 390 

sets this evaluation into operation. The IQR are illustrated with the vertical blue lines and looking at Figure 9f, a range of app. 

15 m*min is seen, which is applied to normalise the RMSE. If the error is larger than the IQR, the normalised RMSE will not 

be within zero to one, and it is therefore difficult to compare values between sites and signatures.  

 

The last site G80F66Y_Level1 in Figure 9g-h-i, does not show any weights. For this site, there is only one rain gauge within 395 

a 5 km distance of the upstream catchment, and the coefficient of variation cannot be calculated for a single rain gauge. All 

events thus have the same weight of 1.  

4.3. Comparison of methods for statistical analysis 

Each categorical and statistical method relies on different metrics as shown in Figure 9. In Figure 10 the results from for the 

objective ‘overflow’ based on the three statistical methods are shown, with hatched and color-coded scorings (Figure 1, Table 400 

3). Here results are shown only for the 14 sites where overflow is either modelled or measured. The ‘overflow scores’ are 

highlighted and were calculated as the average of the two signatures indicated with more transparent colours (Eq. 6), The 

differences between the methods are large, e.g. where the normalised RMSE method does not generate a very low and optimal 

score. The first thing to notice is that we have three sites, F70F10R, F70F70Y_LevelSump and F71F10F_LevelInlet where the 

categorical analysis shows sufficient performance (cells with no hatch, CSI > 0.6). From the CSI values provided in Figure 10, 405 

many values appear above 0.5, indicating that at least half of both modelled and observed positive events were simulated in 

the same category. However, the threshold for CSI was set to be above 0.6 to have sufficient categorical performance (Table 

3), and therefore it is not enough. Two of the sites, F70F10R and F71F10F_LevelInlet perform categorically well (no hatched 

cells) and as acceptable or good for all three statistical methods (yellow and green colours only) when focusing on the objective 

‘overflow’ (Figure 10). Looking at G80F66Y_Level1 in Figure 10 illustrates that the duration is assessed to be good for the 410 

linear regression method. However, when looking at Figure 9h a different reality emerges. The variance of data is large and 

because of three large observation values below the 1:1 line, the slope is, coincidentally, within the ideal range. The linear 

regression method could therefore potentially be further improved by including the variance in data in the assessment.  
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Each method has advantages and disadvantages as they are based on selected statistical metrics favouring specified features in 415 

the modelled and observed signatures. The identified pros and cons for each method are indicated in Table 4, as well as 

suggestions for improvements of the methods.  

 

Figure 10. Results from the categorical and the three statistical analysis methods for the objective overflow. Color-coding as 

described in Figure 1 and Table 3. 420 
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Table 4. The advantages, disadvantages and improvements are outlined for the three methods.  

Linear regression 

Advantages • Illustrates nicely the “direction” of the error (above or below slope 1) 

• Few parameters, easy to understand  

• Weights are easy to include 

Disadvantages • The large values count too much  

•  Heteroscedasticity occurs, and confidence intervals cannot be applied 

Improvements • Include the variance of the slope 

• The weight function could include the signature value to downgrade the importance of the large ones 

Indicator function 

Advantages • Weights are easy to include 

• Do include an acceptable residual 

Disadvantages • General absolute values in acceptance criteria are hard to set 

• Do not tell anything about the size of the residual 

Improvements • Make site-specific acceptance criterion instead of the general acceptance criteria 

Normalised RMSE 

Advantages • Include the size of residual 

Disadvantages • Hard to make comparable if the residual is larger than the variance in data 

• If normalised by max value, dependent on very extreme value 

• Do not apply weights 

• Truncated data which are not distributed normally 

• Hard to find an optimal normalisation range. If we rely on maximum values, they do not occur that often, and would 

make a skewness towards long-monitored sites. The residuals are larger than the IQR. This makes it hard to compare 

across sites and signatures, as the score will be above 1.   

Improvements • Finding a suited normalisation value would improve the method  

4.4 Model performance for all sites and for all objectives 

In Figure 11, the results for all three objectives using the ‘linear regression’ statistical analysis method are summarised across 

all 23 sites. Looking at the performance score for all objectives, it can be easily highlighted where the model performs well 425 

for different objectives. What is first seen is that for many sites a better performance score is obtained for the objective 

“everyday events” than for the objectives “surcharge” and “overflow”. This is not surprising results for VCS Denmark, as until 

now the utility company compares model results with observations manually. Events falling within the range of “everyday 

event” were much more often applied in comparisons, as they, by nature, occur more often. And when they fit - or detective 

work showed no more misunderstandings in the model - it was simply assumed that this also applies to the surcharge and 430 

overflow events. This was not a correct assumption, as is seen in Figure 11. When the model is primarily applied for planning 

and design purposes, i.e. for the overflow and surcharge, this is a wakeup call for the utility company to change its practices. 

The sites furthest upstream in the catchment area (F67F47Y, F64F45Y, F73F038, F74F040, G80F66Y_Level1, see Figure 7) 

generally perform more poorly than the rest of the sites. This can be due to the fact that the outliers observed cannot be 

“averaged-out” downstream, but also that the upstream structures (pipes, manholes) most often are much smaller in diameter 435 
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than structures at downstream sites, and that water level variations are thus most probably more dynamic at upstream sites. In 

theory, the model should be able to simulate the system just as well in the upstream sites, and there should be an increasing 

awareness of this issue.  

 

For “surcharge”, many blank fields are seen in Figure 11, as not much data is available for these more extreme events. The 440 

categorical analysis shows an insufficient performance for many sites, indicated by a hatched white cell - often meaning that 

the model simulated a surcharge event that was not observed in reality.  

 

Regarding the different signatures, the number of peaks and the different AUCs generally perform more poorly than the other 

signatures. The AUC is a combination of both a level and a time unit and can therefore be, due to complexity, harder to 445 

simulate, but it could also be that diagnostic tools (Pedersen et al., 2022) can identify where the errors occur so that the model 

can be improved.  

 

The overall score for each objective was calculated as the average of the relevant signatures (as described in eq. 6). However, 

when regression slopes are extreme, as e.g. for the number of peaks for everyday events at the site F70F20P_LevelPS 450 

(regression slope=240), the overall score will naturally be affected. A very low score of e.g. 0.02 will not affect the objective 

score as much but is naturally an extreme as well. It can be discussed if the objective score should be an average of the relevant 

signatures, the maximum or the minimum, or more advanced calculations should be implemented, but no matter what is agreed 

upon, one must also have an eye on the regression slopes for different signatures, as well as on the uncertainty of these.   

 455 

The assessment of the ‘traffic-light’ could have been analytically conducted by interviewing several experts or making further 

analysis. Because the methodology is rather new, as is the signature method that the work is based on, the hypothesis is that 

experts would not yet be familiar with this analysis, and efforts with obtaining input from more experts would thus not be 

fruitful. For now, this final step was limited to be an assessment based on the authors’ experience.  
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 460 

Figure 11. Table of scores for linear regression with weighted events. The colours refer to the overall performance score; good 

(green), acceptable (yellow) and poor (red). The white area is where there are not enough ‘true positives’ to evaluate a score (no<3, 

cf. Figure 2). The hatched areas refer to the categorical analysis, where too many events are not true positive, meaning that they are 

not modelled or observed. The grey/black area indicate where analysis is not possible due to physical constraints at the site, e.g. that 

not all sites have a crest level and evaluation of overflow is thus not possible 465 

. 
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Figure 12 shows histograms of regression slopes across sites for all objectives and signatures, illustrating the consistency of 

the resulting slope from the linear regression throughout the sites. The ideal would, of course have been values around slope 

1, but this is not the case. The peak level for “everyday events” (Figure 12f) is nicely represented as a normal distribution, but 

others such as AUC above CL (Figure 12e) are distributed more densely towards low slopes. The histogram does not show the 470 

result of the categorical analysis, but only the statistical analysis of the true positives (there are 6, 13 and 22 true positives for 

the three objectives, which also appears from Figure 12). 

 

Figure 12. Histograms of the regression slope across sites from the statistical analysis (linear regression). Each histogram applies to 

one individual objective and signature. The slope is only considered if the number of true positives is above 1, as in Figure 11. Slopes 475 
higher than 4 are not seen in the histograms. The ideal slope is 1, and a normal distribution would appear with a mean of 1, and the 

values can go from 0-1 if model values are underestimated, and from 1-infinity if model values are overestimated.  
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4.4 Multi-site correlations 

Figure 13 shows the correlation between different site-specific variables and the multi-event signature comparison of 

regression slopes resulting from the linear regression. Each site is plotted with a dot, and linear regression lines are plotted to 480 

highlight any tendencies. Notice that this analysis does not take the categorical analysis into consideration. Generally, the 

picture is not consistent and clear. However, as illustrated in Table 4, the slope calculated from the linear regression may 

include a high uncertainty itself. The correlation analysis can therefore support the diagnostics of slopes. The slope of the 

regression line is therefore interesting. For the signatures in the objective everyday event (blue and green colours), the 

signatures: ‘number of peaks’ and ‘AUC’ show a relation toward the variables concerning the connected catchment (Figure 485 

13f-i). With increasing area (either impervious or total, direct or total upstream connected) the model tends towards 

overestimation (positive signature comparison slope). The number of peaks for everyday events (dark blue colours), are 

generally highly affected by variables, e.g. Figure 13a, c and h. It is, however, necessary to give awareness to the calculation 

of this signature.  Sensitivity is very high and could probably be improved. The signatures related to overflow, duration and 

AUC above CL (black and grey colours), generally follow the same trend. Interestingly, the increasing crest width (Figure 490 

13e) seems to result in underestimated model results, meaning that the model underestimates the durations of the overflow 

event, if the crest level becomes too high. The depth range between the ZP/IL to TOP/CL (Figure 13c) shows the same 

tendency. The larger the range, the more the model tends to underestimate what is observed. For the signatures related to 

surcharge (red colours), the tendency lines are very inconsistent. Only six sites are included in the analysis of surcharge events, 

as seen in Figure 11,  because not all sites have a value for the variable. It is therefore assessed that the number of values is 495 

too low to extract knowledge from these signatures. Generally, this correlation analysis would be strengthened by including 

more sites than the 23 provided in this paper, and by developing analytical methods that address uncertainty better than in this 

work.  
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Figure 13. Correlation between a variable on the horizontal axis and linear regression slope from the multi-event signature 500 
comparison on the vertical axis (given in Figure 11). A dot represents a site. Linear regression lines are fitted to the dots to spot any 

tendencies. If the slope on the vertical axis is above 1, the signature at the site is overestimated in the model, whereas slopes below 1 

indicate signatures that are underestimated.  
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4.5 Communication to the utilities 

This analysis is intended to be applied in the service area of the utility company for at least 165 sites and an easy overview is 505 

therefore needed. To communicate the performance score, maps will be generated because these provide a good overview of 

performance in relation to where the sites are located (see example in Figure 14). Together with score tables (Figure 11) and 

multi-event signature comparison plots (Figure 9), these will provide a strong basis for communication concerning the 

reliability of models. Performance scores for the three statistical methods can be found in the supplementary material, as well 

as performance maps for all objectives using the linear regression method. 510 

 

Figure 14. Map of the performance for overflow using the method of linear regression. The upstream catchment area of the site is 

mapped, and the naming in the catchment refers to the overflow structure that is mapped. The catchment area represents the case 

areas. The urban areas in between the catchment areas are not connected to the case areas, as they have a separate stormwater 

system. Background map is from OpenStreetMap (2022). 515 
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5 Conclusion 
Large, detailed, distributed simulation models are widely applied in utility companies. They support decision-making relating 

to future investments and are applied to support the daily operation of the current urban drainage systems. When routinely 

comparing model results with in-sewer level measurements from an increasing number of sites, uncertainties previously not 

realised become visible. The slightly provocative question “how useful are the models then?” highlights the need for methods 520 

to systematically assess and investigate model performance. Can we always rely on the model results in urban drainage 

modelling? The herein developed 5-step framework suggests a method for answering this question. The steps are as follows: 

objective identification, context identification, categorical analysis, statistical analysis, and assessment. The method is based 

on the methodology of signatures, which are metrics extracting certain characteristics of a time series event. Observed and 

modelled signatures can be compared across many events. Three objectives were identified for this study: ‘surcharge’, 525 

‘overflow’ and ‘everyday events’, and relevant signatures for each of these objectives were determined, including the ‘Area 

Under Curve’ (AUC) which is a ‘surrogate volume’ for an event determined from a reference level (similar to the area under 

a flow hydrograph, but with a different unit). The employed signatures were for surcharge: peak level, duration above CSL 

(critical surcharge level), AUC above CSL; for overflow: duration above CL (crest level), AUC above CL; and for everyday 

events: peak level, no. of peaks, AUC between TOP/CL (top of pipe, or crest level) and ZP/IL (zero-point of sensor, or invert 530 

level). Each event was analysed to determine whether observed and modelled values occur in the same category, e.g. if both 

observed and modelled results show an overflow event. Only the categorical true positive events were further subject to 

statistical analysis, to assess how ‘correct’ the model is. Three methods of multi-event statistical analysis of signatures were 

proposed and investigated in this study: linear regression, an indicator function, and a normalised RMSE method. The final 

step assessed the values obtained in the categorical and statistical analysis and placed the signatures for each site into distinct 535 

categories: for all events sufficient or insufficient categorical performance, and for true positive events also good, acceptable 

or poor statistical performance.  

 

A method was furthermore developed to reduce the weighting of individual events in the statistical analyses, in order to 

acknowledge uncertainty in model and/or measurements in cases where the model is not expected to fully replicate the 540 

measurements. The weight calculation includes: rain gauge uncertainty due to spatial variability in the proximity of the site, 

known system anomalies, and sensor limitations. The three methods in the statistical analysis were investigated, which 

highlighted the differences between the methods but also areas in which further improvements can be made; these 

improvements notably include tests for statistical significance, inclusion site-specific assessment criteria, and normalising 

performance scores across methods, objectives and sites.  545 

 

A case study covering 23 sites in two areas was conducted using the developed framework, which highlighted a number of 

model uncertainties for certain sites. For the objective “overflow”, only three among 14 investigated sites were categorized as 
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exhibiting sufficient categorical performance, whereas the remaining 11 sites had too many events where the observed and 

modelled signatures fell into different categories. Generally, the model performed better for everyday events, compared to 550 

surcharge and overflow events, which is not surprising due to the previous tradition of model validation in the local utility 

company (VCS Denmark).  With the developed method, the models are useful for some signatures, but clearly not useful for 

others, especially for some sites. Further improvements may include a general assessment of the performance criteria, as well 

as more elaborate statistical analysis, as suggested in the paper. Our results point to a general need for more research on model 

performance and error detection methods that can be applied when comparing simulation results from large, detailed, 555 

distributed urban drainage models with observations from tens, hundreds and perhaps thousands of sensor locations. 
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