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Abstract. The amount of wind farms and wind power production in Europe, both on- and off-shore, has increased rapidly in

the past years. To ensure grid stability, on-time (re)scheduling of maintenance tasks and
:
to
:

mitigate fees in energy trading,

accurate predictions of wind speed and wind power are needed. It has become particularly important to improve wind speed

predictions in the short range of one to six hours as wind speed variability in this range has been found to pose the largest5

operational challenges. Furthermore, accurate predictions of extreme wind events are of high importance to wind farm operators

as timely knowledge of these can both prevent damages and offer economic preparedness. In this work we propose
::::
This

::::
work

:::::::
explores

:::
the

:::::::::
possibility

:::
of

:::::::
adapting

:
a deep convolutional recurrent neural network (RNN) based regression model , for

the spatio-temporal prediction of extreme wind speed events over Europe in the short-to-medium range (12 hour lead-time

in one hour intervals) . This is achieved by training
::::::
through

::::
the

:::::::::::
manipulation

:::
of

:::
the

::::
loss

::::::::
function.

::
To

::::
this

::::
end,

:
a multi-10

layered convolutional long short-term memory (ConvLSTM) network with so-called
:
is
:::::::
adapted

::::
with

::
a

::::::
variety

::
of

:
imbalanced

regression loss . To this end we investigate three different loss functions : the inversely weightedmean absolute error (W-MAE)

loss, the inversely weighted mean squared error (W-MSE) loss and the
:::::::
functions

::::
that

::::
have

:::::
been

::::::::
proposed

::
in

:::
the

:::::::::
literature:

:::::::
Inversely

:::::::::
weighted,

::::::
linearly

::::::::
weighted

::::
and squared error-relevance area (SERA) loss. We investigate forecast performance for

various high-threshold
::::::
Forecast

:::::::::::
performance

::
is

::::::::::
investigated

:::
for

::::::
various

::::::::
intensity

::::::::
thresholds

:::
of extreme events and for various15

numbers of network layers, and compare the imbalanced regression loss functions to the
:
a
::::::::::
comparison

::
is

:::::
made

::::
with

::::
the

commonly used mean squared error (MSE) and mean absolute error (MAE) loss. The results indicate superior performance

of an ensemble of networks trained with either W-MAE, W-MSE or SERA loss, showing substantial improvements on high

intensity extreme events. We conclude
:::
the

::::::
inverse

::::::::
weighting

:::::::
method

::
to

::::
most

:::::::::
effectively

::::
shift

:::
the

:::::::
forecast

::::::::::
distribution

:::::::
towards

::
the

:::::::
extreme

::::
tail,

:::::::
thereby

::::::::
increasing

:::
the

:::::::
number

::
of

:::::::::
forecasted

::::::
events

::
in

:::
the

:::::::
extreme

::::::
ranges,

:::::::::::
considerably

:::::::
boosting

:::
the

:::
hit

::::
rate20

:::
and

::::::::
reducing

:::
the

:::
root

:::::
mean

:::::::
squared

:::::
error

:::::::
(RMSE)

::
in

:::::
those

::::::
ranges.

::::
The

::::::
results

::::
also

:::::
show,

::::::::
however,

:::
that

:::::
such

::::::::::::
improvements

::
are

:::::::::
invariably

:::::::::::
accompanied

:::
by

::
a

::::::
pay-off

::::::::
primarily

::
in
::::::

terms
::
of

::::::::
increased

::::::::::
overcasting

::::
and

::::
false

:::::
alarm

::::::
ratios,

:::::
which

::::::::
increase
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::::
both

::::
with

::::::::
lead-time

:::
and

:::::::
intensity

:::::::::
threshold.

:::
The

:::::::
inverse

::::::::
weighting

:::::::
method

:
is
::::::
judged

::
to
:::::
most

:::::::::
effectively

::::::
balance

::::
this

::::::::
trade-off,

::::
with

:::
the

:::::::
weighted

::::::
MAE

:::
loss

:::::::
scoring

::::::
slightly

:::::
better

::::
than

:::
the

::::::::
weighted

:::::
MSE

::::
loss.

::
It
::
is

:::::::::
concluded that the ConvLSTM trained

with imbalanced regression
::::::
network

::::::
trained

::::
with

::::::::
inversely

::::::::
weighted

:
loss provides an effective way to adapt deep learning to25

the task of imbalanced spatio-temporal regression and its application to the forecasting of extreme wind
:::::
speed events in the

short-to-medium range. This work was performed as a part of the MEDEA project, which is funded by the Austrian Climate

Research Program to further research on renewable energy and meteorologically induced extreme events.

1 Introduction

Global warming demands ever more urgently that electricity generation is shifted away from fossil fuels and towards renewable30

energy sources. Although global demands for fossil fuels are not yet showing signs of decreasing, renewables are on the rise.

In 2021, more than half of the growth in global electricity supply was provided by renewables, while the share of renewables

in global electricity generation reached close to 30 %, having steadily risen over the past decades (IEA, 2021). Possessing

the largest market share among the renewables, wind energy has managed to establish itself as a mature, reliable and efficient

technology for electricity production and is expected to maintain rapid growth in the coming years (Fyrippis et al., 2010; Huang35

et al., 2015). Thanks to continued advancements in on- and offshore wind energy technology and the associated continued

reduction in costs, wind power capacity could grow from having met 1.8 % of global electricity demand in 2009 to meeting

roughly 20 % of demand in 2030 (Darwish and Al-Dabbagh, 2020). Indeed, many countries have already demonstrated that

hybrid electric systems with large contributions of wind energy can operate reliably. For example, in as early as 2010, Denmark,

Portugal, Spain and Ireland managed to supply between 10 and 20 % of annual electricity demand with wind energy (Wiser40

et al., 2011) and the numbers have only risen since.

One of the main challenges to the deployment of wind energy, however, is its inherent variability and lower level of pre-

dictability than are common for other types of power plants (Lei et al., 2009; Chen and Yu, 2014; Li et al., 2018). Hybrid

electric systems that incorporate a substantial amount of wind power therefore require some degree of flexibility from other

generators in the system in order to maintain the right supply/demand balance and thus ensure grid stability (Wiser et al., 2011).45

Failing to manage this variability leads to scheduling errors which impact grid reliability and market-based ancillary service

costs (Kavasseri and Seetharaman, 2009), while potentially causing energy transportation issues in the distribution network

(Salcedo-Sanz et al., 2009) and increased risks of power cuts (Li et al., 2018). This is where wind speed forecasting can play

a significant role. Incorporating high-quality wind speed forecasts, and, in return, wind power forecasts, into electric system

operations gives the system more time to prepare for large fluctuations and can thereby help mitigate the aforementioned issues50

(Wiser et al., 2011). The variability in the short-range, particularly over the time scale of one to six hours is found to pose the

most significant operational challenges (Wiser et al., 2011; Li et al., 2018). The development of accurate wind speed forecasts

in the short-range has therefore
::::
thus become increasingly important.

Short-term wind speed prediction is not just a key element in the successful management of hybrid electric power systems,

it is also vital in the planning for necessary shut-downs in the face of extreme weather (Chen and Yu, 2014). Most existing55
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turbines stop producing energy when either instantaneous gust speeds or averaged wind speeds exceed a threshold of around 25

m s−1, after which the rotation of the blades is brought to a halt and the turbine is essentially turned off (Burton et al., 2001).

Using simulations of off-shore wind power in Denmark, Cutululis et al. (2012) found that loss of wind power production

during critical weather conditions can reach up to 70 % of installed capacity within an hour. Accurate forecasts of extreme

wind events can therefore provide vital foresight to help prepare the electrical grid for such shutdowns as well as the duration60

of their downtime (Petrović and Bottasso, 2014). The prediction of extreme wind speeds poses a considerable challenge to

computer science research, however, where heavy-tailed distributions such as those of wind speed (modelled according to a

type III extreme value ’Weibull’ distribution) pose a serious problem to the statistical prediction of extreme values at the upper

and lower tails of the distribution. In the case of regression this problem is referred to as imbalanced regression, which we

attempt to tackle in this paper for extreme wind speed prediction in the spatio-temporal setting using an adapted convolutional65

recurrent neural network (ConvRNN) model and imbalanced regression loss.

Due to the growing utilisation of wind power as a renewable energy resource, a large amount of research has focused on

the development of new and improved methods for reliable forecasting of wind speed and wind power. These methods can be

broadly divided into either physical model based methods or statistical modelling methods (Costa et al., 2008; Lei et al., 2009; Jung and Broadwater, 2014)

. Physical model based methods, such as numerical weather prediction (NWP) models, are highly capable of modelling the state70

of the atmosphere and have been used extensively for wind speed forecasting (see e.g. Alessandrini et al., 2013; Deppe et al., 2013; Kikuchi et al., 2017; Cheng et al., 2017)

. However, due to high computational demands they tend to have a long temporal lag (depending on their domain coverage,

spatial resolution and temporal forecast frequency) which means that for the nowcasting and short-time prediction range NWP

forecasts are typically not available on time. The physical model based methods, furthermore, suffer drawbacks due to the often

laborious acquisition of the site-specific physical data (Jung and Broadwater, 2014) and the fact that the predictive capability75

of NWP models degrades significantly for highly stochastic variables like wind (Chen and Yu, 2014). In practice, physical

approaches are often combined with statistical post-processing methods into so-called hybrid physical–statistical methods in

order to utilise the advantages of both methods while mitigating the restrictions of NWP models (Chen and Yu, 2014). For

examples of physical–statistical hybrids, see e.g. Scheuerer and Hamill (2015), Dabernig et al. (2017) or Cheng et al. (2017)

and references therein.80

Alternatively, statistical modelling (i.e. data-driven) methods have proved to be another viable solution for the problem of

weather prediction. Among these,
:::::
While

:
there has been a particularly strong trend in the past years towards deep artificial

neural networks, also termed deep learning (DL). In fact, the artificial neural network (ANN) is one of the most widely

used statistical models for wind speed and power forecasts (Jung and Broadwater, 2014), and renewable energy forecasting

in general (Leva et al., 2017). The power of the ANN lies in its ability to model highly complex and non-linear relationships85

between input and output while requiring no prior assumption on the mathematical relationship between them (Jung and Broadwater, 2014)

. Deep (i.e. multi-layered) ANNs are capable of automatically and effectively learning hierarchical feature representations

from raw input data, where different layers in the network essentially learn to detect different features in the data . This is

different from other physical and statistical approaches, where features are first hand-crafted from the data and then given

to the model (Wang et al., 2020). The above qualities have made deep learning models particularly attractive to the area of90
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spatio-temporal sequence forecasting (STSF), where complex spatial and temporal correlations are typically present in the data

(Wang et al., 2020). With the utilisation of multi-layered structures of both convolutional neural networks (CNN) and recurrent

neural network (RNN) such correlations can be learned very effectively directly from the data (Wang et al., 2020). For excellent

review papers on deep learning applications to STSF we refer the reader to Shi and Yeung (2018), Amato et al. (2020) or

Wang et al. (2020).95

Deep learning can be applied to STSF in myriad ways. Srivastava et al. (2015) proposed the usage of a multi-layered, fully

connected long short-term memory (FC-LSTM) network for video frame prediction by flattening the input images directly

into arrays to be used by the network. Oh et al. (2015) instead used 2D CNNs to encode the input frames before feeding them

into the LSTM network. Shi et al. (2015) improved upon these methods with the proposed convolutional LSTM (ConvLSTM)

network, embedding 2D CNNs into the LSTM network structure, which the authors applied to precipitation nowcasting. A100

similar extension was made to the gated recurrent unit (GRU) network by Shi et al. (2017), the ConvGRU, which was also

applied to precipitation nowcasting, where it demonstrated a superior ability to capture rotating precipitation fields. Instead of

using a 2D CNN to capture spatial correlations only, 3D CNN models may also be used instead to perform convolution over

both spatial and temporal domains using spatio-temporal filters. Vondrick et al. (2016) applied this approach to video frame

prediction and Shi et al. (2017) demonstrated its superior performance over a 2D CNN model for precipitation nowcasting.105

Arguably, the combinations of 2D CNNs with RNN networks into ConvRNNs (such as the ConvLSTM) have been met

with the most success, and have been used extensively in the literature as building blocks for DL models for STSF tasks

(Shi and Yeung, 2018). Improvements to the ConvRNN network structure have been
:::::
within

:::
the

::::
area

::
of

:::::::
weather

::::::::::
forecasting

:::::::
research

::::::
towards

:::::::::::
data-driven,

::::
deep

:::::::
artificial

::::::
neural

::::::::
networks

:::::::::::::::::::::::
(Jung and Broadwater, 2014)

:
,
::::
such

::::::::::
forecasting

::::::
models

:::
are

:::::
faced

::::
with

:
a
:::::::::::
considerable

::::::::
challenge

:::::
when

::::::
tasked

::::
with

:::
the

:::::::::
prediction

::
of
::::::::

extreme
::::::
events.

::::::::
Typically

::::::::
referring

::
to

:::
the

:::::
upper

:::
or

:::::
lower110

:::
tails

:::
of

:::
the

::::
data

:::::::::::
distribution,

:::::::
extreme

::::::
values

:::
are

:::::::::
inherently

:::::::::::::::
underrepresented

::::::
during

::::::::::
data-driven

:::::
model

::::::::
learning

::::
and

::::
thus

:::::::
typically

:::::
suffer

::::
from

:::::
poor

:::::::::::
predictability

:::
and

:::
low

::::
bias

::
in

::::::::::
comparison

::
to

:::
the

::::
bulk

::
of

:::
the

::::::::::
distribution.

:::::::::
Improving

:::
the

:::::::::::
predictability

::
of

:::::::
extreme

::::::
values

::
of

::::::::::
data-driven

:::::::
models

::::::::
comprises

:::
an

::::::
active

::::
area

::
of

::::::::
research

:::
and

:::::::
various

::::::::::
approaches

::::
have

:::::
been put for-

ward, however. Shi et al. (2017) introduced the trajectory GRU (TrajGRU) as an improvement to the ConvGRU, where the

recurrent connection structure is actively learned, while Wang et al. (2017) proposed the Predictive RNN (PredRNN) as an115

improvement to the ConvLSTM network by maintaining a global memory state rather than constraining memory states to

each ConvLSTM module individually. PredRNN++ was later proposed by Wang et al. (2018), where more nonlinearities were

added to the updating process of the global memory state and the authors demonstrate the model to be superior to TrajGRU and

ConvLSTM for video frame prediction. A different approach was taken by Rao et al. (2020), where two novel spatio-temporal

DL methods are proposed based on functional neural networks (FNN) as possible improvements to the ConvRNN approaches.120

Generative adversarial networks (GANs) can offer yet another alternative to STSF, a thorough review of which is provided

by Gao et al. (2020).
:::::::::
depending

::
on

::::
the

:::::
nature

:::
of

:::
the

::::
task.

:::::
Class

::::::::::
imbalances

::::::
within

:::::::::::
classification

:::::
tasks,

:::
for

::::::::
example,

:::
can

:::
be

::::::::
mitigated

::::
with

:
a
::::
wide

:::::
range

:::
of

:::::::::
resampling

:::::::::
strategies,

:::::
either

:::::::::
resampling

:::
the

::::::
classes

:::::::::
themselves

:::::::::::::::::::::
(e.g. Batista et al., 2004)

::
or

:::
the

:::::::::
underlying

:::::::::
probability

::::::
density

:::::::
function

:::::::::::::::::::::::::::::::::::::::::::::::
(Mohamad and Sapsis, 2018; Hassanaly et al., 2021, e.g.).

::::
The

::::
task

::::
may,

:::::::::::
furthermore,
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::
be

::::::
treated

::
as

::::::::
one-class

::::::::::
classification

:::::::::::::::::::::::::::::::::::
(e.g. Deng et al., 2018; Goyal et al., 2020)

::
or

:::::
outlier

::::::::
exposure

:::::::::::::::::::::::
(e.g. Hendrycks et al., 2019)125

:
.

More recently, Rasp et al. (2020) created a benchmark data set for data-driven spatio-temporal forecasts which has been

used extensively since its publication. Rasp and Thuerey (2021) used a ResNet to predict three parameters (geopotential,

temperature and precipitation) with a coarse spatial resolution of 5.625◦ for up to five days ahead whereas Weyn et al. (2020)

used a convolution neural network on a cubed sphere. A different approach was followed by Pathak et al. (2022) who used130

a Fourier-based neural network for forecasting surface wind speed and total precipitation on a global scale, with a spatial

resolution of 0.25◦ and for lead times of up to ten days. Lastly, Keisler (2022) implemented a graph neural network based

approach for prediction of 500 hPa geopotential and 850 hPa temperature, transforming the gridded information on an iconohexadral

grid and back to a latitude-longitude grid as output and were able to achieve good results for the first days.

Deep learning has been used also in the context of extreme weather forecasting. Liu et al. (2016) developed a multi-channel135

CNN model to classify images of extreme weather events such as tropical cyclones, atmospheric rivers and weather fronts.

Racah et al. (2017) followed a similar approach but utilised a multi-channel 3D CNN architecture to classify extreme weather

events spatially as well as temporally. Feng and Fox (2021) proposed the TSEQPredictor model for earthquake prediction

over Southern California, which combines a CNN autoencoder with a temporal convolutional network (TCN) to classify

the occurrences extreme earthquake events. The authors were able to improve their model by employing skip connections140

and local temporal attention into the network. Yu et al. (2017), on the other hand, proposed modelling spatial extreme events

by bridging a gap between traditional statistical methods and graph methods via decision trees, while Thomas et al. (2021)

employed an unsupervised k-means clustering approach to investigate weather patterns responsible for extreme wind speed

events throughout Mexico.

The definition of the term ’extreme event’ can vary substantially
:::::
While

:::::::::
resampling

::::::::
strategies

:::::
have

:::
also

:::::
been

::::::::
proposed

:::
for145

:::::::::
imbalanced

:::::::::
regression

:::::
tasks

::::
(see

:::
e.g.

::::::::::::::::::
Oliveira et al. (2021)

::
for

:::
an

:::::::::
application

:
in the spatio-temporal context, however. In the

literature, extreme events often refer to hazardous weather patterns, present over some spatial or spatio-temporal domain.

While these events are certainly extreme within the underlying climatology of the study, they are not usually extreme with

respect to the data distribution used for the study. For example, many classification studies of extreme weather patterns ensure

that the model is supplied with an equal number of negative and positive samples, so as to avoid any model biases due to150

class imbalances. Even when class imbalances are tolerated, there are other remedies available such as resampling strategies

(see: e.g. Oliveira et al., 2021, for a spatio-temporal approach), one-class classification approaches (e.g. Deng et al., 2018; Goyal et al., 2020)

or deep anomaly detection (e.g. Hendrycks et al., 2019). Extreme events in regression problems, on the other hand, typically

refer to the tail of the data distribution i.e. highly underrepresented values in the data that are therefore rarely encountered

during model training. Regression problems on imbalanced data distributions are termed imbalanced regression problems.155

Ding et al. (2019) provide a formal analysis on why DL regression models suffer from overfitting and underfitting problems

when data is imbalanced and
:::::::
setting),

:::
the

:::::::
machine

:::::::
learning

::::::::
literature

::
on

::::::::::
imbalanced

:::::::::
regression

:::::
tends

::
to

::::
treat

:::
the

:::::::
problem

:::
as

:::::
either

:::::::
anomaly

::::::::
detection

::::
(see

:::
e.g.

::::::::::::::::::
Schmidl et al. (2022)

:::
for

:
a
:::::::
review)

::
or

:::
by

::::::::
changing

:::
the

:::
loss

::::::::
function

::::::
utilised

::::::
during

::::::
model

:::::::
learning.

::
In

:::
the

:::::
latter

::::::
context

:::::::::::::::
Ding et al. (2019) propose a novel loss function

:::::
based

::
on

:::::::
extreme

:::::
value

::::::
theory, called the extreme

5



value loss (EVL), based on extreme value theory, which is demonstrated to improve predictions on extreme events in time-160

series forecasting. The authors furthermore propose a memory network based neural network architecture to memorise past

extreme events for better prediction in the future. Ribeiro and Moniz (2020) addressed the problem of imbalanced regression

by proposing the squared error-relevance area (SERA) loss function, based on the idea
:::::
notion of ’relevance functions’. Yang

et al. (2021), on the other hand, proposed the idea of distribution smoothing to address underrepresented or even missing labels

in the label distribution and reduce unexpected similarities within the feature distribution that arise due to the label imbalance.165

The smoothed label distribution can then be used easily for re-weighting methods, where the loss function can be weighted by

multiplying it with the inverse of the smoothed label distribution for each target. Such re-weighting of the loss function is a

cost-sensitive remedy to data imbalance and has been used in the context of spatio-temporal weather forecasting , for example

by Shi et al. (2017) for precipitation nowcasting.
::
by

::::::::::::::
Shi et al. (2017).

:

In this paper , we propose
:::::::::::
Furthermore,

:
a
:::
lot

::
of

:::::
work

:::
has

:::::
been

::::
done

::
in
::::::

recent
:::::
years

:::
on

::::::::::
probabilistic

:::::::
weather

::::::::::
forecasting170

:::
and

:::::
many

::::::::::::
postprocessing

::::::::
methods

::::
have

::::
been

::::::::
proposed

::
to

:::::::
improve

:::::::::::
probabilistic

::::::::
forecasts.

:::::::::::::
Postprocessing

::
is

:::::::
typically

:::::::
applied

::
to

::::::::
ensemble

::::::::
weather-

::
or

::::
e.g.

::::::
energy

::::::::
forecasts

:::
and

::::::::
attempts

::
to

::::::
correct

::::::
biases

::::::::
exhibited

:::
by

:::
the

::::::
system

::::
and

:::::::
improve

:::::::
overall

::::::::::
performance

::::
(see

:::
e.g.

::::::::::::::::
Phipps et al. (2022)

:
)
:::
but

:::
has

:::::
been

:::::::
explored

::
to

:
a
::::::

lesser
:::::
degree

::
in
:::
the

:::::::
context

::
of

:::::::
extreme

:::::
event

:::::::::
prediction.

:::
One

::::::::
approach

::
to

::::::::::
postprocess

::::::::
ensemble

:::::::
forecasts

:::
for

:::::::
extreme

::::::
events

:
is
::
to
::::::
utilise

::::::::::::
extreme-value

::::::
theory,

:
a
::::::
review

::
of

:::::
which

:::
can

:::
be

:::::
found

::
in

::::::::::::::::::::
Friederichs et al. (2018).

::::
The

:::::::
authors

:::::::
propose

:::::::::
separately

::::::::::::
postprocessing

::::::
toward

::::
the

:::
tail

::::::::::
distribution

:::
and

:::::::::
formulate175

:
a
:::::::::::::
postprocessing

::::::::
approach

:::
for

:::
the

::::::
spatial

:::::::::
prediction

:::
of

:::::
wind

:::::
gusts.

::::::
Other

::::::
authors

:::::
have

::::::::
explored

:::
the

::::::::
potential

::
of

::::
ML

:::
in

:::
this

:::::::
context.

::::::::::::
Ji et al. (2022)

:
,
:::
for

::::::::
example,

:::::::::
investigate

::::
two

:::::::::
DL-based

:::::::::::::
postprocessing

:::::::::
approaches

:::
for

:::::::::
ensemble

:::::::::::
precipitation

:::::::
forecasts

::::
and

::::::::
compare

::::
these

:::::::
against

:::
the

::::::::
censored

::::
and

::::::
shifted

:::::::
gamma

:::::::::::::::
distribution-based

::::::::
ensemble

::::::
model

::::::
output

::::::::
statistics

:::::
(CSG

::::::
EMOS)

::::::::
method.

:::
The

:::::::
authors

:::::
report

:::::::::
significant

::::::::::::
improvements

:::
of

:::
the

::::::::
DL-based

::::::::::
approaches

::::
over

:::
the

:::::
CSG

::::::
EMOS

::::
and

::
the

::::
raw

:::::::::
ensemble,

::::::::::
particularly

:::
for

:::::::
extreme

:::::::::::
precipitation

::::::
events.

::::::::::::::::::::
Ashkboos et al. (2022)

:::::::
introduce

::
a
:::::::::::
10-ensemble

::::::
dataset

:::
of180

::::::
several

::::::::::
atmospheric

::::::::
variables

:::
for

::::::::
ML-based

:::::::::::::
postprocessing

:::::::
purposes

::::
and

:::::::
compare

::
a

::
set

:::
of

::::::::
baselines

::
in

::::
their

::::::
ability

::
to

::::::
correct

::::::::
forecasts,

::::::::
including

:::::::
extreme

::::::
events.

:::::::::::::::::::::
Alessandrini et al. (2019)

:
,
::
on

::::
the

::::
other

:::::
hand,

:::::::::::
demonstrate

::::::::
improved

::::::::::
predictions

:::
on

:::
the

::::
right

:::
tail

::
of

:::
the

:::::::
forecast

::::::::::
distribution

::
of
::::::

analog
:::::::::

ensemble
::::::
(AnEn)

:::::
wind

:::::
speed

::::::::
forecasts

:::::
using

:
a
:::::

novel
:::::::::::::

bias-correction
:::::::
method

:::::
based

::
on

:::::
linear

:::::::::
regression

:::::::
analysis,

:::::
while

::::::::::::::::::
Williams et al. (2014)

::::
show

::::
that

::::::
flexible

:::::::::::::
bias-correction

:::::::
schemes

:::
can

::
be

:::::::::::
incorporated

:::
into

:::::::
standard

:::::::::::::
postprocessing

::::::::
methods,

:::::::
yielding

::::::::::
considerable

::::::::::::
improvements

::
in

::::
skill

:::::
when

:::::::::
forecasting

:::::::
extreme

::::::
events.

:
185

::
As

::::::::::
data-driven

:::::::::
forecasting

::::::
model

:::
this

:::::
paper

::::::::::
investigates

:::
an

::::::::
adaptation

:::
of a deep convolutional LSTM (ConvLSTM) model

for
::::::::
regression

::::::
model,

:::
as

:::::::
proposed

:::
by

::::::::::::::
Shi et al. (2015)

::
for

:::::::::::
precipitation

::::::::::
nowcasting

::
in

:::
the

:::::
range

::
of

::::
0–6

::::::
hours.

:::
The

:::::::::
capability

::
of

::::
deep

::::::
ANNs

:::
to

:::::::::::
automatically

::::
and

:::::::::
effectively

:::::
learn

::::::::::
hierarchical

:::::::
feature

:::::::::::::
representations

::::
from

::::
raw

:::::
input

::::
data

:::::
have

:::::
made

:::
DL

::::::
models

::::::::::
particularly

::::::::
attractive

::
to
::::

the
::::
area

::
of

:::::::::::::
spatio-temporal

::::::::
sequence

::::::::::
forecasting,

::::::
where

:::::::
complex

::::::
spatial

::::
and

::::::::
temporal

:::::::::
correlations

::::
are

:::::::
typically

:::::::
present

::
in

:::
the

::::
data

::::::::::::::::::::::::::::::::::::::::::::::::::
(Shi and Yeung, 2018; Amato et al., 2020; Wang et al., 2020)

:
.
:::
The

:::::::::::
ConvLSTM190

:
is
:::

an
::::::::
example

::
of

::
a

:::::::::
ConvRNN

::::::
model,

::::::
which

:::::
forms

::
a
::::::::
synthesis

:::
of

:
a
::::::::::::

convolutional
::::::
neural

:::::::
network

::::::
(CNN)

::::
and

::
a
::::::::
recurrent

:::::
neural

:::::::
network

:::::::
(RNN).

::::::
CNNs

:::
are

::
a
:::::
class

::
of

:::::::::::
feedforward

:::::::
artificial

::::::
neural

::::::::
networks,

:::::
used

::::::::
primarily

:::
for

::::
data

:::::::
mining

:::::
tasks

::::::::
involving

::::::
spatial

::::
data

:::
and

:::::
have

::::::
gained

::
a
:::
lot

::
of

::::::::
attention

::
in

::::
the

::::
area

::
of

:::::::::
computer

:::::
vision

::::
and

::::::
natural

::::::::
language

::::::::::
processing

::::::::::::::::
(Ghosh et al., 2020),

:::::
while

::::::
RNNs

::
are

::::::
known

:::
for

::::
their

::::::::
powerful

:::::
ability

::
to

:::::::::
effectively

:::::
model

::::::::
temporal

:::::::::::
dependencies

::::::::::::::
(Shi et al., 2015)

6



:
.
::
By

:::::::
utilising

:::
the

::::::::
strengths

::
of

:::
the

:::::
CNN

::
to

::::::
capture

::::::
spatial

::::::::::
correlations

:::
and

:::
the

:::::
RNN

::
to

::::::
capture

::::::::
temporal

:::::::::
correlations

:::
in

::
the

:::::
data,195

::::::::
ConvRNN

:::::::
models

::::
have

::::::::::::
demonstrated

::::
very

:::::::::
promising

::::::::::
forecasting

:::::
ability

:::
in

:::
the

:::::::::::::
spatio-temporal

::::::
setting

::::::::::::::::
(Wang et al., 2020)

:
,

::::::::::::
outperforming

::::
both

:::::::::::
non-recurrent

::::::::::::
convolutional

::::::
models,

:::
as

::::
well

::
as

:::::::::::::::
non-convolutional

::::::
LSTM

::::::
models

:::::::::::::::::::
(Shi et al., 2015, 2017)

:
.

::
As

::
a

:::::::::::
multi-layered

:::::::::
ConvRNN

::::::
model,

:::
the

::::
deep

:::::::::::
ConvLSTM

::::
thus

:::
has

:::
the

:::::::
potential

::
to
:::::::::

effectively
::::::

model
:::
the

:::::::
complex

:::::::::
dynamics

::
of

:::
the

:::::::::::::
spatio-temporal

::::
wind

:::::
speed

::::::::::
forecasting

:::::::
problem.

:

::
In

:::
this

:::::
paper

::
an

:::::::::
adaptation

:::
of

:
a
::::
deep

::::::::::
ConvLSTM

:::::::::
regression

::::::
model

::
is

::::::
applied

::
to

:::
the

::::
task

::
of

:
extreme wind speed prediction,200

adapted with .
::::
The

::::::
model

:
is
:::::::
adapted

::::
with

::::::::
different

::::
types

:::
of imbalanced regression loss to account for the heavy tails . To this

end, we investigate the inversely weighted mean absolute error (W-MAE), the inversely weighted mean squared error (W-MSE)

and the squared error relevance area (SERA) loss functions. The performance of our adapted model is compared against the

:::
and

::::
their

:::::::
efficacy

::
in

:::::::::
improving

::::::::::
predictions

::
on

:::
the

::::
tails

::
of
::::

the
::::
local

:::::
wind

:::::
speed

::::::::::
distributions

::
at
:::::

each
:::::::::
coordinate

::
is

:::::::::
compared.

::
As

:::::
such,

:::
this

:::::
paper

::::::::
attempts

::
to

::::
shed

::::
light

:::
on

::::
how

:::
the

::::
loss

:::::::
function

::
of

:
a
:::::
deep

:::::::
learning

:::::
model

::::
may

:::
be

::::
best

::::::
adapted

:::
to

:::::::
improve205

:::::::::
forecasting

:::::::::::
performance

::
on

::::
the

:::::::::::
distributional

:::::
tails.

::::
Such

::::::::::::
improvement

:::
has

::::::::
practical

::::::::
relevance

::
to
:::::

wind
::::::
energy

:::::::::::
applications

:::::
where

::::::::
obtaining

:::::::
accurate

::::::::::
predictions

::
of

:::::::
extreme

::::::
events

:::
are

:::::
more

:::::::
desirable

::::
than

::::::::
accurate

:::::::::
predictions

:::
of

:::::::::::
non-extremes

::::
e.g.

::
in

:::::::::::
early-warning

:::::::
systems

:::
for

::::
wind

:::::
farm

::::::::
operators.

::
It

::
is

::::::::
important

::
to

:::::
note,

:::::::
however,

::::
that

:::::
while

:::
the

::::
local

:::::::::::
distributional

::::
tails

::
in

::::
this

::::
work

:::
do

:::
not

:::::::::
necessarily

::::::
denote

::::::
severe

:::::
events

::
in

:::
the

:::::::
absolute

::::::
sense,

:::
the

:::::::::::
methodology

::
of

:::
this

:::::
work

:::
can

:::
be

::::::::
translated

:::::::
directly

::
to

::::
cases

::::::
where

:::::::::::
distributional

::::
tails

::::::
denote

:::::
actual

:::::::::
hazardous

::::::
events.

::::
The

:::::::
adapted

::::::
models

::::
are,

::::::::::
furthermore,

:::::::::
compared

::::::
against

::::
two210

:::::::
base-line

:::::::
models,

::::::
trained

::::
with

:
standard mean absolute error (MAE) and mean squared error (MSE) losses, as

:::
loss.

::::::::
Forecast

::::::
quality

::
of

::
all

::::::
models

::
is determined from a spatio-temporal forecast verification using the symmetric extremal dependency index

(SEDI).
::::::::::
combination

::
of

:::::::::
categorical

::::
and

:::::::::
continuous

:::::
scores

::::
over

::
a
::::::
variety

::
of

:::::::
intensity

::::::::::
thresholds.

2 Methodology

2.1 Data Collection and Preprocessing215

The wind speed data used in this work was downloaded from the Copernicus Climate Change Service Climate Data Store

(CDS) of the ECMWF (see Hersbach et al., 2018). The reanalysis dataof the
:::::::
Different

:::::::
vertical

:::::
levels

:::
are

:::::::
available

::
of

:::
the

::::::
ERA5

::::
data.

::
In

::::
this

:::::
study,

:::
the

:::::
focus

::::
lies

::
on

:::
the

:::::
1000

::::
hPa

:::::::
pressure

::::
level

::::
data

::::::
which

::::::::
typically

:::::
varies

:::::::
between

::::
100

:::
and

::::
130

::
m

::::::
above

::::::
ground

::::
level,

::::::::::::
corresponding

::
to

:::
the

:::::
most

:::::::
common

:::
hub

:::::::
heights

::
in

:::
the

::::::
eastern,

:::
flat

::::
part

::
of

::::::
Austria

:::::
(main

:::::
wind

::::::
energy

::::::
region).

::::
Not

:::::
shown

::
in

::::
this

::::
study

:::
are

::::::
results

::
of

:::
the

:::::::
surface

::::
wind

:::::
speed

::::
and

::::
other

:::::::
pressure

::::::
levels.

::::
The U and V components of the horizontal220

wind velocity (in m s−1) were taken at 1000 hPa from the ERA5 hourly data on pressure levels from 1979 to present dataset.

By computing the square root of the sum of the squares of the two wind velocity components the
:
to

::::::::
calculate

:::
the

:
scalar wind

speedwas obtained. The data was collected with a temporal resolution of one hour between 01 January 1979 and 01 January

2021 (42 years) on a spatial grid over central Europe. Of these data, the last two years between 2019-2021 were held out as

testset. The eight years between 2011-2019 were used for training and validation in the first part of the experiment, dedicated to225

model optimisation
::::
using

:::::
4-fold

:::::
cross

::::::::
validation

:::::
(with

:::
six

:::::
years

::::::
training

::::
and

:::
two

:::::
years

::::::::
validation

:::::
data)

::
to

::::::::::
determining

:::::::
optimal

:::::
model

::::::::::
architecture

:::
for

::::
each

::
of

:::
the

::::::::::
investigated

::::
loss

::::::::
functions. In the second part of the experiment the optimal models

:::::
model
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Figure 1. A visualisation of the wind speed data (in m s−1). The right figure shows a color-map of an example data frame, overlaid on a

cartographic map (Central Europe) showing the coastlines of the region. On the left, the wind speed time series of three arbitrary locations

(white squares) within the frame are plotted for the duration of one month, as well as the climatological means at these locations (dotted red

lines).

::::::::::
architectures

:
were then trained and validated on the entire 40 years

::
of

::::
data between 1979-2019, using the years between

2017-2019
::::
eight

:::::
years

:::::::
between

:::::::::
2011-2019

:
as validation.

The spatial grid comprises 64×64 grid points between 40–56◦ N and 3–19◦ E, the spatial resolution being 0.25◦ (≈ 28 km).230

This region was selected for its geographical variation, as it includes both land and sea regions as well as flat and mountainous

areas, while the region is furthermore divided into different climatic regions such as the Pannonian climate region in Eastern

Austria and the Alpine climate region covering the Austrian Alpine range. Interplay between these features can result in highly

complex wind dynamics, which is where we expect the application of deep learning
::
is

:::::::
expected

:
to be particularly promising.

Moreover, we expect the fine spatial resolution of 0.25◦
:
is
::::::::
expected to be critical to capturing the complex fine-scale dynamics235

of a variable like low-level wind, and thus improving forecasting ability, while the .
::::
The

:
resolution also marks an important

step forward for data-driven models to be truly competitive with state-of-the-art numerical weather prediction models, which

are run at ≈ 0.1◦ resolution (Pathak et al., 2022).

A visualisation of the data is provided in Fig. 1. The figure shows on the right an example time slice and on the left wind

speed time series of three arbitrary locations over the duration of one month, including the climatological means at these240

locations. Evidently
:
, the local climatological means (and by extension, the local wind speed distributions) vary substantially

throughout the region, where striking differences in magnitude can be seen
::::::::
observed between the off-shore and on-shore

regions. To highlight these spatial differences, Fig. 2 shows the maximum, mean and standard deviation of the wind speed over

the region, which unveil a sharp division of the statistics with the underlying coastlines of the region. Indeed, extreme winds

8



Figure 2. Color-maps of the maximum (left), mean (center) and standard deviation (right) of the wind speeds (in m s−1) over the region. The

figures display a sharp division of the statistics along the coastlines.

(e.g. larger than 25 m s−1) seem to occur almost exclusively off-shore. If there were, in fact, stronger winds present over this245

region of mainland Europe between 1979 and 2021 then they have not been captured by the hourly ERA5 reanalysis.

Rather
::::
Thus,

::::::
rather than defining extreme winds in terms of their absolute severity, we proceed to define extreme winds ,

instead,
::::::
extreme

::::::
winds

:::
are

::::
here

::::::
defined

:
in terms of their relative rarity at each coordinate. This definition focuses the fore-

casting problem on the tails of the respective distributions at each coordinate, which ensures that the forecasting of extremes

is conducted over the entire region, rather than only locally over some particularly dominant area. By selecting a distributional250

percentile (e.g. the 99th
:::
99th

:
percentile), we then define extreme winds

::::::
extreme

::::::
winds

:::
are

::::
then

::::::
defined

:
as those wind speeds

surpassing this
::
the

:
percentile threshold of the wind speed

:::::
sample

:
distribution at the respective coordinate . To this end, the

raw wind speed data were standardised with a local Z-normalisation at
::
i.e.

:::::
wind

::::::
speeds

:::
that

:::
are,

:::::::
indeed,

:::
rare

::
at
::::
that

:::::::::
coordinate

::::::::
(although

:::
not

:::::::::
necessarily

::::::
severe

::
or

:::::::::
hazardous

::
in
::

a
:::::::
absolute

:::::::
sense).

:::
For

:::
the

:::::::::
remainder

::
of

::::
this

:::::
paper,

:::
the

:::::
term

:::
’pth

:::::::::
percentile

::::::::
threshold’

:::::
refers

::::::
always

::
to

:::
the

:::
pth

::::::::
percentile

::
at
:

each coordinate , which centers each local distribution around zero mean with255

unit standard deviation according to the following transformation:

x′
i,j =

xi,j −µi,j

σi,j

where x′
i,j denotes the transformed variable, xi,j the original variable and µi,j and σi,j the mean and standard deviation,

respectively, at the coordinate i, j. The Z-normalised data thus represent the wind speed
::
of

:::
the

::::::
target

::::::::::
observation

:::::
field.

:::
The

::::::
above

::::::::
approach

::::::
allows

:::
us

::
to

:::::::::
investigate

::::::::::
forecasting

::::::::::::
improvements

:::
of

:::::::
extreme

::::::
events

:::::
more

:::::::::
generally

::
by

:::::::
looking

:::
at260

:::::::::::
improvements

:::
on

:::
the

::::
tails

::
of

:::
the

:::::::::
respective

:::::::::::
distributions

:
(in terms of the number of standard deviations from the respective

mean
::::::::::
percentiles),

::::::::
regardless

::
of

:::
the

:::::::
absolute

::::::
values

::
of

:::
the

::::
tails.

::::
Any

::::::::::::
improvements

::
on

:::
the

::::
tails

:::
that

:::::
result

::::
from

:::
the

::::
loss

:::::::
function

:::::::::::
modifications

::::::::::
investigated

::
in

:::
this

:::::
paper

:::
can

:::
be

::::::
swiftly

::::::::
translated

::
to

:::::
other

::::
cases

::::::
where

::
the

::::
tails

::
of

:::
the

:::::::::::
distributions

:::::
denote

::::::
actual

::::::::
hazardous

::::::
events.

:
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::::::
Finally,

:::
the

::::
data

:::::
were

:::::::::::
preprocessed

:
at each coordinate .

::::
using

:
a
:::::::::::

Yeo-Johnson
::::::

power
:::::::::
transform

:::::::::::::::::::::
(Yeo and Johnson, 2000)265

::
to

::::
make

::::
the

::::
local

:::::
wind

:::::
speed

::::::::::
distributions

:::::
more

::::::::::::
Gaussian-like

:::
and

:::::
were

:::::::::::
subsequently

::::::::::
standardised

::::::
locally

:::::
using

::::::::::
zero-mean,

:::::::::::
unit-variance

::::::::::::
normalisation.

:::
The

:::::::
optimal

:::::::::
parameter

::
for

:::::::::
stabilising

::::::::
variance

:::
and

::::::::::
minimising

::::::::
skewness

::
in

:::
the

:::::
power

:::::::::
transform

:::
was

::::::::
estimated

:::::::
through

:::::::::
maximum

:::::::::
likelihood.

2.2 Model Description

The model implemented and adapted for the task of spatio-temporal forecasting of extreme events
::::
wind

:::::
speed is an adaptation270

of the convolutional long short-term memory (ConvLSTM) network, as proposed by Shi et al. (2015) for precipitation now-

casting. However, while Shi et al. (2015) trained their ConvLSTM model using cross-entropy loss, we propose adapting the

model to
::
the

::::::
model

::::::::
proposed

::::
here

::::::
adjusts

:::
the

::::::::::
ConvLSTM

::
to

:::
the

:
forecasting of extreme events by utilising two types of loss

functions from the literature on imbalanced regression: Weighted loss and the squared error-relevance area (SERA) loss.

The ConvLSTM is an example of a ConvRNN model, which forms a synthesis of a convolutional neural network (CNN)275

and a recurrent neural network (RNN). CNNs are a class of feedforward artificial neural networks, used primarily for data

mining tasks involving spatial data and have gained a lot of attention in the area of computer vision and natural language

processing (Ghosh et al., 2020), while RNNs are known for their powerful ability to effectively model temporal dependencies

(Shi et al., 2015). By utilising the strengths of the CNN to capture spatial correlations and the RNN to capture temporal

correlations in the data, ConvRNN models have demonstrated promising forecasting ability in the spatio-temporal setting. As280

a deep ConvRNN model, the ConvLSTM has the potential to effectively model the complex dynamics of the spatio-temporal

wind speed forecasting problem.
:::
The

:::::
focus

::
in
::::

this
::::::
regard

::
is

:::
set

::
on

:::::::::
providing

:
a
::::::::::
comparison

::
of

:::
the

:::::::::::
ConvLSTM

:::::::
adapted

::::
with

:::::::
different

:::::::
variants

::
of

::::::::
weighted

:::
loss

::::
and

:::::
SERA

::::
loss.

:

We adopt the
::::
The deep ConvLSTM model

::::::::::
architecture

::
is

:::::::
adopted

:
with an encoding–forecasting network structure , as is

:
(common for spatio-temporal sequence forecasting, )

:
where both encoding and forecasting networks consist of several stacked285

ConvLSTM layers. As depicted in Fig. 3, the encoding ConvLSTM network compresses the input into a hidden state tensor

and the forecasting ConvLSTM network unfolds this hidden state into the final prediction. We implement the model
:::
The

::::::
model

:
is
:::::::::::
implemented

:
as a multi-frame forecasting model, with 12 hour input and 12 hour prediction.

::::
This

:::::
means

::::
that

:::
the

:::::
model

:::::
takes

::
in

::::::
tensors

::
of

:::
size

:::::::::::::
(12× 64× 64)

::
as

:::::
input,

:::::::::
consisting

::
of

:::
the

:::::::
previous

:::
12

:::::
hours

::
of

::::
wind

:::::
speed

::::
over

:::
the

::::::::
(64× 64)

::::
grid,

::::::
which

:::
are

:::
then

::::::::
encoded

::
all

:::::::
together

:::::::
through

:::::::
various

::::::
hidden

:::::
states

::
of

:::
the

::::::::
encoding

:::::::
network

::::
and

:::::::
decoded

:::::::
through

:::
the

::::::::
decoding

:::::::
network290

:::
into

::
a
::::::::::

subsequent
:::::::
12-hour

::::::::
prediction

::::::
tensor

::
of

:::
size

:::::::::::::
(12× 64× 64).

:

2.2.1 Inversely Weighted Loss

:::
The

::::::
model

::::
was

:::::::::::
implemented

:::
and

::::::
trained

:::::
using

:::::::
Pytorch

:::::::::::::::::
(Paszke et al., 2019)

:
,
:::
the

::::
code

:::
of

:::::
which

::::
can

::
be

::::::
found

:::::
under:

:
https:

//github.com/dscheepens/Deep-RNN-for-extreme-wind-speed-prediction.
:::

In
:::::::
addition

::
to
::::

the
:::::::
different

::::
loss

:::::::::
functions,

:::::::
different

:::::
model

:::::::::::
architectures

::::
with

::::::::
different

:::::::
numbers

::
of
:::::::::::

ConvLSTM
:::::
layers

:::
are

:::::::::::
investigated,

::::::
ranging

:::::
from

:::
2–5

::::::
layers

:::
(in

::::
both295

::
the

:::::::
encoder

::::
and

:::
the

::::::::::
forecasting

:::::::::
networks).

::::
The

:::::::
numbers

:::
of

:::::::::
parameters

:::
of

::
all

::::::
model

:::::::::::
architectures

:::
are

::::::
shown

::
in

:::::
Table

::
1.
:::

In

:::
line

::::
with

::::::::::::::
Shi et al. (2015)

:
,
::
all

::::::
layers

::::::
utilise

:::::
3× 3

:::::::
kernels.

:::
The

:::::::::::
convolution

::::
over

::::
each

:::::::::
successive

:::::
filter

:::::::
operates

:::::
such

::
as

:::
to

10

https://github.com/dscheepens/Deep-RNN-for-extreme-wind-speed-prediction
https://github.com/dscheepens/Deep-RNN-for-extreme-wind-speed-prediction
https://github.com/dscheepens/Deep-RNN-for-extreme-wind-speed-prediction


Figure 3. The multi-layered encoding–forecasting ConvLSTM network. The hidden states and cell outputs of the encoding network are

copied to the forecasting network, from which the final prediction is made. © Shi et al. (2015). Used with permission.

Table 1.
:::
The

::::::
number

::
of

:::::::::
parameters

:
of
:::

the
:::::::::
ConvLSTM

:::::
model

::::
with

::::::
different

:::::::
numbers

::
of

:::::
layers.

:::::::::
ConvLSTM

:::::
layers

::::::
Number

::
of

::::::::
parameters

:

:
2
: :::::::

2,385,953

:
3
: ::::::::

10,061,025
:

:
4
: ::::::::

34,201,185
:

:
5
: ::::::::

62,060,641
:

::::::::::
successively

:::::
halve

:::
the

::::::
spatial

:::::::::
dimensions

:::
of

:::
the

:::::
input,

:::::
while

:::
the

:::::::
number

::
of

::::::
hidden

:::::
states

::::::::
(features)

:::
are

:::::::::::
successively

:::::::
doubled

:::::::
(starting

::::
from

:::
16

:::::
hidden

:::::::
states).

:::
The

::::::
models

:::
are

::::::
trained

:::::
using

::::::::::
mini-batch

:::::::
gradient

::::::
descent

::::
with

::
a

::::::::
batch-size

::
of

:::
16

:::
and

:::::
used

:::
the

:::::::
adaptive

:::::::
moment

:::::::::
estimation300

::::::
(Adam)

:::
as

::::::::
optimiser.

::::::
Adam

::::::::
optimiser

::
is
::

a
:::::::
popular

:::
and

:::::::
reliable

::::::
choice

:::
for

:::::
deep

:::::::
learning

::::::
neural

::::::::
networks

:::::
which

:::::::::
computes

:::::::
adaptive

:::::::
learning

::::
rates

::
for

:::::
each

::::::::
parameter

::
of

:::
the

::::::
model,

:::::
based

::
on

::::
their

::::::
update

::::::::
frequency

::::::::::::::::::
(see e.g. Ruder, 2017)

:
.
::
As

::
in

:::::::::::::
Shi et al. (2017)

:
,
:::
the

:::::
initial

:::::::
learning

:::
rate

:::
of

:::
the

:::::
Adam

::::::::
optimiser

::
is

:::
set

::
to

:::::
10−4.

::::::
During

::::::::
training,

::::::::::::
early-stopping

::
is

:::::::::
performed

::
on

:::
the

:::::::::
validation

::
set

::
to

::::::
ensure

::::
that

:::
the

:::::
model

::::
with

:::
the

::::::
lowest

::::::::
validation

::::
loss

::
is

:::::
saved

::
as

:::
the

::::
best

::::::
model

:::
and

::::
thus

::
to

:::::
avoid

:::::::::
overfitting

:::
the

::::::
model.

:::
The

::::::::::::
early-stopping

::::::::::
mechanism

::
is

::
set

:::
up

::
to

::::
stop

::::::
training

:::::
when

:::
the

:::::::::
validation

:::
loss

::::
fails

::
to

::::::::
decrease

::
for

:::
20

::::::::::
consecutive

::::::
epochs.

:
305

:::::
These

:::::::::::::
implementation

:::
and

::::::::
parameter

:::::::
choices

::::
were

:::::::
selected

:
a
:::::
priori

:::::
based

::
on

:::
the

:::::
work

::
of

:::::::::::::
Shi et al. (2015)

:::
and

:::::::::::::
Shi et al. (2017)

:
.
:::::
Model

:::::::::::
performance

::::
may

::::::::
certainly

::
be

:::::::::
improved

::
by

::::::::::
performing

:
a
::::::::

thorough
::::::::::::::
hyper-parameter

:::::::::::
optimisation

:::
but

:::
that

::
is
::::

not
:::
the

::::
focus

:::
of

:::
this

::::::
paper.

::::
The

:::::
focus

::
is

:::
set,

:::::::
instead,

:::
on

:::
the

::::::::
different

::::
loss

::::::::
functions

::::::::
proposed

::
in

:::
the

::::::::
literature

:::
for

::::::::::::::
spatio-temporal

:::::::::
imbalanced

:::::::::
regression

:::::
using

::::
deep

:::::::
learning

:::
and

:::::::
compare

:::::
these

::
in

::::
terms

::
of

::::
their

:::::::::::
improvement

::
in
:::
the

:::::::::
prediction

::
of

:::::::::::::
spatio-temporal

::::
wind

::::::
speed

::::::::
extremes

:::::
using

:::
the

::::::::::
ConvLSTM

::::::
model.310
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2.2.1
::::::::
Weighted

::::
Loss

In order to combat the effects of data imbalance on the imbalanced regression problem, we adapt the ConvLSTM model

:
is
:::::::
adapted

:
with two different

::::
types

:::
of loss functions that have been proposed for imbalanced regression problems. The first

of these is the relatively simple weighted loss, which consists of assigning a weight w(y) to each value in the input frame

according to its target wind speed y. For a loss function L of the target y and prediction ŷ (consisting of N time-frames of315

M ×M spatial coordinates) and a weighting function w(y), the weighted loss LW is computed as :

LW (ŷ,y) =
1

N

N∑
n=1

M∑
i,j=1

w(yn,i,j) ·L(ŷn,i,j ,yn,i,j)

::
in

:::
Eq.

::
1. As weighted loss functions we investigate both the weighted mean squared error (W-MSE) loss and the weighted

mean absolute error (W-MAE) loss . We proceed to compute
:::
are

::::::::::
investigated.

:

LW (ŷ,y) =
1

N

N∑
n=1

M∑
i,j=1

w(yn,i,j) ·L(ŷn,i,j ,yn,i,j)

::::::::::::::::::::::::::::::::::::::::

(1)320

::
As

:::::::::
weighting

:::::::
function

::::
both

:::
an

::::::
inverse

:::::::::
weighting

:::::::
function

:::
as

::::
well

::
as

::
a

::::::
simple

:::::
linear

:::::::::
weighting

:::::::
function

:::
are

:::::::::::
investigated.

:::
The

::::::
inverse

:::::::::
weighting

:::::::
function

:::::::::
computes the weights in proportion to the inverse of of the data distribution for each target,

as suggested by Yang et al. (2021). For a continuous target distribution, this typically implies discretising the distribution

into intervals (see e.g. Shi et al., 2017), where all predictions within an interval are weighted by the same weight. Due to

our definition of extreme events in terms of local percentile thresholds we proceed to discretise the target distribution into325

intervals spanning the percentage of the distribution between percentile p and 100. For a set of increasing percentiles P =

{pk}, all targets pk ≤ y < pk+1 are then weighted proportionally to the inverse of the percentage between pk and 100 i.e.

w(y)∝ 1/(100− pk). We utilise a range of integer percentiles P = {pk|k ∈ [50,99]} and normalise weights such that the

interval between percentiles 50 and 51 is given unit weight.
::
As

:::::
such,

:::::::
weights

:::::::
increase

:::::::
inversely

:::::
from

:
1
:::
up

::::
until

:
a
::::::
weight

::
of

:::
50

:::::
(given

::
to

:::::
target

::::::
values

::::::::::::::
y99 ≤ y ≤ y100). All values smaller than the 50th

:::
50th percentile (p50) are also given unit weight. This330

results in the weighting function shown in Eq. ??
:
2, which is also presented graphically in Fig. ??

:
4.

winv
::

(y) =

1 if y < p50

50 · 1
100−k if pk ≤ y < pk+1 for k ∈ [50,99]

(2)

:::
The

:::::
linear

:::::::::
weighting

:::::::
function

::
is

::::::::::
constructed

::::::::::
analogously

::
as

::::::
shown

::
in

:::
Eq.

::
3.
::::::
Target

::::::
values

::::::
y < p50:::

are
::::::::
similarly

:::::
given

::::
unit

::::::
weight,

:::::
while

:::::::
weights

::
for

:::::
target

::::::
values

::::::::::::
pk ≤ y ≤ pk+1:::

are
::::::::
increased

:::::::
linearly

::::
from

::
1
::
to

:::
50

::
for

::::::::::
percentiles

::::::::::
k ∈ [50,99].
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Figure 4. Weighting function w
:::::::
functions used to construct

::::
either the inversely weighted mean squared error (W-MSE

::inv) and inversely

::::
mean

::::::
absolute

::::
error

::::::::::
(W-MAEinv)

::
or
:::
the

::::::
linearly weighted mean

:::::
squared

::::
error

::::::::::
(W-MSElin)

:::
and

::::
mean

:
absolute error (W-MAE

::lin).

wlin(y) =

1 if y < p50

k− 49 if pk ≤ y < pk+1 for k ∈ [50,99]
:::::::::::::::::::::::::::::::::::::::::::::::::

(3)335

2.2.2 Squared Error-Relevance Area Loss

As a second approach to combating data imbalance, we investigate the squared error-relevance area (SERA) loss
:
is
::::::::::
investigated,

as proposed by Ribeiro and Moniz (2020). The SERA loss is based on the concept of a relevance function ϕ : Y −→ [0,1],

which maps the target variable domain Y onto a [0,1] scale of relevance. The relevance function ϕ is determined through a

cubic Hermite polynomial interpolation of a set of ’control-points’. The set of control-points S = {⟨yk,ϕ(yk),ϕ′(yk)⟩}sk=1 are340

user-defined points where the relevance may be specified, which are typically local minima or maxima of relevance and thus

all have derivative ϕ′(yk) = 0 (Ribeiro and Moniz, 2020). We define the 90th percentile (p90) of the standardised wind speed

distribution

::
In

:::
this

::::::::::::::
implementation

:::
the

:::::::
method

::
is

:::::::::::
implemented

:::
on

:
a
:::::::::::::
per-coordinate

::::
basis

::::
and

:::
the

:::::
local

::::
99th

::::::::
percentile

:::::
(p99)

:
at each

coordinate
:
is
:::::
fixed

:
as the point of minimum relevance at that coordinate ⟨y1 = p90, ϕ(y1) = 0.0, ϕ′(y1) = 0.0⟩ and the 99th345

percentile (p99)as the point of maximum relevance ⟨y1 = p99, ϕ(y1) = 1.0, ϕ′(y1) = 0.0⟩
::::::::
maximum

:::::::::
relevance,

:::
but

:::
the

:::::
point

::
of

::::::::
minimum

::::::::
relevance

::
is

::::::
varied

:::::::
between

:::::
either

:::
the

::::
90th

::::::::
percentile

:::::
(p90),

:::
the

::::
75th

:::::::::
percentile

::::
(p75)

::
or

:::
the

::::
50th

:::::::::
percentile

:::::
(p50),

::
in

::::
order

:::
to

:::
get

:
a
:::::
better

::::
idea

:::
of

::::
how

:::
this

::::::
choice

::::::
affects

::::::::::
forecasting

::::::::::
performance. The interpolation

::
in

::
all

:::::
cases

:
is carried out

according to Ribeiro and Moniz (2020) by using the piecewise cubic Hermite interpolating polynomials (pchip) algorithmand

the .
::::
The

:
obtained relevance function

:::
for

:::::::::::
control-points

:::
p90::::

and
:::
p99:is shown in Fig. 5.350
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Figure 5. The relevance function ϕ obtained by interpolating the 90th
:::
90th

:
percentile (p90) as control-point of minimum relevance and the

99th
::
99th

:
percentile (p99) as control-point of maximum relevance, using the pchip

:::::::::
interpolation

:
algorithm of Ribeiro and Moniz (2020).

Defining Dt as the subset of data pairs for which the relevance of the target value is greater or equal than a cut-off t, i.e.

Dt = {⟨xi,yi⟩ ∈D|ϕ(yi)≥ t}, the squared error-relevance SERt of the model with respect to the cut-off t is computed as

follows:

SERt =
∑
i∈Dt

(ŷi − yi)
2 (4)

where ŷi and yi are the i’th prediction and target values, respectively. The curve obtained by plotting SERt against t is355

decreasing and monotonic (Ribeiro and Moniz, 2020) and provides an overview of how the magnitudes of the prediction errors

change on subsets comprising varying degrees of relevant samples (t= 0 representing all samples and t= 1 representing only

the most relevant samples). Finally, the squared error-relevance area (SERA) is defined as the area under the SERt curve:

SERA=

1∫
0

SERt dt (5)

The smaller the area under the curve is, the better the model is. We note that assigning uniform relevance values to all data360

points recovers the MSE loss.
:::
We

:::
also

::::
note

::::
that

::::::::
regardless

:::
of

:::
the

:::::
choice

::
of

::::::::
relevance

::::::::
function,

:::
the

::::::
SERA

:::
loss

::::::
utilises

:::
all

:::::
given

::::::
samples

:::
in

::
its

::::::::::::
computation,

::
as

:::
the

:::::::
integral

::
in

::::
Eq.

:
5
:::::
starts

::
at
:::::
t= 0

::::
and

::::::::
SERt=0 :::::::

denotes
::
all

:::::::
samples

:::::
with

::::::::
relevance

::::::
values

::::::
greater

::
or

:::::
equal

:::
than

::
0
:::
i.e.

::
all

::::::::
samples.

2.2.3 Implementation

2.3
:::::::

Forecast
::::::::::
Evaluation365
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The model was implemented and trained using Pytorch, the code of which can be found under: . In addition to the different

loss functions, we investigate model architectures with different numbers of ConvLSTM layers, ranging from 2–5 layers (in

both the encoder and the forecasting networks). The numbers of parameters of all model architectures are shown in Table 1.

In line with Shi et al. (2015), all layers utilise 3× 3 kernels. The convolution over each successive filter operates such as to

successively halve the spatial dimensions of the input, while the number of hidden states (features)are successively doubled370

(starting from 16 hidden states).

The number of parameters of the ConvLSTM model with different numbers of layers. ConvLSTM layers Number of

parameters 2 2, 385
:
In

:::::
order

::
to

:::::::
evaluate

:::
the

:::::::::
predictions

:::
of

:::
the

::::::::::
ConvLSTM

::::::
against

::::::::::
observation,

:::
the

:::::::
model’s

::
hit

::::
rate

::::::::::
(H = a

a+c ),

::
the

:::::
false

:::::
alarm

::::
ratio

:::::
(FAR

::::::
= b

a+b ), 953 3 10,061,025 4 34,201,185 5 62,060,641

We trained our models using mini-batch gradient descent with a batch-size of 16 and used the adaptive moment estimation375

(Adam) as optimiser. Adam optimiser is a popular and reliable choice for deep learning neural networks which computes

adaptive learning rates for each parameter of the model, based on their update frequency (see e.g. Ruder, 2017). The initial

learning rate of the optimiser was set to 10−3. During training, early-stopping was performed on the validation set to ensure

that the model with the lowest validation loss was saved as the best model and thus to avoid overfitting the model. The

early-stopping mechanism was set up to stop training when the validation loss failed to decrease for 20 consecutive epochs.380

2.4 Verification

Since the ConvLSTM model investigatedin this study is a spatio-temporal forecasting model, it appears in order to evaluate

the model with a verification method that captures forecasting ability at different temporal, as well as spatial scales. In order

to evaluate the model at different spatial scales we utilise the minimum coverage method, as proposed by Damrath (2004). As

a filtering method, the minimum coverage method works well for verifying ’messy’ forecasts that do not contain well-defined385

features (Ebert, 2009), which we expect to be particularly applicable to wind speed due to its highly stochastic behaviour.

Another advantage of the method is that it is parameter-free and easy to implement. While the method is a spatial forecast

verification method, it can be applied in a simple manner per lead-time for a temporal assessment.

The minimum coverage method essentially states that ’a forecast is useful if the event is predicted over a minimum fraction

of the region of interest’ (Ebert, 2008). Denoting ⟨P ⟩s = 1
n

∑
n I to be the fraction of grid points with events I ∈ {0,1} within390

a neighbourhood of scale s, the entire neighbourhood is classified as the event ⟨I⟩s according to:

⟨I⟩s =

0 ⟨P ⟩s < Pe

1 ⟨P ⟩s ≥ Pe

where Pe is the minimum fraction of
::::
threat

:::::
score

::::::::::::
(TS= a

a+b+c )
:::
and

:
the neighbourhood that must be covered by events in

order for the neighbourhood to be classified as an event. A neighbourhood of scale s refers to a squared area of dimension

s× s grid-points. Due to the scarcity of extreme events in the data, we chose to use a minimum coverage criterion with Pe set395

to the value 1/n i.e. we require only a single event to be present in the neighbourhood for the neighbourhood to be classified as
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an event. The neighbourhood events can then be evaluated from a typical 2× 2 contingency table using any desired categorical

score. The categorical score used here is the symmetric extremal dependence index (SEDI), which is computed as follows:

SEDI=
logF − logH + log(1−H)− log(1−F )

logF + logH + log(1−H)+ log(1−F )
∈[−1,1]

::::::::
frequency

::::
bias

::::::::::
(B = a+b

a+c )
:::
are

:::::::::::
investigated,

:
where H and F are

:
a

:::::::
denotes

:::
the

:::::::
number

::
of

:::::
hits,

:
b
::::

the
:::::::
number

::
of

:::::
false400

::::::
alarms,

:
c
::::

the
:::::::
number

::
of

::::::
missed

::::
hits

::::
and

::
d

:::
the

:::::::
number

::
of

::::::
correct

:::::::::
negatives

:::::::
obtained

:::
by

:
the hit rate and false alarm rate,

respectively. The SEDI was chosen for its unique property of non-degeneracy for rare events. Stephenson et al. (2008) have

shown that practically all categorical scores degenerate to trivial values such as 0, 1 or infinity for exceedingly rare events,

i.e. as the base rate of the event tends to zero. The SEDI was proposed by Ferro and Stephenson (2011) as a remedy to

the degeneracy problem and, in fact, combines more desirable properties into one score than any other categorical score405

(Hogan and Mason, 2012, p. 54).
::::::
model.

::::
The

::
hit

:::::
rate,

::::
false

:::::
alarm

:::::
ratio

:::
and

::::::
threat

:::::
score

:::
are

::::::::
routinely

::::
used

:::
by

:::
the

::::
UK

::::
Met

:::::
Office

::
to

:::::::
evaluate

::::::::
warnings

::::::::::::::::::::::
(Hogan and Mason, 2012)

:::
and

::::
have

:::
also

:::::
been

::::
used

::
by

::::::::::::::
Shi et al. (2015)

::
to

:::::::
evaluate

:::
the

::::::::::
ConvLSTM

:::::
model

:::
for

:::::::::::
precipitation

::::::::::
nowcasting,

:::::
while

:::
the

:::::::::
frequency

::::
bias

:::::::
provides

::::::::
valuable

::::::::::
information

:::
on

:::::::
whether

:::
the

::::::
model

::::
tends

:::
to

::::::::::::
overforecasting

:::
or

::::::::::::::
underforecasting.

As is typical for neighbourhood methods, scores were
:::::
These

::::::
scores

:::
are computed for a set of scales and a set of intensity410

thresholds in order to provide a diagnostic assessment of forecast quality on spatial scale and intensity (see: e.g. Ebert, 2009).

As such, we computed the SEDI for a set of scales corresponding to approx. 28, 83, 139, 194
:::::::
intensity

:::::::::
thresholds

::::::::::::
corresponding

::
to

:::
the

::::
local

::::
50th,

:::::
75th,

::::
90th,

::::
95th,

::::
99th

:
and 250 km, and a set of thresholds corresponding to the local 50th, 75th, 90th, 95th,

99th and 99.9th
:

th
:
percentiles of the standardised wind speed distribution

::::::::
observed

::::::
sample

::::::::::
distributions

:
at each coordinate: We

remind the reader that the models are judged on their ability to forecast extreme events in terms of relative rarity, which we415

measure as an event’s percentile with respect to the local frequency distribution at the respective coordinate. Finally, in ,
::::::
which

::
are

:::::::::
computed

:::::
using

:::
the

:::::::
training

:::
set.

::
In

:
order to obtain an aggregated result over all forecasts made by a model, the elements

in the
::::
2× 2

:
contingency table are aggregated over all forecasts and the scores are computed subsequently from the aggregated

contingency table.

In
:::::
Since

:::
the

:::::
above

:::::::::
categorical

:::::
scores

:::::
work

:::
on

::
the

:::::
basis

::
of

:
a
:::::::
forecast

:::::
being

::::::
correct

::
as

::::
long

:::
as

:
it
::::::::
surpasses

:::
the

:::::
same

::::::::
threshold420

:
t
::
as

:::
the

::::::::
observed

::::::
event,

::::
they

:::
are

::::
able

:::
to

::::
give

:::
an

::::::::
indication

:::
of

:::
the

:::::::::
frequency

::
of

:::::
errors

::::::
while

::::::
unable

::
to

::::
give

:::
an

:::::::::
indication

::
of

:::
the

:::::::::
magnitude

:
of

:::
the

::::::
errors

:::::::
between

:::::::
forecast

::::
and

::::::::::
observation.

:::
In

:::::
order

::
to

:::::::
include

::
in

:::
the

:::::::
analysis

::
a
::::::::::
comparison

::
of

:::::
error

::::::::::
magnitudes,

:::
the

::::::::::::::
root-mean-square

:::::
error

:::::::
(RMSE)

:::::::
between

:::::::::::::::::
(continuous-valued)

:::::::::
predictions

:::
and

:::::::::::
observations

::
is

:::::::
utilised.

::::::
Unlike

::
the

::::::::::
categorical

::::::
scores,

:::
the

::::::
RMSE

::
is

::::
here

:::::::::
computed

:::::::
between

::::
two

::::::::::
consecutive

::::::::
percentile

::::::::::
thresholds:

:::
For

:
a
:::::::::

particular
::
12

:::::
hour

::::::
forecast

::::
and

:::::::::::
observation,

:::
and

:::::::::
thresholds

:::
p1 :::

and
::::
p2,

:::
the

::::::
RMSE

::
is

:::::::::
computed

:::::::
between

:::
all

:::::
pairs

::
of

:::::::
forecast

::::
and

::::::::::
observation425

:::::
values

:::::
(f,o)

:::::
where

:::
the

::::::::::
observation

::::::
values

::
lie

:::::::
between

:::
p1 :::

and
::
p2:::

i.e.
:::::::::::
p1 ≤ o < p2.

::::
The

::::
total

::::::
RMSE

:::
for

::::
those

:::::::::
thresholds

::
is

::::
then

::::::::
computed

::
as

:::
an

::::::::
aggregate

::::
over

:::
all

:::::::
forecasts

::::
and

::::::::::
observations

:::
of

:::
the

::::::
model.

::::
This

::::::::
approach

:::::
serves

::
to
::::

give
:::
an

::::::::
indication

:::
of

:::
the

:::::
typical

:::::::::
magnitude

:::
of

:::::
errors

::
of

:::
the

:::::::
forecasts

:::
of

:
a
:::::
model

::::
over

::
a
::::::::
particular

:::::
value

:::::
range

::
of

:::
the

:::::::::::
observations.
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::
In

:::
the

::::
next

::::::
section

:
the next section we present the results obtained from combining the multi-layered ConvLSTM net-

work with inversely weighted mean absolute error (W-MAE), inversely weighted mean squared error (W-MSE) and squared430

error-relevance area (SERA) loss and compare these against the standard mean absolute error (MAE) and mean squared error

(MSE) loss
::
the

:::::::
various

::::
loss

::::::::
functions

:::
are

::::::::
presented. The optimal number of layers for each model is determined from the

minimum validation-loss obtained by the networks
:
as

::::::::
averaged

:
over the 4-fold cross validation process , as (conducted over

the 8
::::
eight

:
years of data between 2011–2019

:
). The optimal models are then re-trained using the entire 40 years of data between

1979–2019 (using 2017-2019
:::
the

::::
eight

:::::
years

:::::::
between

:::::::::
2011-2019

:
as validation) and their results are compared on the held-out435

test set (comprising the years
:::::::::
comprising

:::
the

::::
two

:::::
years

:::::::
between

:
2019-2021) using the SEDI. Finally, the best performing

model is further analysed with the minimum coverage method and its forecasts are visualised. .
:

3 Results

We begin by showing, in Table 2 ,

3.1
::::::::::::

Validation-loss440

Table 2.
::::::::
Minimum

:::::::
validation

:::
loss

::
as
:::::::
obtained

::
by

:::
the

:::::::::
ConvLSTM

::::::
network

::::
with

::::::
number

::
of

::::
layers

::::::
ranging

::::
from

:::
2–5

:::::::
(denoted

::
in

:::::::
brackets)

:::
and

:::::
trained

::::
with

::
the

::::::
various

:::::::
different

:::
loss

:::::::
functions.

::::::
Values

::
are

::::::::
presented

::
as

::
the

:::::
mean

:
±
:::
one

:::::::
standard

:::::::
deviation

::::
from

:::
the

:::::
4-fold

::::
cross

::::::::
validation.

:::
The

:::::
lowest

::::::::
minimum

:::::::
validation

::::
loss

::::::
reached,

:::
and

::::
thus

:::
the

::::::
optimal

::::::
network

::::::::::
architecture,

:
is
:::::::::
emphasised

::
in

:::::::
boldface

:::
for

:::
each

::::
loss

:::::::
function.

:::::
Where

::::::
multiple

::::::::::
architectures

:::::::
obtained

::
the

::::
same

::::::::
minimum

:::::::
validation

::::
loss,

:::
the

::::::
simpler

:::::::::
architecture

:
is
::::::::
preferred.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Loss ConvLSTM (2) ConvLSTM (3) ConvLSTM (4) ConvLSTM (5)

W-MAEinv (65.1± 2.2) · 10−2 (63.6± 2.0) · 10−2 (63.3±2.1) ·10−2 (63.3± 2.1) · 10−2

W-MSEinv (52.0± 1.6) · 10−2 (49.9± 1.3) · 10−2 (49.5±1.8) ·10−2 (49.6± 1.6) · 10−2

W-MAElin (249.3± 3.9) · 10−2 (243.4± 3.8) · 10−2 (243.3± 3.4) · 10−2 (242.9±4.4) ·10−2

W-MSElin (148.3± 3.3) · 10−2 (142.6± 3.6) · 10−2 (142.5±3.0) ·10−2 (142.5± 2.3) · 10−2

SERAp90 (116.2± 4.1) · 10−3 (113.2± 5.6) · 10−3 (113.1± 4.5) · 10−3 (111.0±2.9) ·10−3

SERAp75 (125.2± 1.6) · 10−3 (121.4± 2.4) · 10−3 (119.6± 2.8) · 10−3 (119.4±3.2) ·10−3

SERAp50 (136.6± 1.8) · 10−3 (132.1± 1.1) · 10−3 (130.8± 3.1) · 10−3 (130.6±1.7) ·10−3

MAE (264.7± 2.6) · 10−3 (257.4± 2.6) · 10−3 (256.9± 3.0) · 10−3 (256.1±2.9) ·10−3

MSE (213.2± 2.6) · 10−3 (204.7± 3.9) · 10−3 (204.4± 3.2) · 10−3 (204.0±2.7) ·10−3

::::
Table

::
2
:::::
shows

:
the minimum validation-loss obtained by the ConvLSTM network with

::
the

:
number of layers ranging between

2–5to determine the optimal number of layers for each loss function, which is ,
:::

as
::::::
trained

::::
with

::::::
either

::::::::
inversely

::::::::
weighted

:::
loss

:::::::::::
(W-MAEinv :::

and
:::::::::::
W-MSEinv),

::::::
linearly

::::::::
weighted

::::
loss

::::::::::
(W-MAElin::::

and
::::::::::
W-MSElin),

::::::
SERA

:::
loss

:::
or

:::::::
standard

:::::
MAE

::
or

:::::
MSE

::::
loss.

:::
The

::::::
SERA

::::
loss

::
is

:::::::
denoted

::::
with

:
a
::::::::

subscript
::::::::
denoting

:::
the

::::
first

:::::::::::
control-point

:::::
used,

::::
with

:::
the

::::::
second

:::::::::::
control-point

:::::
fixed

::
at

::
the

:::::
local

::::
99th

::::::::
percentile

:::::
(p99)

:::
for

::::
each

::::::::::
coordinate.

::::::
Results

:::
are

::::::
shown

::
as

::::
the

::::
mean

:::
±

:::
one

::::::::
standard

::::::::
deviation

::::
from

:::
the

::::::
4-fold445

::::
cross

:::::::::
validation.

::::
The

::::::::
minimum

:::::::::::::
validation-loss

:::
for

::::
each

::::
loss

:::::::
function

::::
has

::::
been

:
emphasised in boldface. As described in the
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methodology, the models were then trained once again using the full 40 years of data and the
:
,
::::::::
indicating

:::
the

:
optimal number

of network layers for each loss function. These optimal models are compared in Table 3 over local intensity thresholds varying

between the 50th and 99.9th percentiles, using the symmetric extremal dependency index (SEDI). The
::
In

:::::
cases

:::::
where

:::
the

:::::
mean

::::::::
validation

::::
loss

:
is
:::::

equal
:::
for

:::::::
multiple

::::::::
numbers

::
of

::::::
layers,

:::
the

:::::::
smallest

:::::::
number

::
of

::::::
layers,

:::
and

::::
thus

:::
the

:::::::
simplest

::::::
model,

::::
was

:::::
given450

:::::::::
precedence.

:

3.2
::::::::::

Comparison
::::
over

::::::::
intensity

:::::::::
thresholds

Table 3.
::::::::

Comparison
::
of

:::
hit

::::
score

::::
(H),

::::
false

::::
alarm

::::
ratio

:::::
(FAR),

:::::
threat

::::
score

::::
(TS)

:::
and

::::::::
frequency

:::
bias

:::
(B)

::
of

:::
the

:::::::::
ConvLSTM

::::::
network

::::::
trained

:::
with

:::
the

::::::
various

::::::
different

::::
loss

:::::::
functions.

::::::
Scores

::
are

::::::::
presented

::
for

:::::
wind

:::::::
forecasts

:
f
:::
and

::::::::::
observations

:
o
::::::::
exceeding

::::
local

:::::::
intensity

::::::::
thresholds

:::::
varying

:::::::
between

::
the

::::
50th

::::
(p50)

:::
and

::::
99.9th

::::::
(p99.9)

::::::::
percentiles,

:::::::::
aggregated

:::
over

::::::::
lead-time.

:::
The

::::::
optimal

::::::
number

::
of

::::::
network

:::::
layers

::::
used

::
for

::::
each

:::
loss

::::::
function

::
is

::::
given

::
in

:::::::
brackets

:::
after

:::
the

::::
name

::
of
:::
the

:::
loss

:::::::
function.

:::
The

:::::::::
persistence

::::::
forecast

::
is

::::::
included

::
in
:::
the

::::
table

::
for

::::::::
reference.

:::
For

::::
each

::::::
intensity

::::::::
threshold,

::
the

::::
best

:::::
scores

::
are

:::::::::
emphasised

::
in

:::::::
boldface

:::::
(where

:::::::::
applicable).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

H ↑ FAR ↓
Loss (layers) f,o ≥

p50

f,o ≥
p75

f,o ≥
p90

f,o ≥
p95

f,o ≥
p99

f,o ≥
p99.9

f,o ≥
p50

f,o ≥
p75

f,o ≥
p90

f,o ≥
p95

f,o ≥
p99

f,o ≥
p99.9

W-MAEinv (4) 0.866 0.858 0.809 0.761 0.583 0.262 0.178 0.291 0.381 0.432 0.473 0.427

W-MSEinv (4) 0.861 0.846 0.788 0.735 0.531 0.201 0.179 0.285 0.374 0.42 0.45 0.424

W-MAElin (5) 0.979 0.885 0.712 0.612 0.408 0.18 0.351 0.343 0.286 0.292 0.289 0.306
W-MSElin (4) 0.966 0.884 0.689 0.583 0.389 0.187 0.312 0.335 0.272 0.27 0.289 0.362

SERAp90 (5) 0.814 0.871 0.938 0.945 0.614 0.215 0.175 0.36 0.602 0.716 0.608 0.419

SERAp75 (5) 0.849 0.921 0.924 0.844 0.527 0.225 0.2 0.407 0.571 0.572 0.464 0.421

SERAp50 (5) 0.907 0.932 0.828 0.712 0.467 0.188 0.245 0.424 0.454 0.436 0.394 0.355

MAE (5) 0.836 0.76 0.656 0.58 0.419 0.215 0.138 0.177 0.214 0.242 0.279 0.354

MSE (5) 0.819 0.755 0.652 0.565 0.371 0.142 0.133 0.187 0.234 0.257 0.282 0.321

Persistence 0.774 0.678 0.582 0.523 0.408 0.268 0.238 0.34 0.441 0.503 0.611 0.741

TS ↑ B

f,o ≥
p50

f,o ≥
p75

f,o ≥
p90

f,o ≥
p95

f,o ≥
p99

f,o ≥
p99.9

f,o ≥
p50

f,o ≥
p75

f,o ≥
p90

f,o ≥
p95

f,o ≥
p99

f,o ≥
p99.9

W-MAEinv (4) 0.729 0.635 0.54 0.482 0.383 0.219 1.054 1.209 1.306 1.341 1.108 0.457

W-MSEinv (4) 0.725 0.633 0.536 0.48 0.37 0.175 1.048 1.182 1.258 1.267 0.966 0.348

W-MAElin (5) 0.64 0.606 0.554 0.488 0.35 0.167 1.51 1.346 0.997 0.864 0.574 0.259

W-MSElin (4) 0.671 0.612 0.548 0.479 0.336 0.169 1.404 1.328 0.946 0.799 0.546 0.293

SERAp90 (5) 0.694 0.585 0.388 0.279 0.314 0.186 0.986 1.361 2.355 3.328 1.567 0.371

SERAp75 (5) 0.7 0.565 0.414 0.397 0.362 0.193 1.06 1.552 2.153 1.973 0.983 0.389

SERAp50 (5) 0.7 0.553 0.491 0.459 0.359 0.17 1.201 1.618 1.515 1.263 0.771 0.291

MAE (5) 0.737 0.653 0.557 0.489 0.361 0.192 0.97 0.924 0.835 0.765 0.582 0.332

MSE (5) 0.727 0.644 0.544 0.473 0.324 0.133 0.944 0.929 0.852 0.761 0.517 0.209

Persistence 0.623 0.503 0.399 0.342 0.248 0.152 1.016 1.027 1.041 1.052 1.049 1.035

:::
The

::::::::
networks

::::
were

::::
then

::::::::
retrained

::
on

:::
the

::::::
entire

::::::
dataset

::::
with

:::
the

::::::::::::
corresponding optimal number of network layers used with

each model is shown in brackets next to
:::::::::
(henceforth

::::::::
indicated

::
in

::::::::
brackets

::::
after

:
the name of the loss function. It is evident

from Table 3 that the usage of imbalanced regression loss results in superior SEDI scores for extreme events between the 75th455
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and 99th percentiles. While outperformed by the SERA loss,
::::::::
respective

::::
loss

::::::::
function

::::
with

:::::
which

:::
the

::::::::
network

:::
was

::::::::
trained).

::::
Table

::
3
::::::
shows

:
a
::::::::::
comparison

:::
of the W-MAE and W-MSE also show clear improvements over the standard MAE and MSE

loss from the 90th percentile onward. Indeed, the table shows how the usage of imbalanced regression loss manages to shift

optimal performance towards the extreme intensity thresholds , as opposed to performance simply decreasing monotonically

for increasingly rare events, as is the case for the standard MAE and MSE from the 75th percentile onward. In the table are460

included, for reference, the SEDI scores achieved by a simple
::
hit

:::::
score

:::::
(H),

::::
false

:::::
alarm

:::::
ratio

::::::
(FAR),

:::::
threat

:::::
score

::::
(TS)

::::
and

::::::::
frequency

::::
bias

:::
(B)

:::
for

:::::
wind

::::::::
forecasts

::
f

:::
and

:::::::::::
observations

::
o

::::::::
exceeding

:::::
local

:::::::
intensity

:::::::::
thresholds

::::::::
between

:::
the

:::
50th

:::::
(p50)

::::
and

::
the

::::::
99.9th

::::::
(p99.9)

::::::::::
percentiles,

:::::::::
aggregated

::::
over

:::
all

:::::::::
lead-times.

::::
The

:
persistence forecast, which is a forecast consisting simply

:::::
simply

:::::::
consists

:
of a repetition of the final observation (input ) frame. It is clear that the improvement offered by the imbalanced

regression loss functions ceases around the 99.9th percentile threshold, where SEDI scores are comparable among all models,465

while being, in addition, only marginally better than persistence.
::::
input

::::::
frame,

::
is

:::::::
included

::
in

:::
the

::::
table

:::
for

:::::::::
reference.

Minimum validation loss as obtained by the ConvLSTM network with number of layers ranging from 2–5 (denoted in

brackets) and trained with either W-MAE, W-MSE, SERA, MSE or MAE loss. Values are presented as the mean ± one

standard deviation from the 4-fold cross-validation. The optimal model for each loss function is emphasised in boldface.

ConvLSTM (2) ConvLSTM (3) ConvLSTM (4) ConvLSTM (5)

W-MAE (8.3± 0.6) · 10−2 (8.2± 0.6) · 10−2 (8.2± 0.6) · 10−2 (8.1±0.5) ·10−2

W-MSE (8.2± 0.7) · 10−2 (8.1± 0.6) · 10−2 (8.0± 0.7) · 10−2 (7.8±0.7) ·10−2

SERA (24.5± 0.8) · 10−3 (24.2± 1.0) · 10−3 (24.0± 0.8) · 10−3 (23.9±1.1) ·10−3

MAE (24.3± 0.4) · 10−3 (24.0± 0.5) · 10−3 (23.6±0.4) ·10−3 (23.7± 0.4) · 10−3

MSE (18.6± 0.6) · 10−3 (18.3± 0.5) · 10−3 (17.9± 0.6) · 10−3 (17.6±0.4) ·10−3

470

Comparison of SEDI scores obtained by the ConvLSTM network trained with either W-MAE, W-MSE, SERA, MAE or

MSE loss, presented for winds (y) exceeding local intensity thresholds varying between the 50th and 99.9th percentiles. The

optimal number of network layers used for each loss function is given in brackets after the name of the loss function. The

persistence forecast is included in the table for reference. The table shows that the usage of imbalanced regression loss allows to475

substantially improve forecasts of local wind speeds exceeding the 75th percentile threshold.

y ≥ p50 y ≥ p75 y ≥ p90 y ≥ p95 y ≥ p99 y ≥ p99.9

W-MAE (5) 0.828 0.871 0.885 0.881 0.839 0.734

W-MSE (5) 0.801 0.862 0.885 0.885 0.828 0.704

SERA (5) 0.767 0.832 0.893 0.921 0.850 0.719

MAE (4) 0.854 0.867 0.847 0.828 0.784 0.725

MSE (5) 0.848 0.861 0.844 0.824 0.783 0.712

Persistence 0.689 0.729 0.732 0.731 0.724 0.707

We investigate the performance of these models further in Fig. 6, where the SEDI scores obtained by each modelare plotted

per lead-time (in hours) for the 99th percentile intensity threshold. We, once again, include in this comparison the persistence
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forecast for reference. The figure shows that the superior performance of the SERA loss over the W-MAE and W-MSE in Table480

3 results from improved performance on lead-times beyond ca. eight hours; For lead-times below ca. eight hours performance

of the W-MAE and W-MSE loss are very competitive with the SERA. ConvLSTM trained with standard MAE and MSE loss

is certainly more informative that the persistence forecast, performance is inferior to all three imbalanced regression losses on

all lead-times.

Comparison of SEDI scores obtained by the ConvLSTM network trained with either W-MAE, W-MSE, SERA, MAE or485

MSE loss, plotted over lead-time (in hours), for local extreme events of the 99th percentile intensity threshold. The optimal

number of network layers used for each loss function is given in brackets after the name of the loss function. The label

’persistence’ refers to the persistence forecast. The comparison shows that the superior scores obtained by the SERA loss in

Table 3 are due in particular to its better performance on lead-times 6–12 hours.

In addition, in order to establish a spatial picture of forecast quality, we provide in Fig. ?? an intensity-scale diagram490

(see e.g. Casati et al., 2004; Ebert, 2008) of the SERA (5) model, which we highlight here due to its superior SEDI scores on

intensity thresholds between the 90th and 99th percentiles in Table 3. The figure shows how the SEDI scores change both

with varying intensity threshold as well as spatial scale. However, contrary to the expected behaviour
:::
The

:::::
table

:::::
shows

::::
that

:::
the

:::::::::
imbalanced

:::::::::
regression

::::::
losses

::::::::
generally

:::::
result

::
in

:::::::::
significant

::::::::
increases

::
in

:::
the

:::
hit

::::
rate

::
as

:::::::::
compared

::::
with

:::
the

:::::::
standard

:::::
MAE

:::
or

::::
MSE

::::
loss,

:::::::::
indicating

:::
that

:::::
more

::
of

:::
the

::::
true

::::::::::
occurrences

::
of

:::
the

::::::
events

::::
were

:::::::
captured

:::
by

:::
the

::::::
model.

::::
Any

:::::::::::
improvement

::
in

:::
the

:::
hit495

:::
rate

::
is,

::::::::
however,

:::::::::::
accompanied

:::
by

::
an

:::::::
increase

::
in

:::
the

::::
false

:::::
alarm

:::::
ratio.

::::
This

:::::::
suggests

::::
that

::
in

:::::
order

::
to

::::::
capture

:::::
more

::
of

:::
the

::::::
events,

::
the

:::::::
models

:::
are

:::::::::
invariably

:::::::::
producing

::::
more

:::::
false

::::::
alarms.

:::::
This

:::::::
behavior

::
is
::::::::::
particularly

::::::::::
pronounced

::::::
where

::::
there

::
is
::::::::::

substantial

:::::::::
overcasting

:::
i.e.

::
a
::::::::
frequency

::::
bias

:::::::::::
substantially

::::::
greater

:::::
than

::
1.

::::
This

:::
can

:::
be

::::
best

::::::
noticed

:::
for

::::
the

:::::
SERA[

::::::
p90,p99]

:::::
model

:::
at

:::
the

:::::::
threshold

::::
p95,

::::::
where

:
a
:::::::
massive

:::::::::
frequency

::::
bias

::
of

:::::::
332.8%

:::::
results

::
in
::::

the
:::::
model

::::::::::
successfully

:::::::::
capturing

:
a
::::::::::
spectacular

:::::
94.5%

:::
of

:::
true

::::::
events

:::
(the

:::
hit

::::
rate)

::
at

:::
the

::::
cost

::
of

:::::
71.6%

:::
of

::::::::
forecasted

::::::
events

:::::
being

::::
false

::::::
alarms

::::
(the

::::
false

:::::
alarm

:::::
ratio).

:
500

:::
The

:::::
threat

::::::
scores

:::
can

:::
give

:::
an

::::::
overall

:::
idea

:
of forecasting performance improving with increasingly coarser scale, SEDI scores

in the diagram in fact decrease with increasing scale (with the sole exception of the scores obtained with the 50th percentile

threshold).

Intensity-scale diagram of SEDI scores obtained by the 5-layered ConvLSTM network trained with squared error-relevance

area (SERA) loss.505

Lastly, we proceed to show two visualisations of the forecasts made by the different ConvLSTM models investigated in this

paper, which serve to highlight their respective strengths and weaknesses. Figure 9 shows a target observation of a growing

intensification of anomalous winds in the left of the frame, as well as the forecasts made by the respective models . This

example highlights the striking difference between the utilisation of
::::
and,

::
as

:::::
such,

::::::
suggest

::::
that

::::
that

:::
the

:::::
SERA

::::::
trained

:::::::
models

::::::::::
investigated

::::
here

:::
can

::::
only

::
be

::::::::::
considered

:::::::
superior

::
to

:::
the

::::
MSE

:::::::
trained

:::::
model

:::
for

:::
the

:::
p99::::::::

threshold
:::::::
(except

:::
for

:::::
SERA[

::::::
p90,p99]510

:::::
which

:::::
scores

::::::
worse)

:::
and

:::
for

:::
the

:::::
p99.9 ::::::::

threshold.
:::::::::
Compared

::
to

:::
the

::::
MAE

::::
loss,

::::::::
however,

:::
the

:::::
SERA

::::::
trained

:::::::
models

:::::::
typically

:::::
score

:::::
worse

:::::
threat

:::::
scores

:::
for

:::
all

:::::::::
thresholds,

::::::
except

:::
for

:::
the

:::::
SERA[

::::::
p75,p99]

:::::
model

::::::
which

:::::::
manages

::
to

:::
be

:::::
on-par

::
at
:::::::::
thresholds

:::
p99::::

and

::::
p99.9.

:::
As

:
a
::::::
matter

::
of

::::
fact,

::::
none

:::
of

::
the

:::::::
models

::::::
trained

::::
with imbalanced regression loss versus the standard MAE and MSE loss -

both of which fail to capture the intensity of the target extremes, although they do manage to capture the general pattern of the
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target observation. Among the imbalanced regression
:::::::
achieve

:::::
threat

:::::
scores

:::::::
superior

::
to
:::
the

:::::
MAE

:::::::
trained

:::::
model

:::
for

:::::::::
thresholds515

:::::::
p50–p95,

:::::::
although

:::
the

::::::::
inversely

::::::::
weighted

:::::
losses

::::::::
generally

:::::::
achieve

::::::::::
comparable

:::::
scores

:::
and

:::
the

:::::::
linearly

::::::::
weighted

:::::
losses

:::::::
achieve

:::::::::
comparable

::::::
scores

:::
for

::::
p90 :::

and
::::
p95.

::::::::
Between

:::
the

:::::::
linearly

::::::::
weighted

:
losses, the SERA loss provides a substantially coarser

forecast of the extreme region than the W-MAE
:::lin :::::::

achieves
:::::
better

::::::
scores

::
for

::::::
higher

:::::::::
thresholds

::::
(p90:::::::

onward).
::::

The
::::::::::
W-MAElin

:::
also

::::::::
achieves

::::::
slightly

:::::
better

::::::
scores

::::
than

:::::
either

::::::::
inversely

::::::::
weighted

::::::
losses

:::
for

::::::::
thresholds

::::
p90 :::

and
::::
p95.

::::
The

::::::::
inversely

::::::::
weighted

:::::
losses

::::::::
dominate,

::::::::
however,

:::
for

:::
the

:::::::::
extremely

::::
high

:::::::::
thresholds

:::
p99:and W-MSE, and, as such, allows for more false alarms in520

order to capture more of the event. This strategy can be clearly distinguished as well in Fig. 10, where the SERA-trained model

severely overshoots its forecastto capture what is only a very minor event in the target observation
:::::
p99.9,

::::::::::::
outperforming

::
all

:::::
other

:::
loss

::::::::
functions

:::
on

::::
these

::::::::::
thresholds.

:::::::::::
Performance

::
for

:::
all

::::::
models

:::
on

::::::::
threshold

:::::
p99.9 ::::

must
:::
be

:::::::::
interpreted

::::
with

:::::::
caution,

::::::::
however,

::::
since

:::::
threat

:::::
scores

:::
on

:::
this

::::::::
threshold

::::::::
approach

::::
those

::::::::
obtained

::::
from

:::
the

::::
naive

::::::::::
persistence

::::::
forecast. Indeed, the SERA loss appears

to forecast something of a coarse-grained worst-case scenario, while the W-MAE and W-MSE forecasts are sharper and more525

conservative. These opposing characteristics lead to a strong suspicion that an ensemble of all three models (forecasting the

average of the forecasts made by the models) may be worthwhile investigating further. These ensemble forecasts are included

in Fig. 9 and Fig. 10 in
:
in

:::::
terms

::
of

:::
hit

::::
rate,

::::
none

:::
of

::
the

:::::::
models

::::::::::
investigated

::
in

:::
this

:::::
paper

:::
are

::::
able

::
to

::::::::::
successfully

::::::
predict

::::::
events

::
of the bottom row. While the ensemble forecast in Fig. 9 shows that some of the extreme intensities captured with the SERA

lossare lost in averaging process, the ensemble forecast is significantly sharper spatially and continues to provide a substantial530

improvement over the MAE and MSE. The ensemble forecast in Fig. 10, furthermore, shows how the overshooting of the

SERA-trained model is significantly limited and large swaths of false alarms avoided.
:::::
99.9th

::::::::
percentile

:::::::::
threshold

:::::
better

::::
than

:::::::::
persistence.

:::::::::
Similarly,

:::
for

:::
the

:::
99th

:::::::::
percentile,

:::
the

::::::::
standard

:::::
MAE

:::
and

:::::
MSE

:::
and

:::
the

:::::::
linearly

::::::::
weighted

:::::
MAE

:::
and

:::::
MSE

:::::
result

::
in

::
hit

::::
rates

::::::::::
comparable

::
to

::::::::::
persistence,

::::::::::
highlighting

:::
the

::::::
failure

::
of

:::::
these

:::
loss

::::::::
functions

::
in
:::::::::
capturing

::::::::
extremely

::::
rare

::::::
events.

A selection of further forecast visualisations can be found in the supplements, or in our GitHub repository: .535
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figures/fig08.png

An example forecast from the different ConvLSTM networks trained with either W-MAE, W-MSE, SERA or standard MAE

or MSE loss. The first row from the top displays the 12 input frames, the second row the succeeding 12 target frames and the

following rows the 12 predicted frames of the models. T refers to the index of the frame (in hours), with T = 0 denoting the
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last input frame and T =+12 denoting the final target and prediction frames. The final row shows the averaged forecast of an540

ensemble of the W-MAE, W-MSE and SERA-trained models.

As Fig. 9

Another way to highlight the differences in forecasts between the different models is
::
As

::::::::
compared

::::
with

:::
the

::::::::
standard

:::::
MAE

::::
loss,

::
the

::::::::::
W-MAEinv::::::::

manages
::
to

::::
boost

:::
the

:::
hit

:::
rate

:::::::::::
significantly

:::::
across

::
all

::::::::
intensity

:::::::::
thresholds,

:::::
while

::::
some

::::::
degree

::
of

::::::::::
overcasting545

:::
and

::::::::
increased

::::
false

::::::
alarms

::::
will

::::
have

::
to

::
be

:::::::
allowed

:::
for.

::::
For

:::
p90,

:::
for

::::::::
example,

:::
the

:::::
usage

::
of

:::
the

::::::::::
W-MAEinv:::::::

achieves
:::
an

:::::::
increase

::
in

::
H

::::
from

::::::
0.656

::::::::
(standard

:::::
MAE)

:::
to

:::::
0.809,

::::
with

:::
the

:::::
FAR

:::::
rising

::::
from

::::::
0.214 to look at frequency bias, which is presented in
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Table ?? for the same set of intensity thresholds as before. The tendency of the SERA-trained model to severely overshoot

the target observation with large swaths
:::::
0.381.

:::::
Even

:::
for

::::
p99,

::
a

:::::::::
significant

:::::::
increase

::
in

:::
H

::
is

::::::::
achieved,

::::
from

::::::
0.419

::::::::
(standard

:::::
MAE)

::
to
::::::

0.583,
::::
with

::::
the

::::
FAR

:::::
rising

:::::
more

::::::::::
drastically,

::::::::
however,

::::
from

:::::
0.279

:::
to

:::::
0.473.

:::::::::::
Overcasting

:::
and

:::::
FAR

::::::
values

:::
can

:::
be550

::::::
reduced

:::::::::::
substantially,

::::::::
however,

:::
by

::::
using

:::
the

:::::
linear

:::::::::
weighting

:::::::
method.

:::
For

:::
p90:::::::

events,
::
the

::::::::::
W-MAElin::::::::

increases
:::
the

::::
FAR

:::::
more

::::::::::::
conservatively

::::
from

:::::
0.214

::::::::
(standard

::::::
MAE)

::
to

:::::
0.286

:::::
while

:::
still

::::::::
boosting

::
H

:::::
from

:::::
0.656

::
to

:::::
0.712.

::::
The

::::
table

::::::
shows

:::
that

::
a
:::::
small

::::
boost

::
in
:::
H

:::
can

::::
still

::
be

::::::::
expected

:::
for

:::
p95::::::

events,
:::
but

:::::::
beyond

::::
that,

:::
the

:::::::
linearly

::::::::
weighted

:::::
MAE

::
or

:::::
MSE

::::
offer

:::
no

::::::::::::
improvements

::::
(with

:::
hit

::::
rates

::::::::
dropping

::
to

:::::
values

::::::::::
comparable

::::
with

:::::::::::
persistence).

:::::::::
Depending

::::
then

::
on

:::::
what

::::::::
magnitude

:
of false alarms is reflected

in Table ?? by substantially increased frequency bias for extreme events between the 75th and 99th percentiles, as compared555

with the other models. While the W-MAE and W-MSE do present higher frequency bias than their unweightedcounterparts,

these differences are comparatively minor. As expected, the ensemble forecast significantly limits the frequency bias for all

events, as the different biases of the models counteract one another. The low frequency bias of all models in forecasting extreme

events of
:::
that

:::
are

:::::::::
acceptable,

::::
and

:::
for

::::
what

:::::::::
percentile

::
of

:::::::
extreme

::::::
events the 99.9th percentile threshold offers another clue as

to why the SEDI scoresof
:::
loss

:::::::
function

::
is

::::::
desired

::
to
:::::
offer

:::::::::::
improvement,

:::::
either

:::
the

:::::
linear

:::
or

:::
the

::::::
inverse

::::::::
weighting

:::::::
methods

::::
can560

::
be

:::::::
utilised.

:::::::
Between

:::
all

::::::
usages

::
of

:::
the

:::::
MAE

:::
and

:::::
MSE,

:::::
either

::::::::
weighted

::
or
:::::::::::

unweighted, the models for such events are so poor:

these events are less frequently forecasted at all and are thus more often missed
::::
MAE

::::::
returns

::::::
higher

::
hit

:::::
rates

:::
and

::::::
higher

:::::
threat

:::::
scores

::
at

:::
the

::::
cost

::
of

::
an

::::::::
increased

::::
false

::::::
alarm

::::
ratio

:::
and

::
an

:::::::::
increased

::::::::
frequency

::::
bias.

Given its continued widespread usage, we present in Table ?? also the root mean squared
:::::::::
Compared

::
to

:::
the

::::::::
weighted

::::
loss

::::::::
functions,

:::
the

::::::
SERA

:::::
offers

:::::::::
something

::
of

::
an

:::::::
extreme

:::::
case,

:::::::
allowing

:::
hit

::::
rates

::
to

:::
be

::::::
boosted

::::::::::::
spectacularly

:::
but

::
at

:
a
:::::::::::
considerable565

:::
loss

::
of

::::::::::
forecasting

::::::::::
performance

:::
(as

::::::
judged

::
by

:::::::
reduced

:::::
threat

::::::
scores,

::::::::
increased

:::::::::
overcasting

::::
and

::::::::
increased

::::
false

:::::::
alarms).

:::
The

::::
first

::::::::::
control-point

:::
of

:::
the

:::::
SERA

::::
loss

::::
does

::::
offer

::
a
::::
way

::
to

:::::::
mitigate

:::
this

:::::::::
behaviour,

::::::::
however.

:::
For

::::::::
example,

:::::::
reducing

::::
this

:::::::::::
control-point

::::
from

:::
p90::

to
::::
p75 :::

and
::::
then

::
to

:::
p50::::::

(while
:::::::
keeping

:::
the

::::::
second

:::::::::::
control-point

::::
fixed

::
at
::::
p99)

::::::
shows

:
a
:::::::
striking

::::::::
reduction

::
in

:::::::::
frequency

::::
bias,

::::
false

::::::
alarms

::::
and

:::
hit

::::
rates

::::
for

:::::::
intensity

:::::::::
thresholds

::::::::
between

:::::::
p90–p99,

:::::
while

::::::
threat

::::::
scores,

::::
and

::::
thus

::::::
overall

::::::::::
forecasting

:::::::::::
performance,

::::::::
generally

::::::::
improves.570

Table 4.
::

As
::::
Table

:
3
:::
but

:::::::
presented

:::
for

:::
the

:::::::::::::
root-mean-square

::::
error

:::::::
(RMSE),

:::::
which

:
is
::::::::
computed

::::::
between

:::
all

::::
pairs

::
of

::::::
forecast

:::
and

:::::::::
observation

:::::
values

::::
(f,o)

:::::
where

:::
the

::::::::
observation

:::::
values

:::
lie

::::::
between

::
p1:::

and
:::
p2 ::

i.e.
::::::::::
p1 ≤ o < p2.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

RMSE ↓
p50 ≤ o < p75 p75 ≤ o < p90 p90 ≤ o < p95 p95 ≤ o < p99 p99 ≤ o < p99.9 p99.9 ≤ o < p100

W-MAEinv (4) 0.508 0.442 0.393 0.369 0.415 0.731

W-MSEinv (4) 0.508 0.446 0.397 0.38 0.445 0.767

W-MAElin (5) 0.4 0.293 0.328 0.392 0.532 0.867

W-MSElin (4) 0.402 0.295 0.338 0.411 0.554 0.892

SERAp90 (5) 0.738 0.662 0.475 0.306 0.29 0.642
SERAp75 (5) 0.668 0.51 0.339 0.276 0.361 0.706

SERAp50 (5) 0.571 0.386 0.3 0.314 0.423 0.74

MAE (5) 0.456 0.463 0.475 0.504 0.615 0.933

MSE (5) 0.472 0.484 0.492 0.522 0.639 1.017

Persistence 0.731 0.758 0.786 0.826 0.93 1.243
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:::::::
Similarly

:::
to

:::::
Table

::
3,

:::::
Table

::
4

:::::
shows

:::
the

:::::::::::::::
root-mean-square

:
error (RMSE) obtained by the different models, as aggregated

over all forecasts in the testset. The substantial frequency bias of the SERA-trained model in its forecasting of extreme events

is reflected here by a substantially increased RMSE , as errors between extremes and non-extremes occur more often due

to common misplacement of extreme event forecasts. The RMSE of the ensemble model highlights the effectiveness of the

ensemble in limiting these large-scale errors produced by the SERA-trained model. Although the aggregated RMSE scores575

tell us nothing about the quality of forecasts of extreme events, they do give us an overall picture of the typical magnitude of

errors made by the models
::::
from

:::
the

::::::::::
continuous

:::::::
forecasts

::::
and

::::::::::
observations

:::
of

:::
the

:::::::
different

:::::::
models.

::::::
Unlike

:::::
Table

::
3,

:::
the

::::::
RMSE

:
is
:::::::::
computed

:::::::
between

::
all

:::::
pairs

::
of

:::::::
forecast

:::
and

::::::::::
observation

:::::
values

:::::
(f,o)

::::::
where

:::
the

:::::::::
observation

::::::
values

::
lie

::::::::
between

::
p1:::

and
:::
p2 :::

i.e.

::::::::::
p1 ≤ o < p2.

::::::
Again,

:::
the

::::::::::
persistence

:::::::
forecast

:
is
::::::::

included
:::
for

::::::::
reference.

::::
The

:::::
table

:::::
shows

::::
that

:::
the

::::::::::
imbalanced

::::::::
regression

::::::
losses

:::
tend

::
to
:::::
result

::
in

:::::
lower

::::::
RMSE

::::::
scores,

::
as

:::::::::
compared

::
to

::
the

::::::::
standard

:::::
MAE

:::
and

::::
MSE

::::
loss,

:::
for

::::::::::
increasingly

::::
rare

::::::::::
observation

::::::
values.580

:
It
::
is

:::::::::
interesting

::
to

::::
note

::::
that

::::
while

:::
the

::::::
SERA

::::::
trained

::::::
models

::::::::
generally

::::::
appear

::
to

:::::
result

::
in

::::::
heavy

:::::::::
overcasting

::::
and

:::::
highly

:::::::
inflated

::::
false

:::::
alarm

::::
rates

::::::
(Table

::
3),

:::
the

::::::
RMSE

::::::
scores

::::::
suggest

::::
that

::::::::
increasing

:::
the

::::
first

:::::::::::
control-point

::
of

:::
the

::::::
SERA

:::
loss

::::::
results

::
in

:::::::
shifting

::
the

:::::::
domain

::
of

::::::::
minimal

::::::
RMSE

::::::
towards

:::
the

::::::
higher

::::::::::
percentiles.

:::::::
Between

:::
the

:::::::
inverse

:::
and

:::::
linear

:::::::::
weighting

::::::::
methods,

:::
the

::::::
RMSE

:::::
scores

::::
echo

:::
the

:::::::::::::
interpretations

::::
from

:::::
Table

::
3,

::::
with

:::
the

:::::
linear

:::::::
method

::::::::
appearing

:::::
more

:::::
adapt

::::::
(lower

:::::::
RMSE)

::::::
around

:::
the

::::::
central

:::::::::
percentiles

:::
and

:::
the

::::::
inverse

:::::::
method

::::
more

:::::
adapt

:::::::
towards

:::
the

:::::
higher

::::::::::
percentiles.585

3.3
::::::::

Temporal
::::::::::
assessment

Finally, analogously to Fig. ??, we provide
:::
The

:::::::::::
performance

::
of

:::
the

::::::
models

::
is

::::::::::
investigated

::::::
further in Fig. ?? an intensity-scale

diagram of the SEDI
:
6,

::::::
where

:::
the

:
scores obtained by the ensemble model . From comparing the figures on the finest scale

(28 km) it is clear that the ensemble is able to substantially improve the SEDI scores on the 50th–90th percentile thresholds,

now comparable with SEDI scores for the W-MAE and W-MSE on these thresholds (see Table 3), while scores between the590

95th–99.9th percentile thresholds remain on-par with the SERA (5)model. It is also interesting to note that, while scores do

degrade with increasing scale on all thresholds except the 50th percentile , as in Fig. ??, they degrade substantially less than in

Fig. ??.

Intensity-scale diagram of SEDI scores obtained by the ensemble model consisting of the W-MAE, W-MSE and SERA-trained

ConvLSTM networks.595

4 Discussion

The results presented in this paper indicate that the multi-layered convolutional long short-term memory (ConvLSTM) network

can be adapted well to the task of spatio-temporal forecasting of extreme wind events by training the network with imbalanced

regression loss. From Table 3, it is clear that the utilisation of the W-MAE
::::
each

:::::
model

::::
are

::::::
plotted

::::
over

::::::::
lead-time

:::
(in

::::::
hours)

::
for

:::
the

::::
75th

:::::
(p75),

::::
90th

:::::
(p90), W-MSE or SERA loss results in substantially improved forecasts of extreme events of intensity600

thresholds between the 75th and 99th percentiles, as measured with the symmetric extremal dependency index (SEDI), as

compared with either the standard mean squared error (MSE) or mean absolute error (MAE ).
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While superior SEDI scores were obtained by the SERA-trained model on intensity thresholds between the 90th–99th

percentiles, we have shown that this is in large part due to a severely increased frequency bias, as well as increased coarseness,

for extreme events in this range. As shown in Table ??, this bias can be greatly mitigated by merging the SERA (5) model with605

the W-MAE
::::
95th (5

::
p95) and W-MSE

:::
99th

:
(5)models into a joined ensemble. The ensemble limits frequency bias, limiting the

tendency of the SERA (5) model to overshoot and forecast false alarms; it, furthermore, improves SEDI scores between the

50th–90th percentiles while remaining on-par with the SERA (5) model between the 95th–99.9th percentiles; overall RMSE is

reduced (Table ??) and forecasts are spatially sharper (Fig. 9 and 10). It must be noted, however, that some of the high intensity

hits made
::::
p99)

::::::::
percentile

::::::::
intensity

::::::::
thresholds

:::
in

::::::::
particular.

:::::
Once

:::::
again

:::
the

:::::::::
persistence

:::::::
forecast

::
is
::::::::
included

:::
for

::::::::
reference.

::::
Not610

::::
only

::::
does

:::
the

:::::
figure

:::::::
provide

:
a
::::::::
temporal

::::::
picture

::
of

::::::::::
forecasting

::::::::::
performance

::::
but

:::
the

:::::::
different

::::::
models

::::
can

::::::
readily

::
be

:::::::::
compared

::
to

:::
the

::::::::
’baseline’

:::::::::
persistence

:::::::
forecast

:::::::::::
(black-dotted

:::::
line).

::::
The

:::::
figure

::::::
clearly

:::::
shows

::::
that

:::
the

::::::::::
imbalanced

::::::::
regression

::::::
losses

:::::
result

::
in

::::::::
sustained

::
hit

::::
rates

:::
H

::::
over

::::::::
lead-time,

:::::
while

:::::
false

:::::
alarm

::::
rates

::::
FAR

::::
and

::::::::
frequency

::::
bias

::
B

:::::
suffer

:::::
large

::::::::
increases,

::
as

:::::::::
compared

::::
with

:::
the

:::::::
standard

:::::
MAE

:::
and

:::::
MSE.

:::::::
Indeed,

::::
none

::
of

:::
the

::::::::::
imbalanced

:::::::::
regression

:::
loss

::::::::
functions

:::::::
succeed

::
in
:::::::::
increasing

:::::
either

:::
H

::
or

::
TS

:::::::
without

:::::::
inflating

:::::
FAR

::
or

::
B

::
to
:::::

some
:::::::
degree;

::
in

::::
fact,

::::::::
typically

:::
the

::::
stark

::::::::::::
improvements

::
in
:::
H

:::::
result

::
in

::::::::
degraded

:::
TS

::::::
scores615

:::::
(most

:::::
clearly

::::::
visible

:::
for

:::
the

::::::
SERA

::::::
models

::
on

:::::::::
thresholds

::::
p75,

:::
p90::::

and
::::
p95).

::::::::
Although

::
the

:::::::
inverse

:::::::::
weighting,

:::
the

:::::
linear

::::::::
weighting

:::
and

:::
the

::::::
SERA

::::
loss

::::
each

::::::
provide

::
a

:::::::
different

::::
way

::
to

::::::
balance

::::::::::
forecasting

::::::::::
performance

:::::::
towards

::::::::
improved

:::
hit

:::::
rates,

::::
they

:::::::
achieve

::::
this

::::
aim

::::
with

:::::::
varying

:::::::
success.

::::
For

::::::::
example,

:::
not

::::
only

:::
are

:::
the

:::::::
heavily

::::::
inflated

::
B

::::
and

::::
FAR

::::::
scores

::::::::
produced

:
by the SERA (5) model are inevitably lost in the averaging process of the ensemble

forecasts.620

Although the inversely weighted
::::::
models

:::
not

::::::::
typically

:::::::
qualities

:::
of

::::::
reliable

::::::::::
forecasting

::::::::
systems,

:::
the

:::::::
models

::::
also

::
do

::::
not

::::::
succeed

:::
in

:::::::
keeping

:::
TS

::::::
scores

::::::
on-par

::::
with

:::
the

::::::::
standard

:
MAE and MSE lossshowed themselves to be less capable than

:
;

:::::::::
spectacular

::::::::::::
improvements

::
in

::
H

::::
thus

::::
seem

::
to
:::
be

::::::::
primarily

:
a
:::::
result

::
of

:::::::
extreme

:::::::::
overcasting

:::::
bias,

:::
not

::::::
actually

::::::::
improved

:::::::::
predictive

:::::
power.

:::::::::
Compared

::::
with

:
the SERA lossin shifting performance towards the extreme thresholds, we do note that other weighting

methods may yield better results. Shi et al. (2017), for example, utilised a linear weighting method for precipitation nowcasting625

using a trajectory gated recurrent unit (TrajGRU)network and reported improved performance at higher rain-rate thresholds
:
,

::
the

::::::::
inversely

::::::::
weighted

::::::
losses,

::::::::::
W-MAEinv :::

and
::::::::::
W-MSEinv ::::::

sustain
::
H

::::::
scores

::::
over

::::::::
lead-time

::
to

:
a
:::::
lesser

::::::
degree,

:::
but

:::::::::::
nevertheless

::::
show

::::::
strong

::::::::::::
improvements

::::
over

:::
the

:::::::
standard

::::::
MAE

:::
and

:::::
MSE

:::::
while

:::::::
showing

:::
no

:::::::
apparent

::::
loss

::
in
:::

TS
:::::

over
::::::::
lead-time

:::
(in

::::
fact,

:::::::
showing

:::::::::
substantial

:::::::::::
improvement

:::
for

::::::::
threshold

::::
p99),

:::
and

::::::::
inflating

::::
FAR

:::
and

::
B

::::::
scores

:::::
much

::::
more

:::::::::::::
conservatively.

::::::::
Although

:::
the

:::::
linear

:::::::
weighted

::::::
losses

::::::
display

::::
more

:::::::::::
conservative

::::
FAR

::::
and

::
B

:::::
scores

::::
still,

::
it

:
is
:::::::
evident

:::
that

::::
any

:::::::::::
improvements

::
in
:::
H

:::::
cease

:::::
rather630

::::::
quickly

:::::::
beyond

::
a
::::::::
threshold

::
of

::::
p95.

:::::
Lastly,

:::
the

::::::
RMSE

::::::
scores

:::::
show

::::::
clearly

::::
how

:::::::
forecasts

:::::::::
gradually

:::
lose

::::::::
precision

::::
with

:::::::::
increasing

:::::::::
lead-time.

::
It

::
is

:::::::::
interesting

::
to

:::
note

::::
that

:::
the

::::::::::
relationship

:::::::
appears

::
to

::
be

:::::::
roughly

::::::
linear.

::::
The

:::::::::
imbalanced

:::::::::
regression

::::::
losses

::::::::::
consistently

::::
show

:::::::::
improved

::::::
RMSE

:::::
scores

::::
over

::::::::
lead-time

:
as compared with the standard MSE and MAE (although this conclusion is based on the measuring

of performance using the critical success index (CSI) and the Heidke skill score (HSS), neither of which is recommended635

in the literature for the forecast verification of rare events due to score degeneracy (Stephenson et al., 2008))
:::::
MAE,

::::
MSE

::::
and
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:::::::::
persistence,

:::::
with

:::::
lowest

::::::
scores

:::
on

:::
the

::::::
higher

:::::::::
percentiles

:::::::
between

:::::::::
p95–p99.9::::::::

achieved
::
by

:::
the

::::::
SERA

::::::
losses,

::::::::
followed

:::
by

:::
the

:::::::
inversely

::::::::
weighted

:::::
losses

::::
and

:::::
lastly

::
the

:::::::
linearly

::::::::
weighted

:::::
losses.

3.1
:::::::
Forecast

:::::::::::
distributions

:::::
Figure

::
7
:::::::
provides

::
a
:::
set

::
of

:::
bar

::::::
charts

:::::::
showing

:::
the

:::::::
forecast

:::::::::::
distributions

::
of

:::
the

::::::::::
ConvLSTM

::::::
trained

:::::
with

:::
the

::::::
various

::::::::
different640

:::
loss

:::::::::
functions.

:::
The

::::::
figure

::
is

::::
split

::
up

::::
into

:::
the

::::::::
inversely

::::::::
weighted

:::::
losses

::::::::
(top-left),

:::
the

:::::::
linearly

::::::::
weighted

:::::
losses

::::::::::
(top-right),

:::
the

:::::
SERA

::::
loss

::::
with

:::::::
different

:::::::
primary

:::::::::::
control-points

:::::::::::
(bottom-left)

::::
and

:::
the

:::::::
standard

:::::
MAE

:::
and

:::::
MSE

:::::
losses

::::::::::::
(bottom-right).

::::::::
Included

::
in

:::
the

:::
bar

:::::
charts

::
is

:::
the

:::::::::
underlying

::::::::::
distribution

::
of

:::
the

:::::::::::
observations

::
in

:::
the

::::
test

:::
set,

:::::::
labelled

::
as

:::::::
’Target’

::::::
(black

:::::
dotted

:::::
line).

::::
The

::::::::::
distributions

::::
were

::::::::
sampled

::::
with

:
a
:::::::
step-size

:::
of

:::
0.5

:::::::::::
(standardised

::::
wind

:::::::
speed).

We proceed to make a note on the spatial verification that was conducted using the minimum coverage method. Figure ??645

suggests that upscaling the forecasts of the SERA (5) model offers no improvement to the forecasting of extreme events beyond

the 75th percentile threshold. For non-extreme events of the 50th percentile threshold, forecasts improve at coarser scales as it

becomes easier for the model to make correct predictions, which is the expected behaviour. This behaviour ceases, however, for

events beyond the 75th percentile threshold. We suspect that this is due to the fact that when a spatio-temporal region of extreme

events is missed by the model, it is typically missed completely and hence upscaling the forecast will do nothing to improve650

it. It may, furthermore, be explained by the fact that when forecasts of extreme events are made by the SERA (5) model, they

are typically substantially coarser than the observation, and often forecasted when there are, in fact, no extremes present in the

observation. We can see this well in
:::
The

:::::
figure

::::::
clearly

::::::
shows

::::
how

:::
the

::::::::
different

::::
types

:::
of

:::
loss

::::::::
functions

::::::
result

::
in

:::
the

:::::::
forecast

:::::::::
distribution

:::::
being

::::::
shifted

:::::::
towards

:::
the

::::
right

::::
tail

::
in

:::::
rather

::::::
distinct

::::::::
fashions.

::::::::::
Comparison

:::
of the forecast visualisations provided

in Fig. 9 and Fig. 10, or, additionally, in the supplementary material. Since we are using the minimum coverage criterion to655

spatially upscale the forecasts, a group of false alarms can easily result in an entire upscaled region being labelled as a false

alarm, increasing the false alarm rate F and thus degrading the SEDI skill score (see Eq. ??).
:::::::
different

:::::::
forecast

:::::::::::
distributions

::::
with

:::
the

:::::
target

::::::::::
distribution

::::::::
highlights

::::
the

:::::::
different

:::::::::::
undercasting

::::
and

:::::::::
overcasting

:::::::::
behaviour

::
as
::::::::

observed
:::::

from
:::
the

:::::::::
frequency

:::
bias

::::
(B)

::
in

:::::
Table

::
3.

::::::
While

::
all

::::::::::
imbalanced

:::::::::
regression

:::
loss

:::::::::
functions

:::::
appear

:::
to

::::
shift

::::
more

::::::::::
predictions

:::::::
towards

:::
the

::::
right

:::
tail

:::
of

::
the

:::::
target

:::::::::::
distribution,

::::
they

::::::::
evidently

:::::::
conserve

:::
the

:::::
shape

::
of

:::
the

:::::
target

::::::::::
distribution

::
to

:::::::
varying

:::::::
degrees,

::::
with

:::
the

::::::
SERA

:::
loss

::::
and660

::
the

::::::
linear

::::::::
weighting

::::::::
resulting

::
in

:::::
rather

:::::
large

:::::::::
distortions

:::
and

::::::
heavy

:::::::::
overcasting

:::
on

:::
the

::::
right

::::
tail.

::
In

::::
fact,

:::
the

::::::
SERA

::::
loss

:::::
shifts

:::::::::
predictions

:::::::
towards

:::
the

::::
right

:::
tail

::
of

:::
the

:::::
target

::::::::::
distribution

::::
with

::::
such

:::::::
severity

:::
that

::::
this

::::::
results

::
in

::
an

:::::::::
additional

::::
peak

::
on

:::
the

:::::
right

:::
side

::
of

:::
the

:::::::
forecast

::::::::::
distribution,

:::
the

::::
peak

::::::::
evidently

::::::
shifted

::::::
further

::::::
towards

:::
the

:::::
right

:::
tail

::
as

:::
the

::::::
primary

:::::::::::
control-point

:::::
varies

:::::
from

:::
p50 ::

to
:::
p90.

:

On another note, we wish to provide some insight665

3.2
::::::::::

Permutation
:::::
tests

::
In

:::
this

:::::::
section,

:::::
some

::::
more

::::::
insight

::
is
:::::
given

:
into the predictions made by the multi-layered ConvLSTM network by discussing

feature importance. In order to determine the importance of each of the 12 input frames that are used by the ConvLSTM to

make its prediction, we proceeded to carry out a permutation test
:::
was

::::::
carried

:::
out on the input data. For each input frame at time
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T (-11–0), we randomly shuffle all input frames from the testset
::::
were

::::::::
randomly

:::::::
shuffled

::::
(full

::::::
fields)

:
at time T (

:
, essentially670

nullifying the information flow from this input frame), gather .
:::::
Then

:
the model predictions from these permuted inputs and

compute
:::
were

::::::::
obtained

::::
and a skill score S (in %)

:::
was

:::::::::
computed

:
between the RMSE of the original prediction and target

(RMSEorg) and the permuted prediction and target (RMSEperm) i.e. S = (1−RMSEorg/RMSEperm) ∗ 100. A score of 0 %

indicates no change in RMSE, a score of 100 % indicates maximum increase in RMSE due to the permuted inputs and negative

scores indicate decrease in RMSE due to the permuted inputs. Not only does this offer insight into the importance that each675

input frame carries in the ultimate prediction but it also helps to ensure that the model is, in fact, basing its predictions on the

information flow between consecutive input frames rather than simply resorting to forecasting climatology. Figure ??

:::::
Figure

::
8
:
presents the RMSE skill scores obtained by the ensemble of the W-MAE, W-MSE and SERA-trained models

as aggregated over the testset,
::::::::

obtained
:::
by

:::
the

:::::::
different

:::::::
models. The figure shows that root mean squared errors tend to get

increasingly larger with
:::::
scores

:::
for

::
all

::::::
models

::::
get

:::::::::
particularly

:::::
large

::
as

:::
the

:
permuted input frame T approaching

:::::::::
approaches

:
0680

hours
:
.
::::
This

:::::
shows

::::::
clearly

::::
that

:::
the

:::
last

:::::
input

:::::
frame

::
at

::::
time

:::::
T = 0

:::::
hours

:::::
bears

::::
most

:::::::::
importance

::
to
:::
the

::::::::::
predictions,

::::::
which

:
is
::
to
:::
be

:::::::
expected

::::
from

::
a

::::::::
regression

::::::
model

::::::::
predicting

:::
the

::::::::::
continuation

:::
of

:
a
::::::::
sequence

::::
from

::::
time

:::::
frame

:::::
T = 0

:::::::
onward.

::::
The

:::::::
standard

:::::
MAE

:::
and

:::::
MSE

:::
loss

:::::
show

::
a

:::::
fairly

:::::
steady

::::
rise

::
in

::::::
RMSE

::::
skill

:::::
score

::::
from

::::
time

::::::::
T =−11

:::::::
towards

::::::
T = 0,

::::::::
showing

:::
that

:::::
more

:::::::
’recent’

:::::
frames

:::
of

:::
the

::::
input

::::
tend

::
to

::::
bear

:::::
more

:::::::::
importance

:::
in

:::
the

:::::::::
predictions

:::::
(with

:::
the

::::::::
exception

::
of

::
a

:::::
slight

::::
drop

:::
(for

:::
the

:::::
MAE

:::::
loss)

::
or

::::::::
stagnation

::::
(for

:::
the

::::
MSE

:::::
loss)

::
at

:::::::
T =−2

:::
and

::::::::
T =−1).

::::
The

::::::::::
imbalanced

:::::::::
regression

::::::
losses,

:::::::
however,

:::::
show

::
an

:::::::::
additional

:::::
jump685

::
in

::::::
RMSE

:::
skill

::::::
scores

:::::::
peaking

::::::
around

:::
ca.

:::::::
T =−8

:::
and

:::::::
T =−7,

:::::::::
where-after

::::::
scores

:::
fall

::::::::::
considerably

::::::
before

::::::::
gradually

::::::::
climbing

::::
again

:::
to

::::
peak

::
at

::::::
T = 0.

:::::::::::
Interestingly,

:::::
with

::::
these

::::::
earlier

::::::
frames

::
in
:::

the
::::::

inputs
:::::::
bearing

::::
more

::::::::::
importance

:::
on

:::
the

::::::::::
predictions,

::
it

::::::
appears

::::
that

:::
the

::::::
models

::::::
trained

:::::
with

:::
the

::::::
various

::::::::::
imbalanced

:::::::::
regression

:::::
losses

:::::
have

::::::
learned

::
to
::::::

utilise
:::::
more

::
of

:::
the

:::::::::
long-term

:::::::::
information

::::
flow

:::
in

::
the

::::::
inputs

::
to

:::::::
improve

:::
the

:::::::::
forecasting

:::
on

:::
the

::::::::
extremes.

3.3
:::::::

Forecast
::::::::
examples690

::::::
Finally,

::::
Fig.

::
9,

:::
Fig.

:::
10

:::
and

::::
Fig.

::
11

::::::
present

::::::::::::
visualisations

::
of

::::
three

::::::::
selected,

:::::::
example

:::::::
forecasts

:::::
made

:::
by

::
the

::::::::
different

::::::::::
ConvLSTM

::::::
models

::::::::::
investigated

::
in

::::
this

:::::
paper,

:::::
which

:::::
serve

::
to
::::::::
highlight

::::
their

:::::::::
respective

::::::::
strengths

:::
and

:::::::::::
weaknesses.

::
In

::::
each

::::::
figure,

:::
the

::::
first

:::
row

::::
from

:::
the

:::
top

:::::::
displays

:::
the

:::
12

::::
input

:::::::
frames,

:::
the

::::::
second

:::
row

:::::::
displays

:::
the

::::::::::
succeeding

::
12

:::::
target

::::::
frames

:::
and

:::
the

::::::::
following

:::::
rows

::::::
display

:::
the

::
12

::::::::
predicted

::::::
frames

::
of

:::
the

::::::
various

:::::::
models.

::
T

:::::
refers

::
to

:::
the

:::::
index

::
of

:::
the

:::::
frame

:::
(in

::::::
hours),

:
with an intermediate jump

between -9 and -6 hours and a large jump from -3 to 0 hours, where a score of approx. 60% is reached. This shows clearly695

that the predictions of the ensemble model are heavily dependant on the input frames, with the the most recent frames carrying

most importance to the final prediction, but also, interestingly, the frames -9 to -6 hours, perhaps utilised by the ConvLSTM for

the more long term dynamics . Most important to the final prediction is clearlythe last input frame at time T = 0 hours, which

comes as no surprise since the model is a regression model tasked to predict the continuation of spatio-temporal sequence

from time frame T = 0
:::::::
denoting

:::
the

:::
last

:::::
input

:::::
frame

:::
and

::::::::
T =+12

::::::::
denoting

:::
the

::::
final

:::::
target

:::
and

:::::::::
prediction

::::::
frames.

::::::
Rather

::::
than700

:::::::
showing

:::
the

:::
raw

::::::::::
predictions,

:::
the

::::::::::
predictions

:::
are

::::::::::
categorised

:::
into

::::::
binary

::::::
events

:::::
using

::::
local

:::::::::
percentile

:::::::
intensity

:::::::::
thresholds.

:::
In

:::
this

:::::::
fashion,

:::
the

::::::
figures

::::
show

::::::::
precisely

:::::
where

:::
the

::::::::
different

::::
types

:::
of

:::::
events

:::::
were

:::::::
predicted

::::
and

:::::
where

::::
not.
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:::
All

::::
three

:::::::::
examples

:::::
show

:
a
::::::

target
::::::::::
observation

::
of

:::
an

::::::::::::
intensification

:::
of

:::::::
extreme

::::::
winds,

::::
each

::::::::
resulting

::
in
::

a
:::::
patch

:::
of

::::
99th

::::::::
percentile

::::::
events

:::::::
between

:::::
from

:::
ca.

::::::::
T =+8 onward.

:
In

:::::
each

:::::
case,

:::
the

::::::::
standard

:::::
MAE

::::
and

:::::
MSE

::::
loss

:::::
either

:::::::
forecast

::::
the

:::::::::::
intensification

::
to
:::::

some
::::::
degree

:::
but

::::::
largely

:::
fail

:::
to

::::::
capture

:::
the

::::
99th

::::::::
percentile

::::::
events

::::
(Fig.

::
9
:::
and

::::
Fig.

:::
11)

:::
or

:::
they

::::
fail

::
to

:::::::
forecast705

::
the

:::::
event

::::::::::
completely

::::
(Fig.

:::
10).

:::
In

::::::::::
comparison,

::::::::
inversely

:::::::
weighted

::::::
losses

::::::::::
(W-MAEinv::::

and
::::::::::
W-MSEinv)

::::
show

::
a
:::::
much

::::::::
improved

:::::
ability

::
to

:::::::
forecast

:::
the

::::
right

::::::::::::
intensification

:::
and

:::
the

::::
right

::::::
degree

::
of

:::::::
extreme

::::::
events,

::::
with

:::
the

:::::::::
W-MAEinv::::::::::

performing
::::::
clearly

:::::
better

::
in

:::
Fig.

:::
11

::::
than

:::
the

::::::::::
W-MSEinv .

:::::
From

:::
the

:::::::
forecasts

::
of
:::

the
::::::

linear
:::::::
weighted

::::::
losses,

:::
the

:::::
heavy

:::::::::
frequency

::::
bias

::
on

:::::
lower

:::::::::
percentile

:::::
events

:::::
(seen

::
in

:::::
Table

:::
3,

::::
Fig.

:
6
::::

and
::::
Fig.

::
7)

::::
can

:::
be

:::::
easily

::::::::::::
distinguished,

::::::::
although

:::::
some

::::
95th

:::
and

::::
99th

:::::::::
percentile

::::::
events

:::
are

:::::::
captured.

::::::::
Between

:::
the

:::::::::
SERAp90,

::::::::
SERAp75:::

and
:::::::::
SERAp50 ::::::

models,
:::

the
:::::::::

examples
::::::
clearly

:::::
reflect

:::
the

:::::::
heavily

::::::
inflated

:::::::::
frequency710

:::
bias

:::::::
towards

:::
the

::::::
higher

::::::::::
percentiles,

::::
with

::::
bias

::::::::
increasing

:::::
more

:::::::
towards

:::
the

::::
99th

::::::::
percentile

::
as

:::
the

:::::::
primary

:::::::::::
control-point

::::::
varies

::::
from

:::
p50::

to
:::
p90:::

(in
::::
line

::::
with

:::
the

::::::::
behaviour

::::::::
discussed

::
in

::::
Fig.

:::
7).

We finish by briefly discussing

4
:::::::::
Discussion

:::
The

::::::
results

::::::::
presented

::
in

:::
this

:::::
paper

:::::::
indicate

:::
that

:::
the

:::::::::::
multi-layered

::::::::::::
convolutional

::::
long

::::::::
short-term

:::::::
memory

::::::::::::
(ConvLSTM)

:::::::
network715

:::
can

::
be

:::::::
adapted

::
to

:::
the

:::
task

:::
of

:::::::::::::
spatio-temporal

:::::::::
forecasting

::
of

:::::::
extreme

::::
wind

::::::
events

:::::::
through

::
the

:::::::::::
manipulation

:::
of

:::
the

:::
loss

::::::::
function.

::
By

:::::::::
analysing

:::
the

::::::::
forecasts

::
of

:::
the

::::::::::
ConvLSTM

:::::::
trained

::::
with

:::
the

:::::::
various

:::::::::
imbalanced

:::::::::
regression

::::
loss

::::::::
functions

::::::::::
investigated

:::
in

:::
this

:::::
work,

:::::::
utilising

::::::
various

::::::::
different

:::::
scores

::::
and

:::::::
intensity

:::::::::
thresholds,

::
as

::::
well

::
as
::::::::::
comparing

::::::
forecast

:::::::::::
distributions

:::
and

:::::::::
visualised

::::::
forecast

:::::::::
examples,

:
it
::
is

::::
clear

::::
that

::::::
inverse

:::::::::
weighting,

::::
linear

:::::::::
weighting

:::
and

:::::::
squared

::::::::::::
error-relevance

::::
area

:::::::
(SERA)

:::
loss

::::
each

:::::::
provide

:::::
viable

::::
ways

:::
of

::::::
shifting

:::::::::
predictive

::::::::::
performance

::
of

:::
the

::::::::::
ConvLSTM

:::::::
towards

:::
the

:::
tail

::
of

:::
the

:::::
target

::::::::::
distribution.

:::::::::::
Furthermore,

:::::
from720

::
the

:::::::::::
permutation

::::
tests

:
it
::
is

::::
clear

::::
that

::
all

::::::::::
ConvLSTM

::::::
models

::::::
utilise

:::
the

:::::::::
information

::::
flow

:::::
from

:::
the

:::::
inputs

::
to

:::::::
compute

:::
the

::::::::
forecasts

:::
and,

:::::::::::
interestingly,

::
it
:::::::
appears

::::
that

::::::::
networks

::::::
trained

::::
with

::::::::::
imbalanced

:::::::::
regression

::::
loss

::::
may

::
be

::::::::
utilising

::::
more

:::::::::::
information

::::
flow

::::
from

::::::::
long-term

::::::::
dynamics

::::
than

:::
the

:::::::
baseline

:::::::
models

::::::
trained

::::
with

:::::::
standard

:::::
MAE

:::
and

:::::
MSE

::::
loss.

:

:::
The

::::::
results

:::::::
indicate

:::
that

:::
hit

::::
rates

::::
and

::::::
RMSE

:::::
scores

::::
can

::
be

::::::
greatly

::::::::
improved

:::
for

:::::::
extreme

::::::
events

::
up

:::::
until

:::
the

:::
99th

:::::::::
percentile

::::::::
threshold,

::::::::::
where-after

:::
hit

::::
rates

:::::
drop

:::::::::::
considerably

:::
and

:::::
cease

:::
to

::::::
surpass

::::::::::
persistence

::::::
scores.

:::::
Table

::
3
::::
and

:::
Fig.

::
6
:::::::::::
demonstrate725

::::::
clearly,

::::::::
however,

:::
that

::::::::::::
improvements

::
in

:::
hit

:::
rate

:::
are

::::::::::::
accompanied

::
by

:::::::::::
proportionate

::::::::
increases

:::
in

::::::::
frequency

::::
bias

:::
and

:::::
false

:::::
alarm

:::::
ratios.

:::::
When

::::
this

:::::::
trade-off

::
is
::::::::::
particularly

::::::::
extreme,

::
as

::
in

:::
the

::::
case

::
of

:::
the

::::::
SERA

::::
loss

::::
with

:::
the

::::::::::::::
here-investigated

:::::::::::::
control-points,

:::
not

::::
only

::
do

:::::
threat

::::::
scores

:::::
begin

::
to

:::::
suffer

::::::::::
considerably

:::
but

:::
the

::::::
model

::::
also

::::
loses

:::
its

:::::::
viability

::
as

:
a
:::::::
reliable

:::::::::
forecasting

::::::
model

::::
with

::::
false

:::::
alarm

:::::
ratios

::::::::
massively

::::::::
inflated.

::::::::
Lowering

:::
the

:::::::
primary

:::::::::::
control-point,

::::::::
however,

:::::
from

:::
the

::::
90th

::::::::
percentile

:::::
(p90)

::
to

:::
the

::::
50th

::::::::
percentile

::::
(p50)

:::::
limits

::::
this

::::::::
behaviour

:::
for

:::::::
extreme

::::::
events

:::::::
between

:::
the

::::::
90–99th

::::::::::
percentiles

:::
(see

::::
Fig.

:::
6).730

:::
The

:::::
linear

:::::::::
weighting

:::::::
method,

::::::
instead,

::::::
shows

:::::::
minimal

:::::::::::
improvement

::
in

::
hit

::::
rate

::::
over

:::
the

:::::::
standard

:::::
MAE

:::
and

:::::
MSE

::
on

::::::::
intensity

::::::::
thresholds

::::::
above

:::
p90,

:::
as

:
it
::::::::
increases

::::::::::
forecasting

::::
bias

::::::
mostly

:::::
closer

::
to

:::
the

:::::::
median

:::
and

:::
not

:::
the

::::
tails

::::
(see

::::
Fig.

:::
7),

:::::
which

::::::
means

:::
that

::
it

::::
does

:::
not

::::::
appear

::
to

:::
put

::::::
enough

:::::::
relative

::::::
weight

::
on

:::
the

:::::::
extreme

::::
tails.

::
It

::::::
should

::
be

::::::
noted,

:::::::
however,

::::
that

:::
the

:::::
linear

::::::::
weighing

::::::
method

:::::
tested

::::
here

::::
was

::::::
tested

::::
only

::::
with

::::
one

::::
slope

::::
and

:::::
other

:::::
slopes

::::
may

:::::
yield

:::::
better

:::::::
results.

:::::::::::::
Shi et al. (2017)

:
,
:::
for

::::::::
example,

::::::
utilised

:
a
:::::
linear

:::::::::
weighting

::::::
method

:::
for

:::::::::::
precipitation

:::::::::
nowcasting

:::::
using

::
a

::::::::
trajectory

:::::
gated

:::::::
recurrent

::::
unit

:::::::::
(TrajGRU)

:::::::
network

::::
and735
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:::::::
reported

::::::::
improved

:::::::::::
performance

::
at

::::::
higher

:::::::
rain-rate

:::::::::
thresholds

::
as

:::::::::
compared

::::
with

:::
the

::::::::
standard

::::
MSE

::::
and

:::::
MAE

::::::
(based

:::
on

:::
the

:::::
threat

::::
score

::::
and

:::
the

::::::
Heidke

::::
skill

::::::
score).

:::::::
Between

:::
the

:::::
three

:::::
types

::
of

::::::::::
imbalanced

::::::::
regression

::::
loss

::::::::::
investigated

:::
in

:::
this

:::::
work,

:::
the

:::::::
inverse

::::::::
weighting

:::::::
method

:::::::
appears

::
to

::::
strike

::::
the

:::
best

:::::::
balance

::::::::
between

::::::::
improved

:::
hit

:::
rate

::::::
versus

:::::::::
increased

::::::::
frequency

::::
bias

::::
and

::::
false

:::::
alarm

:::::
ratio.

::::
Not

::::
only

:::::
does

:::
the

::::::
inverse

::::::::
weighting

:::::::
method

::::::
sample

:::
the

:::::
target

::::::::::
distribution

::::
more

:::::::::
accurately

::::
(see

::::
Fig.

::
7),

:::
but

:::::::::
frequency

::::
bias

:::
and

::::
false

:::::
alarm

:::::
rates740

::
are

:::::::::::
substantially

::::
less

::::::
inflated

::::
than

:::
the

:::::
SERA

::::::
losses

::::
over

::
all

::::::::
percentile

:::::::::
thresholds

:::::::
between

::::::::
p75–p99,

:::::
while

::
hit

::::
rates

:::::::::::
nevertheless

::::::
greatly

:::::::
improve

::::
over

:::
the

::::::::
standard

:::::
MAE

:::
and

:::::
MSE

:::
and

::::::
threat

:::::
scores

:::::::
remain

:::::
on-par

::::
(see

::::
Fig.

:::
6).

::::
The

::::::::::
W-MAEinv :::::::

appears
::
to

::::
strike

::::
this

::::::
balance

:::::::
slightly

:::::
better

::::
than

:::
the

::::::::::
W-MSEinv .l

:

::::
This

:::::::::
discussion

:::
will

:::::
finish

:::
by

::::::::::
mentioning a number of possible extensions of this work. One disadvantage of utilising the

entirety of available data in the context of this work is that many of the input-target samples containing extreme winds are745

samples where extreme winds are present in both the input as well as the target. Examples where there are no extremes present

in the input, but the target is showing onsets of extremes, are disproportionately rare in the data although they clearly represent

a more interesting problem (e.g. for early-warning systems). Improving our model as an early-warning system of onsets of

extreme winds may thus be obtained by focusing model-learning on precisely such training samples, rather than employing all

available samples. To this end, it could be worthwhile to change the model into a nowcasting model. This
:
,
:::::
which

:
would entail750

reducing the lead-time of the model to below 6 hours while increasing the temporal and spatial resolutions of the data, possibly

by utilising more precise ground data than raster data from satellites, as recommended by Amato et al. (2020).

This work may, furthermore, be extended by taking a multi-variate approach to wind speed forecasting whereby other

atmospheric variables are included into the input of the model, which is an approach that is already being pursued in the

community (see: e.g. Racah et al., 2017; Marndi et al., 2020; Xie et al., 2021). Marndi et al. (2020) suggest the utilisation755

of temperature, humidity and pressureinto the forecasting task as these have been found to be ",
::
as
:::::::::::::::::::

Cadenas et al. (2016)

:::
has

:::::
found

:::::
these

::
to

:::
be significantly more important than other atmospheric variables " - a result based on the work done by

Cadenas et al. (2016)
::::::::::
atmospheric

:::::::
variables

:::
to

::
the

::::
task

::
of

:::::
wind

:::::::::
forecasting. Xie et al. (2021) use these same three variables, as

well as the 1-hour minimum and maximum temperature, while Racah et al. (2017) use a much larger set of 16 atmospheric

variables, albeit for the classification of large-scale extreme weather events and not for regression of wind speed. It may also be760

worthwhile to consider other atmospheric variables such as the convective available potential energy (CAPE) and deep-layer

wind shear (DLS) due to their strong correlation with severe convective storm activity such as the occurrence of thunderstorms

and supercells (see: e.g. Rädler et al., 2015; Tsonevsky et al., 2018; Chavas and Dawson II, 2021).
:::::::
Another

:::::::
possible

::::::::
extension

:::::
would

::
be

:::
to

:::::::::
implement

:::::::::
categorical

::::::
scores

::::::
directly

::::
into

:::
the

::::
loss

:::::::
function

:::::::::::::::::::::::::::::::::::::
(see e.g. Lagerquist and Ebert-Uphoff, 2022)

:
or

:::::
even

:::::::
combine

:::
the

::::::::::
ConvLSTM

::::
with

:
a
::::::::
so-called

::::::::::::
physics-aware

::::
loss

:::::::
function

::::::::::::::::::::::::::::::::::::::::
(see e.g. Schweri et al., 2021; Cuomo et al., 2022)

:
.765

Finally, we note
::
it

:::::
should

:::
be

:::::
noted that while the ConvLSTM has proven itself to be highly effective at modelling complex

spatio-temporal patterns, other models have since been proposed as promising improvements to the ConvLSTM for the task

of spatio-temporal sequence forecasting. Most notably, the PredRNN and its predecessor
:::::::
successor

:
PredRNN++, proposed

by Wang et al. (2017) and Wang et al. (2018), respectively, have been demonstrated to be superior to the ConvLSTM for

the task of video frame prediction by maintaining a global memory state rather than constraining memory states to each770
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ConvLSTM module individually. Other alternative approaches include the usage of functional neural networks (FNNs) (see:

Rao et al., 2020) or generative adversarial networks (GANs) (see: Gao et al., 2020). Such models may well be of interest to the

meteorological community pursuing data-driven, spatio-temporal forecasting.

5 Conclusions

In this paper we explored a deep learning approach to the task of spatio-temporal prediction of wind speed extremes in775

the short-to-medium range
:::
was

::::::::
explored

::::
and,

::
in

:::::::::
particular,

:::
the

::::
role

:::
of

:::
the

::::
loss

:::::::
function

::::
was

::::::::::
investigated. To this end, we

investigated the application of a multi-layered convolutional long short-term memory (ConvLSTM) network , which we

adapted to imbalanced
:::
was

:::::::
adapted

::
to

:::
the

::::
task

:::
of spatio-temporal

:::::::::
imbalanced

:
regression by training the model with either

inversely weighted mean absolute error (W-MAE), inversely weighted mean squared error (W-MSE) or squared
:
a
::::::
number

:::
of

:::::::
different

::::::::::
imbalanced

::::::::
regression

::::
loss

::::::::
functions

::::::::
proposed

::
in

:::
the

:::::::::
literature:

::::::::
Inversely

::::::::
weighted

::::
loss,

:::::::
linearly

::::::::
weighted

:::
loss

::::
and780

::::::
squared

:
error-relevance area (SERA) loss. The models were trained and tested on reanalysis wind speed data from the Euro-

pean Centre for Medium-Range Weather Forecasts (ECMWF) at 1000 hP
:::
hPa, providing multi-frame forecasts of horizontal

near-surface wind speed over Europe with a 12 hour lead-time and in one hour intervals, using the preceding 12 hours as input.

By standardising the data based on the local wind speed distributions at each coordinate we focused the definition of an extreme

event
:::
was

::::::
focused

:
on its relative rarity rather than its absolute severityand considered extreme winds

:
,
::::
with

:::::::
extreme

:::::
winds

::::
thus785

:::::::::
considered in terms of their local distributional percentile.

The model forecasts were verified by computing the symmetric extremal dependence index (SEDI)
:::::::
analysed

:::
and

:::::::::
compared

::::
with

:
a
::::::
variety

::
of

::::::
scores, over various lead-times , spatial scales and intensity thresholds. After determining the optimal number

of network layers for each of the models (trained with either W-MAE, W-MSE, SERA or standard MAE and MSE loss ), a

comparison
::
the

::::::::::
ConvLSTM

:::::::
trained

::::
with

:::
the

::::::
various

:::::::
different

::::
loss

:::::::::
functions,

::
an

::::::::
extensive

::::::::::
comparison

::::
was

:::::
made between the790

different loss functions was made in Table 3
:::
and

:::
two

:::::::
baseline

::::::
models

::::::
trained

::::
with

:::::
either

:::::
mean

:::::::
absolute

::::::
(MAE)

::
or

:::::
mean

:::::::
squared

:::::
(MSE)

::::
loss. The results show that the imbalanced regression loss functions investigated in this paper (W-MAE, W-MSE and

SERA loss) can be used effectively to improve forecasting performance
:
to
:::::::::::

substantially
:::::::
improve

:::
hit

:::::
rates

:::
and

::::::
RMSE

::::::
scores

:::
over

::::
the

:::::::
baseline

:::::::
models,

::::::::
however,

::
at

:::
the

::::
cost

::
of

::::::::
increased

:::::::::
frequency

::::
bias

::::
and

::::
false

:::::
alarm

::::::
ratios.

::::
The

:::::
SERA

::::
loss

::::::::
provides

::
an

:::::::
extreme

::::
case

::
of

::::
this

:::::::::
behaviour,

::::::::
typically

::
at

:::
the

:::::::::
additional

:::
cost

:::
of

:::::::::
reductions

::
in

:::::
threat

::::::
score,

:::::::
although

::::::
results

:::
are

:::::::
heavily795

::::::::
dependent

:::
on

:::
the

::::
loss

::::::::
function’s

::::::::
so-called

::::::::::::
control-points.

::::
The

:::::
linear

:::::::::
weighting

::::::
method

::::::
shows

:::::
some

::::::
ability

::
to

:::::
boost

::
hit

:::::
rates

::::
while

:::::::
keeping

:::::::::
frequency

::::
bias

:::
and

:::::
false

:::::
alarm

::::
ratio

::::::::::::
comparatively

::::
low,

::::::::
although

:::
the

:::::
utility

:::
of

:::
the

::::::
method

::
is
::::
lost for extreme

events beyond the 75th percentile threshold. While the results indicate superior performance of the SERA loss over the W-MAE

and W-MSE loss in forecasting extreme wind events of intensity thresholds between to the 90–99th percentiles, we observed

that this goes hand-in-hand with a severe
:::
90th

::::::::
percentile

:::::::
intensity

:::::::::
threshold,

::::
with

:::::::::
predictions

::::::
heavily

::::::
biased

:::::::
towards

::
the

:::::::
median800

::
of

:::
the

::::::::::
distributions

:::::
rather

::::
than

::::
the

::::
right

:::
tail.

:::::::
Inverse

::::::::
weighting

::
is
:::::::::
concluded

::
to

:::::
strike

:::
the

::::
best

::::::::
trade-off

:::::::
between

::::::::
improved

:::
hit

::::
rates

:::
and

::::::::
sustained

:::::
threat

:::::
scores

::::::
versus

::::::::
increased frequency bias and an increased coarseness of

::::
false

::::
alarm

:::::
ratio,

:::::
across

:::::::
various

::::::::
thresholds

::
of

:::::::
extreme

::::::
events

::
up

::::
until

:::
the

::::
99th

::::::::
percentile

:::::::
intensity

::::::::
threshold

:
-
::::
with

:::
the

::::::::
weighted

:::::
MAE

::::
loss

::::::
scoring

::::::
slighly

:::::
better
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:::
than

:::
the

::::::::
weighted

:::::
MSE

::::
loss.

::::
The

::::::
inverse

::::::::
weighting

:::::::
method,

:::::::::::
furthermore,

::::::
results

::
in

:
a
:::::
better

::::::::
sampling

::
of

:::
the

:::::
target

::::::::::
distribution

::
as

::::::::
compared

::::
with

:::
the

:::::
linear

::::::::
weighting

:::
or

::
the

::::::
SERA

::::
loss.

::::
Out

::
of

:::
the

:::::::
different

::::::::::
imbalanced

::::::::
regression

::::
loss

::::::::
functions

::::::::::
investigated805

::
in

:::
this

:::::
work,

:::
the

:::::::
inverse

::::::::
weighting

::::
loss

::
is
::::
thus

:::::::::
concluded

::
to
:::

be
:::::
most

:::::::
effective

::
at

::::::::
adapting

:::
the

::::::::::
ConvLSTM

::
to

:
the forecasts.

While the SERA loss thus tends to produce worst-case scenarios, we observe greatly improved results when combining the

W-MAE, W-MSE and SERA-trained models into an ensemble. Table ?? and Fig. ?? show this quantitatively, while the forecast

visualisations in Fig. 9 and 10 show qualitatively that the ensemble is able to model the complex spatio-temporal dynamics of

both extreme and non-extreme wind speeds very effectively as far as 12 hours into the future. We conclude that the inversely810

weighted loss and the squared error-relevance area loss provide relatively easy and effective ways to adapt deep learning to

the task of imbalanced spatio-temporal regression and its application to the forecasting of extreme wind events in the short-

to-medium range, and may be best utilised as an ensemble. With this work we hope .
:::::

With
:::::
these

::::::
results,

::::
this

::::
work

::
is
::::::
hoped

to provide a valuable contribution to the area of deep learning for wind energy applications as well as the area of imbalanced

spatio-temporal
::::::::::
imbalanced regression and its verification as a forecasting problem

:::::::::
application

::
to

:::::
wind

::::::
energy

::::::::::
forecasting815

:::::::
research.

Code and data availability. The current version of model is available at the project repository on Github: https://github.com/dscheepens/De

ep-RNN-for-extreme-wind-speed-prediction under the MIT license. The exact version of the model used to produce the results used in this

paper is archived on Zenodo (DOI: 10.5281/zenodo.7369015), as are scripts to run the model and produce the plots for all the simulations

presented in this paper. The data used in this paper can be downloaded from the Copernicus Climate Change Service Climate Data Store820

(CDS) of the ECMWF (see Hersbach et al., 2018), where the reanalysis data of the U and V components of the horizontal wind velocity

were taken at 1000 hPa from the ERA5 hourly data on pressure levels from 1979 to present dataset between years 1979-2021 (42 years) and

between 40-56◦ N and 3-19◦ E. Scalar wind speed was obtained by computing the square root of the sum of the squares of the two wind

velocity components. Scripts to generate the data as such are available in the project repository.

Sample availability. Sample forecasts are available at https://github.com/dscheepens/Deep-RNN-for-extreme-wind-speed-prediction/exa825

mple_forecasts.

6 Figures

Results from the permutation test as carried out for the ensemble model consisting of the W-MAE, W-MSE and SERA-trained

ConvLSTM networks. The figure shows the RMSE skill score (in %) between the targets and the normal predictions of the

ensemble, and the targets and the predictions resulting from randomly permuting the inputs at time-frame T . A score of 0%830

indicates no change in RMSE, a score of 100% indicates maximum increase in RMSE due to the permuted inputs and negative

scores indicate decrease in RMSE due to the permuted inputs.
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Figure 6. Comparison of
::
the

::
hit

:::::
score

:::
(H),

::::
false

:::::
alarm

::::
ratio

:::::
(FAR),

:::::
threat

::::
score

::::
(TS),

:
frequency bias (in %

:
B) and

:::
root

:::::
mean

::::::
squared

::::
error

:
(RMSE) of the ConvLSTM network trained with either W-MAE, W-MSE, SERA, MAE or MSE

:::
the

:::::
various

:::::::
different loss . Frequency bias is

presented for winds
:::::::
functions,

:::::
plotted

::::
over

:::::::
lead-time (y

:
in
:::::
hours) exceeding local

::
and

::::::
various

:::::::
percentile

:
intensity thresholdsvarying between

the 50th and 99.9th percentiles. The optimal number of network layers used for each loss function is given in brackets after the name of

the loss function. Also included in
:::
The

::::
label

::::::::::
’persistence’

::::
refers

::
to

:
the table is the ensemble model, consisting of the W-MAE, W-MSE and

SERA-trained networks
::::::::
persistence

::::::
forecast.

Frequency bias

y ≥ p50 y ≥ p75 y ≥ p90 y ≥ p95 y ≥ p99 y ≥ p99.9 RMSE

W-MAE (5) 104.2 113.6 121.1 123.6 101.9 39.8 0.551

W-MSE (5) 111.5 124.2 136.6 140.2 103.6 29.4 0.610

SERA (5) 108.0 143.4 249.1 348.5 166.4 34.8 0.872

MAE (4) 97.1 92.1 84.0 77.3 57.7 30.7 0.481

MSE (5) 96.7 91.6 84.2 78.5 59.5 29.2 0.487

Ensemble 109.6 129.9 164.2 166.5 102.5 29.6 0.626
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Figure 7.
:::
Bar

:::::
charts

::
of

::::::
forecast

:::::::::
distributions

::
of

:::
the

:::::::::
ConvLSTM

:::::
trained

::::
with

::
the

::::::
various

:::::::
different

:::
loss

:::::::
functions,

::::::::
compared

::
to

::
the

:::::::::
underlying

::::::::
distribution

::
of

:::
the

:::::::::
observations

::
in
:::
the

:::::
testset,

:::::::
labelled

:
as
:::::::

’Target’
:::::
(black

:::::
dotted

::::
line).

:::
Top

:::
left:

::::
The

:::::::
inversely

:::::::
weighted

:::::
losses.

:::
Top

::::
right:

::::
The

:::::
linearly

::::::::
weighted

:::::
losses.

::::::
Bottom

:::
left:

:::
The

::::::
SERA

:::
loss

::::
with

::::::
different

::::::
primary

:::::::::::
control-points

::::
(with

:::
the

::::::::
secondary

::::::::::
control-point

::::
fixed

::
at

::::
p99).

:::::
Bottom

:::::
right:

:::
The

:::::::
standard

::::
MAE

:::
and

::::
MSE

:::::
losses.

::::
The

:::::::::
distributions

::::
were

::::::
sampled

::::
with

:
a
:::::::
step-size

::
of

:::
0.5

::::::::::
(standardised

::::
wind

:::::
speed).
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Figure 8.
::::::
Results

::::
from

::
the

::::::::::
permutation

::::
tests.

:::
The

:::::
figure

:::::
shows

::
the

::::::
RMSE

:::
skill

::::
score

:::
(in

:::
%)

::::::
between

:::
the

:::::
targets

:::
and

:::
the

:::::
normal

:::::::::
predictions

:
of
::::

each
::

of
:::

the
::::::
models

:::
and

:::
the

:::::
targets

:::
and

:::
the

:::::::::
predictions

:::::::
resulting

::::
from

:::::::
randomly

::::::::
permuting

:::
the

:::::
inputs

::
at

::::::::
time-frame

:::
T .

::
A

::::
score

::
of

::
0

::
%

::::::
indicates

:::
no

:::::
change

::
in

::::::
RMSE,

:
a
:::::
score

::
of

:::
100

::
%

:::::::
indicates

:::::::
maximum

:::::::
increase

::
in

:::::
RMSE

:::
and

:::::::
negative

:::::
scores

::::::
indicate

::::::
decrease

::
in
::::::
RMSE

:::
due

:
to
:::
the

:::::::
permuted

::::::
inputs.

:::
Top

::::
right:

::::
The

::::::
linearly

:::::::
weighted

:::::
losses.

::::::
Bottom

:::
left:

:::
The

:::::
SERA

::::
loss

:::
with

:::::::
different

::::::
primary

:::::::::::
control-points

::::
(with

:::
the

:::::::
secondary

::::::::::
control-point

::::
fixed

::
at

::::
p99).

::::::
Bottom

::::
right:

:::
The

:::::::
standard

::::
MAE

:::
and

:::::
MSE

:::::
losses.
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 9.
::
An

::::::
example

:::::::
forecast

::::
from

:::
the

:::::::::
ConvLSTM

::::::
network

::::::
trained

::::
with

::
the

::::::
various

:::::::
different

:::
loss

::::::::
functions.

:::
The

::::
first

:::
row

::::
from

:::
the

:::
top

::::::
displays

:::
the

::
12

::::
input

::::::
frames,

::
the

::::::
second

:::
row

:::
the

::::::::
succeeding

:::
12

::::
target

:::::
frames

::::
and

::
the

::::::::
following

::::
rows

::
the

::
12

::::::::
predicted

:::::
frames

::
of

:::
the

::::::
models.

:
T
:::::
refers

::
to

::
the

:::::
index

::
of

::
the

:::::
frame

:::
(in

:::::
hours),

::::
with

:::::
T = 0

::::::
denoting

:::
the

:::
last

::::
input

:::::
frame

:::
and

:::::::
T =+12

:::::::
denoting

:::
the

:::
final

:::::
target

:::
and

::::::::
prediction

:::::
frames.

::::::
Rather

:::
than

:::::::
showing

::
the

:::
raw

:::::::::
predictions,

:::
the

::::::::
predictions

:::
are

:::::::::
categorised

:::
into

:::::
binary

:::::
events

::::
using

::::::::
percentile

:::::::
intensity

::::::::
thresholds.
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 10.
::
As

::::
Fig.

:
9
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 11.
::
As

::::
Fig.

:
9
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