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Abstract. Changes in evaporation over land affect terrestrial precipitation via atmospheric moisture recycling and 7 

consequently freshwater availability. Although global moisture recycling at regional and continental scales are relatively well 8 

understood, the patterns of local moisture recycling and the main variables that impact drivers of local moisture recycling it 9 

remain unknown. For the first time, we calculate the local moisture recycling ratio (LMR), defined as the fraction of evaporated 10 

moisture that rains out precipitates within a distance of 0.5° (approximately typically 50 km) from its source, and identify its 11 

driversvariables that correlate with it over land globally and study its model dependency. We derive seasonal and annual LMR 12 

using a 10-year climatology from multi-year (2008–2017) of monthly averaged atmospheric moisture connections at a scale 13 

of 0.5° obtained from a Lagrangian atmospheric moisture tracking model. We find that, annually, on average 1.76% (st.dev. = 14 

1.1%) of evaporated moisture returns as precipitationrainfall locally, but with large temporal and spatial variability, where 15 

LMR peaks in summer and over wet and mountainous regions. We identifyOur results show that wetness, orography, latitude, 16 

and cconvective available potential energy, wind speed, and total cloud cover as drivers ofcorrelate clearly with LMR, 17 

indicating that especially wet regions with little wind and strong ascending air are favourable for high LMR, indicating a 18 

crucial role for convection. Finally, we find that spatial patterns of local recycling are consistent between different models, yet 19 

the magnitude of recycling varies. Our results can be used to study impacts of evaporation changes on local precipitation, with 20 

widespread implications for, for example, regreening and water management. 21 

1 Introduction 22 

Atmospheric moisture connections redistribute water from evaporation sources to precipitation sinks, affecting climates 23 

globally, regionally, and locally. These connections are key in the global hydrological cycle and are used to understand the 24 

importance of terrestrial evaporation for water availability. As evaporated moisture can travel up to thousands of kilometres 25 

in the atmosphere, changes in evaporation can affect precipitation in a large area. An evaporationshed (Van der Ent and 26 

Savenije, 2013) describes where evaporated moisture from a specific source region precipitates and therefore, can be used to 27 

study (1) the changes in precipitation on a global scale following a change in evaporation in the source region and (2) 28 

atmospheric moisture recycling. Globally, more than half of terrestrial evaporated moisture precipitatesrains out over land 29 

(Van der Ent et al., 2010; Tuinenburg et al., 2020), which is a process called terrestrial moisture recycling. About half of 30 
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terrestrial precipitation originates from land (Tuinenburg et al., 2020). Hence, terrestrial moisture recycling has an important 31 

contribution to water availability. For example, 80% of China’s water resources originates from evaporation over Eurasia (Van 32 

der Ent et al., 2010). Furthermore, areas can also feed precipitation to themselves through regional moisture recycling. In the 33 

Amazon basin, 63% of the evaporated moisture precipitates within the basin itself (Tuinenburg et al., 2020). Terrestrial 34 

moisture recycling is considered an ecosystem service (Falkenmark et al., Wang-Erlandsson, & Rockström, 2019; P. W. Keys 35 

et al., Wang-Erlandsson, & Gordon, 2016) as globally, almost 20% of terrestrial precipitation originates from vegetation-36 

regulated moisture recycling (Patrick W. Keys et al., 2016). How this ecosystem service is affected by, for instance, 37 

deforestation, can be studied using atmospheric moisture connections.  38 

 39 

Moisture recycling has been used to study downwind impacts of land-use changes (e.g. Bagley et al., 2012; Keys et al., 2012; 40 

Wang-Erlandsson et al., 2018), which can affect both the magnitude and pattern of moisture recycling (Van der Ent et al., 41 

Wang-Erlandsson, Keys, & Savenije, 2014), and the impact of ecosystems on other ecosystems (e.g. O'Connor et al., 2021). 42 

Hence, atmospheric moisture connections can be used for freshwater governance to understand and manage the impacts of 43 

land-use changes downwind such as changes in freshwater availability for irrigation and plants. (te Wierik et al, 2021; Te 44 

Wierik et al, 2020). For example, previous research showed that for 45% of the land surface, an increase in vegetation is 45 

beneficial for downwind water availability (Cui et al., 2022).  46 

 47 

So far, analytical recycling models and moisture tracking models have been used to study terrestrial recycling and downwind 48 

impacts of land cover change on global and regional levels (Burde & Zangvil, 2001; Van der Ent et al., 2010). Multiple studies 49 

focus on the regional recycling for specific regions, with a spatial scale ranging from 500 km up to several thousands of 50 

kilometres (e.g., Burde, 2006; Dominguez et al., 2006; Lettau et al, 1979; Staal et al., 2018; Trenberth, 1999). Furthermore, 51 

regional recycling on a spatial scale of 1.5° has been studied globally using a Eulerian moisture tracking model, assuming a 52 

well-mixed atmosphere (Van der Ent and Savenije, 2011). It was debated that regional recycling ratios are difficult to compare 53 

due to differences in the shape and size of the studied regions (Van der Ent and Savenije, 2011). Therefore, Van der Ent & 54 

Savenije (2011) defined the typical length scale of evaporation recycling, which can be used to compare between different 55 

regions because it is independent of the size and shape of a regions. This length scale decreases with increasing regional 56 

recycling and, therefore, is a proxy for an area’s regional recycling. However, it does not allow for the quantification of the 57 

amount of water that recycles within the defined region and therefore does not provide quantitative insight into the regional 58 

impacts of evaporation changes induced by land-cover changes.  59 

 60 

In regions with a high regional recycling, reforestation can enhance freshwater availability and for regions with a low recycling, 61 

reforestation may cause local drying (Hoek van Dijke et al., 2022) due to reductions in streamflow as a result of enhanced 62 

evaporation locally (Brown et al., 2005; Jackson et al., 2005). To physically understand, for instance, the role of local wetting 63 

or drying due to reforestation, deforestation, or the use of groundwater or surface water for irrigation, local moisture recycling 64 
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is key. We argue that local impacts need to be studied explicitly as they may have a crucial role in future water governance, 65 

e.g., to prevent tree restoration projects causing local drying.  66 

 67 

The state-of-the-art high-resolution atmospheric moisture connections obtained with the Lagrangian atmospheric moisture 68 

tracking model “UTrack” allows us to calculate the evaporation recycling ratio at higher spatial resolution (0.5°) (Tuinenburg 69 

et al., 2020; Tuinenburg and Staal, 2020). We define this as the local moisture recycling ratio (LMR) as this high resolution 70 

allows us to study local-scale land-atmosphere feedbacks, which will help us better understand hydrological impacts of land-71 

use change. LMR describes which fraction of evaporated moisture recycles within its source grid cell and its eight surrounding 72 

grid cells. Moisture recycling has not been studied before on this high-resolution scale globally. To get a better physical 73 

understanding of this metric we identify which factors correlate with it. We analyse this for different latitude classes to account 74 

for different cell sizes across latitude. Factors included in this analysis are: orography, precipitation, precipitation type, 75 

evaporation, shear, convective available potential energy, atmospheric moisture flux, wind speed, total cloud cover, boundary 76 

layer height and surface net solar radiation. These variables relate to either convection, local wetness, or moisture transport 77 

away from the source location, which we identified as important factors for local moisture recycling. Furthermore, we study 78 

how LMR varies over the globe and throughout the year for a 10-year climatology (2008-2017), as well as its scaling and 79 

model dependency.  80 

 81 

We study the relation between local moisture recycling and latitude, orography, precipitation, precipitation type, evaporation, 82 

shear, convective available potential energy, and atmospheric moisture flux. These variables relate to either convection, local 83 

wetness, or moisture transport away from the source location, which we identified as important factors for local moisture 84 

recycling.  85 

2 Methods 86 

We use global atmospheric moisture connections obtained from Tuinenburg et al., (2020) to calculate LMR worldwide. These 87 

moisture connections are a 10-year climatologymulti-yearly (2008–2017) of monthly averages and have a spatial resolution of 88 

0.5°. These UTrack-atmospheric-moisture data are derived using a Lagrangian atmospheric moisture tracking model by 89 

Tuinenburg & Staal (2020) that tracks evaporated moisture at a spatial scale of 0.25°. In this model, for each grid cell of 0.25°, 90 

each mm of evaporation is represented by one hundred released moisture parcels. The wind transports these parcels 91 

horizontally and vertically through the atmosphere. Additionally, a probabilistic scheme describes the vertical movement of 92 

the moisture parcels over 25 atmospheric layers. In this scheme, the parcels are randomly distributed across the vertical 93 

moisture profile of each grid cell. At each time step (0.1 h), the moisture budget is made using evaporation, precipitation and 94 

total precipitable water. Parcels are tracked for up to 30 days or up to the point at which only 1% of their original moisture is 95 

still present. On average, the lifetime of atmospheric moisture is 8-10 days (Sodemann, 2020). However, some moisture might 96 
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still remain in the parcels after 10 days. After 30 days for most of the parcels all of the original moisture has rained out 97 

(Tuinenburg and Staal, 2020). Input data for UTrack consist of evaporation, precipitation, precipitable water, and wind speed 98 

obtained from the ERA5 dataset (Hersbach et al., 2020). We refer to Tuinenburg & Staal (2020) for a complete description of 99 

the model settings and the tests and assumptions underlying them. 100 

 101 

LMR is the fraction of evaporated moisture that rains outprecipitates locally. To study the scale dependencey of local moisture 102 

recycling, we examine three definitions of LMR (Fig. A1): the fraction of evaporated moisture that rains outprecipitates in f(1) 103 

its source grid cell, i.e., r1, (2) its source grid cell and its eight neighbouring grid cells, i.e., r9, and (3) its source grid cell and 104 

its 24 neighbouring grid cells, i.e., r25. Equations 1-3 describe the three definitions of LMR, in which Ei,j is the amount of 105 

moisture evaporatedevaporation from source grid cell i,j. The fraction of Ei,j that precipitates within its source grid cell and its 106 

(8 or 24) neighbouring grid is indicated by PE,i+l,j+k, P is precipitation (i+l,j+k, with l = 0 and k = 0 for r1, l = -1,0,1 and k = -107 

1,0,1 for r9 and l = -2,-1,0,1,2 and k = -2,-1,0,1,2 for r25 ). , and i,j the index of the source grid cell and l is used to define the 108 

domain i.e. 1, 9 or 25 cells. We calculated seasonal and yearly averages of LMR for our different analyses. 109 

𝑟1 =  
𝑃𝐸,𝑖,𝑗

𝐸𝑖,𝑗
            110 

 (1) 111 

𝑟9 =  
∑ ∑ 𝑃1

𝑘 =−1
1
𝑙 =−1 𝐸,𝑖+𝑙,𝑗+𝑘

𝐸𝑖,𝑗
           (2) 112 

𝑟25 =  
∑ ∑ 𝑃2

𝑘 =−2
2
𝑙 =−2 𝐸,𝑖+𝑙,𝑗+𝑘

𝐸𝑖,𝑗
           (3)  113 

 114 

r1, r9, and r25 result in different local moisture recycling ratios across the globe (Fig. A2). r1 peaks over the ocean where 115 

precipitation is relatively low and evaporation is relatively large, which results in relatively large recycling ratios. In addition, 116 

we find exceptionally low values over mountain peaks, yet not over all elevated terrain. This result is inconsistent with the 117 

patterns found for r9 and r25, as these patterns include peaks over mountainous and low recycling over the oceans. These 118 

patterns can be explained by enhanced convection over mountains due to orographic lift and strong winds over the ocean that 119 

carry moisture away from its source. The patterns found for r9 and r25 seem to capture multiple physical processes that are 120 

important for moisture transport and formation of precipitation better than the pattern of r1. In our study we do not focus on r1, 121 

as r1 does not include all small-scale flows of <50 km. This is because moisture can evaporate from cell i,j, and precipitate in 122 

the adjacent cell, while transport length is <50 km. Furthermore, as the patterns of r9 and r25 are similar and agree with our 123 

understanding of relevant processes, we decided to define the local moisture recycling ratio (LMR) as r9 to keep the spatial 124 

scale as small as possible. For r9, the distance from the center of the source grid cell and its surrounding grid cells describes 125 

the typical length of the local moisture flow. We calculated this typical length across the globe by calculating the average of 126 

the average zonal length, meridional length, and diagonal length of all terrestrial grid cells. The total average equals 50.1 km 127 

(st.dev. = 15.5 km), so, the average moisture flow length is approximately 50 km.  128 
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 129 

Furthermore, the LMR derived with the Lagrangian approach using output from UTrack is compared with the output from the 130 

Eulerian moisture tracking model WAM2-layers (Link et al., 2020), to study the model dependency of LMR. For this 131 

comparison, the resolution of the UTrack data is reduced to 1.5° to match the output of the WAM2-layers model. To do so, all 132 

evaporationsheds over land were multiplied with their source evaporation. Then, the recycling within cells of 1.5° was 133 

calculated for all terrestrial surfaces. A detailed description of the atmospheric moisture connections obtained with WAM2-134 

layers and the model itself are provided by Link et al. (2020) and Van der Ent et al. (2013).  135 

 136 

We study the relations between multiple variables and the 10-year climatology (2008-2017) of local moisture recycling to 137 

identify drivers factors that affectof recycling. To calculate this 10-year climatology of LMR, for each month, we weighted 138 

the multi-year (2008-2017) monthly LMR by multi-year monthly evaporation in the same period:  139 

𝐿𝑀𝑅𝑎𝑛𝑛𝑢𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝐿𝑀𝑅
𝐸𝑚𝑜𝑛𝑡ℎ 𝑖

𝐸𝑦𝑒𝑎𝑟

𝑖=𝑗𝑎𝑛
𝑑𝑒𝑐           (4)  140 

in which Eyear is the sum of the evaporation of the 12 months. To identifyhese factors that affect LMR, drivers are variables 141 

that relate to atmospheric moisture and vertical displacement of air, as both higher atmospheric moisture content and ascending 142 

air promote rainfallprecipitation are selected. All these variables are obtained, either directly or indirectly from ERA5 143 

reanalysis data (Hersbach et al., 2020). We downscaled the original resolution from 0.25° to 0.5° by centrally averaging the 144 

data.  145 

 146 

The variables that we In total 13 variables are selected (Fig. A3)assessed are:: (1) elevation (z) which we expect to enhance 147 

LMR through orographic lift. (2), Precipitationprecipitation (P), which we expect to correlate positively with LMR given that 148 

in Lagrangian moisture tracking models, the amount of moisture that leaves the parcel (i.e., precipitates) scales with 149 

precipitation. (3), eTotal evaporationvaporation (E)as it enhances the atmospheric moisture content and we, therefore, expect 150 

it to promote precipitation locally., (4) Wwetness (Pprecipitation minus evaporation-E), as with increasing wetness the 151 

downward flux of moisture increases and evaporated water becomes more likely to precipitate, possibly promoting LMR., (4) 152 

cConvective precipitation (cp) and , fraction of convective precipitation,(5) large-scale precipitation (lsp), as ,they scale with 153 

precipitation, by definition. Both are included to study whether the type of precipitation is an important factor explaining LMR. 154 

fraction of large-scale precipitation, l (6) Latitude, which is a proxy for processes related to the Hadley cell circulation, which 155 

is characterized by strong ascent and descent of air at specific latitudes, which we expect to have an important contribution to 156 

LMR, because they respectively enhance and reduce the formation of precipitation (Wang and Yang, 2022). (7) vThe vertical 157 

integral of the atmospheric moisture flux (in northward and, eastward directions and the total flux) as it carries the moisture 158 

away from its source and could thus reduce LMR. (8), Cconvective available potential energy (CAPE), which feeds convection 159 

and therefore promotes precipitation locally, which could enhance LMR. and (9) vVertical wind shear between 650 and 750 160 

hPa of both meridional and zonal winds, as it affects moisture transport in multiple directions and, therefore, we expect it to 161 
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impact LMR. (10) Total wind speed, as it carries the wind, and therefore, we expect it to correlate negatively with LMR. (11) 162 

Total cloud cover as a proxy for condensation processes which possibly enhance LMR (Richards and Arkin, 1998). (12) 163 

Boundary layer height, because thinner boundaries need less evaporation to reach saturation of air, and therefore, we expect it 164 

will promote precipitation locally. Finally, (13) net surface solar radiation as a proxy for the energy source of convection, and 165 

other processes, which we expect to be important for LMR. We calculate shear (𝜏) using Equation (5).  166 

𝜏 =  
𝑙𝑛

𝑣2
𝑣1

𝑙𝑛
𝑧2
𝑧1

             (5) 167 

In this equation, v1 and v2 are the wind speed (in zonal and meridional directions) at two different heights (z1 and z2). We 168 

identified significant relations correlations using Spearman rank correlations. It should be noted that a correlation does not 169 

imply causality. We exclude oceans, seas and Antarctica from this analysis using the land-sea mask from ERA5. We classify 170 

the data based on latitude to account for decreasing grid cell size with increasing latitude. Each class has a range of 15° and 171 

includes the grid cells on both the Northern and Southern Hemispheres (see Table A1). Between 60° and 90° south, the grid 172 

cells do not contain land besides Antarctica, and are therefore not included in the classes. Additionally, we used the Ecoregions 173 

2017 data (https://ecoregions.appspot.com/) to study the spatially averaged local moisture recycling of 14 biomes across the 174 

globe (Fig. A24). We study variation amongst biomes, as biomes include information on both biotic factors such as vegetation 175 

type, and abiotic factors such as climate.  176 

3 Results 177 

3.1 LMR obtained from output of UTrack 178 

We find differences across the globe for the three different definitions of local moisture recycling (r1, r9 and r25) (Fig. 179 

A3). For r1, we find maxima over the oceans in areas where precipitation is relatively low, unlike evaporation (Fig. A5), 180 

which results in relatively high recycling ratios (Fig. A3). However, for r9 and r25 we find maxima over land suggesting 181 

recycling over nine and 25 grid cells better captures relatively large moisture transport over the oceans than recycling 182 

over one grid cell does. Furthermore, for r1, we find low values over elevated areas (e.g., the Andes mountains) 183 

compared to r9 and r25, which show maxima over elevated regions. Hence, there is no clear relation between r1 and 184 

either r9 or r25. These results seem to indicate that the tracking method we use is not sufficient to define recycling within 185 

one grid cell. Finally, scaling recycling to the number of grid cells, we find r9 and r25 do not relate linearly. For lower 186 

recycling, r9 exceeds r25 and for higher recycling, r25 exceeds r9 (Fig. A3). In the following, we define local moisture 187 

recycling (LMR) as r9 to keep the spatial scale as small as possible but to still have a spatial pattern that we can explain 188 

physically. 189 

 190 

Annually, on average about 1.76% (st. dev. = 1.1%) of terrestrial evaporated moisture recycles locally. LMR shows spatio-191 

temporal variation (Fig. 1) with peaks over elevated (e.g., the Atlas Mountains and Ethiopian Highlands) and wet areas (e.g., 192 

Congo Basin and Southeast Asia) and minima over arid regions (e.g., Australia and the Sahara Desert). Additionally, we find 193 

peaks in LMR during summer (i.e., during DJF for the Southern Hemisphere and during JJA for the Northern Hemisphere). 194 
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This seasonality is especially strong over mountainous and wet areas. For the mid-latitudes, especially the Mediterranean Basin 195 

shows seasonality with peaks in summer (JJA). However, sSeasonality is largest at low latitudes. Within the tropics we find 196 

some spatial differences. First, LMR in the Congo Basin and Southeast Asia exceed LMR in the Amazon Basin. Second, 197 

recycling in the Congo Basin and Southeast Asia peaks in JJA and recycling in the Amazon Basin peaks in DJF, which is thea 198 

wet season for a large part of the Amazon. 199 

 200 

 201 

Figure 1. Multi-year10-year climatology (2008–2017) of the, seasonal averages of local moisture recycling across the global land 202 
surface. Here, local moisture recycling is defined as the fraction of evaporated moisture that rains outprecipitates in its source grid 203 
cell and its eight neighbouring grid cells (r9). Different seasons are DJF: December–February, MAM: March–May, JJA: June–204 
August, and SON: September–November.  205 

We calculated recycling on a 1.5° grid using both the dataset by (Link et al., (2020), which we refer to as rWAM2-layers, and the 206 

dataset by (Tuinenburg et al., (2020) (upscaled to 1.5°), which we refer to as rUTrack, to study the model dependency of local 207 

recycling. We find that the global spatial patterns of rUTrack and rWAM2-layers agree (Fig. 2 & Fig. A5). However, the magnitude 208 

of rWAM2_Layers is larger than rUTrack over mountains, the tropics, and the high latitudes. RUtrack is larger than rWAM2-layers over 209 

drylands and deserts (e.g., the Sahel region and Western Asia) (Fig. 2). Globally, the difference between rUTrack and rWAM2-layers 210 

and its variation is largest around the equator (Fig. A6). On average, the relative difference between UTrack and WAM2-211 

Layers ((UTrack-WAM2-Layers)/ UTrack) equals -1.5 (st.dev. = 3.4). 212 
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 213 

Figure 2. The relative deviation between rUtrack and rWAM2-layers This deviation is calculated using the recycling within one grid cell at 214 

a resolution of 1.5° obtained from the datasets of (Tuinenburg et al., (2020) and (Link et al., (2020).  215 

3.2 Factors underlying LMR 216 

For each latitude class we calculated the Spearman rank correlation coefficient (ρ) (Table 1). Below we discuss only 217 

statistically significant (p<0.05) correlations with ρ ≥ 0.4, indicating a moderate correlation. These correlations are emboldened 218 

in Table 1. We find that LMR correlates positively with total precipitation (tP) and wetness (P-E) for all classes between 15° 219 

and 75°. In addition, between 15° and 30°, LMR correlates strongly with tP (ρ = 0.80. Furthermore, large scale precipitation 220 

(between 15° and 45° and between 60° and 75°) and convective precipitation (between 15° and 45°) correlate positively with 221 

LMR. The highest correlation between LMR and convective precipitation is found between 15° and 30° latitude. Here LMR 222 

also correlates positively with evaporation and CAPE, which enhances convective precipitation. Despite the low correlation 223 

between LMR and CAPE for most of the latitude classes, high CAPE clearly relates to LMR, as the skewed profile in the 224 

scatter density plot indicates that only a small amount of the grid cells with a relatively high CAPE have a low LMR (Fig 3). 225 

Furthermore, the presence of clouds also correlates with LMR. Between LMR and total cloud cover, a positive correlation 226 

holds between 15° and 45°, and a negative correlation holds between 60° and 75°. The vertical integral of the eastward and 227 

northward moisture fluxes correlate less with LMR compared to vertical fluxes (e.g., precipitation) as for the higher latitudes, 228 

the northward moisture flux correlates positively with LMR (between 60° and 75°) and the eastward moisture flux correlates 229 

negatively with LMR (between 75° and 90°). However, wind speed correlates negatively with LMR for the lower latitudes 230 

(between 0° and 45°). Furthermore, LMR correlates positively with orography between 30° and 75°. We find that for high 231 

elevation, LMR is always relatively high (Fig A7). Additionally, LMR correlates negatively with boundary layer height 232 

between 45° and 60°. Finally, LMR correlates negatively with shear at 650 hpa in the meridional direction (between 75° and 233 

90°) and latitude (between 60° and 75°), However, we find an oscillating relation between LMR and latitude (Fig 4), which is 234 

not captured by the Spearman rank correlation coefficients. This pattern indicates high values of LMR over the equator (0°) 235 

and 60° north, and low values around 30° north and south. Orography seems to disrupt the relation between latitude and LMR 236 

causing peaks in LMR around 35° north and 20° south (Fig 4). LMR does not correlate to surface net solar radiation for any 237 



9 

 

latitude. However, for low surface net solar radiation (<0.75*106 J/m2) holds that LMR increases with increasing surface net 238 

solar radiation (Fig 3).  239 

 240 

Figure 32: Scatter plots of multi-yearthe 10-year climatology (2008–2017) of the annual averages of local moisture recycling ratio 241 

over land and precipitation (top left), evaporation (top right), convective available potential energy (CAPE) (bottom left), and 242 

latitude solar net surface ratidation (bottom right). Each dot represents a 0.5° resolution grid cell over land. For the latter the 243 

colour scale indicates elevation, with blue being low elevation and yellow being high elevation, and a black line is plotted to show the 244 

zonal average of local moisture recycling over land at 0.5° resolution.  245 

 246 

  247 
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 248 

Figure 4. Scatter plot of the 10-year climatology (2008-2017) of LMR and latitude. The colour scale indicates elevation, with blue 249 

being low elevation and yellow being high elevation. The black line represents the zonal average of LMR. Each dot represents a 250 

0.5° resolution grid cell over land. 251 

  252 
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TTable 11. Spearman rank correlation coefficients between LMR and all tested variables. ‘*’ indicates a significant correlation 253 
(p<0.05) and moderate and strong relations (ρ>0.4) are emboldened. The classes including latitudes between 0° and 60° include grid 254 
cells of the Northern Hemisphere and Southern Hemisphere. The classes including latitudes exceeding 60° include grid cells of the 255 
Northern Hemisphere only.  256 

 Spearman rank correlation coefficient 

Variable 0°-15° 15°-30° 30°-45° 45°-60° 60°-75° 75°-90° 

Total precipitation (P)n 0.415*3* 0.80* 0.47* 0.40* 0.45* 0.37* 

Total evaporation (E)_ -0.05* 0.63* 0.19* -0.12* 0.19* 0.20* 

Wetness (P-E) 0.18* 0.59* 0.52* 0.48* 0.43* 0.27* 

Convective precipitation 

(cp) 

0.20* 0.79* 0.46* 0.29* 0.35* 0.33* 

Large scale precipitation 

(lsp) 

-0.06* 0.75* 0.46* 0.38* 0.40* 0.36* 

cp/lsp 0.36* -0.35* -0.13* -0.14* 0.19* 0.28* 

Fraction of cp 0.36* -0.35* -0.13* -0.14* 0.19* 0.28* 

Fraction of cp 0.36* -0.35* -0.13* -0.14* 0.19* 0.28* 

Latitude 0.24* -0.18* 0.22* 0.14* -0.40* -0.18* 

Eastward moisture flux  0.15* 0.00 -0.30* -0.38* -0.20* -0.49* 

Northward moisture flux  -0.03* 0.22* 0.29* -0.03* 0.48* 0.23* 

Total moisture flux  -0.28* 0.30* -0.29* -0.33* -0.03 -0.16* 

CAPE 0.31* 0.58* 0.37* 0.06* 0.12* -0.02 

Zonal shear 0.15* -0.12* 0.02 -0.31* 0.00 0.24*5 

Meridional shear -0.22* 0.15* -0.08* -0.01 0.05* -0.46* 

Orography 0.31* 0.29* 0.49* 0.54* 0.68* -0.13* 

Total cloud cover  0.28* 0.78* 0.43* 0.09* -0.56* 0.08* 

Surface net solar radiation -0.16* 0.10* -0.30* -0.08* 0.28* 0.21* 

Boundary layer height -0.31* -0.32* -0.39* -0.53* -0.18* -0.06* 

Total wind speed -0.46* -0.55* -0.47* -0.26* -0.26* -0.30* 
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4 Discussion 257 

4.1 Factors underlying LMR 258 

Moisture recycling affects humanity by influencing water security, agriculture, forestry, regional climate stability and Eearth 259 

system resilience (Keys et al., 2019; Wang-Erlandsson et al., 2022). Different types of moisture recycling were subject to 260 

research used for different applications (e.g., Bagley et al., 2012; Pranindita et al., 2022; Van der Ent et al., 2010), but for the 261 

first time, we analysed the local moisture recycling ratio (LMR) (of evaporated moisture) and its drivers across the globe at 262 

0.5° resolution, and which factors affect it. We find that LMR, defined as the fraction of evaporated moisture that rains 263 

outprecipitates within a distance of 0.5° (typically 50 km) from its sourceapproximately 50 km of its source location, varies 264 

over time and space, peaking in summer and over elevated and wet regions. First, we identified latitude, elevation, and 265 

Convective Available Potential Energy (CAPE) as important drivers factors influencingof LMR (Fig. 53). These variables all 266 

promote convection (Roe, 2005; Scheff and Frierson, 2012; Wallace and Hobbs, 2006), strongly suggesting a dependencye of 267 

LMR on convection. Convective storms develop due to unstable conditions resulting in precipitation locally (Eltahir, 1998) 268 

and a higher CAPE results in more rainfall (Eltahir and Pal, 1996; Williams and Renno, 1993). The pattern of LMR across 269 

latitudes also coincides with updraft and downdraft of air caused by the Hadley cell circulation (Wallace and Hobbs, 2006). 270 

Around the equator and 60° north and south, air ascends, whereand we find a high LMR. Additionally, air descends aAround 271 

30° north and south, air descends, where we find a low LMR. Deviations from this pattern correspond to higher elevations 272 

which promotepromoting LMR through orographic lift. Overall, our results suggest a positive relation between convection and 273 

LMR.  274 

  275 
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Figure 53. Conceptual model of the most important drivers factors influencingof  local moisture recycling around the globe. Rainy 276 
clouds indicate variables that increase LMR and clouds without raindrops indicate variables that decrease LMR. Blue indicates wet 277 
regions, yellow indicates arid regions. 278 

Second, we find that wetness is an important factor underlyingdriver of LMR as LMR significantly correlates with precipitation 279 

(P) and P-E (precipitation minus evaporation). Furthermore, both large-scale and convective precipitation significantly 280 

correlate with LMR. This is surprising, as convection promotes precipitation locally (Eltahir, 1998); therefore, we expected a 281 

stronger correlation between LMR and convective precipitation than between LMR and large-scale precipitation. As both 282 

correlations are similar, thisThis suggests that the type of precipitation does not affect LMR. Although convection is a local-283 

scale process (i.e., having a spatial scale of below 100 km) (Miyamoto et al., 2013), remotely evaporated moisture can be 284 

transported to a region with high convective activity and then rains outprecipitate as convective precipitation (Jana et al., 285 

Rajagopalan, Alexander, & Ray, 2018; Liberato et al., 2012). In that way, the precipitation type is independent of the distance 286 

between moisture source and target location and therefore does not relate to LMR. Total cloud cover correlates both positively 287 

(between 15° and 45°) and negatively (between 60° and 75°) with LMR. Total cloud cover correlates with precipitation, 288 

convective precipitation, and large-scale precipitation for all latitudes except between 60° and 75° (Tab. A2). Due to the 289 

positive correlation between LMR and precipitation and the absence of a correlation between precipitation and total cloud 290 

cover at these latitudes we can statistically explain the negative correlation between total cloud cover and LMR. Physically, 291 

this result is harder to explain. Our results describe the importance of convection underlying LMR at lower latitudes, where 292 

total cloud cover correlates with convective precipitation. For higher latitudes, the importance of convection underlying LMR 293 

decreases, and we therefore expected also the correlation between total cloud cover and LMR to decrease but not to become 294 

negative. Likely, another process that we cannot identify with our analysis causes the correlation between total cloud cover 295 

and LMR to be negative. Overall, we find that wetness enhances LMR independent of the precipitation type. 296 

 297 

However, uUnexpectedly, we do not findidentify a relation clear correlation between the vertical integral of the atmospheric 298 

moisture flux and LMR. However, for the lower latitudes (between 0° and 45° latitude), LMR correlates to wind speed (at 10 299 

and 100 m) which carries evaporated moisture away from its source location, enhancing the moisture flux. Therefore, 300 

horizontal moisture fluxes at specific altitudes are better for our analysis than the vertical integral of the moisture flux. 301 

However, since wind carries moisture away from its source, we expected that wind speed and LMR would also correlate for 302 

the higher latitudes (latitude above 45°). It could be that for the higher latitudes, a more significant amount of moisture is 303 

present at higher latitudes, explaining why LMR and wind at 10m do not correlate. However, wind speeds at 650 hpa and 750 304 

hpa also do not correlate to LMR for these latitudes (Tab. A2). Overall, we find that wetness enhances LMR independent of 305 

the precipitation type. 306 

 307 

Despite the importance of vertical shear in atmospheric moisture tracking models (Van der Ent et al., 2013), we do not find a 308 

correlation between local moisture recycling and vertical shear between 650 and 750 hPa. Shear is the friction between air 309 
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layers that minimizes complete mixing, which for some regions around the world is strongest between 650 and 750 hPa 310 

(Dominguez et al., 2016). A possible explanation is that due to its small spatial scale, the temporal scale of LMR is also small, 311 

which may prevent the air reaching 700 hPa within the spatial scale of LMR. Furthermore, it is possible that our study design 312 

is insufficient to capture the relation between LMR and shear throughout the year over the globe. We aimed for a general 313 

analysis to identify the main factors that influence LMR. A more detailed study that distinguishes between different seasons 314 

and isolates different climate zones is necessary to identify more factors that influence LMR as some factors might be more 315 

important during a specific season. For example, convection occurs more during summer than during winter, and therefore, 316 

might have a stronger correlation with LMR during summer. Besides, some factors are shape and size dependent similar to 317 

LMR, while other factors are not dependent on grid cell size and shape. This might cause bias in the results of the Spearman 318 

analysis. Furthermore, due to the many interactions within the Earth system and, consequently, between the variables included 319 

in our study, it is impossible to determine the true drivers of LMR. However, the correlations do indicate how changes in the 320 

environment might affect LMR. 321 

4.2 regional patterns 322 

 323 

To zoom in on the importance of each of the different drivers of factors underlying LMR for various areas across the globe, 324 

we determined LMR for the major global biomes (Fig. A78). LMR is highest for the wet tropics (between 0° and 15° north 325 

and south) and montane grasslands and lowest for desert-like biomes in both the Northern and Southern Hemisphere (between 326 

30° and 45° north and south), confirming the importance of wetness, orography, and latitude. However, in the tropics (between 327 

0° and 15° latitude), we do not find any correlation between LMR and precipitation, evaporation, wetness, or orography. 328 

Possibly, due to the abundance of water and energy to evaporate, there is LMR under all circumstances, except for when the 329 

wind speed is high. However, Comparing LMR for each biome differences between both hemispheres indicates that some of 330 

the drivers factors underlying LMR are more robust than other ones ones for some biomes. In the Mediterranean biomes, 331 

located between 30–40° north and south, air generally descends due to the Hadley cell circulation. As a result, these biomes 332 

are expected to have low LMR. Although we find a low LMR for the Mediterranean biomes in the Southern Hemisphere, we 333 

find a relatively high LMR for the Mediterranean biomes in the Northern Hemisphere. The Spearman rank analysis indicates 334 

that at these latitudes, wind speed correlates with LMR, which may explain the difference between both hemispheres.This is a 335 

surprising result, which does not overlap with the different Mediterranean climate subclasses (i.e., hot-summer Mediterranean 336 

climate and warm-summer Mediterranean climate)(Peel et al., 2007). More research is needed to understand this difference 337 

better.  338 

 339 

 340 
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Although LMR is the highest in the wet tropics, we find different results among the various tropical regions (Amazon Basin, 341 

Congo Basin & Southeast Asia). LMR in the Congo Basin exceeds LMR in the Amazon Basin (Fig. 1), despite larger amounts 342 

of rainfall precipitation in the Amazon Basin (Hersbach et al., 2020). In the tropics, current deforestation results in drying 343 

(Bagley et al., 2014; Staal et al., 2020), reducing evaporation. For the Amazon Basin, drought is related to higher deforestation 344 

rates (Staal et al., 2020). As LMR in the Congo Basin exceeds LMR in the Amazon Basin, deforestation has a relatively large 345 

impact on local precipitation in the Congo Basin, suggesting a larger impacthigher impact  on droughts and deforestation 346 

locally. This is further exacerbated by the fact that the Congo Basin, in comparison with the Amazon Basin, has many small-347 

scale moisture feedback loops (Wunderling et al., Wolf, Tuinenburg, & Staal, 2022). The latter is true when assuming drought 348 

also enhances deforestation in the Congo Basin. Unlike LMR, basin recycling is similar for both basins (Tuinenburg et al., 349 

2020). SuggestingThus, the  impact of deforestation on precipitation in the entire basin is similar for both basins, indicating 350 

both basins would experience similar overall drying. However, drought conditions can also enhance recycling ratios (Bagley 351 

et al., 2014), thuspossibly promoting LMR. Further research is necessary to understand the impact of deforestation on LMR 352 

in the tropics in more detail.  353 

4.3 The spatial scale of the local moisture recycling ratio 354 

We study local moisture recycling on a spatial scale of 0.5°, which is approximately 55 km around the equator and 50 km on 355 

average globally for all land cells. Instead of recycling within one grid cell (r1), we studied the recycling of evaporated moisture 356 

within its source grid cell and its 8 surrounding grid cells. Compared to r1, this r9 includes all moisture flows with a length 357 

scale of typically 50 km. For r1, moisture flows with a length smaller than 50 km can occur close to the border of grid cells 358 

and therefore, r1 by definition underestimates the actual recycling. These moisture flows are accounted for in r9.  359 

 360 

However, defining LMR on a grid scale gives complications. First, the longitudinal distance for a grid cell size decreases with 361 

latitude, resulting in different sizes and shapes, which makes it difficult to compare LMR among all grid cells. For the low- 362 

and mid-latitudes, the variation in grid cell size affects LMR only slightly, as confirmed when LMR for each grid cell was 363 

scaled to a single area (Fig. A9). Therefore, we believe that the variation in grid size causes only a small bias in the statistical 364 

analysis, as the largest fraction of the land surface is at the low- and mid-latitudes, and moisture recycling is less important for 365 

the higher latitudes. However, it should be noted that for similar wind speed, LMR will be lower in smaller grid cells than 366 

larger grid cells. Second, the spatial scale of recycling is strongly dependent on regional differences such as biome type, the 367 

dominating winds, and the proximity to mountains. For instance, with increasing distance to the Andes mountains the median 368 

travelling distance of transpired moisture from the Amazon forest increases (Staal et al., 2018) and for the Ganges basin, 369 

evaporated moisture is blocked by the Himalayas, limiting upward moisture flow and inducing precipitation (Tuinenburg et 370 

al., Hutjes, & Kabat, 2012). Further, precipitation can be triggered by micrometeorological processes (e.g. (Knox et al., Bisht, 371 

Wang, & Bras, 2011; Taylor et al., de Jeu, Guichard, Harris, & Dorigo, 2012)  making it unknown at what spatial scale moisture 372 

recycling is the dominant process for precipitation. Therefore, we believe that a grid-based approach to systematically study 373 
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LMR globally is a solid approach to define and study the physical processes at a spatial scale >50 km through, for instance, 374 

the Spearman analysis to study the underlying processes. However, our definition of LMR is not sufficient to identify processes 375 

on a spatial scale smaller than 50 km that might be relevant.  376 

4.4 Model and definition dependencies 377 

It is important to note that the typical length scale of moisture recycling, as defined by Van der Ent & Savenije (2011), allows 378 

for a comparison of regional moisture recycling for different regions around the world due to its independence of the region’s 379 

size and shape (Fig A10). The typical length scale of evaporated moisture recycling decreases with increasing recycling. It 380 

peaks over deserts and is small over the tropics and mountainous regions (Fig A9), overlapping with the spatial pattern of 381 

LMR.The spatial patterns of LMR, obtained in our study, resemble the spatial patterns of the regional recycling ratio (LMR is 382 

smaller than regional recycling) obtained by  Van der Ent & Savenije (2011), who estimated average regional recycling ratios 383 

within a 1.5° grid cells globally between 1999 and 2008, using a Eulerian moisture tracking model. Due to different model set-384 

up and grid cell sizes, differences in the magnitude of recycling are expected; hence, here we only look at the qualitative 385 

patterns.  386 

 However, this typical length scale does not allow for the quantification of the amount of recycled moisture and therefore, it is 387 

difficult to apply this metric to study the impact of evaporation changes due to land-use change. Therefore, studies that aim to 388 

quantify moisture recycling locally may best use recycling ratios. However, studies that aim to compare recycling among 389 

different regions can best use the typical length scale of recycling. 390 

 391 

In this article, we focus on model dependency as we calculated the differences in magnitude of recycling within one grid cell 392 

of 1.5° obtained from output of the UTrack and WAM2-layers models (Link et al., 2020; Tuinenburg et al., 2020). The spatial 393 

patterns are similar, yet the different magnitudes indicate a large model dependency, and, therefore, an uncertainty in moisture 394 

recycling. Furthermore, Van der Ent et al. (2010) calculated recycling within a grid cell of 1.5° for the years 1999–2008 using 395 

WAM2-layers and found a similar spatial pattern with high recycling over mountainous and tropical regions and low recycling 396 

over desert-like regions. These recycling ratios also have a larger magnitude than LMR. However, it is not straightforward to 397 

interpret the differences in recycling ratios as both models use different input data (i.e., ERA5 and ERA-Interim). To assess 398 

the possible role of the models in causing the difference in moisture recycling, we describe the main differences between the 399 

models. First, WAM2-layers calculates the atmospheric moisture recycling on a larger temporal and spatial scale than UTrack, 400 

A larger grid cell size and time step increases the likelihood of evaporation and precipitation taking place within the same 401 

small amount of time, which might result in an overestimation of recycling within one grid cell. Second, WAM2-layers 402 

generates moisture flows using two vertical layers; therefore, strong winds at specific vertical levels will be described in less 403 

detail, reducing estimated moisture transport and enhancing estimated moisture recycling within a single grid cell. Differences 404 

between  rUTrack and rWAM2-layers are highly visible over mountainous regions where wind experiences relatively strong friction, 405 

highly impacting the wind. Finally, different approaches are used to include vertical mixing in the two models. Vertical mixing 406 
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causes the greatest error in moisture tracking models, but it is unknown to what extent vertical mixing is underestimated (Stohl 407 

et al.,  Forster, Frank, Seibert, & Wotawa, 2005; Tuinenburg & Staal, 2020).   408 

 409 

Besides studies using atmospheric moisture tracking (e.g., Bagley et al., 2014; Keys et al., 2014;Van der Ent et al., 2010), 410 

some previous studies used different methods to calculate regional moisture recycling for a specific area, such as isotope 411 

measurements (e.g., An et al., 2017) and bulk recycling models (e.g., Burde & Zangvil, 2001). The most common recycling 412 

models are modifications of Budyko's model (Budyko, 1974; Burde and Zangvil, 2001), which are 1D or 2D analytical models. 413 

These models assume that the atmosphere is completely mixed, meaning that evaporated water directly mixes perfectly with 414 

advected water throughout the entire water column. Because of this assumption, first, these models overlook fast recycling, 415 

which describes local showers that yield rain precipitation before the evaporated water is fully mixed. Excluding fast recycling 416 

causes models to underestimate terrestrial moisture recycling for some regions (e.g., Amazon Basin) (Burde et al., 2006b). 417 

Second, these models ignore the influence of vertical shear, which causes a significant error (Dominguez et al., 2020). 418 

Excluding fast recycling causes models to underestimate terrestrial moisture recycling for some regions (e.g., Amazon Basin) 419 

(Burde et al., 2006b). To obtain LMR, evaporated moisture is tracked through the atmosphere with a Lagrangian model in 420 

three spatial dimensions. Our method minimiszes the errors due to fast recycling and vertical shear because of two model 421 

aspects. First, at each time step, each parcel has a small chance of getting mixed, causing each parcel to move approximately 422 

once in the vertical direction every 24 hours, besidesadditional to the displacement based on reanalysis data ofcaused by 423 

vertical winds. As parcels are released from the surface, Tthis process minimizes complete mixing and reduces the error due 424 

to shear and fast recycling. Second, the error due to fast recycling also becomes smaller because lower atmospheric levels 425 

contribute more to the total precipitation than higher levels due to the skewed vertical moisture profile. WAM2-layers accounts 426 

for vertical shear as it models two vertical atmospheric layers of which the interface is located at the height at which shear 427 

typically occurs. These two layers are both completely mixed and therefore, compared to bulk models, WAM2-layers better 428 

represents the distribution of moisture throughout the atmospheric column. As an alternative method, moisture flows can be 429 

calculated on a smaller time step to increase the interactions between different wind components, resulting in a better 430 

representation of turbulence ((Keune et al.,, Schumacher, & Miralles, 2022). Despite the error reduction, the representation of 431 

fast recycling in UTrack should be studied in more detail, as fast recycling is expected to influence LMR significantly.  432 

 433 

LMR is calculated as a ten-year average. This period of ten years might miss multi-year climate variability such as the El Niño 434 

Southern Oscillation and the North Atlantic Oscillation. The time series of atmospheric moisture connections provided by Link 435 

et al. (2020) allowed to study inter-annual variation in relatively local recycling. This shows that recycling is dependent on 436 

multi-year atmospheric phenomena. During the major El Niño event of 2015-2016, the northeast of South Africa had a lower-437 

than-average local recycling ratio (Fig. A11) for 2015. This pattern coincides with the impact of wetness during El Niño years, 438 

consistent with the hypothesis that wetness enhances LMR. Furthermore, strong events such as heat waves and droughts might 439 

affect the multi-year annual mean. For example, we clearly find lower recycling over Russia during 2010, which may relate to 440 
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the 2010 heatwave in eastern Europe and Russia. Overall, for these multi-year and strong events we find that, for regions that 441 

face wetter-than-normal conditions, LMR is enhanced, and for regions that face drier-than-normal conditions, LMR is reduced. 442 

Hence, drought events might result in a decrease in LMR as seen for the 2010 heat wave event in Europe and Russia. However, 443 

not for all inter-annual climate variability modes we find a clear impact on moisture recycling. It may be that these phenomena 444 

do not affect wetness throughout the entire year, and therefore, annual means might not represent them well.  445 

4.5 Implications/applications of LMR Regardless of the importance of vertical shear in atmospheric moisture tracking 446 

models (Van der Ent et al., 2013) we do not find a clear correlation between local moisture recycling and vertical shear 447 

between 750 and 650 hPa. Shear is the friction between air layers that minimizes complete mixing, which for some 448 

regions around the world, is strongest between 650 and 750 hPa (Dominguez et al., 2016). A possible explanation is that 449 

due to its small spatial scale the temporal scale of LMR is also small, which causes the air not to reach 700 hPa within 450 

the spatial scale of LMR. Furthermore, it is possible that our study design is insufficient to capture the relation between 451 

LMR and shear throughout the year over the globe. We aim for a general analysis to identify the main drivers of LMR. 452 

A more detailed study that distinguishes seasons and different climate zones is necessary to identify more drivers.The 453 

spatial patterns of LMR, obtained in our study, resemble the spatial patterns of the regional recycling ratio (LMR is 454 

smaller than regional recycling) obtained by  Van der Ent & Savenije (2011), who estimated average regional recycling 455 

ratios within a 1.5° grid cells globally between 1999 and 2008, using a Eulerian moisture tracking model. Due to 456 

different model set-up and grid cell sizes, differences in the magnitude of recycling are expected; hence, here we only 457 

look at the qualitative patterns.  458 

LMR could be applied in the field of water management. The spatial pattern of LMR shows some overlap with global 459 

agricultural water management (Molden, 2007; Salmon et al., Friedl, Frolking, Wisser, & Douglas, 2015) (Salmon et al., 2015). 460 

Generally, the tropics have a high LMR and mainly rainfed agriculture is mainly rainfed (Salmon et al., 2015; Costa et al., 461 

2019), indicating that these agricultural regions are self-dependent to some extent regardingconcerning rainfall precipitation 462 

to some extent. Also, agriculture in the Mediterranean Basin and South Australia is mainly rainfed. For semi-arid regions that 463 

dependent on rainfed agriculture, changes in precipitation mayight have a significant impact (Keys et al., 2016). LMR in the 464 

Mediterranean basin exceeds LMR in sSouthern Australia, indicating that a larger fraction of evaporated moisture returns 465 

locally. Thus, when evaporation is maintained in the Mediterranean Basin, part of the precipitation will sustain here, which 466 

holds to a lesser extent for sSouthern Australia. Besides LMR (i.e., local evaporation recycling), local precipitation recycling 467 

can help to fully understand the precipitation dependencee on local evaporation for each region. Irrigated agriculture is 468 

important in India and China (Salmon et al., 2015; Döll and Siebert, 2002), which are regions with a relatively low LMR, 469 

indicating that only a small amount of the evaporated moisture returns as rainfall precipitation locally. For irrigated agriculture 470 

in regions that are characterized by a high LMR, a relatively large amount of the evaporated water returns to its source, which 471 

reduces the amount of water that is necessary for irrigation. Terrestrial evaporation is an important source for precipitation and 472 

freshwater availability (Keune and Miralles, 2019). Therefore, spatial planning using LMR might improve agricultural water 473 

management.  474 

 475 

 476 

 477 
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Global climate change likely affects atmospheric moisture connections due to changes in atmospheric dynamics. For example, 478 

due to global warming, tropical atmospheric circulation may weaken (Vecchi et al., 2006), and the Hadley cells may move 479 

poleward (Shaw, 2019), which will affect the updraft and downdraft of air around the globe, which we found to be an important 480 

driver ofprocesses underlying LMR. Furthermore, climate change has different opposing impacts on storm tracks which have 481 

an important role in moisture transport by transporting latent heat poleward (Shaw et al., 2016). Furthermore, in a warmer 482 

climate continental recycling is predicted to decrease and precipitation over land would be more dependent on evaporation 483 

over the ocean (Findell et al., 2019). However, our study does not account for any impacts of climate change. As our results 484 

indicate that wetness and convection enhance LMR, LMR maywill likely change due to, for example, drying and wetting of 485 

regions, changes in Hadley cell circulation, and circulation in the tropics.  486 

 487 

Furthermore, climate change enhances the risk of droughts (Rasmijn et al., 2018; Teuling, 2018) and LMR might be used to 488 

study drought resilience globally. Drought can result in arid-like conditions, which may lead to a decrease in LMR (Fig. 3). 489 

High LMR means that the local water cycle is relatively strong; therefore, a drought in a remote location is expected to have a 490 

small impact locally. HoweverAs for a high LMR, a local drought might drastically impact the local water cycle.  491 

 492 

We expect that LMR can be helpful also in other ways. Specifically, we expect the concept of LMR can be used to study how 493 

changes in evaporation, due to for example afforestation, affect the local water cycle beyond merely a loss of moistureWe 494 

expect that the novel concept of LMR can be helpful in various ways, but specifically it can be used to study how changes in 495 

evaporation because of for example afforestation, affect the local water cycle beyond merely a loss of moisture. However, 496 

besides evaporation, land-use changes also influence the energy balance and other factors that might alter the atmospheric 497 

moisture connections and thus, LMR. Using future land use scenarios as input for moisture tracking models, it will be possible 498 

to study the impact of land-use changes on atmospheric moisture connections. However, future scenarios often include other 499 

changes besides land use, which makes it possible to study the changes of land use specifically. However,Thus, LMR can help 500 

us better predict the impact of land cover changes on the local water cycle. It might help us identify regions where reforestation 501 

woulddoes not cause local drying due to enhanced evaporation (Hoek van Dijke et al., 2022; Tuinenburg et al., Bosmans, & 502 

Staal, 2022). (Dijke et al., 2022; Tuinenburg et al., 2022). Overall, LMR gives us better insight into the atmospheric part of 503 

the local water cycle and can be used to contemplate  terrestrial evaporation as a source for local freshwater availability. 504 

5 Conclusions 505 

We calculated the local moisture recycling ratio (LMR) from atmospheric moisture connections at a spatial scale of 0.5°. LMR 506 

is the fraction of evaporated moisture that rains outprecipitates within a distance of 0.5° (typically 50 km) from its 507 

sourceapproximately 50 km of its source location. On average, 1.76% (st.dev. = 1.1%) of global terrestrial evaporation returns 508 

as rainfall precipitation locally, with peaks of approximately 6%. LMR peaks in summer and in wet and elevated regions. We 509 
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identify find that orography, precipitation, wetness, convective available potential energy, and wind affect LMR. In addition, 510 

latitude correlates with LMR, which likely indicates the importance of the ascending air and descending air related to the 511 

Hadley cell circulation. Furthermore, by comparing LMR calculated using different models we found that the spatial pattern 512 

of LMR is not model-dependent, yet, the magnitude of LMR is strongly dependent on the model.  latitude, and convective 513 

available potential energy as main drivers of LMR. LMR determines defines the local impacts of enhanced evaporation on 514 

precipitation and thus its role as a source for local freshwater availability. Therefore, LMR can be used to evaluate which 515 

locations may be suitable for regreening without largely disrupting the local water cycle. Overall, LMR can be  516 

Appendix A 517 

 518 

Figure A1. Three definitions of the local moisture recycling ratio (LMR) from left to right: r1 describes the fraction of evaporated 519 
moisture that returns as precipitation in its source grid cell, r9 describes the fraction of evaporated moisture that returns as 520 
precipitation in its source grid cell and 8 neighbouring grid cells, and r25 describes the fraction of evaporated moisture that returns 521 
as precipitation in its source grid cell and 24 neighbouring grid cells. LMR is calculated on a spatial scale of 0.5° and the first three 522 
plots do not have a similar resolution. The plot on the right shows LMR on a spatial scale of 0.5° which is the resolution at which we 523 
calculate all definitions (r1, r9 and r25). 524 
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 525 

Figure A2. 10-year climatology (2008–2017) of the three definitions of the local moisture recycling ratio (LMR). The top panel 526 
indicates the fraction of evaporated moisture that precipitates within its source grid cell (r1), the middle panel shows the fraction of 527 
evaporated moisture that precipitates within its source grid cell and its 8 neighbouring grid cells (r9), and the lower panel shows the 528 
fraction of evaporated moisture that precipitates within its source grid cell and its 24 neighbouring grid cells (r25).  529 

Table A1: Defined classes for spearman rank correlation analysis.  530 

Class Latitude rangess 

1 -15°:15° 

2 -30°:-15° and 15°:30° 

3 -45°:-30° and 30°:45° 

4 -60°:-45° and 45°:60° 

5 60°:75° 

6 75°:90° 
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Figure A3. Global 10-year climatology (2008–2017) of (from top to bottom and left to right) precipitation, evaporation, precipitation 532 
– evaporation, convective precipitation, large-scale precipitation, fraction of convective precipitation, vertical integral of moisture 533 
flux in eastward direction, vertical integral of moisture flux in northward direction, CAPE, orography, vertical shear (between 650 534 
and 750 hPa) of zonal wind, and vertical shear (between 650 and 750 hPa) of meridional wind.   535 

 536 

 537 

Figure A24. Major global biomes Ecoregions 2017 (https://ecoregions.appspot.com/).  538 

  539 

https://ecoregions.appspot.com/
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 540 
Figure A5. The 10-year climatology (2008-2017) of the recycling within one grid cell calculated with the dataset by (Link et al., 541 
(2020), i.e., the output from the Eulerian moisture tracking model WAM2-layers (top) and the difference with the The 10-year 542 
climatology (2008-2017) of the recycling within one grid cell calculated with the dataset by (Tuinenburg et al., (2020). 543 
 544 

 545 

Figure A6. The zonal mean of the absolute difference (left) and relative difference (right) between rUTrack and rWAM2-layers (calculated 546 

as rUTrack minus rWAM2-layers, indicated by the blue line) and its standard deviation (blue area).  547 

 548 



25 

 

Figure A4. Global multi-year (2008–2017) averaged maps of (from top to bottom and left to right) precipitation, evaporation, 549 
precipitation – evaporation, convective precipitation, large-scale precipitation, fraction of convective precipitation, vertical integral 550 
of moisture flux in eastward direction, vertical integral of moisture flux in northward direction, CAPE, orography, vertical shear 551 
(between 650 and 750 hPa) of zonal wind, and vertical shear (between 650 and 750 hPa) of meridional wind.   552 

 553 
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 554 

Figure A76. Scatter plots of the 10-year climatology  multi-year (2008–2017) of the averaged terrestrial local moisture recycling ratio 555 
and (from top to bottom and left to right) precipitation – evaporation, convective precipitation, large-scale precipitation, fraction of 556 
convective precipitation, vertical integral of moisture flux in eastward direction, vertical integral of moisture flux in northward 557 
direction, orography, vertical shear (between 650 and 750 hPa) of zonal wind, and vertical shear (between 650 and 750 hPa) of 558 
meridional wind, boundary layer height, total cloud cover, and wind speed. Each scatter represents one grid cell. 559 

Table A2. Spearman rank correlation coefficients for additional variables at different latitude classes. ‘*’ indicates a significant 560 
correlation (p<0.05) and moderate and strong relations (ρ>0.4) are emboldened. The classes including latitudes between 0° and 60° 561 
include grid cells of the Northern Hemisphere and Southern Hemisphere. The classes including latitudes exceeding 60° include grid 562 
cells of the Northern Hemisphere only.  563 

 Spearman rank correlation coefficient 

Variables 0°-15° 15°-30° 30°-45° 45°-60° 60°-75° 75°-90° 

Total cloud cover and wind speed -0.58 -0.41 -0.23 0.08 0.16 -0.51 

Large-scale precipitation and wind speed -0.30 -0.46 -0.37 0.06 0.11 -0.28 

Convective precipitation and wind speed -0.63 -0.50 -0.33 -0.13 -0.41 -0.61 

Total cloud cover and precipitation 0.85 0.92 0.76 0.58 -0.08 0.46 

Total cloud cover and convective 

precipitation 0.85 0.90 0.63 0.23 -0.09 0.67 

Total cloud cover and large-scale 

precipitation 0.71 0.90 0.81 0.70 -0.02 0.43 

LMR and wind speed at 650 hpa 0.26 -0.18 -0.37 -0.16 -0.15 -0.27 

LMR and wind speed at 750 hpa -0.09 0.023 -0.39 -0.19 -0.09 -0.31 

 564 

 565 

Figure A78. Time series of the local moisture recycling ratio for global biomes on the Northern (left) and Southern (right) 566 
Hemispheres. The plots show the 10-year climatologyThe values are multi-year (2008–2017) averages.  567 
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 568 

Figure A9: The local moisture recycling ratio scaled to a grid cell size of 50 km x 50 km. The plot shows the 10-year climatology 569 

(2008-2017). We divided the original local moisture recycling ratio by the area of the grid cell and multiplied it with 2500 km2 570 

 571 

Figure A10: Evaporation recycling length scale as defined by Van der Ent and Savenije (2011) for each grid cell of 0.5°x0.5°. The 572 

plot shows the average of 2008-2017. 573 
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 574 

Figure A11. Inter-annual variation of recycling within a single grid cell of 1.5° between 2001-2018. Each plot shows the 575 

difference between annual averaged recycling and the climatological mean of recycling. Data obtained from (Link et 576 

al., (2020). 577 
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