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Abstract. Satellite and hydrological model-based technologies provide estimates of rainfall and soil moisture over larger 

spatial scales and now cover multiple decades, sufficient to explore their value for the development of landslide early warning 

system in data scarce regions. In this study, we used statistical metrics to compare gauge-based to satellite-based precipitation 

products and assess their performance in landslide hazard assessment and warning in Rwanda. Similarly, the value of high 15 

resolution satellite and hydrological model-derived soil moisture was compared to in situ soil moisture observations at Rwanda 

weather station sites. Based on statistical indicators, the NASA GPM-based IMERG rainfall product showed the highest skill 

to reproduce the main spatiotemporal precipitation patterns at the studies sites in Rwanda. Similarly, the satellite and model-

derived soil moisture time series broadly reproduce the most important trends of in situ soil moisture observations. We 

evaluated two categories of landslide meteorological triggering conditions from IMERG satellite precipitation. First, the 20 

maximum rainfall amount during a multiple day rainfall event. Second, the cumulative rainfall over the past few day(s). For 

each category, the antecedent soil moisture recorded at three levels of soil depth, top 5 cm by satellite-based technologies as 

well as top 50 cm and 2 m through modelling approaches, was included in the statistical models to assess its potential for 

landslide hazard assessment and warning capabilities. The results reveal the cumulative 3 day rainfall RD3 as the most effective 

predictor for landslide triggering. This was indicated not only by its highest discriminatory power to distinguish landslide from 25 

no landslide conditions (AUC ~0.72) but also the resulting true positive alarms TPR of ~80 %. The modelled antecedent soil 

moisture in the 50 cm root zone Seroot(t-3) was the most informative hydrological variable for landslide hazard assessment (AUC 

~0.74 and TPR of 84 %). The hydro-meteorological threshold models that incorporate the Seroot(t-3)  and RD3 following the 

cause–trigger concept in a bilinear framework reveal promising results with improved landslide warning capabilities in terms 

of reduced rate of false alarms by ~20 % at the expense of a minor reduction of true alarms by ~8 %. 30 
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1 Introduction  

Landslides are one of the most prevalent hazards in mountainous regions of the world associated with high rates of fatalities, 

injuries and economic loss globally (Froude and Petley, 2018; Haque et al., 2016; Kirschbaum et al., 2015; Petley, 2012). 

According to a recent estimate (Froude and Petley, 2018), precipitation-induced landslides were responsible for  a global total 

of ~55000 deaths over the 13 year period from 2004 to 2016. In landslide prone regions, much effort is therefore put on the 35 

implementation of prevention and protection measures to control the most sensitive factors. Landslide early warning systems 

(LEWS) are used as non-structural and cost effective mitigation measures adopted to minimize landslides harms, loss of life 

and properties (Calvello et al., 2020; Glade and Nadim, 2014). However, the global landslide research indicated a bias in 

geographical distribution of LEWS and landslide research with a major gap in Africa (Gariano and Guzzetti, 2016; Guzzetti 

et al., 2020; Kirschbaum et al., 2015, 2010). According to Guzzetti et al. (2020), there are no LEWS in African countries 40 

despite the high number of fatal landslides recorded and the high landslide susceptibility (Broeckx et al., 2018; Kirschbaum et 

al., 2015). Previous landslide susceptibility analysis, revealed countries along the East African Rift region to be highly 

susceptible to landslides (Broeckx et al., 2018) despite that often only the most severe landslides are reported and thus a large 

number is missing. The East African Rift (EAR) was thus identified as a major hotspot of hazardous landslides in Africa with 

high rate of population exposure (Depicker et al., 2020, 2021a; Monsieurs et al., 2018a). On the long term, this is due to the 45 

active continental rifting caused by the persistent divergence of the Victoria and Nubia microplates (Glerum et al., 2020) while 

on the short term it is controlled by the interactions of prolonged and intense rainstorms in the region with hydrogeolo gical 

and landscape processes. Rwanda is among the tropical countries located in the western branch of the East African Rift, 

threatened by landslide hazards (Bizimana and Sönmez, 2015; Nsengiyumva et al., 2018; Nsengiyumva and Valentino, 2020). 

About 43% of its surface area is classified as having moderate to very high susceptibility to landslides with 49% of local 50 

population exposed to landslide risks (Nsengiyumva et al., 2018). The long term landslide predisposing factors in Rwanda, 

include its pronounced topographic profile, the inherent geological and lithological units, weathering process, earthquakes, 

demographic pressure and related anthropogenic activities such as deforestation, agriculture expansion, and slope incision 

through roads construction activities (Bizimana and Sönmez, 2015; Depicker et al., 2015, 2021; Moeyersons, 1989; Monsieurs 

et al., 2018; Nsengiyumva et al., 2018; Valentino et al., 2021). The development of mining sites and the connected feeder 55 

roads also change the nature of natural hillslope through excavation and thus exacerbating landslide susceptibility and risks of 

slope failures. In addition, urban expansion pushes settlements, industry and infrastructure into hazardous areas that are 

naturally unstable, thereby further increasing the number of elements at landslide risks. The short-term landslide triggering 

factors include prolonged and intense rains in addition to the hydrological process that predispose slopes to near failure. In the 

past 15 years period from January 2006 to May 2021, the landslide inventory in Rwanda indicated about 425 landslide death 60 

(~0.6 % of the global landslide death) and about 2000 injuries induced by the above normal hydrological and meteorological 

factors (Uwihirwe, 2021). The lack of LEWS is one of the important factors for the increasing number of landslide victims in 
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Rwanda. The development of a robust LEWS hinges on the availability of hydro-meteorological data with sufficient spatio-

temporal resolution and an accurate landslide inventory, both of which are scarce. Recently, numerous river catchments in 

Rwanda have been equipped with groundwater monitoring wells, river water level gauges, soil moisture sensors as well as the 65 

automated weather stations. However, the available data records are frequently of insufficient length to build historical time 

series that overlap with the time periods of landslide inventories and that could be incorporated into landslide hazard 

assessment thresholds. As a first step towards LEWS development in Africa, Monsieurs et al. (2018a, 2019) used the Landslide 

Inventory for the central section of the Western branch of the East African Rift  (LIWEAR) to define the landslide 

susceptibility–rainfall and antecedent soil moisture thresholds in the East African Rift region. In Rwanda, Uwihirwe et al. 70 

(2020) used a statistical approach to define gauge-based precipitation thresholds along with estimates of antecedent 

precipitation indices. Furthermore, Uwihirwe et al., (2021) incorporated regional groundwater level measurements extended 

with a transfer function noise model to define the landslide hydro-meteorological thresholds for regional landslide hazard 

assessment. So far, these studies relied exclusively on in situ observed precipitation and hydrological data constrained by the 

sparsely distributed recording equipment with point scale resolution and gaps in the data record. There is a concern about the 75 

omission and/or overgeneralisation of information on the pre-wetting hydrological conditions at the locations of the landslide 

due to the sparsely distributed hydrological recording equipment (Uwihirwe et al., 2021). These pre-wetting conditions regulate 

the disposition of a slope to near failure (Bogaard and Greco, 2018; Sidle et al., 2019). Including this information in a LEWS 

may thus be a promising opportunity to decrease the rate of both false and missed alarms (Bogaard and Greco, 2018; Peres et 

al., 2018). Similar to other hydrological variables, soil moisture exhibits high spatial variability particularly in tropical areas 80 

(Dewitte et al., 2021; Kirschbaum et al., 2012; Sekaranom et al., 2020). This spatial variability is hardly covered by on site 

monitoring equipment due to the sparse observation networks, themselves providing point scale observations only. Alternative 

ways of incorporating such hydrological state information into landslide hydro-meteorological thresholds have been attempted 

and include the use of soil moisture estimates from satellite products (Marino et al., 2020; Thomas et al., 2020; Zhuo et al., 

2019) as well as from distributed hydrological models (Mostbauer et al., 2018; Prenner et al., 2018, 2019; Wang et al., 2019; 85 

Zhao et al., 2020). In this study, we aimed to explore the usefulness of combining soil moisture from satellite products and 

from a distributed hydrological model with satellite-based precipitation for the estimation of landslide hazard assessment 

thresholds in Rwanda. We specifically i) investigated the suitability of various satellite precipitation products as substitute for 

rainfall data from a sparsely distributed gauge network in Rwanda, ii) evaluated the added value of satellite and model-derived 

soil moisture information recorded at various soil depth and iii) assessed the potential of incorporating such information in 90 

empirical landslide hazard assessment threshold models and the warning capabilities in Rwanda.  

2  Study area  

Rwanda is an evergreen landlocked country geographically located between 1º–3º S and 28º–31º E in the great lakes region of 

central east Africa with a total area of 26,338 km2. It is topographically and geomorphologically characterised by angular hills, 
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rounded hills and headlands, mountains and volcanoes (Fig. 3) with elevation in the north western regions reaching up to about 95 

4500m and steep slope reaching up to 55 % (Fig. 1and Fig. 2). The subtropical highland climate, with a long-term mean annual 

rainfall >1200 mm year-1 in the north western highland regions and < 1000 mm year-1 in the eastern Savanah region (Fig. 1) 

and a mean annual temperature of about 19 ºC, prevails in the country. The north western region of the country is located in a 

tectonic region with a seismically active volcanic chain and earthquakes being among the possible landslide triggers in 

Rwanda. The hydrology is characterized by dense networks of lakes and rivers while the hydro-geology consists mainly of 100 

fractured aquifers of granite-gneisses, schist, mica schists and complex aquifers in volcanic rocks of the north and south 

western parts of the country (Fig. 4). The main hydro-geological units in the landslide area include low and semipermeable 

fractured schist and mica schist and permeable fractured granites. The weathering products of granites are generally coarse-

grained and tend to develop and preserve open joint systems that increase their permeability and thus prone to landslide 

hazards. The weathering product of schists include clay minerals that tend to fill up the fractures and thus slowing the 105 

permeability. However, mica schists are renown as unstable due to rapid weathering, easy splitting along the joints and bedding 

planes and loss of strength induced by the high content of mica.  

 

 

Figure 1. Location of Rwanda in Africa, elevation, spatial and temporal distribution of hazardous landslides with light to dark 110 
red dots indicating old to new landslides recorded from 2007–2019, rain gauges and rainfall distributions indicated by isohyets 

(sky blue lines) 
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3 Methods and data 

3.1 Landslide inventory  

The inventory for this study, contains landslides recorded from 2007 to 2019. It was accessed from a previous study in Rwanda 115 

(Uwihirwe et al., 2021) and was further extended and updated through compilation of additional rainfall-induced landslides as 

reported from local newspapers, blogs and government technical reports. This landslide inventory was compiled with respect 

to the methodology adopted by Bach et al. (2010), Kirschbaum et al. (2015); and Monsieurs et al. (2018c). Between 2007 and 

2019, the inventory includes 55 accurately dated landslides, 32 of which are located in the catchments modelled for this study 

(Kivu, Nyabarongo upper and Mukungwa (Fig. 4). However, it is important to note that this inventory is likely to miss the 120 

non-hazardous landslides which are less reported upon than hazardous landslides that led to fatalities/injuries and considerable 

damages. The inventory provides the location of each recorded landslide but with a varying spatial accuracy of 5 to 25 km 

depending on the smallest administrative unit recorded by the landslide event reporters. Therefore, a buffer zone of 5km, 

equivalent to the frequently recorded accuracy, was used around each landslide (Fig. 2) to support the choice of the landslide 

representative rain gauge. The same areal buffer was used as a footprint to avail the areal satellite precipitation and soil moisture 125 

as detailed in Sect. 3.2 and Sect. 3.3.  

 

3.2 Precipitation products and performance evaluation  

3.2.1 Gauge-based precipitation and selection of landslide representative data  

We accessed daily precipitation data from 19 rain gauges operated by the Rwanda Meteorology Agency. These rain gauges 130 

were selected based on their location within the defined buffer of 5km around each landslide location (Fig. 2). Once two or 

more rain gauges fall within the same buffer zone, the gauges are weighted (Melillo et al., 2018) to select the most 

representative rain gauge following Eq. (1): 

 

𝑊 =
𝐸2

 𝑑2𝐷
 ,            (1) 135 

The weight (W) is estimated based on the cumulative rainfall event volume (E) until the landslide day, the distance between 

rain gauge and landslide (d), and duration D (days). A similar procedure was used to select the representative rain gauge for 

landslides located far (>5 km) from any rain gauge. The selected gauge-based precipitation was used as benchmarks to assess 

the suitability of satellite precipitation products.  

 140 
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Figure 2. Landslide representative rain gauges and precipitation footprint of 5km buffer around each landslide  

 

3.1.1. Satellite precipitation products and suitability analysis for LEWS in Rwanda  

With the gauge-based precipitation data as reference, we assessed the performance of seven satellite precipitation products 145 

summarized in Table 1. These satellite precipitation products were preliminary selected for analysis based on the criteria that 

their dataset i) at least partially overlap with the landslide inventory period (2007–2019), ii) has at least daily temporal 

resolution, and iii) is available on Google Earth Engine (GEE).  

 

 150 
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Table 1. Pre-selected precipitation products and short description  

Satellite and 

reanalysis products 

Resolution Period Data source description References 

Spatial Temporal  

TRMM 3B42 v7 0.25° Daily 1998–2019 Passive microwave (PMW) from a variety of low Earth orbit 

satellites, infrared (IR) data and precipitation gauge supplied 

by the Global Precipitation Climatology Centre (GPCC) 

(Huffman et al., 

2010) 

CHIRPS  0.05° Daily 1981–present Geostationary thermal infrared (IR); microwave satellite  

estimates and the in situ precipitation observations  

(Funk et al., 

2015) 

PERSIANN CDR 0.25° Daily 1983–present GridSat-B1 infrared data and bias-adjusted using the Global 

Precipitation Climatology Project (GPCP) monthly product 

and accumulated to the daily scale  

(Ashouri et al., 

2015) 

GLDAS 2.1  0.25° 3 hourly 2000–present Geostationary satellite infrared (IR) cloud-top temperature 

measurements and microwave observation techniques  

(Rodell et al., 

2004) 

CFSv2  0.2° 6 hourly 1979–present Satellite observations in the infrared and microwave channels 

and gauge observations 

(Saha et al., 

2014) 

IMERG_GPM  0.1° 30 min 2014–present Passive Microwave from various low Earth orbit satellites, 

Infrared from geosynchronous Earth orbit satellites and 

gauges precipitation (successor of TRMM) 

(Huffman et al., 

2020) 

ERA5  0.25° 3 hourly 1979–present This is a non-satellite but re-analysis product. precipitation is 

generated employing a convection scheme along with the 

large-scale cloud scheme that have been upgraded with an 

improved representation of mixed-phase clouds, and 

prognostic variables for precipitating rain and snow.  

(Hersbach et al., 

2020) 

 
Among the pre–selected satellite products, we have chosen the most suitable product for landslide hazard assessment in 

Rwanda based on the relative comparison with gauge–based precipitation. This was achieved using a number of statistical 

approaches that include: i) the use of statistical metrics of goodness of fit, ii) rainfall frequency indicators, and iii) intensity 155 

comparisons. The statistical metrics of goodness of fit include the root mean square error RMSE, Pearson correlation CC, and 

the long-term relative bias RB computed with Eq. (2) to Eq. (4): 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 −𝑋𝑖 )2𝑛

𝑖=1

𝑛
 ,          (2) 

 160 

𝐶𝐶 =
∑ (𝑋𝑖 −𝑋𝑚𝑒𝑎𝑛) (𝑌𝑖 −𝑌𝑚𝑒𝑎𝑛)𝑛

𝑖=1

√∑ (𝑋𝑖 −𝑋𝑚𝑒𝑎𝑛)2𝑛
𝑖=1 √∑ (𝑌𝑖 −𝑌𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

 ,          (3) 

 

𝑅𝐵 =
𝑌𝑚𝑒𝑎𝑛−𝑋𝑚𝑒𝑎𝑛

𝑌𝑚𝑒𝑎𝑛+𝑋𝑚𝑒𝑎𝑛
 ,           (4) 

 

Where Yi is the rain gauge observation at date i, Xi is the satellite estimate at the same date i, n is the total number of data pairs 165 

for each precipitation product considered, Ymean and  Xmean are the mean rainfall from rain gauge and satellite products 

respectively.  
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The rainfall frequency indicators specify the frequency of rainy days based on the predefined threshold indices (Joshi et al., 

2014; Tank et al., 2009). We used five rainfall threshold indices that reflect the number of rainy days with >X mm of rain 170 

(RDx). The predefined indices are RD0, RD10, RD20, RD30, and RD50 indicating the number of rainy days with >0 mm as rainy 

days, >10 mm as heavy rainy days, >20 mm as very heavy rainy days, >30 mm as even heavier rainy days, and >50 mm as 

extremely heavy rainy days respectively. With intensity comparison, we compared the cumulative 30 day rainfall from the 

satellite precipitation products to the cumulative 30 day precipitation from rain gauges using scatter plots.  

 175 

3.3 Soil moisture products and data acquisition 

3.3.1 In situ soil moisture data from automatic weather stations  

In situ soil moisture data, collected from the automatic weather stations (AWSs) equipped with soil moisture sensors, were 

accessed from the Rwanda Meteorological Agency for six AWSs as shown in Fig. 3. The AWSs recorded the soil moisture at 

20 cm depth with a temporal resolution of 5-10 minutes from July 2018 to December 2019. Because the analysis focuses on a 180 

daily time-scale, we computed and used the daily average soil moisture time series recorded from July 2018 to December 

2019. The in situ AWSs soil moisture data were used as a benchmark to comparatively get an insight on the quality of other 

sources of soil moisture products that include satellite and model-derived soil moisture estimates described in Sect. 3.3.2 and 

Sect. 3.3.3. 

 185 
3.3.2 Satellite soil moisture and variable of interest 

We used a satellite-derived near surface soil moisture product provided by Planet, formerly VanderSat (VdS). The product 

relies on the Land Parameter Retrieval Model (LPRM) (De Jeu et al., 2014; Owe et al., 2001, 2008) to estimate the near surface 

soil moisture by combining raw data from the Advanced Microwave Scanning Radiometer 2 (AMSR-2), and Soil Moisture 

Active Passive (SMAP) (Bouaziz et al., 2020). The satellite product estimates volumetric soil water content (m3m-3) of the 190 

upper 5cm of soil downscaled from a spatial resolution of 25 km×25 km to 100 m×100 m. From VdS, we accessed daily soil 

water content estimates from the top 5 cm of soil (θtop) for the 2007-2019 period for each of the defined region of interest 

(ROIs) equivalent to the 5 km buffers shown in Fig. 3.  
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Figure 3. Geomorphology of Rwanda, landslide representative AWSs (Automated weather stations) with soil moisture 195 
sensors; landslides in red dots and 5 km buffer zones indicating the Research Area of Interest (ROIs) for areal soil moisture 
acquisition  

3.3.3  Hydrological model-derived soil moisture and variables of interest 

We also used the soil moisture derived from the Wflow_sbm, a distributed hydrological model that uses the conceptual bucket 

model approach to estimate soil water content (Imhoff et al., 2020). With Wflow_sbm, the soil is considered as a bucket with 200 

a depth (Z) divided into 2 zones: the unsaturated store U and the saturated store S. The interface between U and S is a pseudo 

water table located at depth Zw. The values of unsaturated storage U and saturated storage S are computed as in Eq. (5) and 

Eq. (6): 

𝑈=(𝜃𝑠 − 𝜃𝑟)𝑍𝑤 − 𝑈𝑑 ,           (5) 

𝑆 = (𝜃𝑠 − 𝜃𝑟)(𝑍 − 𝑍𝑤) ,           (6) 205 

Where θs, θr are saturated and residual water content respectively and Ud is the soil water deficit 
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The unsaturated store U was the variable of interest and was subdivided into 2 variables: the water content in the root zone 

θroot[-] representing the unsaturated soil water storage of the top 50 cm and the part of the soil water capacity occupied θuz [-

] representing the unsaturated soil water storage of the upper 2 m. For this study, the model area consisted of three catchments 

(Kivu, Upper Nyabarongo and Mukungwa) as highlighted in Fig. 4. We obtained time series of θroot[-] and θuz [-] for 2007–210 

2019, overlapping with the landslide inventory period, from a wflow_sbm simulation based on ERA5 re -analysis 

meteorological data. To increase the comparability with the satellite-based soil moisture, the same ROIs represented by the 

buffers of 5 km around each landslide location were used to interpolate the unsaturated water storage time series for each ROIs 

located in the model catchment. Similarly, only the AWSs located in the model catchment (Fig. 4) were used for the 

comparative performance evaluation of the model-derived soil moisture products.  215 

 

Figure 4. Wflow model catchments (Kivu, upper Nyabarongo and Mukungwa) and hydrogeology; landslides in red dots and 
5km buffers indicating the Research Area of Interest (ROIs) for areal soil moisture acquisition from the Wflow model, 
Automated weather stations (AWSs) with soil moisture sensors for comparative performance evaluation of  the Wflow 
modelled soil moisture 220 
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3.4 Landslide hazard assessment and thresholds definition 

3.4.1  Landslide meteorological and hydrological conditions and test variables 

The daily rainfall data from the best performing satellite product were used to define the landslide meteorological triggering 

conditions. We used two categories of landslide triggering conditions. The first category defined a landslide trigger as the 

maximum probable rainfall event (MPRE) during which or slightly after its end, one or more landslides occurred. The MPREs 225 

were defined as individual periods of rainy days interrupted by dry periods of at least two days. Given the constraint of 

overestimation of the number of rainy days with 0–10 mm by satellites (Pavez, 2021), a rainy day was objectively referred to 

as the day with ≥ 10 mm d-1 while a dry day was referred to as the day with <10 mm d-1. This threshold was objectively selected 

using the rainfall frequency indicator metric explained in Sect. 3.2.2. The landslide predictor variables in this category were 

therefore the rainfall event volume (E), event duration (D) and event intensity (E/D). The rainfall event volume E (mm) was 230 

computed as the cumulative rainfall during each MPRE of duration D (days). The duration D equivalent to MPRE is the 

individual periods of days with recorded rain interrupted by inter event time (IET) of at least two dry days. The event intensity 

E/D is the ratio of event rainfall volume E and event duration D. The second category defined a landslide trigger as the recent 

cumulative rainfall RDx at the end of which one or more landslides occurred. This category considers the moving window total 

cumulative rainfall over the last three days (RD3), two days (RD2), and one day (RD1) at the end of which, one or more landslides 235 

occurred. While MPREs time series are interrupted by the IETs, the RD3, RD2 and RD1 for each day during the 2007–2019 study 

period were computed regardless of a rainy or dry day and thus resulting into longer time series and more data points compared 

to the MPREs time series. The time series of the defined meteorological triggering conditions from each category and for all 

precipitation foot prints were compiled in a single dataset for further statistical analysis. To provide a normalized comparison 

of the soil wetness, we transformed the satellite- and model-derived water content θ to effective soil moisture Se to define the 240 

landslide predisposing hydrological conditions using Eq. (7): 

 

𝑆𝑒 =
𝜃−𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛
 ,            (7) 

Where Se stands for the effective soil moisture [-], θ is the actual soil moisture, θmax and θmin are the maximum and minimum 

values of the recorded or modelled soil water content. 245 

 

The tested hydrological conditions include therefore, the near surface soil moisture Se top, representing the soil moisture of the 

upper 5 cm of soil, provided by the satellite techniques (VdS), the Se root representing the root zone soil moisture of the upper 

50 cm, acquired through modelling approach (Wflow), and Seuz representing the soil moisture estimates from the upper 2 m of 

soil, obtained through modelling approach (Wflow). To assess the contribution of the pre-wetting state of the soil prior to the 250 

landslide triggering conditions, we have considered the antecedent soil moisture i.e. recorded or modelled prior to the start  of 
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the triggering meteorological conditions. The antecedent soil moisture referred to the time interval before the start of each of 

the defined categories of the meteorological triggering conditions. We have therefore used the Setop(t-x), Seroot(t-x), Seuz(t-x) with 

t (date) and x (days) expressing the end time and the duration of the triggering conditions respectively. However, due to the  

transient duration of the MPREs, x was hypothetically represented by a value of 1 standing for one entire MPRE while values 255 

of 1, 2, 3 represent the duration (days) of the triggering RDx conditions. A binary classification of the defined hydrological and 

meteorological conditions was undertaken to classify the landslide and no-landslide conditions. The meteorological or 

hydrological conditions are referred to as landslide conditions i.e. positive class, when at least one landslide occurs during its 

course or slightly after its end while they are referred to as no-landslide conditions i.e. negative class when no landslide 

occurred during its course or slightly after its end.  260 

 

3.4.2  Discriminatory power of the landslide test variables and optimum thresholds for landslide initiation  

The landslide test variables which include the predisposing hydrological conditions Setop(t−1) , Setop(t−2), Setop(t−3) , 

Seroot(t−1),  Seroot(t−2),  Seroot(t−3) ,  Seuz(t−1),  Seuz(t−2),  and Seuz(t−3) as well as the triggering meteorological conditions E, 

D, E/D , RD1, RD2, and RD3 were tested for their relevance on landslide occurrence. We used a receiver operating characteristic 265 

(ROC) and the area under the curve (AUC) metrics to evaluate the discriminatory power of each of the landslide test variables. 

The ROC curve is defined as a graphical plot indicating the performance of the test variable at all threshold levels by providing 

the trade-off between the true positive rate (TPR) and false positive rate (FPR) at each level. The AUC is a statistical metric 

that indicate the discriminatory power of the test variable i.e. the capacity of the test variable to correctly distinguish positive 

from negative classes i.e. landslide from no landslide conditions. It compares also the test variable to a random guess 270 

(AUC=0.5) and thereby indicates the statistical significance where the perfect test variable would have an AUC equal to unity. 

The rate of correctly (TPR) and incorrectly predicted landslides corresponding to each cut off on the  ROC curves are computed 

using Eq. (8) and Eq. (9): 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,            (8) 275 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 ,            (9) 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
             (10) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (11) 
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Where TP are true positives or true alarms i.e. outcomes with correctly predicted landslides, FN are false negatives or missed 

alarms i.e. the number of landslides that occurred in reality but were not predicted, FP are false positives or false alarms i.e. 280 

predictions of landslide occurrence while in reality there was no landslide reported, and TN are true negatives i.e. correct 

predictions of no-landslide occurrence.  

 

Since the ROC curve only indicates all possible thresholds and their relative balance between TPR and FPR, one is free to 

choose the optimum threshold depending on whether to maximize the TPR or minimize the FPR. However, according to 285 

Postance and Hillier (2017), the optimum threshold is the one that maximizes the TPR while minimizing the FPR. Therefore, 

that optimum threshold level above which landslide are high likely to occur have been defined using two statistical metrics i.e. 

the maximum true skill statistic (TSS) and minimum radial distance (Rad). The TSS is expressed as a balance between the 

TPR and FPR as indicated in Eq. (12): 

 290 

𝑇𝑆𝑆 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅 ,            (12) 

Where the maximum value of 𝑇𝑆𝑆 indicates the optimum threshold for landslide initiation. For a perfect threshold, the TSS 

reaches a unity indicating a zero false positive rate (FPR). The radial distance (Rad) shows the relative distance from the 

defined threshold level on the curve to the perfect model or point whose TPR is a unit and zero FPR and is computed with Eq. 

(13): 295 

 

𝑅𝑎𝑑 = √(𝐹𝑃𝑅)2 + (𝑇𝑃𝑅 − 1)2 ,           (13) 

 

3.4.3  Landslide hydro-meteorological thresholds and warning capabilities 

The optimum thresholds defined based on the maximum TSS and or minimum Rad were plotted in 1D threshold space here 300 

referred to as single variable threshold line beyond which landslide are high likely to occur. We also followed cause–trigger 

concept (Bogaard and Greco, 2018) that reflect the hydro-meteorological thresholds and hypothetically plotted the optimum 

thresholds of the landslide predisposing hydrological variables i.e the antecedent soil moisture on the x‐axis and the 

meteorological triggering variables on the y‐axis of a two dimensional 2D space here referred to as bilinear thresholds. The 

bilinear threshold models made of hydrological and meteorological variables are plotted in x, y pairs i.e antecedent soil 305 

moisture versus E/D or RDX). Furthermore, the bilinear threshold from a traditional landslide prediction model event–duration 

E–D, that exclusively rely on precipitation, has been also defined to serve as a benchmark for comparative performance 

evaluation. 
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4 Results and discussion  310 

4.1 Performance of Satellite precipitation products 

The suitability of satellite precipitation products in the study region was assessed using three statistical indicators as 

summarized in Table 2, Table 3 and Fig. 4. From the statistical measures of fits (RMSE, CC, RB), it is generally observed that 

IMERG is consistently more suitable while ERA-5 was found to be the least suitable product as compared to other satellite 

precipitation products. The evaluation based on frequency indicators is summarised in Table 3. These indicators give an 315 

overview on whether a given satellite product would overestimate or underestimate the observed gauge precipitation based on 

the predefined threshold indices. IMERG_GPM displays the highest skill to estimate all ranges of rainfall from heavy to 

extremely heavy rainy days as recorded by the on-site gauges. CHIRPS and TRMM 3B42 v7 provide good estimates of 

precipitation with quite similar number of rainy days (RD0=1250) to gauge-based rainfall (RD0=1256days). However, these 

satellites drastically underestimate the number of heavy to extreme heavy rainfall (RD20, RD30 and RD50) which are the root 320 

cause of landslide hazards. For example, TRMM and CHIRPS estimated RD20=84 and 101days respectively out of 134 days 

estimated by rain gauge. The products PERSIANN CDR, GLDAS 2.1, CFSv2 and ERA-5 overestimated low rainy days while 

under estimating the number of heavy to extremely heavy rainy days as shown in Table 3.  

 

The suitability of satellite products was also assessed using intensity comparison indicated by the density of the scatter po ints 325 

around 1:1 line as shown in Fig. 3. The scatter plots compare 30day cumulative rainfall from satellite precipitation products 

versus rain gauges. The scatter plots reveal that GLDAS, CFSv2 and ERA-5 tend to overestimate rainfall while 

underestimations are noticed from PERSIANN CDR as compared to the in situ gauge rainfall. Based on the closeness of scatter 

points to the 1:1 line, CHIRPS and IMERG exhibit a higher resemblance to gauge data (Pearson correlation R=0.67 and 0.60 

respectively) than other satellite products and could thus be used as alternative to gauge-based precipitation. Overall, IMERG 330 

shows rainfall pattern that are most consistent with available gauge observations in Rwanda despite the over estimation of the 

number of rainy days with less than 10 mm (RD10). According to Kimani et al. (2017), the overestimation of rainfall in areas 

with elevation >2500 m and underestimation in areas with elevation < 2500 m was observed before and is attributed to satellite 

inherent challenges to retrieve orographic rainfall. To overcome this constraint, 10 mm d-1 has been considered as a threshold 

to define a satellite-based rainy day and thus being relevant for landslide hazard assessment in Rwanda conditions. Other 335 

researchers in the regions also found CHIRPS and TRMM to be comparable to gauge-based precipitation in east Africa 

(Kimani et al., 2017; Monsieurs et al., 2018b). Monsieurs et al. (2018b) found the areal-averaged TMPA rainfall estimates, the 

predecessor of IMERG, to be more suitable for assessing landslide hazard threshold than the sparsely distributed gauge data 

with limited representativeness in the context of high rainfall variability of the east African rift. 

 340 
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Table 2. Performance of Satellite precipitation products based on statistical metrics 

Metrics TRMM 3B42 v7 CHIRPS PERSIANN CDR GLDAS 2.1 CFSv2 IMERG ERA 5 

RMSE (mm) 8.17 8.53 7.42 8.55 10.58 8.18 12.60 

CC (-) 0.31 0.27 0.25 0.24 0.17 0.35 0.22 

RB (-) -0.08 -0.01 -0.15 0.03 0.11 0.02 0.29 

 

Table 3. Performance of Satellite precipitation products based on rainfall frequency indicators  

Indices Description Gauge TRMM 

3B42 v7 

CHIRPS  PERSIANN 

CDR 

GLDAS 

2.1 

CFSv2 IMERG ERA 

5 

RD0 Rainy days >0 mm 1259  1691  1256  2732  3086  2835  2842  3520 

RD10 Heavy rainy days >10 mm 397  307  424  138 377  617  383  879 

RD20 Very Heavy rainy days >20 mm 132  87  101  9  79  199  126  250 

RD30 Even heavier rainfall days >30 mm 49 29  25  0  22  84  42  78 

RD50 Extremely heavy rainfall >50 mm 9 4  3  0  2  22  6  21 

 345 

 

 
Figure 5. Intensity comparison between satellite-based and gauge-based precipitation based on the cumulative 30 day rainfall 

 

4.2 Prospective of satellite and model-derived information in landslide hazard assessment 350 

4.2.1  Mean soil moisture response to rainfall and landslide events 

Figure 6 indicates the temporal dynamics of the satellite estimates Setop  and the model-derived soil moisture time series Seroot 

and Seuz compared to in situ soil moisture observations from the automatic weather station AWS. Regardless of the difference 

in measuring depth (5 cm, 50 cm & 2 m), the time response to precipitation and overestimation of soil moisture, the satellite 
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Setop  and model-derived soil moisture time series Seroot and Seuz broadly reproduce the most important temporal variation as 355 

recorded by in situ soil moisture sensors (Fig. 6 and Fig. A1). This indicates their usefulness for landslide hazards assessment 

as an alternative to the sparse in situ AWSs. The spatial averaging of soil moisture across all research areas of interest (ROIs) 

was undertaken to have an insight on the critical ranges of soil moisture that induce landslides in Rwandan conditions. The 

spatially averaged Setop, Seroot and Seuz soil moisture dynamics and the linked landslide hazards are presented in Fig. 6. The 

average Setop, Seroot and Seuz of all ROIs, indicate general similarities in terms of landslide predisposing but also reveal 360 

systematic differences between response time influenced by the soil moisture recording depth. For example, it is obvious that 

the Setop (5 cm) responds faster than Seroot (50 cm) and Seuz (2 m). It is clear that the majority of landslides occurs when the 

soil moisture levels positively deviate from the long-term mean up to a critical level for landslide initiation. It is also evident 

that the critical level for landslides occurrence is a function of the prior rainfall received and the time lag between rainfall and 

soil moisture responses. 365 
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Figure 6. Satellite and model-derived information and landslide activities (a) GPM based IMERG precipitation [mm] spatially 
averaged over all landslide precipitation foot prints (b) satellite derived soil moisture Setop [-] spatially averaged over all 370 

landslide ROIs and in situ soil moisture AWS [-] on secondary y-axis; (c) GPM based IMERG precipitation [mm] spatially 
averaged over the landslide precipitation foot prints located in the modelled catchments, (d) modelled soil moisture at the root 
zone top 50 cm Seroot [-], modelled soil moisture top 2 m Seuz [-] and in situ soil moisture AWS [-] on secondary y-axis. The 
dashed horizontal lines represent the long term mean soil moisture and the red triangles stand for the landslide events 
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4.2.2 Single variable landslide meteorological and hydrological thresholds and prediction capabilities 375 

Figure 7 and Table 4 show the derived landslide meteorological and hydrological thresholds and their predictive capabilities 

in terms of true positive rate TPR and false positive rate FPR. The discriminatory power of each of the tested variables was 

evaluated with a receiver operating characteristic (ROC) curve and the area under the curve (AUC) statistical metrics as shown 

in Fig. 7. Among the tested landslide triggering meteorological variables E, D, E/D, RD1, RD2, and RD3, the cumulative 3 day 

rainfall RD3 and event rainfall volume E showed the highest discriminatory power with AUC ~ 0.72 and hence the highest 380 

impact on landslide initiation. However, the event rainfall intensity, i.e. E normalised over the event duration D as E/D 

indicated low capability (AUC~0.53) to distinguish landslides from no landslides. This stresses the importance of using the 

recent cumulative rainfall with a fixed duration and thus highlighting the highest impact of RD3 on landslide initiation process 

and its relevance on landslide hazard assessment and prediction compared to E that need to be normalised. Contrarily to the 

gauge-based cumulative rainfall thresholds (Uwihirwe et al., 2020), the satellite based cumulative rainfall on the day of 385 

landslide RD1 was not impactful to landslide initiation (AUC=0.35–0.38). This may be due to the inaccuracies between the 

landslide occurrence and the reporting time, and additionally also due to  the satellite revisiting time and or period which may 

introduce inaccuracies in timing. 

  

Figure 7c and d indicate that the wetness state of soil prior to the cumulative rainfall RDx have the most significant impact on 390 

landslide occurrence as indicated by their AUC=0.7–0.76. Contrarily, Fig. 7a and b show that the wetness state of the soil prior 

to the landslide triggering event E has no significant impact on landslide occurrence (AUC=0.65–0.67). This is to say that the 

antecedent soil moisture conditions prior to the longer triggering rainfall event E are not relevant for landslide initiation in the 

study area conditions. Among other factors, the duration of the triggering condition plays a major role in determining the 

relevance of the antecedent soil moisture on landslide occurrence. The shorter the duration of the triggering conditions, the 395 

higher the relevance of the antecedent soil moisture on landslides initiation. Highly permeable soils are less sensitive to 

antecedent soil moisture conditions because of the high gravity driven drainage and or deep percolation. With a tropical 

climate, evaporation process may also rapidly take away the antecedent soil moisture content of the top soil due to the longer 

timescale of the inter-event time IET and the landslide triggering event E. 

 400 

The thresholds definition metrics, TSS and Rad, resulted in quite comparable landslide thresholds as summarised in Table 4. 

Moreover, it was noticed that the defined satellite precipitation thresholds are more similar to the ones defined using gauge 

based precipitation. For example, the optimum landslide threshold event rainfall volume E defined from satellite precipitation 

varied between 44mm and 61mm (Table 4) while gauge-based threshold E varied from 46mm to 67mm (Uwihirwe et al., 

2021). Similarly but with a quite minor difference, the defined satellite-based E/D thresholds 16–17.5mmd-1 seemed quite 405 

similar to gauge-based thresholds ~7–13mmd-1 found in Uwihirwe et al. (2020 and 2021). Nevertheless, the single variable 
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threshold E/D being the most informative, showed quite low prediction capability in terms of TPR~56–60 % with elevated 

rate of false positive FPR ~ 43–54 % i.e. incorrect predictions of landslide and thus being less effective for a robust early 

warning system development. Contrarily, the single variable thresholds defined from the cumulative 3 day rainfall RD3 

outperforms other tested triggering conditions with highest prediction capability in terms of true positive rate TPR=79–81 %. 410 

The same holds for the soil moisture in the root zone (50 cm deep) Seroot that consistently showed the highest performance. 

Nevertheless, despite the high true positive rate from these single variables thresholds, the resulting elevated rate of false 

positives FPR=36–42 % still constrain their use for the development of a robust landslide early warning system. It has to be 

noted that the threshold defined from the antecedent soil moisture specifies the critical levels below which the impact of pre-

wetting state of the soil is considered unimportant for landslide occurrence. On the contrary, once these thresholds are 415 

exceeded, the pre-wetting state of the soil has significant impact on landslide occurrence and has to be considered while 

defining the landslide hydro-meteorological threshold models. 
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 420 
Figure 7. Receiver operating characteristics ROC curves, area under the curves AUC and optimum landslide thresholds 
defined by the true skill statistic TSS (square shaped marker) and radial distance Rad (cycle shaped marker) using: a) Event 
rainfall and satellite (VdS) based-top 5 cm soil moisture Setop from all ROIs b) Event rainfall and modelled root zone soil 
moisture of the top 50 cm Seroot and top 2 m Seuz from ROIs located in the Wflow model catchment  c)Cumulative 1, 2 and 3 
day rainfall (RDx) and satellite (VdS) based-top 5 cm soil moisture Setop from all ROIs and d) cumulative 1, 2 and 3 day 425 
rainfall(RDx) and modelled root zone soil moisture of the top 50 cm Seroot and top 2 m Seuz from ROIs located in the Wflow 

model catchment  
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Table 4. Event based variable thresholds and prediction capabilities 

Variable  Maximum True skill statistics (TSS) Minimum radial distance (Rad) 

 Threshold TPR FPR TSS Rad Threshold TPR FPR TSS Rad 

Event E (mm)a 53.1 0.54 0.21 0.33 0.51 44.9 0.60 0.27 0.33 0.49 

Duration D (d)b 2.5 0.56 0.27 0.29 0.52 1.5 0.72 0.43 0.29 0.51 

Event/Duration E/D (mm d-1)c 16.1 0.64 0.54 0.10 0.65 17.3 0.56 0.47 0.09 0.65 

Setop(t-1) 0.56 0.72 0.44 0.28 0.52 0.57 0.68 0.41 0.27 0.52 

Event E (mm)d 60.7 0.53 0.17 0.36 0.50 60.7 0.53 0.17 0.36 0.50 

Duration D (d)e 2.5 0.59 0.28 0.32 0.49 2.5 0.59 0.28 0.32 0.49 

Event/Duration E/D (mm d-1)f 16.1 0.69 0.54 0.15 0.62 17.5 0.59 0.46 0.14 0.61 

Seroot (t-1) 0.56 0.72 0.44 0.28 0.52 0.56 0.72 0.44 0.28 0.52 

Seuz(t-1) 0.91 0.53 0.22 0.31 0.52 0.87 0.63 0.34 0.28 0.51 
a b c Event rainfall volume, duration and intensity defined from all landslide representative precipitation foot prints,  d e f Event rainfall volume, duration and intensity defined using precipitation 

foot prints located in the modelled catchments (Kivu, Nyabarongo upper and Mukungwa)  430 
 

Table 5. Cumulative rainfall based-variable thresholds and prediction capabilities 

Variable Maximum True skill statistics (TSS) Minimum radial distance (Rad)  
Threshold TPR FPR FNR TNR TSS Rad Threshold TPR FPR TSS Rad 

RD1 (mmd-1)a 10.90 0.35 0.16 0.65 0.84 0.19 0.67 10.90 0.35 0.16 0.19 0.67 

RD2 (mmd-2)b 14.70 0.50 0.20 0.50 0.80 0.30 0.54 10.90 0.54 0.27 0.27 0.53 

RD3 (mm)c 15.05 0.79 0.40 0.21 0.60 0.39 0.45 15.05 0.79 0.40 0.39 0.45 

Setop (t-1) 0.53 0.85 0.43 0.15 0.57 0.41 0.46 0.56 0.77 0.37 0.40 0.44 

Setop (t-2) 0.57 0.75 0.35 0.25 0.65 0.40 0.43 0.57 0.75 0.35 0.40 0.43 

Setop (t-3) 0.56 0.75 0.38 0.25 0.62 0.37 0.50 0.56 0.75 0.38 0.37 0.50 

RD1 (mmd-1)d 10.90 0.38 0.16 0.62 0.84 0.21 0.64 10.90 0.38 0.16 0.21 0.64 

RD2 (mmd-2)e 14.70 0.59 0.21 0.41 0.79 0.38 0.45 10.90 0.67 0.28 0.38 0.44 

RD3 (mm)f 15.05 0.81 0.42 0.19 0.58 0.40 0.46 35.70 0.63 0.25 0.38 0.45 

Seroot (t-1) 0.75 0.81 0.38 0.19 0.62 0.43 0.43 0.75 0.81 0.38 0.43 0.43 

Seroot (t-2) 0.76 0.84 0.36 0.16 0.64 0.49 0.39 0.76 0.84 0.36 0.49 0.39 

Seroot (t-3) 0.72 0.84 0.41 0.16 0.59 0.43 0.44 0.79 0.72 0.30 0.42 0.41 

SeUZ, (t-1) 0.90 0.66 0.23 0.34 0.77 0.43 0.41 0.90 0.66 0.23 0.43 0.41 

SeUZ (t-2) 0.89 0.63 0.25 0.37 0.75 0.38 0.45 0.89 0.63 0.25 0.38 0.45 

SeUZ (t-3) 0.92 0.56 0.18 0.44 0.82 0.38 0.47 0.89 0.63 0.24 0.38 0.45 
a b c Cumulative 1, 2, and 3day rainfall defined from all landslides representative precipitation foot prints,  d e f Cumulative 1, 2, and 3day rainfall volume defined using precipitation foot prints 

located in the model catchments (Kivu, Nyabarongo upper and Mukungwa)  

 435 

4.2.3 Landslide hydro-meteorological thresholds and implication for warning  

With respect to the high rate of false positives resulting from the single variable thresholds, we have  tested whether the 

incorporation of antecedent soil moisture information to the triggering rainfall conditions improves the landslide prediction 

capability. The optimum single variable hydrological and meteorological thresholds have been combined into hydro-

meteorological thresholds following the cause-trigger concept in a bilinear framework as shown in Fig. 8 and Fig. 9. Figure 8 440 

illustrates the first category of landslide hydro-meteorological thresholds defined based on the maximum possible rainfall event 

E combined with different variables of antecedent soil moisture. The derived thresholds resulted into quite elevated rate of 

false alarms FPR once used as single variable thresholds (single lines). In contrast, the combination of hydro-meteorological 

thresholds in a bilinear framework provide an improvement in terms of reduced rate of false alarms by about 30 % [Setop(t−1)–
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E/D], 13 % [Seroot(t−1)–E/D], and 35 % [Seuz(t−1)–E/D] respectively as compared to the ones obtained from the exclusive use of 445 

single variable precipitation based E/D thresholds. The intention of adopting the bilinear hydro-meteorological threshold in 

spite of precipitation thresholds is to minimize the rate of incorrect prediction of landslides FPR while improving or at least 

keeping unchanged the rate of true alarms TPR. This was only achieved by using the bilinear hydro-meteorological thresholds 

defined using antecedent soil moisture at the root zone [Seroot(t−1)–E/D] that performs better (TPR=66 %) than the traditional 

precipitation threshold E–D (TPR=50 %). However, this category still suffers from the low landslide warning capability (max 450 

TPR=66 %) and is thus not satisfactory for a robust early warning system development. The lower performance was attributed 

to the timescale of the triggering events. Apparently, the effect of the antecedent soil moisture lasts for a limited period of time 

and subsequently decays towards zero and below.  

 

The inter-event time IET and the timescale of the rainfall events E are not constant and vary in durations with high probability 455 

to be too long and thus implying the decay of the antecedent soil moisture and hence negligible contribution to landslide 

induction. Consequently, the incorporation of the wetness state of the soil prior to the landslide triggering events E did not lead 

to a significant improvement of the landslide prediction in Rwanda conditions. We therefore explored other landslide hydro-

meteorological thresholds that use the triggering meteorological conditions with short and constant timescale as shown in Fig. 

9. These consider the cumulative one, two and three day rainfall RD1, RD2, and RD3 while extending the timescale of the 460 

predisposing conditions up to one, two or three days prior to the landslide triggering conditions. Figure 9 portrays the optimum 

bilinear hydro-meteorological threshold models defined from this second category. The 3day cumulative rainfall RD3 was the 

most impactful trigger of landslide with an optimum threshold ~15.1mmd-3 defined by both TSS &Rad and resulted into 79–

81 % of TPR much higher than predicted by the first category. Similarly, the antecedent soil moisture threshold Seroot(t−3) was 

able to predict ~84 % of landslides. However, this true prediction i.e true alarms is also associated with high rate of false alarms 465 

~40–42 %. The combination into hydro-meteorological thresholds [Seroot(t−3)–RD3] decreased the rate of false alarms up to ~22 

% with about 72 % of true alarms (Fig. 9b) and thus being more satisfactory than other hydro-meteorological threshold models 

and much better than the traditional E–D model (TPR~50 %) that exclusively relies on precipitation.  

 

 470 
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Figure 8. Landslide hydro-meteorological thresholds and prediction capabilities:  (a) Event intensity-Antecedent 5cm top soil 
moisture thresholds [Setop,t-1 >0.56; E/D>16.1mmd-1]  (b) Event-duration E-D thresholds [D>2.5 days; E>44.9 mm] defined 
using precipitation foot prints from all landslide locations;  (c) Event intensity-Antecedent 50 cm top soil moisture threshold 475 
[Seroot(,t-1 )>0.56- E/D>16.1mm;];  (d) Event intensity-Antecedent 2 m top soil moisture threshold [Seroot(,t-1) >0.84; E/D>16.1 

mmd-1];  (e) Event-duration E-D thresholds [E>60.7 mm; D>2.5 days] defined using precipitation foot prints and landslides 
located in Wflow modelled catchments;  (f) Bilinear threshold values and prediction capabilities 
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 480 

Figure 9. Landslide hydro-meteorological thresholds and prediction capabilities: (a) Cumulative 3 day rainfall RD3 and 

antecedent 5 cm top soil moisture thresholds Se top(t-1) [Setop(t-3) >0.73; RD3>15 mmd-3] defined using precipitation foot prints 
from all landslide locations;  (b) Cumulative 3 day rainfall RD3 and antecedent soil moisture of the root zone Se root(t-3) [Seroot(t-

3) >0.73; RD3>15 mmd-3];  (c) Cumulative 3 day rainfall RD3 and antecedent soil moisture of the top 2 m Seuz(t-3) [Seuz(t-3) >0.89; 
RD3>15 mmd-3] defined from the Wflow model catchment  (d) Bilinear thydro-meteorological threshold values and prediction 485 
capabilities 

 

4.2.4 Prospective of the satellite-based hydro-meteorological thresholds, advances and limitations 

This study reveals the high capability of the NASA GPM-based IMERG product to reproduce rainfall patterns which are 

consistent with the gauge-based precipitation and thus more suitable for landslide hazard assessment thresholds than sparsely 490 

distributed rain gauges in Rwanda. However, this research also points out that IMERG satellite-based product overestimates 

the number of rainy days whose daily rainfall is between 0–10 mm and thus the mean annual totals. This may not only lead to 

differences between satellite- and gauge-based landslide thresholds defined under same locations but also to the statistical bias 

especially when probabilistic methods are used for landslide threshold definition. To address this constraint and be able to 

exploit the usefulness of IMERG precipitation in landslide hazards assessment thresholds, we objectively used 10 mm as a 495 

threshold to define a rainy day for IMERG precipitation data. This threshold was defined based on the frequency indicator 

https://doi.org/10.5194/egusphere-2022-596
Preprint. Discussion started: 11 July 2022
c© Author(s) 2022. CC BY 4.0 License.



25 
 
 

 

metric. For gauge based rainfall, 2 mm is generally considered as a threshold to define a rainy day and have been defined based 

on the mean daily potential evaporation (Marino et al., 2020; Peres et al., 2018).  

Although the threshold definition of a rainy day (10 mm) may have led to the omission of some rainfall information and thus 

shortening the event duration D, this approach improved the similarities between the satellite-based and gauge-based landslide 500 

hazard assessment thresholds. However, the defined satellite-based event/duration E/D thresholds 16–17.5 mm d-1 were quite 

higher than previously defined gauge based-thresholds ~7–13 mm d-1. Contrarily the defined thresholds from the recent 

cumulative 2 and 3 day rainfall were much smaller than defined from gauge based data (Uwihirwe et al., 2020, 2021). These 

differences are probably due to the predefined threshold (10 mm) that probably omits some rainy days. This also led to 

shortened event duration D and hence slightly higher E/D. Nevertheless, the landslide triggering conditions defined based on 505 

the E/D reveals poor discriminatory power to distinguish landslide from no landslides (AUC~0.53) and thus not impactful on 

landslide initiation. The linked landslide thresholds also underperform in terms of landslide prediction capabilities measured 

by the resulting low rate of true positives TPR~56-69 %. Similarly, the landslide hydro-meteorological thresholds that included 

the rainfall event E/D as a trigger resulted into poor landslide warning performance TPR max ~66 %.  

The poor performance of the rainfall event-based thresholds concept is due to uncertainties from multiple sources. We 510 

hypothetically used the rainfall events as landslide triggering conditions, defined as individual periods of continuous rain 

interrupted by at least two dry day periods referred to as inter-event time (IET). Nevertheless, this definition needs further 

exploration to be standardised to avoid uncertainties. According to Adams et al. (1987); Hong et al. (2017), the IET is defined 

as the minimum period of time that separates two consecutive rainfall events and is considered as the period for which the 

effects of the antecedent soil moisture or precipitation index may last. This is to say that the antecedent soil moisture and or 515 

antecedent precipitation index have no significant effect on landslide initiations once the rainfall events and IETs are well 

defined. However, the IET, the period during which the effect of antecedent soil moisture becomes null, depends on a number 

of site-specific factors (soil properties, land use/ land cover, potential evaporation etc.) and is thus difficult to be standardized. 

Another drawback associated with the use of rainfall event concept may be linked to the transient timescales of the triggering 

events that bring about difficulties to fix the appropriate time to give an alert or an early landslide warning to the threatened 520 

community.  

Beholding the constraints associated with IET, rainy day and rainfall events definition, we explored the shorter scaled 

triggering rainfall conditions that include the cumulated rainfall with constant duration 1, 2, 3 days (RD1, RD2, RD3). The 

cumulative 3 day rainfall RD3 showed the highest impact on landslide initiation AUC ~0.72 and true positive alarms TPR~79–

81 %. Although the meteorological trigger-based thresholds RD3, have resulted into high rate of true alarms, they lack the 525 

concrete physical significance and are also challenging for a robust landslide early warning system due to the linked high level 

of erroneous alarms i.e false positives FPR~40–42 %. To account for the pre-wetting state of the soil, the antecedent soil 
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moisture conditions have been considered. These antecedent soil moisture conditions from the top 5 cm, 50 cm and 2 m, Setop, 

Seroot, Seuz respectively showed significant impact on landslide predisposal AUC=0.71–0.76. Moreover, with exception to the 

Seuz, the hydrological landslide thresholds 0.56 [Setop], 0.73 [Seroot] defined from these soil moisture conditions revealed high 530 

landslide warning capability with true alarms TPR ~75–85 %. These hydrological thresholds indicate the critical pre-wetting 

state above which any additional amount of rainfall > 11-15mm is highly likely to trigger landslides. We therefore combined 

both landslide hydrological predisposing and meteorological triggering conditions following the cause -trigger concept into 

bilinear hydro-meteorological thresholds framework. This approach improved the landslide prediction capabilities in terms of 

reduced rate of false alarms (FPR~22 %) and increased true alarms (TPR~72 %) as compared to the approaches that consider 535 

the maximum probable rainfall event (max TPR~66 % and FPR~41 %). In other words, once combined with the pre-wetting 

hydrological conditions, the cumulative few days rainfall have significant impact on landslide initiation and warning as 

compared to the longer and no constant triggering conditions. Furthermore, the incorporation of the antecedent wetness state 

of the terrain not only improved the landslide warning capabilities but also provide accurate insights into landslide alert time 

as compared to the use of transient time scale associated with the rainfall event concept.  540 

Among the tested pre-wetting conditions, the incorporation of the antecedent soil moisture modelled at the root zone Seroot was 

the most impactful for landslide initiation and thus the most useful in landslide hazard assessment thresholds in Rwanda. The 

finer spatial resolution of the hydrological model-derived soil moisture together with the consideration of the specific climate 

and hydrogeological characteristics of the model catchments could be a possible explanation of the positive impact of soil 

moisture assimilated at the root zone. This could also be explained by the less exposure of the root zone to the solar heat and 545 

evaporation processes as compared to the near surface Setop. The probable less prone to the gravity driven drainage and deep 

percolation due to the soil texture, vegetation and organic matter at the root zone could also be an explanation. Moreover, the 

soil depth involved in shallow (0.5–2 m) and deep landslides(>2 m) (Greco et al., 2018) is much thicker than Setop (5cm) 

currently measured by the satellite based soil moisture technologies and this is more captured by the hydrological modelling 

approaches (Wflow). An overestimation of soil moisture by satellite (VdS) and the distributed hydrological model (Wflow) 550 

was also noted and attributed to the similar overestimation of satellite-based precipitation, an important element in soil moisture 

estimation. Therefore, more reliable algorithms that addresses the reliance between the satellite and in situ based information 

could thus improve the performance and enhance data accuracy needed for landslide hazard assessment.  

The adopted bilinear threshold framework, indicating the distribution of data points in a 2D space, reflects the relationship 

between the landslide causal and triggering conditions. We objectively used the bilinear thresholds framework because the 555 

majority of positive classes were clustered in upper right corner of the 2D threshold space. Although, this format proved to be 

suitable for landslide hydro-meteorological thresholds definition (Mirus et al., 2018a; Thomas et al., 2019; Uwihirwe et al., 

2020, 2021), it is clear that for meteorological threshold model E–D, the commonly used power law function would have 
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resulted into high rate of true alarms at the expense of a very high rate of false alarms. However, the adopted bilinear framework 

is in line with the goal of the hydro-meteorological cause-trigger based thresholds concept that prioritize the minimization of 560 

false alarms while at least keeping unchanged the rate of true alarms. Additionally, in some cases, single variable thresholds 

lead to high prediction capabilities in terms of elevated rate of true alarms and with quite low rate of false alarms and could be 

adopted especially for hydrologically based thresholds that consider the long-term wetting process of the soil until the landslide 

day.  

Despite the good performance of soil moisture as landslide hydro-meteorological threshold, the incorporation of pre-wetting 565 

state of soil in landslide hazard assessment thresholds using groundwater levels, h(t-1)–E/D (TPR=54–64 % and FPR=6–11 %) 

(Uwihirwe et al., 2021) with low rate of false alarms, performed higher than using root zone soil moisture Seroot(t-1)–E/D 

(TPR=66 % and FPR=44 %) due to the elevated rate of false alarms.  

 

5 Conclusion  570 

This research aimed to evaluate the potential of satellite-based measurements of precipitation and soil moisture as well as 

hydrological model-derived soil moisture information for landslide initiation thresholds in Rwanda. The GPM-based IMERG 

rainfall product was found to be a good spatially distributed source of rainfall data for landslide hazard assessment especially 

in data scarce areas like Rwanda. The satellite and model-derived soil moisture time series broadly reproduce the most 

important trends of the in situ soil moisture. Regardless of different depths of data records and slightly overestimation of soil 575 

moisture by satellite and model-derived techniques, it was concluded that they follow the in situ observed temporal variation 

and are thus potentially useful for landslide hazard assessment. The purpose of incorporating the antecedent soil moisture in 

landslide hazard assessment was to account for the physical effect of the pre-wetness state of soil, responsible for the 

predisposal of the slopes to near failure, prior to the landslide triggering conditions. Two categories of landslide triggering 

conditions have been considered to assess the potential value of including the antecedent soil moisture information. The 580 

category that considers the cumulative 3 day rainfall was the most impactful and thus more useful for landslide hazard 

assessment in Rwanda rather than the rainfall event-based trigger. Although the area under the curve (AUC=0.71–0.76) 

statistical metric indicated the significant impact of all tested antecedent soil moisture variables prior to the triggering 

conditions, the antecedent soil moisture modelled from the root zone Se root performed best. Similarly, the hydro-meteorological 

thresholds that incorporate the antecedent soil moisture Seroot and the recent 3 day cumulative rainfall RD3 [Seroot(t−3)–RD3] 585 

outperforms other threshold models with high rate of true alarms (72 %) and low rate of false alarms (20 %) and thus very 

useful for landslide hazard assessment and early warning system development in Rwanda.  

 

Data availability. The landslide inventory used for this research can be accessed at https://doi.org/10.4121/15040446.v1  
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Appendix A 

 775 

 
Figure A1. Selected examples of satellite and model-derived soil moisture compared to in situ recorded soil moisture at 20 cm 
soil depth (AWS): a) θtop and in situ θ20cm soil moisture time series at Gacurabwenge station;  b) model-derived soil moisture 
in the root zone θroot and in situ soil moisture θ20cm at Kibisabo station;  c) satellite derived θtop and model-derived soil moisture 

in the root zone θroot with vertical red lines indicate the timing of the landslide occurrence time 780 
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