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Abstract. Satellite and hydrological model-based technologies provide estimates of rainfall and soil moisture over larger 

spatial scales and now cover multiple decades, sufficient to explore their value for the development of landslide early warning 

system in data scarce regions. In this study, we used statistical metrics to compare gauge-based to satellite-based precipitation 

products and assess their performance in landslide hazard assessment and warning in Rwanda. Similarly, the value of high 15 

resolution satellite and hydrological model-derived soil moisture was compared to in situ soil moisture observations at Rwanda 

weather station sites. Based on statistical indicators, the NASA GPM-based IMERG rainfall product showed the highest skill 

to reproduce the main spatiotemporal precipitation patterns at the studies sites in Rwanda. Similarly, the satellite and model-

derived soil moisture time series broadly reproduce the most important trends of in situ soil moisture observations. We 

evaluated two categories of landslide meteorological triggering conditions from IMERG satellite precipitation. First, the 20 

maximum rainfall amount during a multiple day rainfall event. Second, the cumulative rainfall over the past few day(s). For 

each category, the antecedent soil moisture recorded at three levels of soil depth, top 5 cm by satellite-based technologies as 

well as top 50 cm and 2 m through modelling approaches, was included in the statistical models to assess its potential for 

landslide hazard assessment and warning capabilities. The results reveal the cumulative 3 day rainfall RD3 as the most effective 

predictor for landslide triggering. This was indicated not only by its highest discriminatory power to distinguish landslide from 25 

no landslide conditions (AUC ~0.72) but also the resulting true positive alarms TPR of ~80 %. The modelled antecedent soil 

moisture in the 50 cm root zone Seroot(t-3) was the most informative hydrological variable for landslide hazard assessment (AUC 

~0.74 and TPR of 84 %). The hydro-meteorological threshold models that incorporate the Seroot(t-3)  and RD3 following the 

cause–trigger concept in a bilinear framework reveal promising results with improved landslide warning capabilities in terms 

of reduced rate of false alarms by ~20 % at the expense of a minor reduction of true alarms by ~8 %. 30 
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1 Introduction  

Landslides are one of the most prevalent hazards in mountainous regions of the world associated with high rates of fatalities, 

injuries and economic loss globally (Froude and Petley, 2018; Haque et al., 2016; Kirschbaum et al., 2015; Petley, 2012). 

According to a recent estimate (Froude and Petley, 2018), precipitation-induced landslides were responsible for  a global total 

of ~55000 deaths over the 13 year period from 2004 to 2016. In landslide prone regions, much effort is therefore put on the 35 

implementation of prevention and protection measures to control the most sensitive factors. Landslide early warning systems 

(LEWS) are used as non-structural and cost effective mitigation measures adopted to minimize landslides harms, loss of life 

and properties (Calvello et al., 2020; Glade and Nadim, 2014). However, the global landslide research indicated a bias in 

geographical distribution of LEWS and landslide research with a major gap in Africa (Gariano and Guzzetti, 2016; Guzzetti 

et al., 2020; Kirschbaum et al., 2015, 2010). According to Guzzetti et al. (2020), there are no LEWS in African countries 40 

despite the high number of fatal landslides recorded and the high landslide susceptibility (Broeckx et al., 2018; Kirschbaum et 

al., 2015). Previous landslide susceptibility analysis, revealed countries along the East African Rift region to be highly 

susceptible to landslides (Broeckx et al., 2018) despite that often only the most severe landslides are reported and thus a large 

number is missing. The East African Rift (EAR) was thus identified as a major hotspot of hazardous landslides in Africa with 

high rate of population exposure (Depicker et al., 2020, 2021a; Monsieurs et al., 2018a). On the long term, this is due to the 45 

active continental rifting caused by the persistent divergence of the Victoria and Nubia microplates (Glerum et al., 2020) while 

on the short term it is controlled by the interactions of prolonged and intense rainstorms in the region with hydrogeological 

and landscape processes. Rwanda is among the tropical countries located in the western branch of the East African Rift, 

threatened by landslide hazards (Bizimana and Sönmez, 2015; Nsengiyumva et al., 2018; Nsengiyumva and Valentino, 2020). 

About 43% of its surface area is classified as having moderate to very high susceptibility to landslides with 49% of local 50 

population exposed to landslide risks (Nsengiyumva et al., 2018). The long term landslide predisposing factors in Rwanda, 

include its pronounced topographic profile, the inherent geological and lithological units, weathering process, earthquakes, 

demographic pressure and related anthropogenic activities such as deforestation, agriculture expansion, and slope incision 

through roads construction activities (Bizimana and Sönmez, 2015; Depicker et al., 2015, 2021; Moeyersons, 1989; Monsieurs 

et al., 2018; Nsengiyumva et al., 2018; Valentino et al., 2021). The development of mining sites and the connected feeder 55 

roads also change the nature of natural hillslope through excavation and thus exacerbating landslide susceptibility and risks of 

slope failures. In addition, urban expansion pushes settlements, industry and infrastructure into hazardous areas that are 

naturally unstable, thereby further increasing the number of elements at landslide risks. The short-term landslide triggering 

factors include prolonged and intense rains in addition to the hydrological process that predispose slopes to near failure. In the 

past 15 years period from January 2006 to May 2021, the landslide inventory in Rwanda indicated about 425 landslide death 60 

(~0.6 % of the global landslide death) and about 2000 injuries induced by the above normal hydrological and meteorological 

factors (Uwihirwe, 2021). The lack of LEWS is one of the important factors for the increasing number of landslide victims in 
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Rwanda. The development of a robust LEWS hinges on the availability of hydro-meteorological data with sufficient spatio-

temporal resolution and an accurate landslide inventory, both of which are scarce. Recently, numerous river catchments in 

Rwanda have been equipped with groundwater monitoring wells, river water level gauges, soil moisture sensors as well as the 65 

automated weather stations. However, the available data records are frequently of insufficient length to build historical time 

series that overlap with the time periods of landslide inventories and that could be incorporated into landslide hazard 

assessment thresholds. As a first step towards LEWS development in Africa, Monsieurs et al. (2018a, 2019) used the Landslide 

Inventory for the central section of the Western branch of the East African Rift  (LIWEAR) to define the landslide 

susceptibility–rainfall and antecedent soil moisture thresholds in the East African Rift region. In Rwanda, Uwihirwe et al. 70 

(2020) used a statistical approach to define gauge-based precipitation thresholds along with estimates of antecedent 

precipitation indices. Furthermore, Uwihirwe et al., (2021) incorporated regional groundwater level measurements extended 

with a transfer function noise model to define the landslide hydro-meteorological thresholds for regional landslide hazard 

assessment. So far, these studies relied exclusively on in situ observed precipitation and hydrological data constrained by the 

sparsely distributed recording equipment with point scale resolution and gaps in the data record. There is a concern about the 75 

omission and/or overgeneralisation of information on the pre-wetting hydrological conditions at the locations of the landslide 

due to the sparsely distributed hydrological recording equipment (Uwihirwe et al., 2021). These pre-wetting conditions regulate 

the disposition of a slope to near failure (Bogaard and Greco, 2018; Sidle et al., 2019). Including this information in a LEWS 

may thus be a promising opportunity to decrease the rate of both false and missed alarms (Bogaard and Greco, 2018; Peres et 

al., 2018). Similar to other hydrological variables, soil moisture exhibits high spatial variability particularly in tropical areas 80 

(Dewitte et al., 2021; Kirschbaum et al., 2012; Sekaranom et al., 2020). This spatial variability is hardly covered by on site 

monitoring equipment due to the sparse observation networks, themselves providing point scale observations only. Alternative 

ways of incorporating such hydrological state information into landslide hydro-meteorological thresholds have been attempted 

and include the use of soil moisture estimates from satellite products (Marino et al., 2020; Thomas et al., 2020; Zhuo et al., 

2019) as well as from distributed hydrological models (Mostbauer et al., 2018; Prenner et al., 2018, 2019; Wang et al., 2019; 85 

Zhao et al., 2020). In this study, we aimed to explore the usefulness of combining soil moisture from satellite products and 

from a distributed hydrological model with satellite-based precipitation for the estimation of landslide hazard assessment 

thresholds in Rwanda. We specifically i) investigated the suitability of various satellite precipitation products as substitute for 

rainfall data from a sparsely distributed gauge network in Rwanda, ii) evaluated the added value of satellite and model-derived 

soil moisture information recorded at various soil depth and iii) assessed the potential of incorporating such information in 90 

empirical landslide hazard assessment threshold models and the warning capabilities in Rwanda.  

2  Study area  

Rwanda is an evergreen landlocked country geographically located between 1º–3º S and 28º–31º E in the great lakes region of 

central east Africa with a total area of 26,338 km2. It is topographically characterized by high elevation in the north western 
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regions reaching up to about 4500m (Fig. 1) and steep slope reaching up to 55 %. The geomorphology of Rwanda is 95 

characterised by angular hills, rounded hills and headlands, mountains and volcanoes (Fig. 2). The subtropical highland 

climate, with a long-term mean annual rainfall >1200 mm year-1 in the north western highland regions and < 1000 mm year-1 

in the eastern Savanah region (Fig. 1) and a mean annual temperature of about 19 ºC, prevails in the country. The north western 

region of the country is located in a tectonic region with a seismically active volcanic chain and earthquakes being among the 

possible landslide triggers in Rwanda. The hydrology is characterized by dense networks of lakes and rivers while the hydro-100 

geology consists mainly of fractured aquifers of granite-gneisses, schist, mica schists and complex aquifers in volcanic rocks 

of the north and south western parts of the country (Fig. 3). The main hydro-geological units in the landslide area include low 

and semi-permeable fractured schist and mica schist and permeable fractured granites. The weathering products of granites are 

generally coarse-grained and tend to develop and preserve open joint systems that increase their permeability and thus prone 

to landslide hazards. The weathering product of schists include clay minerals that tend to fill up the fractures and thus slowing 105 

the permeability. However, mica schists are renown as unstable due to rapid weathering, easy splitting along the joints and 

bedding planes and loss of strength induced by the high content of mica.  

 

 

Figure 1. Location of Rwanda in Africa, elevation, spatial and temporal distribution of hazardous landslides with light to dark 110 

red dots indicating old to new landslides recorded from 2007–2019, landslide representative rain gauges,  rainfall distributions 

indicated by isohyets (sky blue lines) and precipitation footprint of 5km buffer around each landslide 
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3 Methods and data 

3.1 Landslide inventory  

The inventory for this study, contains landslides recorded from 2007 to 2019. It was accessed from a previous study in Rwanda 115 

(Uwihirwe et al., 2021) and was further extended and updated through compilation of additional rainfall-induced landslides as 

reported from local newspapers, blogs and government technical reports. This landslide inventory was compiled with respect 

to the methodology adopted by Bach et al. (2010), Kirschbaum et al. (2015); and Monsieurs et al. (2018c). Between 2007 and 

2019, the inventory includes 55 accurately dated landslides, 32 of which are located in the catchments modelled for this study 

(Kivu, Nyabarongo upper and Mukungwa) (Fig. 3). However, it is important to note that this inventory is likely to miss the 120 

non-hazardous landslides which are less reported upon than hazardous landslides that led to fatalities/injuries and considerable 

damages. The inventory provides the location of each recorded landslide but with a varying spatial accuracy of 5 to 25 km 

depending on the smallest administrative unit recorded by the landslide event reporters. Therefore, a buffer zone of 5km, 

equivalent to the frequently recorded accuracy, was used around each landslide (Fig. 1) to support the choice of the landslide 

representative rain gauge. The same areal buffer was used as a footprint to avail the areal satellite precipitation and soil moisture 125 

as detailed in Sect. 3.2 and Sect. 3.3.  

 

3.2 Precipitation products and performance evaluation  

3.2.1 Gauge-based precipitation and selection of landslide representative data  

We accessed daily precipitation data from 19 rain gauges operated by the Rwanda Meteorology Agency. These rain gauges 130 

were selected based on their location within the defined buffer of 5km around each landslide location (Fig. 1). Once two or 

more rain gauges fall within the same buffer zone, the gauges are weighted (Melillo et al., 2018) to select the most 

representative rain gauge following Eq. (1): 

 

𝑾 =
𝑬𝟐

 𝒅𝟐𝑫
 ,            (1) 135 

The weight (W) is estimated based on the cumulated event rainfall E (mm) until the landslide day, the distance between rain 

gauge and landslide d (mm), and duration D (days). A similar procedure was used to select the representative rain gauge for 

landslides located far (>5 km) from any rain gauge. The selected gauge-based precipitation was used as benchmarks to assess 

the suitability of satellite precipitation products.  

 140 

3.1.1. Satellite precipitation products and suitability analysis for LEWS in Rwanda  

With the gauge-based precipitation data as reference, we assessed the performance of seven satellite precipitation products 

summarized in Table 1. These satellite precipitation products were preliminary selected for analysis based on the criteria that 
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their dataset i) at least partially overlap with the landslide inventory period (2007–2019), ii) has at least daily temporal 

resolution, and iii) is available on Google Earth Engine (GEE).  145 

Table 1. Pre-selected precipitation products and short description  

Satellite and 

reanalysis products 

Resolution Period Data source description References 

Spatial Temporal  

TRMM 3B42 v7 0.25° Daily 1998–2019 Passive microwave (PMW) from a variety of low Earth orbit 

satellites, infrared (IR) data and precipitation gauge supplied 

by the Global Precipitation Climatology Centre (GPCC) 

(Huffman et al., 

2010) 

CHIRPS  0.05° Daily 1981–present Geostationary thermal infrared (IR); microwave satellite 

estimates and the in situ precipitation observations 

(Funk et al., 

2015) 

PERSIANN CDR 0.25° Daily 1983–present GridSat-B1 infrared data and bias-adjusted using the Global 

Precipitation Climatology Project (GPCP) monthly product 

and accumulated to the daily scale  

(Ashouri et al., 

2015) 

GLDAS 2.1  0.25° 3 hourly 2000–present Geostationary satellite infrared (IR) cloud-top temperature 
measurements and microwave observation techniques 

(Rodell et al., 
2004) 

CFSv2  0.2° 6 hourly 1979–present Satellite observations in the infrared and microwave channels 

and gauge observations 

(Saha et al., 

2014) 
IMERG_GPM  0.1° 30 min 2014–present Passive Microwave from various low Earth orbit satellites, 

Infrared from geosynchronous Earth orbit satellites and 

gauges precipitation (successor of TRMM) 

(Huffman et al., 

2020) 

ERA5  0.25° 3 hourly 1979–present This is a non-satellite but re-analysis product. precipitation is 

generated employing a convection scheme along with the 

large-scale cloud scheme that have been upgraded with an 
improved representation of mixed-phase clouds, and 

prognostic variables for precipitating rain and snow.  

(Hersbach et al., 

2020) 

 

Among the pre–selected satellite products, we have chosen the most suitable product for landslide hazard assessment in 

Rwanda based on the relative comparison with gauge–based precipitation. This was achieved using a number of statistical 

approaches that include: i) the use of statistical metrics of goodness of fit, ii) rainfall frequency indicators, and iii) intensity 150 

comparisons. The statistical metrics of goodness of fit include the root mean square error RMSE, Pearson correlation CC, and 

the long-term relative bias RB computed with Eq. (2) to Eq. (4): 

 

𝑹𝑴𝑺𝑬 = √
∑ (𝒀𝒊−𝑿𝒊)𝟐𝒏

𝒊=𝟏

𝒏
 ,           (2) 

 155 

𝑪𝑪 =
∑ (𝑿𝒊−𝑿𝒎𝒆𝒂𝒏) (𝒀𝒊−𝒀𝒎𝒆𝒂𝒏)𝒏

𝒊=𝟏

√∑ (𝑿𝒊−𝑿𝒎𝒆𝒂𝒏)𝟐𝒏
𝒊=𝟏 √∑ (𝒀𝒊−𝒀𝒎𝒆𝒂𝒏)𝟐𝒏

𝒊=𝟏

 ,          (3) 

 

𝑹𝑩 =
𝒀𝒎𝒆𝒂𝒏−𝑿𝒎𝒆𝒂𝒏

𝒀𝒎𝒆𝒂𝒏+𝑿𝒎𝒆𝒂𝒏
 ,           (4) 
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Where Yi  is the rain gauge observation at date i, Xi is the satellite estimate at the same date i, n is the total number of data pairs 160 

for each precipitation product considered, Ymean  and  Xmean  are the mean rainfall from rain gauge and satellite products 

respectively.  

 

The rainfall frequency indicators specify the frequency of rainy days based on the predefined threshold indices (Joshi et al., 

2014; Tank et al., 2009). We used five rainfall threshold indices that reflect the number of rainy days with >X mm of rain 165 

(RDx). The predefined indices are RD0, RD10, RD20, RD30, and RD50 indicating the number of rainy days with >0 mm as rainy 

days, >10 mm as heavy rainy days, >20 mm as very heavy rainy days, >30 mm as even heavier rainy days, and >50 mm as 

extremely heavy rainy days respectively. With intensity comparison, we compared the cumulative 30 day rainfall from the 

satellite precipitation products to the cumulative 30 day precipitation from rain gauges using scatter plots.  

 170 

3.3 Soil moisture products and data acquisition 

3.3.1 In situ soil moisture data from automatic weather stations  

In situ soil moisture data, collected from the automatic weather stations (AWSs) equipped with soil moisture sensors, were 

accessed from the Rwanda Meteorological Agency for six AWSs as shown in Fig. 2. The AWSs recorded the soil moisture at 

20 cm depth with a temporal resolution of 5-10 minutes from July 2018 to December 2019. Because the analysis focuses on a 175 

daily time-scale, we computed and used the daily average soil moisture time series recorded from July 2018 to December 

2019. The in situ AWSs soil moisture data were used as a benchmark to comparatively get an insight on the quality of other 

sources of soil moisture products that include satellite and model-derived soil moisture estimates described in Sect. 3.3.2 and 

Sect. 3.3.3. 

 180 

3.3.2 Satellite soil moisture and variable of interest 

We used a satellite-derived near surface soil moisture product provided by Planet, formerly VanderSat (VdS) 

(https://vandersat.com/data/soil-moisture/, last access: 29 March 2022). The product relies on the Land Parameter Retrieval 

Model (LPRM) (de Jeu et al., 2014; Owe et al., 2001, 2008) to estimate the near surface soil moisture by combining raw data 

from the Advanced Microwave Scanning Radiometer 2 (AMSR-2), and Soil Moisture Active Passive (SMAP) (Bouaziz et al., 185 

2020). The satellite product estimates volumetric soil water content or soil moisture (m3m-3) of the upper 5cm of soil 

downscaled from a spatial resolution of 25 km×25 km to 100 m×100 m. From VdS, we accessed daily soil water content 

estimates from the top 5 cm of soil (θtop) for the 2007-2019 period for each of the defined regions of interest (ROIs) equivalent 

to the 5 km buffers shown in Fig. 3.  

https://vandersat.com/data/soil-moisture/
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 190 

Figure 2. Geomorphology of Rwanda, landslide representative AWSs (Automated weather stations) with soil moisture 

sensors; landslides in red dots and 5 km buffer zones indicating the Research Area of Interest (ROIs) for areal soil moisture 

acquisition  

 

3.3.3  Hydrological model-derived soil moisture and variables of interest 195 

We also used the soil moisture derived from the Wflow, an open sources software developed by the Deltares OpenStreams 

project (Schellekens, 2021; Schellekens et al., 2019). The Wflow distributed hydrological model platform currently contains 

13 models (Schellekens, 2021) that include the wflow_sbm model.  The models consist of a set of python programs that are 

run on the PCRaster python framework to perform hydrological simulations (Karssenberg, 2014; Karssenberg et al., 2010). 

The Wflow_sbm uses the conceptual bucket model approach to derive the hydrological variables of interest (Imhoff et al., 200 

2020; Schellekens et al., 2019). With Wflow_sbm, the soil is considered as a bucket with a depth (Z) divided into 2 zones: the 

unsaturated store U and the saturated store S. The interface between U and S is a pseudo water table located at depth Zw. The 

values of unsaturated storage U and saturated storage S are computed as in Eq. (5) and Eq. (6): 
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𝑼=(𝜽𝒔 − 𝜽𝒓)𝒁𝒘 − 𝑼𝒅 ,           (5) 205 

𝑺 = (𝜽𝒔 − 𝜽𝒓)(𝒁 − 𝒁𝒘) ,           (6) 

Where θs [-], θr [-] are saturated and residual water content respectively and Ud [-] is the soil water deficit 

 

The unsaturated store U was the variable of interest and was subdivided into 2 variables: the water content in the root zone 

θroot representing the unsaturated soil water storage of the top 50 cm and the part of the soil water capacity occupied θuz 210 

representing the unsaturated soil water storage of the upper 2 m. For this study, the model area consisted of three catchments 

(Kivu, Upper Nyabarongo and Mukungwa) as highlighted in Fig. 3. As with all other hydrological models, the Wflow_sbm 

model calibration is needed for optimal performance. The model is calibrated based on the model parameters that are estimated 

a priori using pedo-transfer functions and global or local datasets. The model was run from January 2001 till December 2020 

with the first years correspond to the model spin up time. We obtained time series of θroot and θuz for 2007–2019, overlapping 215 

with the landslide inventory period, from a wflow_sbm simulation based on ERA5 re-analysis meteorological data. To increase 

the comparability with the satellite-based soil moisture, the same ROIs represented by the buffers of 5 km around each landslide 

location were used to interpolate the unsaturated water storage time series for each ROIs located in the model catchment. 

Similarly, only the AWSs located in the model catchment (Fig. 3) were used for the comparative performance evaluation of 

the model-derived soil moisture products.  220 
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Figure 3. Wflow model catchments (Kivu, upper Nyabarongo and Mukungwa) and hydrogeology; landslides in red dots and 

5km buffers indicating the Research Area of Interest (ROIs) for areal soil moisture acquisition from the Wflow model, 225 

Automated weather stations (AWSs) with soil moisture sensors for comparative performance evaluation of the Wflow 

modelled soil moisture 

 

3.4 Landslide hazard assessment and thresholds definition 

3.4.1  Landslide meteorological and hydrological conditions and test variables 230 

The daily rainfall data from the satellite product were used to define the landslide meteorological triggering conditions. We 

used two categories of landslide triggering conditions. The first category defined a landslide trigger as the maximum probable 

rainfall event (MPRE) during which or after its end, one or more landslides occurred. The MPREs were defined as individual 

periods of rainy days interrupted by dry periods of at least two days (. Given the constraint of overestimation of the number of 

rainy days with 0–10 mm by satellites, a rainy day was objectively referred to as the day with ≥ 10 mm d-1 while a dry day was 235 
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referred to as the day with <10 mm d-1. This threshold was objectively selected using the rainfall frequency indicator metric 

explained in Sect. 3.2.2. The landslide predictor variables in this category were therefore the cumulated event rainfall E (mm), 

event duration D (days) and rainfall mean intensity E/D (mmd-1). The cumulated event rainfall E (mm) was computed as the 

cumulative rainfall during each MPRE of duration D (days). The event duration D equivalent to MPRE is the individual periods 

of days with recorded rain separated by inter event time (IET) of at least two dry days. The rainfall mean intensity E/D is the 240 

ratio of event rainfall volume E and event duration D. The second category defined a landslide trigger as the recent cumulative 

rainfall RDx at the end of which one or more landslides occurred. This category considers the total cumulative rainfall over the 

last three days (RD3), two days (RD2), and one day (RD1) at the end of which, one or more landslides occurred. While MPREs 

time series are interrupted by the IETs, the RD3, RD2 and RD1 for each day during the 2007–2019 study period were computed 

regardless of a rainy or dry day and thus resulting into longer time series and more data points compared to the MPREs time 245 

series. The time series of the defined meteorological triggering conditions from each category and for all precipitation foot 

prints were compiled in a single dataset for further statistical analysis. To provide a normalized comparison of the soil wetness, 

we transformed the satellite- and model-derived water content θ  to effective soil moisture Se  to define the landslide 

predisposing hydrological conditions using Eq. (7): 

 250 

𝑺𝒆 =
𝜽−𝜽𝒎𝒊𝒏

𝜽𝒎𝒂𝒙−𝜽𝒎𝒊𝒏
 ,            (7) 

Where Se stands for the effective soil moisture [-], θ is the actual soil moisture, θmax and θmin are the maximum and minimum 

values of the recorded or modelled soil water content. 

The normalization of soil water content 𝜽 was made for easy comparison of the observed, model-derived and satellite-based 

soil moisture products. However, for all compared soil moisture products, the 𝜽𝒎𝒂𝒙 and 𝜽𝒎𝒊𝒏 were 1 and 0 respectively which 255 

lead to almost similar values of Se and 𝜽. 

  

The tested hydrological conditions include therefore, the near surface soil moisture Setop, representing the soil moisture of the 

upper 5 cm of soil, provided by the satellite techniques (VdS), the Seroot representing the root zone soil moisture of the upper 

50 cm, acquired through modelling approach (Wflow_sbm), and Seuz representing the soil moisture estimates from the upper 260 

2 m of soil, obtained through modelling approach (Wflow_sbm). To assess the contribution of the pre-wetting state of the soil 

prior to the landslide triggering conditions, we have considered the antecedent soil moisture i.e. recorded or modelled prior to 

the start of the triggering meteorological conditions. The antecedent soil moisture referred to the time interval before the start 

of each of the defined categories of the meteorological triggering conditions. We have therefore used the Setop(t-x), Seroot(t-x), 

Seuz(t-x) with t (date) and x (days) expressing the end time and the duration of the triggering conditions respectively. However, 265 

due to the changes in duration of the MPREs, x was hypothetically represented by a value of 1 standing for one entire MPRE 
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while values of 1, 2, 3 represent the duration (days) of the triggering RDx conditions. A binary classification of the defined 

hydrological and meteorological conditions was undertaken to classify the landslide and no-landslide conditions. The 

meteorological or hydrological conditions are referred to as landslide conditions i.e. positive class, when at least one landslide 

occurs during its course or after its end while they are referred to as no-landslide conditions i.e. negative class when no landslide 270 

occurred during its course or after its end.  

 

3.4.2  Discriminatory power of the landslide test variables and optimum thresholds for landslide initiation  

The landslide test variables which include the predisposing hydrological conditions Setop(t−1) , Setop(t−2), Setop(t−3) , 

Seroot(t−1),  Seroot(t−2),  Seroot(t−3),  Seuz(t−1),  Seuz(t−2),  and Seuz(t−3) as well as the triggering meteorological conditions E, 275 

D, E/D , RD1, RD2, and RD3 were tested for their relevance on landslide occurrence. We used a receiver operating characteristic 

(ROC) and the area under the curve (AUC) metrics to evaluate the discriminatory power of each of the landslide test variables. 

The ROC curve is defined as a graphical plot indicating the performance of the test variable at all threshold levels by providing 

the trade-off between the true positive rate (TPR) and false positive rate (FPR) at each level. The AUC is a statistical metric 

that indicate the discriminatory power of the test variable i.e. the capacity of the test variable to correctly distinguish positive 280 

from negative classes i.e. landslide from no landslide conditions. It compares also the test variable to a random guess 

(AUC=0.5) and thereby indicates the statistical significance where the perfect test variable would have an AUC equal to unity. 

The rate of correctly (TPR, true positive rate) and incorrectly predicted landslides (FPR, false positive rate) corresponding to 

each cut off on the ROC curves are computed using Eq. (8) and Eq. (9): 

 285 

𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
 ,            (8) 

𝑭𝑷𝑹 =
𝑭𝑷

𝑭𝑷+𝑻𝑵
 ,            (9) 

The rate of unpredicted landslides (FNR, false negative rate) and the rate of correct prediction of no-landslides (TNR, true 

negative rates) are computed using Eq. (10) and Eq. (11): 

 290 

𝑭𝑵𝑹 =
𝑭𝑵

𝑭𝑵+𝑻𝑷
 ,            (10) 

𝑻𝑵𝑹 =
𝑻𝑵

𝑻𝑵+𝑭𝑷
 ,             (11) 
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Where TP are true positives or true alarms i.e. outcomes with correctly predicted landslides, FN are false negatives or missed 

alarms i.e. the number of landslides that occurred in reality but were not predicted, FP are false positives or false alarms i.e. 

predictions of landslide occurrence while in reality there was no landslide reported, and TN are true negatives i.e. correct 295 

predictions of no-landslide occurrence.  

 

Since the ROC curve only indicates all possible thresholds and their relative balance between TPR and FPR, one is free to 

choose the optimum threshold depending on whether to maximize the TPR or minimize the FPR. However, according to 

Postance and Hillier (2017), the optimum threshold is the one that maximizes the TPR while minimizing the FPR. Therefore, 300 

that optimum threshold level above which landslide are highly likely to occur have been defined using two statistical metrics 

i.e. the maximum true skill statistic (TSS) and minimum radial distance (Rad). The TSS is expressed as a balance between the 

TPR and FPR as indicated in Eq. (12): 

 

𝑻𝑺𝑺 = 𝑻𝑷𝑹 − 𝑭𝑷𝑹,            (12) 305 

Where the maximum value of 𝑇𝑆𝑆 indicates the optimum threshold that maximizes the TPR while minimizing the FPR. For a 

perfect threshold, the TSS reaches a unity indicating a zero false positive rate (FPR). The radial distance (Rad) shows the 

relative distance from the defined threshold level on the curve to the perfect model or point whose TPR is a unit and zero FPR 

and is computed with Eq. (13): 

 310 

𝑹𝒂𝒅 = √(𝑭𝑷𝑹)𝟐 + (𝑻𝑷𝑹 − 𝟏)𝟐 ,           (13) 

 

3.4.3  Landslide hydro-meteorological thresholds and warning capabilities 

The optimum thresholds defined based on the maximum TSS and or minimum Rad were plotted in 1D threshold space here 

referred to as single variable threshold line beyond which the probability of landslides is high. We also followed cause–trigger 315 

concept (Bogaard and Greco, 2018) that reflect the hydro-meteorological thresholds and hypothetically plotted the optimum 

thresholds of the landslide predisposing hydrological variables i.e the antecedent soil moisture on the x‐axis and the 

meteorological triggering variables on the y‐axis of a two dimensional 2D space here referred to as bilinear thresholds. The 

bilinear threshold models made of hydrological and meteorological variables are plotted in x, y pairs i.e antecedent soil 

moisture versus E/D or RDX). Furthermore, the bilinear threshold from a traditional landslide prediction model event–duration 320 

E–D (Peruccacci et al., 2017), that exclusively rely on precipitation, has been also defined to serve as a benchmark for 

comparative performance evaluation. 
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4 Results and discussion  325 

4.1 Performance of Satellite precipitation products 

The suitability of satellite precipitation products in the study region was assessed using three statistical indicators as 

summarized in Table 2, Table 3 and illustrated in Fig. 4. From the statistical measures of fits (RMSE, CC, RB), it is generally 

observed that IMERG is consistently more suitable while ERA-5 was found to be the least suitable product as compared to 

other satellite precipitation products. The evaluation based on frequency indicators is summarised in Table 3. These indicators 330 

give an overview on whether a given satellite product would overestimate or underestimate the observed gauge precipitation 

based on the predefined threshold indices. IMERG_GPM displays the highest skill to estimate all ranges of rainfall from heavy 

to extremely heavy rainy days as recorded by the on-site gauges. CHIRPS and TRMM 3B42 v7 provide good estimates of 

precipitation with quite similar number of rainy days (RD0=1256 days) to gauge-based rainfall (RD0=1259days). However, 

these satellites drastically underestimate the number of heavy to extreme heavy rainfall (RD20, RD30 and RD50). For example, 335 

TRMM and CHIRPS estimated RD20=87 and 101days respectively out of 132 days estimated by rain gauge (Table 3).  

 

The suitability of satellite products was also assessed using intensity comparison indicated by the density of the scatter points 

around 1:1 line as shown in Fig. 4. The scatter plots compare 30day cumulative rainfall from satellite precipitation products 

versus rain gauges. The scatter plots reveal that GLDAS, CFSv2 and ERA-5 tend to overestimate rainfall while 340 

underestimations are noticed from PERSIANN CDR as compared to the in situ gauge rainfall. Based on the closeness of scatter 

points to the 1:1 line, CHIRPS and IMERG exhibit a higher resemblance to gauge data (Pearson correlation R=0.67 and 0.60 

respectively) than other satellite products and could thus be used as alternative to gauge-based precipitation. Overall, IMERG 

shows rainfall pattern that are most consistent with available gauge observations in Rwanda despite the over estimation of the 

number of rainy days with less than 10 mm (RD0). According to Kimani et al. (2017), the overestimation of rainfall in areas 345 

with elevation >2500 m and underestimation in areas with elevation < 2500 m was observed before and is attributed to satellite 

inherent challenges to retrieve orographic rainfall. To overcome this constraint, 10 mm d-1 has been considered as a threshold 

to define a satellite-based rainy day and thus being relevant for landslide hazard assessment in Rwanda conditions. Other 

researchers in the regions also found CHIRPS and TRMM to be comparable to gauge-based precipitation in east Africa 

(Kimani et al., 2017; Monsieurs et al., 2018b). Monsieurs et al. (2018b) found the areal-averaged TMPA rainfall estimates, the 350 

predecessor of IMERG, to be more suitable for assessing landslide hazard threshold than the sparsely distributed gauge data 

with limited representativeness in the context of high rainfall variability of the east African rift. 

 

Table 2. Performance of Satellite precipitation products based on statistical metrics 

Metrics TRMM 3B42 v7 CHIRPS PERSIANN CDR GLDAS 2.1 CFSv2 IMERG ERA 5 

RMSE (mm) 8.17 8.53 7.42 8.55 10.58 8.18 12.60 

CC (-) 0.31 0.27 0.25 0.24 0.17 0.35 0.22 
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RB (-) -0.08 -0.01 -0.15 0.03 0.11 0.02 0.29 

Table 3. Performance of Satellite precipitation products based on rainfall frequency indicators 355 

Indices Description Gauge TRMM 

3B42 v7 

CHIRPS  PERSIANN 

CDR 

GLDAS 

2.1 

CFSv2 IMERG ERA 

5 

RD0 Rainy days >0 mm 1259  1691  1256  2732  3086  2835  2842  3520 
RD10 Heavy rainy days >10 mm 397  307  424  138 377  617  383  879 

RD20 Very Heavy rainy days >20 mm 132  87  101  9  79  199  126  250 

RD30 Even heavier rainfall days >30 mm 49 29  25  0  22  84  42  78 
RD50 Extremely heavy rainfall >50 mm 9 4  3  0  2  22  6  21 

 

 

 
Figure 4. Intensity comparison between satellite-based and gauge-based precipitation based on the cumulative 30 day rainfall 

 360 

4.2 Prospective of satellite and model-derived information in landslide hazard assessment 

4.2.1  Mean soil moisture response to rainfall and landslide events 

Figure 5 shows the GPM based IMERG precipitation spatially averaged over all landslide precipitation foot prints and over 

the modelled catchments. It shows also the temporal dynamic of the satellite derived soil moisture Setop spatially averaged over 

all landslide ROIs and the modelled soil moisture at the root zone top 50 cm Seroot and top 2 m Seuz. The in situ soil moisture 365 

from AWS is also rescaled (on secondary axis) to be compared with modelled and satellite derived soil moisture. Regardless 

of the difference in measuring depth (5 cm, 50 cm & 2 m), the time response to precipitation and overestimation of soil 

moisture, the satellite Setop and model-derived soil moisture time series Seroot and Seuz broadly reproduce the most important 
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temporal variation as recorded by in situ soil moisture sensors (Fig. 5 and Fig. A1). This indicates their usefulness for landslide 

hazards assessment as an alternative to the sparse in situ AWSs. The spatial averaging of soil moisture across all research areas 370 

of interest (ROIs) was undertaken to have an insight on the critical ranges of soil moisture that induce landslides in Rwandan 

climate conditions. The spatially averaged Setop, Seroot and Seuz soil moisture dynamics and the linked landslide occurrence are 

presented in Fig. 5. The average Setop, Seroot and Seuz of all ROIs, indicate general similarities in terms of landslide predisposing 

but also reveal systematic differences between response time influenced by the soil moisture recording depth. For example, it 

is obvious that the Setop (5 cm) responds faster than Seroot (50 cm) and Seuz (2 m). It is clear that the majority of landslides 375 

occurs when the soil moisture levels positively deviate (by about 0.1) from the long-term mean up to a critical level for landslide 

initiation. It is also evident that the critical level for landslide occurrence is more or less fixed when other geological and 

geomorphological condition are kept constant and it is reached more or less easily depending on the prior rainfall expressed in 

terms of antecedent soil moisture and the time lag between the landslide triggering rainfall and the soil hydrological response.  

 380 
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Figure 5. Satellite and model-derived information and landslide activities (a) GPM based IMERG precipitation [mm] spatially 

averaged over all landslide precipitation foot prints (b) satellite derived soil moisture Setop [-] spatially averaged over all 

landslide ROIs and in situ soil moisture AWS [-] on secondary y-axis; (c) GPM based IMERG precipitation [mm] spatially 

averaged over the landslide precipitation foot prints located in the modelled catchments, (d) modelled soil moisture at the root 385 

zone top 50 cm Seroot [-], modelled soil moisture top 2 m Seuz [-] and in situ soil moisture AWS [-] on secondary y-axis. The 

dashed horizontal lines represent the long term mean soil moisture and the red triangles stand for the landslide events 
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4.2.2 Single variable landslide meteorological and hydrological thresholds and prediction capabilities 

Figure 6 and Table 4 show the derived landslide meteorological and hydrological thresholds and their predictive capabilities 

in terms of true positive rate TPR and false positive rate FPR. The discriminatory power of each of the tested variables was 390 

evaluated with a receiver operating characteristic (ROC) curve and the area under the curve (AUC) statistical metrics as shown 

in Fig. 6. Among the tested landslide triggering meteorological variables E, D, E/D, RD1, RD2, and RD3, the cumulative 3 day 

rainfall RD3 and event rainfall volume E showed the highest discriminatory power with AUC ~ 0.71 and hence the highest 

impact on landslide initiation. However, the event rainfall mean intensity E/D indicated low capability (AUC~0.53) to 

distinguish landslides from no landslides. This stresses the importance of using the recent cumulative rainfall with a fixed 395 

duration and thus highlighting the highest impact of RD3 on landslide initiation process and its relevance on landslide hazard 

assessment and prediction compared to E that need to be normalised. Contrarily to the gauge-based cumulative rainfall 

thresholds (Uwihirwe et al., 2020), the satellite based cumulative rainfall on the day of landslide RD1 was not impactful to 

landslide initiation (AUC=0.35–0.38). This may be due to the inaccuracies between the landslide occurrence and the reporting 

time, and additionally also due to  the satellite revisiting time and or period which may introduce inaccuracies in timing. 400 

  

Figure 6c and d indicate that the wetness state of soil prior to the cumulative rainfall RDx have the most significant impact on 

landslide occurrence as indicated by their AUC=0.72–0.76. Contrarily, Fig. 6a and b show that the wetness state of the soil 

prior to the landslide triggering event E has no significant impact on landslide occurrence (AUC=0.66–0.67). This is to say 

that the antecedent soil moisture conditions prior to the longer triggering rainfall event E are not relevant for landslide initiation 405 

in the study area conditions. Among other factors, the duration of the triggering condition plays a major role in determining 

the relevance of the antecedent soil moisture on landslide occurrence. The shorter the duration of the triggering conditions, the 

higher the relevance of the antecedent soil moisture on landslides initiation. Highly permeable soils are less sensitive to 

antecedent soil moisture conditions because of the high gravity driven drainage and or deep percolation. With a tropical 

climate, evaporation process may also rapidly take away the antecedent soil moisture content of the top soil due to the longer 410 

timescale of the minimum inter-event time IET and the landslide triggering event E. 

 

The thresholds definition metrics, TSS and Rad, resulted in quite comparable landslide thresholds as summarised in Table 4. 

It was noticed that the defined satellite precipitation thresholds are similar to the ones defined using gauge based precipitation. 

For example, the optimum landslide threshold event rainfall volume E defined from satellite precipitation varied between 415 

44.7mm and 60.7mm (Table 4) while gauge-based threshold E varied from 46mm to 67mm (Uwihirwe et al., 2021). Similarly 

but with a quite minor difference, the defined satellite-based E/D thresholds 16–17.5mmd-1 seemed quite similar to gauge-

based thresholds ~7–13mmd-1 found in Uwihirwe et al. (2020 and 2021). Nevertheless, the single variable threshold E/D being 

the most informative, showed quite low prediction capability in terms of TPR~56–60 % with elevated rate of false positive 
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FPR ~ 43–54 % i.e. incorrect predictions of landslide and thus being less effective for a robust early warning system 420 

development. Contrarily, the single variable thresholds defined from the cumulative 3 day rainfall RD3 outperforms other tested 

triggering conditions with highest prediction capability in terms of true positive rate TPR=79–81 %. The same holds for the 

soil moisture in the root zone (50 cm deep) Seroot that consistently showed the highest performance. Nevertheless, despite the 

high true positive rate from these single variables thresholds, the resulting elevated rate of false positives FPR=36–42 % still 

constrain their use for the development of a robust landslide early warning system. It has to be noted that the threshold defined 425 

from the antecedent soil moisture specifies the critical levels below which the impact of pre-wetting state of the soil is 

considered unimportant for landslide occurrence. On the contrary, once these thresholds are exceeded, the pre-wetting state of 

the soil has significant impact on landslide occurrence and has to be considered while defining the landslide hydro-

meteorological threshold models. 

 430 
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Figure 6. Receiver operating characteristics ROC curves, area under the curves AUC and optimum landslide thresholds 

defined by the true skill statistic TSS (square shaped marker) and radial distance Rad (cycle shaped marker) using: a) Event 

rainfall and Setop from all ROIs b) Event rainfall, Seroot and Seuz from ROIs located in the Wflow model catchment  435 

c)Cumulative 1, 2 and 3 day rainfall (RDx) and Setop from all ROIs and d) cumulative 1, 2 and 3 day rainfall(RDx), Seroot and 

Seuz from ROIs located in the Wflow model catchment  
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Table 4. Event based variable thresholds and prediction capabilities 

Variables  Maximum True skill statistics (TSS) Minimum radial distance (Rad) 

 Threshold TPR FPR TSS Rad Threshold TPR FPR TSS Rad 

Event E (mm)a 53.1 0.54 0.21 0.33 0.51 44.9 0.60 0.27 0.33 0.49 

Duration D (d)b 2.5 0.56 0.27 0.29 0.52 1.5 0.72 0.43 0.29 0.51 
Event/Duration E/D (mm d-1)c 16.1 0.64 0.54 0.10 0.65 17.3 0.56 0.47 0.09 0.65 

Setop(t-1) 0.56 0.72 0.44 0.28 0.52 0.57 0.68 0.41 0.27 0.52 

Event E (mm)d 60.7 0.53 0.17 0.36 0.50 60.7 0.53 0.17 0.36 0.50 

Duration D (d)e 2.5 0.59 0.28 0.32 0.49 2.5 0.59 0.28 0.32 0.49 

Event/Duration E/D (mm d-1)f 16.1 0.69 0.54 0.15 0.62 17.5 0.59 0.46 0.14 0.61 

Seroot (t-1) 0.56 0.72 0.44 0.28 0.52 0.56 0.72 0.44 0.28 0.52 

Seuz(t-1) 0.91 0.53 0.22 0.31 0.52 0.87 0.63 0.34 0.28 0.51 
a b c Cumulated event rainfall, event duration and mean rainfall intensity defined from all landslide representative precipitation foot prints,  d e f Cumulated event rainfall, event duration and the 440 
mean event intensity defined using precipitation foot prints located in the modelled catchments (Kivu, Nyabarongo upper and Mukungwa)  

 

Table 5. Cumulative rainfall based-variable thresholds and prediction capabilities 

Variables Maximum True skill statistics (TSS) Minimum radial distance (Rad)  
Threshold TPR FPR FNR TNR TSS Rad Threshold TPR FPR TSS Rad 

RD1 (mmd-1)a 10.90 0.35 0.16 0.65 0.84 0.19 0.67 10.90 0.35 0.16 0.19 0.67 

RD2 (mmd-2)b 14.70 0.50 0.20 0.50 0.80 0.30 0.54 10.90 0.54 0.27 0.27 0.53 

RD3 (mm)c 15.05 0.79 0.40 0.21 0.60 0.39 0.45 15.05 0.79 0.40 0.39 0.45 

Setop (t-1) 0.53 0.85 0.43 0.15 0.57 0.41 0.46 0.56 0.77 0.37 0.40 0.44 

Setop (t-2) 0.57 0.75 0.35 0.25 0.65 0.40 0.43 0.57 0.75 0.35 0.40 0.43 

Setop (t-3) 0.56 0.75 0.38 0.25 0.62 0.37 0.50 0.56 0.75 0.38 0.37 0.50 

RD1 (mmd-1)d 10.90 0.38 0.16 0.62 0.84 0.21 0.64 10.90 0.38 0.16 0.21 0.64 

RD2 (mmd-2)e 14.70 0.59 0.21 0.41 0.79 0.38 0.45 10.90 0.67 0.28 0.38 0.44 

RD3 (mm)f 15.05 0.81 0.42 0.19 0.58 0.40 0.46 35.70 0.63 0.25 0.38 0.45 

Seroot (t-1) 0.75 0.81 0.38 0.19 0.62 0.43 0.43 0.75 0.81 0.38 0.43 0.43 
Seroot (t-2) 0.76 0.84 0.36 0.16 0.64 0.49 0.39 0.76 0.84 0.36 0.49 0.39 

Seroot (t-3) 0.72 0.84 0.41 0.16 0.59 0.43 0.44 0.79 0.72 0.30 0.42 0.41 

SeUZ, (t-1) 0.90 0.66 0.23 0.34 0.77 0.43 0.41 0.90 0.66 0.23 0.43 0.41 
SeUZ (t-2) 0.89 0.63 0.25 0.37 0.75 0.38 0.45 0.89 0.63 0.25 0.38 0.45 

SeUZ (t-3) 0.92 0.56 0.18 0.44 0.82 0.38 0.47 0.89 0.63 0.24 0.38 0.45 
a b c Cumulative 1, 2, and 3day rainfall defined from all landslides representative precipitation foot prints,  d e f Cumulative 1, 2, and 3day rainfall volume defined using precipitation foot prints 

located in the model catchments (Kivu, Nyabarongo upper and Mukungwa)  445 

 

4.2.3 Landslide hydro-meteorological thresholds and implication for warning  

With respect to the high rate of false positives resulting from the single variable thresholds, we have tested whether the 

incorporation of antecedent soil moisture information to the triggering rainfall conditions improves the landslide prediction 

capability. The optimum single variable hydrological and meteorological thresholds have been therefore combined into hydro-450 

meteorological thresholds following the cause-trigger concept in a bilinear framework as shown in Fig. 7 and Fig. 8. Figure 7 

illustrates the first category of landslide hydro-meteorological thresholds defined based on the maximum possible rainfall event 

E combined with different variables of antecedent soil moisture. The derived thresholds resulted into quite elevated rate of 

false alarms FPR once used as single variable thresholds (single lines).  
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In contrast to the classical precipitation thresholds, the combination of hydro-meteorological thresholds in a bilinear framework 455 

provide an improvement in terms of reduced rate of false alarms by about 30 % [Setop(t−1)–E/D], 13 % [Seroot(t−1)–E/D], and 35 

% [Seuz(t−1)–E/D] respectively as compared to the ones obtained from the exclusive use of single variable precipitation based 

E/D thresholds. The intention of adopting the bilinear hydro-meteorological threshold in spite of precipitation thresholds is to 

minimize the rate of incorrect prediction of landslides FPR while improving or at least keeping unchanged the rate of true 

alarms TPR. This was only achieved by using the bilinear hydro-meteorological thresholds defined using antecedent soil 460 

moisture at the root zone [Seroot(t−1)–E/D] that performs better (TPR=66 %) than the traditional precipitation threshold E–D 

(TPR=50 %). However, this category still suffers from the low landslide warning capability (max TPR=66 %) and is thus not 

satisfactory for a robust early warning system development. The lower performance was attributed to the timescale of the 

triggering events. Apparently, the effect of the antecedent soil moisture lasts for a limited period of time and subsequently 

decays towards zero and below.  465 

 

The inter-event time IET and the timescale of the rainfall events E are not constant and vary in durations. They can be too long 

and thus implying the decay of the antecedent soil moisture and thus negligible contribution to landslide initiation. 

Consequently, the incorporation of the wetness state of the soil prior to the landslide triggering events E did not lead to a 

significant improvement of the landslide prediction in Rwanda conditions. We therefore explored other landslide hydro-470 

meteorological thresholds that use the triggering meteorological conditions with short and constant timescale as shown in Fig. 

8. These consider the cumulative one, two and three day rainfall RD1, RD2, and RD3 while extending the timescale of the 

predisposing conditions up to one, two or three days prior to the landslide triggering conditions. Figure 8 portrays the optimum 

bilinear hydro-meteorological threshold models defined from this second category. The 3-day cumulative rainfall RD3 was the 

most impactful trigger of landslide with an optimum threshold ~15.05mm/3d as defined by both TSS &Rad and resulted into 475 

79–81 % of TPR (Table 5) much higher than predicted by the first category. Similarly, the antecedent soil moisture threshold 

Seroot(t−3) was able to predict ~84 % of landslides. However, this true prediction i.e true alarms is also associated with high rate 

of false alarms ~40–42 %. The combination into hydro-meteorological thresholds [Seroot(t−3)–RD3] decreased the rate of false 

alarms up to ~22 % with about 72 % of true alarms (Fig. 8b) and thus being more satisfactory than other hydro-meteorological 

threshold models and much better than the traditional E–D model (TPR~50 %) that exclusively relies on precipitation.  480 
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Figure 7. Landslide hydro-meteorological thresholds and prediction capabilities:  (a) Event intensity-Antecedent 5cm top soil 

moisture thresholds [Setop,t-1 >0.56 AND E/D>16.1mmd-1]  (b) Event-duration E-D thresholds [D>2.5 days AND E>44.9 mm] 

defined using precipitation foot prints from all landslide locations;  (c) Event intensity-Antecedent 50 cm top soil moisture 485 

threshold [Seroot(,t-1 )>0.56 AND E/D>16.1mm;];  (d) Event intensity-Antecedent 2 m top soil moisture threshold [Seroot(,t-1) 

>0.84 AND E/D>16.1 mmd-1];  (e) Event-duration E-D thresholds [E>60.7 mm AND D>2.5 days] defined using precipitation 

foot prints and landslides located in Wflow modelled catchments;  (f) Bilinear threshold values and prediction capabilities 
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 490 
Figure 8. Landslide hydro-meteorological thresholds and prediction capabilities: (a) Cumulative 3-day rainfall RD3 and 

antecedent 5 cm top soil moisture thresholds Setop(t-1) [Setop(t-3) >0.73 AND RD3>15 mmd-3] defined using precipitation foot 

prints from all landslide locations;  (b) Cumulative 3-day rainfall RD3 and antecedent soil moisture of the root zone Seroot(t-3) 

[Seroot(t-3) >0.73 AND RD3>15 mmd-3];  (c) Cumulative 3 day rainfall RD3 and antecedent soil moisture of the top 2 m Seuz(t-3) 

[Seuz(t-3) >0.89 AND RD3>15 mmd-3] defined from the Wflow model catchment  (d) Bilinear thydro-meteorological threshold 495 

values and prediction capabilities 

 

 

4.2.4 Prospective of the satellite-based hydro-meteorological thresholds, advances and limitations 

This study reveals the high capability of the NASA GPM-based IMERG product to reproduce rainfall patterns which are 500 

consistent with the gauge-based precipitation and thus more suitable for landslide hazard assessment thresholds than sparsely 

distributed rain gauges in Rwanda. However, this research also points out that IMERG satellite-based product overestimates 

the number of rainy days whose daily rainfall is between 0–10 mm and thus the mean annual totals. This may not only lead to 

differences between satellite- and gauge-based landslide thresholds defined under same locations but also to the statistical bias 

especially when probabilistic methods are used for landslide threshold definition. To address this constraint and be able to 505 

exploit the usefulness of IMERG precipitation in landslide hazards assessment thresholds, we objectively used 10 mm as a 

threshold to define a rainy day for IMERG precipitation data. This threshold was defined based on the frequency indicator 

metric adopted as one of the techniques of bias evaluation between ground and satellite-based rainfall. For gauge-based rainfall, 

2 mm is generally considered as a threshold to define a rainy day and have been defined based on the mean daily potential 

evaporation (Marino et al., 2020; Peres et al., 2018).  510 
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Although the threshold definition of a rainy day (10 mm) may have led to the omission of some rainfall information and thus 

shortening the event duration D, this approach improved the similarities between the satellite-based and gauge-based landslide 

hazard assessment thresholds and thus used as a bias correction between the two sources of rainfall data. Similarly, other bias 

correction methods have been adopted by other researchers to ensure for the high accuracy between ground- and satellite-

based rainfall data (Bhatti et al., 2016; Vernimmen et al., 2012). However, the defined satellite-based event/duration E/D 515 

thresholds 16–17.5 mm d-1 were quite higher than previously defined gauge based-thresholds ~7–13 mm d-1. Contrarily the 

defined thresholds from the recent cumulative 2 and 3 day rainfall were much smaller than defined from gauge based data 

(Uwihirwe et al., 2020, 2021). These differences are probably due to the predefined threshold (10 mm) that could omits some 

rainy days. This also led to shortened event duration D and hence slightly higher E/D. Nevertheless, the landslide triggering 

conditions defined based on the E/D reveals poor discriminatory power to distinguish landslide from no landslides (AUC~0.53) 520 

and thus not impactful on landslide initiation. The linked landslide thresholds also underperform in terms of landslide 

prediction capabilities measured by the resulting low rate of true positives TPR~56-69 %. Similarly, the landslide hydro-

meteorological thresholds that included the rainfall event E/D as a trigger resulted into poor landslide warning performance 

TPR max ~66 %.  

It is agreed that the consequences of offering false alarms (FPR) are less harmful on the short-term than missed alarms (FNR) 525 

which implies that the best threshold should maximize the TPR (true alarms) while minimizing the FNR (missed alarms). 

However, the thresholds in Fig. 7b and 7e are classical thresholds E-D relying exclusively on rainfall (trigger), leading to the 

high rate of missed alarms and thus less important for a robust LEWS development. Similar to this study, previous studies 

(Bogaard and Greco, 2018; Marino et al., 2020; Mirus et al., 2018; Peres et al., 2018; Thomas et al., 2019; Uwihirwe et al., 

2021) indicated that the consideration of the prior subsurface hydrological conditions reduce the number of missed alarms 530 

FNR as well as the number of false alarms FPR relative to the exclusive use of rainfall-only thresholds. In Fig. 8a, 8b and 8c, 

we integrated the hydrological information (i.e. antecedent soil moisture) in landslide thresholds to improve the rate of TPR 

and reduce the rate of FNR and FPR. The main goal of hydro-meteorological thresholds (cause-trigger) is to maximize the true 

alarms TPR i.e. minimize the missed alarms FNR but at the same time reducing the false alarms FPR. The used statistical 

metrics (TSS and RAD) are also in line with this concept aiming at maximizing the TPR while minimizing the FPR. Once 535 

TPR is maximized, the FNR is also minimized though difficult and or impossible to have a perfect threshold model with zero 

FNR and FPR. 

The poor performance of the rainfall event-based thresholds concept is due to uncertainties from multiple sources. We 

hypothetically used the rainfall events as landslide triggering conditions, defined as individual periods of continuous rain 

interrupted by at least two dry day periods referred to as the minimum inter-event time (IET). Nevertheless, this definition 540 

needs further exploration to be standardised to avoid uncertainties. According to Adams et al. (1987); Hong et al. (2017), the 
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IET is defined as the minimum period of time that separates two consecutive rainfall events and is considered as the period for 

which the effects of the antecedent soil moisture or precipitation index may last. This is to say that the antecedent soil moisture 

and or antecedent precipitation index have no significant effect on landslide initiations once the rainfall events and IETs are 

well defined. However, the IET, the period during which the effect of antecedent soil moisture becomes null, depends on a 545 

number of site-specific factors (soil properties, land use/ land cover, potential evaporation etc.) and is thus difficult to be 

standardized. Another drawback associated with the use of rainfall event concept may be linked to the transient timescales of 

the triggering events that bring about difficulties to fix the appropriate time to give an alert or an early landslide warning to 

the threatened community.  

Beholding the constraints associated with IET, rainy day and rainfall events definition, we explored the shorter scaled 550 

triggering rainfall conditions that include the cumulated rainfall with constant duration 1, 2, 3 days (RD1, RD2, RD3). The 

cumulative 3 day rainfall RD3 showed the highest impact on landslide initiation AUC ~0.72 and true positive alarms TPR~79–

81 %. Although the meteorological trigger-based thresholds RD3, have resulted into high rate of true alarms, they lack the 

concrete physical significance and are also challenging for a robust landslide early warning system due to the linked high level 

of erroneous alarms i.e false positives FPR~40–42 %. To account for the pre-wetting state of the soil, the antecedent soil 555 

moisture conditions have been considered. These antecedent soil moisture conditions from the top 5 cm, 50 cm and 2 m, Setop, 

Seroot, Seuz respectively showed significant impact on landslide predisposal AUC=0.71–0.76. Moreover, with exception to the 

Seuz, the hydrological landslide thresholds 0.56 [Setop], 0.73 [Seroot] defined from these soil moisture conditions revealed high 

landslide warning capability with true alarms TPR ~75–85 %. These hydrological thresholds indicate the critical pre-wetting 

state above which any additional amount of rainfall > 11-15mm is highly likely to trigger landslides. We therefore combined 560 

both landslide hydrological predisposing and meteorological triggering conditions following the cause-trigger concept into 

bilinear hydro-meteorological thresholds framework. This approach improved the landslide prediction capabilities in terms of 

reduced rate of false alarms (FPR~22 %) and increased true alarms (TPR~72 %) as compared to the approaches that consider 

the maximum probable rainfall event (max TPR~66 % and FPR~41 %). In other words, once combined with the pre-wetting 

hydrological conditions, the cumulative few days rainfall have significant impact on landslide initiation and warning as 565 

compared to the longer and no constant triggering conditions. Furthermore, the incorporation of the antecedent wetness state 

of the terrain not only improved the landslide warning capabilities but also provide accurate insights into landslide alert time 

as compared to the use of transient time scale associated with the rainfall event concept.  

Among the tested pre-wetting conditions, the incorporation of the antecedent soil moisture modelled at the root zone Seroot was 

the most impactful for landslide initiation and thus the most useful in landslide hazard assessment thresholds in Rwanda. The 570 

finer spatial resolution of the hydrological model-derived soil moisture together with the consideration of the specific climate 

and hydrogeological characteristics of the model catchments could be a possible explanation of the positive impact of soil 
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moisture assimilated at the root zone. This could also be explained by the less exposure of the root zone to the solar heat and 

evaporation processes as compared to the near surface Setop. The probable less prone to the gravity driven drainage and deep 

percolation due to the soil texture, vegetation and organic matter at the root zone could also be an explanation. Moreover, the 575 

soil depth involved in shallow (0.5–2 m) and deep landslides(>2 m) (Greco et al., 2018) is much thicker than Setop (5cm) 

currently measured by the satellite based soil moisture technologies and this is more captured by the hydrological modelling 

approaches (Wflow). An overestimation of soil moisture by satellite (VdS) and the distributed hydrological model (Wflow) 

was also noted and attributed to the similar overestimation of satellite-based precipitation, an important element in soil moisture 

estimation. Therefore, more reliable algorithms that addresses the reliance between the satellite and in situ based information 580 

could thus improve the performance and enhance data accuracy needed for landslide hazard assessment.  

The adopted bilinear threshold framework, indicating the distribution of data points in a 2D space, reflects the relationship 

between the landslide causal and triggering conditions despite other linked constraints and limitations (Conrad et al., 2021). 

We objectively used the bilinear thresholds framework because the majority of positive classes were clustered in upper right 

corner of the 2D threshold space. Although, this format proved to be suitable for landslide hydro-meteorological thresholds 585 

definition (Mirus et al., 2018a; Thomas et al., 2019; Uwihirwe et al., 2020, 2021), other formats could also be useful depending 

on the distribution of the positive classes in the 2D space. The adopted bilinear framework is in line with the goal of the hydro-

meteorological cause-trigger based thresholds concept that prioritize the minimization of false alarms while at least keeping 

unchanged the rate of true alarms. Additionally, in some cases, single variable thresholds lead to high prediction capabilities 

in terms of elevated rate of true alarms and with quite low rate of false alarms and could be adopted especially for 590 

hydrologically based thresholds that consider the long-term wetting process of the soil until the landslide day.  

Regardless of the good performance of soil moisture as landslide hydro-meteorological threshold, the incorporation of pre-

wetting state of soil in landslide hazard assessment thresholds using groundwater levels, h(t-1)–E/D (TPR=54–64 % and FPR=6–

11 %) (Uwihirwe et al., 2021) with low rate of false alarms, performed higher than using root zone soil moisture Seroot(t-1)–E/D 

(TPR=66 % and FPR=44 %) due to the elevated rate of false alarms.  595 

Ideally, one would have a landslide inventory of about 200 landslides events in order to have a precise estimation of threshold 

parameters (Peres and Cancelliere, 2021). However, the landslide inventory used for this study counts for only 32 hazardous 

landslides. Although, the reliance on this limited sample size is likely to lead to a bias towards the larger landslide events and 

those with impact to society, this landslide inventory is the most comprehensive currently available in the study area.  

 600 
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5 Conclusion  

This research aimed to evaluate the potential of satellite-based measurements of precipitation and soil moisture as well as 

hydrological model-derived soil moisture information for landslide initiation thresholds in Rwanda. The GPM-based IMERG 

rainfall product was found to be a good spatially distributed source of rainfall data for landslide hazard assessment especially 605 

in data scarce areas like Rwanda. The satellite and model-derived soil moisture time series broadly reproduce the most 

important trends of the in situ soil moisture. Regardless of different depths of data records and slightly overestimation of soil 

moisture by satellite and model-derived techniques, it was concluded that they follow the in situ observed temporal variation 

and are thus potentially useful for landslide initiation thresholds definition. The purpose of incorporating the antecedent soil 

moisture in landslide hazard assessment was to account for the physical effect of the pre-wetness state of soil, responsible for 610 

the predisposal of the slopes to near failure, prior to the landslide triggering conditions. Two categories of landslide triggering 

conditions have been considered to assess the potential value of including the antecedent soil moisture information. The 

category that considers the cumulative 3 day rainfall was the most impactful and thus more useful for landslide hazard 

assessment in Rwanda rather than the rainfall event-based trigger. Although the area under the curve (AUC=0.71–0.76) 

statistical metric indicated the significant impact of all tested antecedent soil moisture variables prior to the triggering 615 

conditions, the antecedent soil moisture modelled from the root zone Seroot performed best. The classical thresholds E-D relying 

exclusively on rainfall (trigger) performed lower with high rate of missed alarms (50%) and thus less important for a robust 

early warning system development. Contrary, the hydro-meteorological thresholds that incorporate the antecedent soil 

moisture Seroot and the recent 3-day cumulative rainfall RD3 [Seroot(t−3)–RD3] outperforms other threshold models with high rate 

of true alarms (72 %) and low rate of false alarms (20 %) and thus can be very useful for landslide early warning system 620 

development in Rwanda.  
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Figure A1. Selected examples of satellite and model-derived soil moisture compared to in situ recorded soil moisture at 20 cm 

soil depth (AWS): a) θtop and in situ θ20cm soil moisture time series at Gacurabwenge station;  b) model-derived soil moisture 

in the root zone θroot and in situ soil moisture θ20cm at Kibisabo station;  c) satellite derived θtop and model-derived soil moisture 

in the root zone θroot with vertical red lines indicate the timing of the landslide occurrence time 
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