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Abstract. Satellite and hydrological model-based technologies provide estimates of rainfall and soil moisture over larger
spatial scales and now cover multiple decades, sufficient to explore their value for the development of landslide early warning
systemin data scarce regions. In this study, we used statistical metrics to compare gauge-based to satellite-based precipitation
products and assess their performance in landslide hazard assessment and warning in Rwanda. Similarly, the value of high
resolution satellite and hydrological model-derived soil moisture was compared to in situ soil moisture observations at Rwanda
weather station sites. Based on statistical indicators, the NASA GPM-based IMERG rainfall product showed the highest skill
to reproduce the main spatiotemporal precipitation patterns at the studies sites in Rwanda. Similarly, the satellite and model-
derived soil moisture time series broadly reproduce the most important trends of in situ soil moisture observations. We
evaluated two categories of landslide meteorological triggering conditions from IMERG satellite precipitation. First, the
maximum rainfall amount during a multiple day rainfall event. Second, the cumulative rainfall over the past few day (s). For
each category, the antecedent soil moisture recorded at three levels of soil depth, top 5 cm by satellite-based technologies as
well as top 50 cm and 2 m through modelling approaches, was included in the statistical models to assess its potential for
landslide hazard assessment and warning capabilities. The results reveal the cumulative 3 day rainfall Rps as the most effective
predictor for landslide triggering. This was indicated not only by its highest discriminatory power to distinguish landslide from
no landslide conditions (AUC ~0.72) but also the resulting true positive alarms TPR of ~80 %. The modelled antecedent soil
moisture in the 50 cm root zone Seroott-3) Was the most informative hydrological variable for landslide hazard assessment (AUC
~0.74 and TPR of 84 %). The hydro-meteorological threshold models that incorporate the Seroott-3) and Ros following the
cause—trigger concept in a bilinear framework reveal promising results with improved landslide warning capabilities in terms

of reduced rate of false alarms by ~20 % at the expense of a minor reduction of true alarms by ~8 %.
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1 Introduction

Landslides are one of the most prevalent hazards in mountainous regions of the world associated with high rates of fatalities ,
injuries and economic loss globally (Froude and Petley, 2018; Haque et al., 2016; Kirschbaum et al., 2015; Petley, 2012).
According to a recent estimate (Froude and Petley, 2018), precipitation-induced landslides were responsible for a global total
of ~55000 deaths over the 13 year period from 2004 to 2016. In landslide prone regions, much effort is therefore puton the
implementation of prevention and protection measures to control the most sensitive factors. Landslide early waming systems
(LEWS) are used as non-structural and cost effective mitigation measures adopted to minimize landslides harms, loss of life
and properties (Calvello et al., 2020; Glade and Nadim, 2014). However, the global landslide research indicated a bias in
geographical distribution of LEWS and landslide research with a major gap in Africa (Gariano and Guzzetti, 2016; Guzzetti
et al., 2020; Kirschbaum et al., 2015, 2010). According to Guzzetti et al. (2020), there are no LEWS in African countries
despite the high number of fatal landslides recorded and the high landslide susceptibility (Broeckx et al., 2018; Kirschbaum et
al., 2015). Previous landslide susceptibility analysis, revealed countries along the East African Rift region to be highly
susceptible to landslides (Broeckx et al., 2018) despite that often only the most severe landslides are reported and thus a large
number is missing. The East African Rift (EAR) was thus identified as a major hotspot of hazardous landslides in Africa with
high rate of population exposure (Depicker et al., 2020, 2021a; Monsieurs et al., 2018a). On the long term, this is due to the
active continental rifting caused by the persistent divergence of the Victoria and Nubia microplates (Glerum etal., 2020) while
on the short term it is controlled by the interactions of prolonged and intense rainstorms in the region with hydrogeological
and landscape processes. Rwanda is among the tropical countries located in the western branch of the East African Rift,
threatened by landslide hazards (Bizimana and Sonmez, 2015; Nsengiyumva et al., 2018; Nsengiyumva and Valentino, 2020).
About 43% of its surface area is classified as having moderate to very high susceptibility to landslides with 49% of local
population exposed to landslide risks (Nsengiyumva et al., 2018). The long term landslide predisposing factors in Rwanda,
include its pronounced topographic profile, the inherent geological and lithological units, weathering process, earthquakes,
demographic pressure and related anthropogenic activities such as deforestation, agriculture expansion, and slope incision
through roads construction activities (Bizimana and Sonmez, 2015; Depicker et al., 2015, 2021; Moeyersons, 1989; Monsieurs
et al., 2018; Nsengiyumva et al., 2018; Valentino et al., 2021). The development of mining sites and the connected feeder
roads also change the nature of natural hillslope through excavation and thus exacerbating landslide susceptibility and risks of
slope failures. In addition, urban expansion pushes settlements, industry and infrastructure into hazardous areas that are
naturally unstable, thereby further increasing the number of elements at landslide risks. The short-term landslide triggering
factors include prolonged and intense rains in addition to the hydrological process that predispose slopes to near failure. In the
past 15 years period from January 2006 to May 2021, the landslide inventory in Rwanda indicated about 425 landslide death
(~0.6 % of the global landslide death) and about 2000 injuries induced by the above normal hydrological and meteorological
factors (Uwihirwe, 2021). The lack of LEWS is one of the important factors for the increasing number of landslide victims in
2
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Rwanda. The development of a robust LEWS hinges on the availability of hydro-meteorological data with sufficient spatio-
temporal resolution and an accurate landslide inventory, both of which are scarce. Recently, numerous river catchments in
Rwanda have been equip ped with groundwater monitoring wells, river water level gauges, soil moisture sensors as well as the
automated weather stations. However, the available data records are frequently of insufficient length to build historical time
series that overlap with the time periods of landslide inventories and that could be incorporated into landslide hazard
assessment thresholds. Asa first step towards LEWS development in Africa, Monsieurs et al. (2018a, 2019) used the Landslide
Inventory for the central section of the Western branch of the East African Rift (LIWEAR) to define the landslide
susceptibility—rainfall and antecedent soil moisture thresholds in the East African Rift region. In Rwanda, Uwihirwe et al.
(2020) used a statistical approach to define gauge-based precipitation thresholds along with estimates of antecedent
precipitation indices. Furthermore, Uwihirwe et al., (2021) incorporated regional groundwater level measurements extended
with a transfer function noise model to define the landslide hydro-meteorological thresholds for regional landslide hazard
assessment. So far, these studies relied exclusively on in situ observed precipitation and hydrological data constrained by the
sparsely distributed recording equipment with point scale resolution and gaps in the data record. There is a concern about the
omission and/or overgeneralisation of information on the pre-wetting hydrological conditions at the locations of the landslide
due to the sparsely distributed hydrological recording equipment (Uwihirwe et al., 2021). These pre-wetting conditions regulate
the disposition of a slopeto near failure (Bogaard and Greco, 2018; Sidle et al., 2019). Including this information in a LEWS
may thus be a promising opportunity to decrease the rate of both false and missed alarms (Bogaard and Greco, 2018; Peres et
al., 2018). Similar to other hydrological variables, soil moisture exhibits high spatial variability particularly in tropical areas
(Dewitte et al., 2021; Kirschbaum et al., 2012; Sekaranom et al., 2020). This spatial variability is hardly covered by on site
monitoring equipment due to the sparse observation networks, themselves providing point scale observations only . Alternative
way s of incorporating such hydrological state information into landslide hy dro-meteorological thresholds have been attempted
and include the use of soil moisture estimates from satellite products (Marino et al., 2020; Thomas et al., 2020; Zhuo et al.,
2019) as well as from distributed hydrological models (Mostbauer et al., 2018; Prenner et al., 2018, 2019; Wang et al., 2019;
Zhao et al., 2020). In this study, we aimed to explore the usefulness of combining soil moisture from satellite products and
from a distributed hydrological model with satellite-based precipitation for the estimation of landslide hazard assessment
thresholds in Rwanda. We specifically i) investigated the suitability of various satellite precipitation products as substitute for
rainfall data from a sparsely distributed gauge network in Rwanda, ii) evaluated the added value of satellite and model-derived
soil moisture information recorded at various soil depthand iii) assessed the potential of incorporating such information in
empirical landslide hazard assessment threshold models and the warning capabilities in Rwanda.

2 Studyarea
Rwanda is an evergreen landlocked country geographically located between 1°-3° S and 28°-31° E in the great lakes region of

central east Africa with a total area of 26,338 kn?. It is topographically and-geemerphelogica haracterised-by-angHarhi
bl
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3 adla ains-and-volea : ithcharacterized by high elevation in the north western regions
reaching up to about 4500m (ﬂg_)_and steep slope reaching up to 55 %-{Fig—land-Fig.%. The geomorphology of Rwanda is
characterised by angular hills, rounded hills and headlands, mountains and volcanoes (Fig. 2). The subtropical highland
climate, with a long-term mean annual rainfall >1200 mm year? in the north westemn highland regions and < 1000 mm year*

in the eastern Savanah region (Fig. 1) and a mean annual temperature of about 19 °C, prevails in the country. The north western
region of the country is located in a tectonic region with a seismically active volcanic chain and earthquakes being among the
possible landslide triggers in Rwanda. The hydrology is characterized by dense networks of lakes and rivers while the hydro-
geology consists mainly of fractured aquifers of granite-gneisses, schist, mica schists and complex aquifers in volcanic rocks
of the north and south western parts of the country (Fig. 43). The main hydro-geological units in the landslide area include low
and semipermeablesemi-permeable fractured schist and mica schist and permeable fractured granites. The weathering products
of granites are generally coarse-grained and tend to develop and preserve open joint systems that increase their permeability
and thus prone to landslide hazards. The weathering product of schists include clay minerals that tend to fill up the fractures
and thus slowing the permeability. However, mica schists are renown as unstable due to rapid weathering, easy splittingalong
the joints and bedding planes and loss of strength induced by the high content of mica.
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Figure 1. Location of Rwanda in Africa, elevation, spatial and temporal distribution of hazardous landslides with light to dark
red dots indicating old to new landslides recorded from 2007-2019, landslide representative fain gauges—and, rainfall

distributions indicated by isohyets (sky blue lines)_and precipitation footprint of 5km buffer around each landslide

3 Methods and data

3.1 Landslide inventory

The inventory for this study, contains landslides recorded from 2007 to 2019. It was accessed from a previous study in Rwanda
(Uwihirwe et al., 2021) and was further extended and updated through compilation of additional rainfall-induced landslides as
reported from local newspapers, blogs and government technical reports. This landslide inventory was compiled with respect
to the methodology adopted by Bach et al. (2010), Kirschbaum et al. (2015); and Monsieurs et al. (2018c). Between 2007 and
2019, the inventory includes 55 accurately dated landslides, 32 of which are located in the catchments modelled for this study
(Kivu, Nyabarongo upperand Mukungwa) (Fig. 43). However, it is important to note that this inventory is likely to miss the
non-hazardous landslides which are less reported upon than hazardous landslides that led to fatalities/injuries and considerable
damages. The inventory provides the location of each recorded landslide but with a varying spatial accuracy of 5 to 25 km
depending on the smallest administrative unit recorded by the landslide event reporters. Therefore, a buffer zone of 5km,
equivalent to the frequently recorded accuracy, was used around each landslide (Fig. 21) to support the choice of the landslide
representative rain gauge. The same areal buffer was used as a footprint to avail the areal satellite precipitation and soil moisture
as detailed in Sect. 3.2 and Sect. 3.3.

( Formatted: English (United States)




130

135

140

3.2 Precipitation products and performance evaluation

3.2.1 Gauge-based precipitation and selection of landslide representative data

We accessed daily precipitation data from 19 rain gauges operated by the Rwanda Meteorology Agency. These rain gauges
were selected based on their location within the defined buffer of 5km around each landslide location (Fig. 21). Once two or
more rain gauges fall within the same buffer zone, the gauges are weighted (Melillo et al., 2018) to select the most
representative rain gauge following Eq. (1):
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The weight (W) is estimated based on the eumulative—cumulated event rainfall , event-volume{E (mm) until the landslide day,
the distance between rain gauge and landslide {d_(mm), and duration D (days). A similar procedure was used to select the
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3.1.1. Satellite precipitation products and suitability analysis for LEWS in Rwanda

With the gauge;based precipitation data as reference, we assessed the performance of seven satellite precipitation products .

summarized in Table 1. These satellite precipitation products were preliminary selected for analysis based on the criteria that
their dataset i) at least partially overlap with the landslide inventory period (2007-2019), ii) has at least daily temporal
resolution, and iii) is available on Google Earth Engine (GEE).
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Table 1. Pre-selected precipitation products and short description,

_,/{ Formatted (_i

Satellite and Resolution Period Data source description References
reanalysis products m
TRMM 3B42v7 0.25° Daily 19982019 Passive microwave (PMW) fiom a variety of low Earth orbit  fHufinan et al.........( Field Code Changed ]
satellites, infrared (IR) data and precipitation gauge supplied 2010
by the Global Precipitation Climatology Centre (GPCC) Formatted d
LCHIRPS 0.05° Daily 1981-—present..... Geostationary _thermal _infrared _(IR);. microwave satellite  (Funk et  al, ( . ) 3 )
estimates and the in situ precipitation observations 2015) (_Formatted: English (United Kingdom) ]
PERSIANN CDR 0.25° Daily 1983-present ~ GridSat-B1 infrared data and bias-adjusted using the Globa  (Ashouri et al.,
Precipitation Climatology Project (GPCP) monthly produa  2015)
and accumulated to the daily scale
GLDAS 2.1 0.25° 3 hourly 2000—present ~ Geostationary satellite infrared (IR) cloud-top temperature ~ (Rodell et al.,
measurements and microwave observation techniques 2004)
CFSv2 0.2° 6 hourly 1979—present  Satellite observations in theinfrared and microwave channels  (Saha et al.,
and gauge observations 2014)
IMERG_GPM 0.1° 30 min 2014—present  Passive Microwave from various low Earth orbit satellites, ~ (Huffman et al.,
Infrared  from geosynchronous Earth orbit satellites and  2020)
gauges precipitation (successor of TRMM)
ERA5 0.25° 3 hourly 1979—present T hisisanon-satellite but re-analysis product. precipitation is ~ fHersbach et al., . [ Field Code Changed ]

generated employing a convection scheme along with the
large-scale cloud scheme that have been upgraded with an
improved representation of mixed-phase clouds, and
prognostic variables for precipitating rain and snow.

2020

Formatted [
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155 AAmong the pre-selected satellite products, we have chosen the most suitable product for landslide hazard assessment in

Rwanda based on the relative comparison with gauge-based precipitation. This was achieved using a number of statistical

approaches that include: i) the use of statistical metrics of goodness of fit, ii) rainfall frequency indicators, and iii) intensity

comparisons. The statistical metrics of goodness of fit include the root mean square error RMSE, Pearson correlation CC, and

the long-term relative bias RB computed with Eq. (2) to Eq. (4):
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Where Y;is the rain gauge observation at date i, X; is the satellite estimate at the same date i, n is the total number of data pairs

for each precipitation product considered, Y, can and Xpean are the mean rainfall from rain gauge and satellite products

respectively.
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The rainfall frequency indicators specify the frequency of rainy days based on the predefined threshold indices (Joshi et al.,
2014; Tank et al., 2009). We used five rainfall threshold indices that reflect the number of rainy days with >X mm of rain
(Rox). The predefined indices are Rpo, Roo, Rozo, Roso, and Roso indicating the number of rainy days with >0 mm as rainy
days, >10 mm as heavy rainy days,>20 mm as very heavy rainy days, >30 mm as even heavier rainy days,and >50 mm as
extremely heavy rainy days respectively. With intensity comparison, we compared the cumulative 30 day rainfall from the
satellite precipitation products to the cumulative 30 day precipitation from rain gauges using scatter plots.

3.3 Soil moisture products and data acquisition

3.3.1 In situsoil moisture data from automatic weather stations

In situ soil moisture data, collected from the automatic weather stations (AWSs) equipped with soil moisture sensors, were
accessed from the Rwanda Meteorological Agency for six AWSs as shown in Fig. 32. The AWSs recorded the soil moisture
at 20 cm depthwith a temporal resolution of 5-10 minutes from July 2018 to December 2019. Because the analysis focuses on
a daily time-scale, we computed and used the daily average soil moisture time series recorded from July 2018 to December
2019. The in situ AWSs soil moisture data were used as a benchmark to comparatively get an insight on the quality of other
sources of soil moisture products that include satellite and model-derived soil moisture estimates described in Sect. 3.3.2 and
Sect. 3.33.

3.3.2 Satellite soil moisture and variable of interest
We used a satellite-derived near surface soil moisture product provided by Planet, formerly VanderSat (VdS)-)
(https://vandersat.com/data/soil-moisture/, last access: 29 March 2022). The product relies on the Land Parameter Retrieval

Model (LPRM) {Be-Jeu-et-al—2014: Owe-et-al—20012008)(de Jeu et al., 2014; Owe et al., 2001, 2008) to estimate the near

surface soil moisture by combining raw data from the Advanced Microwave Scanning Radiometer 2 (AMSR-2), and Soil

Moisture Active Passive (SMAP) (Bouaziz et al., 2020). The satellite product estimates volumetric soil water content_or soil
moisture (m*m®) of the upper 5cm of soil downscaled from a spatial resolution of 25 kmx25 km to 100 mx100 m. From VdS,

we accessed daily soil water content estimates from the top 5 cm of soil (8,,,,) for the 2007-2019 period for each of the defined

regionregions of interest (ROISs) equivalent to the 5 km buffers shown in Fig. 3.
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Figure 2. Geomorphology of Rwanda, landslide representative AWSs (Automated weather stations) with soil moisture

sensors; landslides in red dots and 5 km buffer zones indicating the Research Area of Interest (ROIs) for areal soil moisture

200 acquisition

3.3.3 ,Hydrological model-derived soil moisture and variables of interest

205

We also used the soil moisture derived from the Wflow, an open sources software developed by the Deltares OpenStreams

project (Schellekens, 2021; Schellekens et al., 2019). The Wflow distributed hydrological model platform currently contains
210 13 models (Schellekens, 2021) that include the wflow sbm model. The models consist of a set of python programs that are
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run on the PCRaster python framework to perform hydrological simulations (Karssenberg, 2014; Karssenberg et al., 2010).

The Wflow_sbm uses the conceptual bucket model approach to derive the hydrological variables of interest (Imhoff et al.,
2020; Schellekens et al., 2019). With Wflow sbm, the soil is considered as a bucket with a depth (Z) divided into 2 zones: the
unsaturated store U and the saturated store S. The interface between U and S is a pseudo water table located at depth Zw. The

values of unsaturated storage U and saturated storage S are computed as in Eq. (5) and Eq. (6):
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Where 6s; [-],,0r [-],are saturated and residual water content respectively and Uy, |-] is the soil water deficit
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The unsaturated store U was the variable of interest and was subdivided into 2 variables: the water content in the root zone
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000t1, representing the unsaturated soil water storage of the top 50 cm and the part of the soil water capacity occupied 6, -
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was run from January 2001 till December 2020 with the first years correspond to the model spinup time. We obtained time
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series of 0, and 6, for 20072019, overlapping with the landslide inventory period, from a wflow_sbm simulation based
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represented by the buffers of 5 km around each landslide location were used to interpolate the unsaturated water storage time
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series for each ROIs located in the model catchment. Similarly, only the AWSs located in the model catchment (Fig. 43) were
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used for the comparative performance evaluation of the model-derived soil moisture products.
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Figure 3. Wflow model catchments (Kivu, upper Nyabarongo and Mukungwa) and hydrogeology; landslides in red dots and
5km buffers indicating the Research Area of Interest (ROIs) for areal soil moisture acquisition from the Wflow model,
Automated weather stations (AWSs) with soil moisture sensors for comparative performance evaluation of the Wflow
modelled soil moisture,

3.4 Landslide hazard assessmentand thresholds definition

3.4.1 Landslide meteorological and hydrological conditions and test variables

The daily rainfall data from the best-performing-satellite product were used to define the landslide meteorological triggering
conditions. We used two categories of landslide triggering conditions. The first category defined a landslide trigger as the
maximum probable rainfall event (MPRE) during which or slightly—after its end, one or more landslides occurred. The MPREs
were defined as individual periods of rainy days interrupted by dry periods of at least two days—Given—the-constraint—of

overestimation—of-the-number—of rainy-dayswith-0—10-mm-by-satellites{Pavez-2021). (. Given the constraint of overestimation

of the number of rainy days with 0-10 mm by satellites, a rainy day was objectively referred to as the day with > 10 mm d*
12
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while a dry day was referred to as the day with <10 mm d. This threshold was objectively selected using the rainfall frequency

indicator metric explained in Sect. 3.2.2. The landslide predictor variables in this category were therefore the cumulated event .-
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series of the defined meteorological triggering conditions from each category and for all precipitation foot printswere comp iled
in a single dataset for further statistical analysis. To provide a normalized comparison of the soil wetness, we transformed the

satellite- and model-derived water content 6 to effective soil moisture Se to define the landslide predisposing hydrological
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Where Se stands for the effective soil moisture [-], 6 is the actual soil moisture, 8,,,, and 6., are the maximum and minimum
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values of the recorded or modelled soil water content.
The normalization of soil water content @ was made for easy comparison of the observed, model-derived and satellite-based

soil moisture products. However, for all compared soil moisture products, the ,,,,,.and 8,,,;,, were 1 and 0 respectively which
lead to almost similar values of Se and 6.
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The tested hydrological conditions include therefore, the near surface soil moisture Setop, representing the soil moisture of the
upper5 cm of soil, provided by the satellite techniques (VdS), the Seroot representing the root zone soil moisture of the up per
50 cm, acquired through modelling approach (Wflow_sbm), and Se. representing the soil moisture estimates from the upper
2 m of soil, obtained through modelling approach (Wflow_sbm). To assess the contribution of the pre-wetting state of the soil
prior to the landslide triggering conditions, we have considered the antecedent soil moisture i.e. recorded or modelled prior to
the start of the triggering meteorological conditions. The antecedent soil moisture referred to the time interval before the start
of each of the defined categories of the meteorological triggering conditions. We have therefore used the Setop(t-x), Seroot(t-x),
Seuytx) With t (date) and x (days) expressing the end time and the duration of the triggering conditions respectively. However,
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due to the transientchanges in duration of the MPRES, x was hy pothetically represented by a value of 1 standing for one entire
280 MPRE while values of 1, 2, 3 represent the duration (days) of the triggering Ropx conditions. A binary classification of the
defined hydrological and meteorological conditions was undertaken to classify the landslide and no-landslide conditions. The
meteorological or hydrological conditions are referred to as landslide conditions i.e. positive class, when at least one landslide
occurs during its course or slighthy—after its end while they are referred to as no-landslide conditions i.e. negative class when
no landslide occurred during its course or slighthyafter its end.
285
3.4.2 Discriminatory power of the landslide test variables and optimum thresholds for landslide initiation

The landslide test variables which include the predisposing hydrological conditions Seiy, 1y, S€iop(t—2)1 S€rop(t—a),:
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D, E/D , Roy, Rpz, and Ros were tested for their relevance on landslide occurrence. We used a receiver operating characteristic
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290 (ROC) and the area under the curve (AUC) metrics to evaluate the discriminatory power of each of the landslide test variables .
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The ROC curve is defined as a graphical plot indicating the performance of the test variable at all threshold levels by providing
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the trade-off between the true positive rate (TPR) and false positive rate (FPR) at each level. The AUC is a statistical metric
that indicate the discriminatory power of the test variable i.e. the capacity of the test variable to correctly distinguish positive
from negative classes i.e. landslide from no landslide conditions. It compares also the test variable to a random guess
295 (AUC=0.5) and thereby indicates the statistical significance where the perfect test variable would have an AUC equal to unity.

The rate of correctly (TPR,true positive rate) and incorrectly predicted landslides (FPR, false positive rate) gorresponding to .
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each cut off on the ROC curves are computed using Eq. (8) and Eq. (9):
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The rate of unpredicted landslides (FNR, false negative rate) and the rate of correct prediction of no-landslides (TNR, true
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negative rates) are computed using Eq. (10) and Eq. (11):
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Where TP are true positives or true alarms i.e. outcomes with correctly predicted landslides, FN are false negatives or missed
alarms i.e. the number of landslides that occurred in reality but were not predicted, FP are false positives or false alarms i.e.
predictions of landslide occurrence while in reality there was no landslide reported, and TN are true negatives i.e. correct
predictions of no-landslide occurrence.

Since the ROC curve only indicates all possible thresholds and their relative balance between TPR and FPR, one is free to
choose the optimum threshold depending on whether to maximize the TPR or minimize the FPR. However, according to
Postance and Hillier (2017), the optimum threshold is the one that maximizes the TPR while minimizing the FPR. Therefore,
that optimum threshold level above which landslide are highhighly likely to occur have been defined using two statistical
metrics i.e. the maximum true skill statistic (TSS) and minimum radial distance (Rad). The TSS is expressed as a balance
between the TPRand FPR as indicated in Eq. (12):

TSS = TPR — FPR-, 12)
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Where the maximum value of TSS indicates the optimum threshold fortandslide—initiation:that maximizes the TPR while

minimizing the FPR. For a perfect threshold, the TSS reaches a unity indicating a zero false positive rate (FPR). The radial
distance (Rad) shows the relative distance from the defined threshold level on the curve to the perfect model or point whose
TPRis a unit and zero FPR and is computed with Eq. (13):

Rad = /(FPR)Z + (TPR—1)2, (13)

3.4.3 Landslide hydro-meteorological thresholds and warning capabilities

The optimum thresholds defined based on the maximum TSS and or minimum Rad were plotted in 1D threshold space here
referred to as single variable threshold line beyond which landslide-arethe probability of landslides is high-likely—to-oceur. We
also followed cause-trigger concept (Bogaard and Greco, 2018) that reflect the hydro-meteorological thresholds and
hypothetically plotted the optimum thresholds of the landslide predisposing hydrological variables i.e the antecedent soil
moisture on the x-axis and the meteorological triggering variables on the y-axis of a two dimensional 2D space here referred
to as bilinear thresholds. The bilinear threshold models made of hydrologlcal and meteorological variables are plotted in X, y
pairs i.e antecedent soil moisture versus E/D or Rpx).
rodel-event—duration—E-D;Furthermore, the bilinear threshold from a traditional landslide prediction model event—duration
E-D (Peruccacci et al., 2017), that exclusively rely on precipitation, has been also defined to serve as a benchmark for

comparative performance evaluation.
15
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4 Results and discussion

4.1 Performance of Satellite precipitation products

The suitability of satellite precipitation products in the study region was assessed using three statistical indicators as
summarized in Table 2, Table 3 and illustrated in Fig. 4. From the statistical measures of fits (RMSE, CC, RB), it is generally
observed that IMERG is consistently more suitable while ERA-5 was found to be the least suitable product as compared to
other satellite precipitation products. The evaluation based on frequency indicators is summarised in Table 3. These indicators
give an overview on whether a given satellite product would overestimate or underestimate the observed gauge precipitation
based on the predefined threshold indices. IMERG_GPM disp lay s the highest skill to estimate all ranges of rainfall from heavy
to extremely heavy rainy days as recorded by the on-site gauges. CHIRPS and TRMM 3B42 v7 provide good estimates of
precipitation with quite similar number of rainy days (Rpo=242501256 days)to gauge-based rainfall (Roo=1256day-s1259days).
However, these satellites drastically underestimate the number of heavy to extreme heavy rainfall (Rozo, Roao and Roso}-which
are-the root-cause-of landslide hazards.). For example, TRMM and CHIRPS estimated Rp20=8487 and 101day's respectively
out of 134132 day's estimated by rain gauge—Fhe-products-PERSIANN-CDR-GLDAS 2.1 CFSv2-and-ERA-5-overestimate

-

The suitability of satellite products was also assessed using intensity comparison indicated by the density of the scatter points
around 1:1 line as shown in Fig. 34. The scatter plots compare 30day cumulative rainfall from satellite precipitation products
versus rain gauges. The scatter plots reveal that GLDAS, CFSv2 and ERA-5 tend to overestimate rainfall while
underestimations are noticed from PERSIANN CDR as compared to the in situ gauge rainfall. Based on the closeness of scatter
points to the 1:1 line, CHIRPS and IMERG exhibit a higher resemblance to gauge data (Pearson correlation R=0.67 and 0.60
respectively) than other satellite products and could thus be used as alternative to gauge-based precipitation. Overall, IMERG
shows rainfall patternthat are most consistent with available gauge observations in Rwanda despite the over estimation of the
number of rainy days with less than 10 mm (RowRoo). According to Kimani et al. (2017), the overestimation of rainfall in
areas with elevation >2500 m and underestimation in areas with elevation <2500 m was observed before and is attributed to
satellite inherent challenges to retrieve orographic rainfall. To overcome this constraint, 10 mm d* has been considered as a
threshold to define a satellite-based rainy day and thus being relevant for landslide hazard assessment in Rwanda conditions.
Other researchers in the regions also found CHIRPS and TRMM to be comparable to gauge-based precipitation in east Africa
(Kimani et al., 2017; Monsieurs et al., 2018b). Monsieurs et al. (2018b) found the areal-averaged TMPA rainfall estimates, the
predecessor of IMERG, to be more suitable for assessing landslide hazard threshold than the sparsely distributed gauge data
with limited representativeness in the context of high rainfall variability of the east African rift.,
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Table 2. Performance of Satellite precipitation products based on statistical metrics

Metrics TRMM 3B42 v7 CHIRPS PERSIANN CDR GLDAS 2.1 CFSv2 IMERG ERAS
RMSE (mm) 8.17 8.53 7.42 8.55 10.58 8.18 12.60
CC() 0.31 0.27 0.25 0.24 0.17 0.35 0.22
RB (9) -0.08 -0.01 -0.15 0.03 0.11 0.02 0.29

Table 3. Performance of Satellite precipitation products based on rainfall frequency indicators

Indices Description Gauge TRMM CHIRPS PERSIANN GLDAS CFsv2 IMERG ERA
3B42v7 CDR 2.1 5
Roo Rainy days >0 mm 1259 1691 1256 2732 3086 2835 2842 3520
Rouwo Heavy rainy days >10 mm 397 307 424 138 377 617 383 879
Roo Very Heavy rainy days >20 mm 132 87 101 9 79 199 126 250
Roso Even heavier rainfall days >30 mm 49 29 25 0 22 84 42 78
Roso Extremely heavy rainfall >50 mm 9 4 3 0 2 22 6 21
375
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Figure 4. Intensity comparison between satellite-based and gauge-based precipitation based on the cumulative 30 day rainfall

380 4.2 Prospective of satellite and model-derived information in landslide hazard assessment
4.2.1 Mean soil moisture response to rainfall and landslide events
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Figure 6-indicates5 shows the GPM based IMERG precipitation spatially averaged over all landslide precipitation foot prints
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moisture, the satellite Se.,,, and model-derived soil moisture time series Seroor and Sewz broadly reproduce the most important
temporal variation as recorded by in situ soil moisture sensors (Fig. 65 and Fig. Al). This indicates their usefulness for landslide
hazards assessment as an alternative to the sparse in situ AWSs. The spatial averaging of soil moisture across all research areas
of interest (ROIs) was undertaken to have an insight on the critical ranges of soil moisture that induce landslides in Rwandan
climate conditions. The spatially averaged Sewp, Serot and Sewz soil moisture dynamics and the linked landslide
hazardsoccurrence are presented in Fig. 65. The average Setop, Seroot and Sewz of all ROIs, indicate general similarities in terms
of landslide predisposing but also reveal systematic differences between response time influenced by the soil moisture
recording depth. For example, it is obvious that the Sewp (5 cm) responds faster than Seroot (50 cm) and Sewz (2 m). It is clear
that the majority of landslides occurs when the soil moisture levels positively deviate (by about 0.1) from the long-term mean
up to a critical level for landslide initiation. |t is also evident that the critical level for landslideslandslide , occurrence js a

Formatted:

Black

Font: +Body (Times New Roman), Fontcolor:

Formatted:

Black

Font: +Body (Times New Roman), Fontcolor:

+_Black

Font: +Body (Times New Roman), Fontcolor:

Formatted:

{
{
. :{ Formatted:
{

Black

Font: +Body (Times New Roman), Fontcolor:

| Y e | e | G Y | Y | Y Y A Y |

[ Formatted:

Fontcolor:Auto

function—ef-more or less fixed when other geological and geomorphological condition are kept constant and it is reached more

[ Formatted:

Fontcolor: Auto, English (United Kingdom)

or _less easily depending on the prior rainfall received—and-expressed in terms of antecedent soil moisture and the time lag

[ Formatted:

Fontcolor:Auto

between the landslide triggering yainfall and the soil meistureresponses-hydrological response.
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Figure 5. Satellite and model-derived information and landslide activities (a) GPM based IMERG precipitation [mm] spatially

405 averaged over all landslide precipitation foot prints (b) satellite derived soil moisture Sewp [-] spatially averaged over all
landslide ROIs and in situ soil moisture AWS [-] on secondary y-axis; (c) GPM based IMERG precipitation [mm] spatially
averaged over the landslide precipitation foot prints located in the modelled catchments, (d) modelled soil moisture at the root
zone top 50 cm Seret [-], modelled soil moisture top 2 m Sewz [-] and in situ soil moisture AWS [-] on secondary y-axis. The
dashed horizontal lines represent the long term mean soil moisture and the red triangles stand for the landslide events
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4.2.2 Single variable landslide meteorological and hydrological thresholds and prediction capabilities

Figure 76 and Table 4 show the derived landslide meteorological and hydrological thresholds and their predictive capabilities
in terms of true positive rate TPRand false positive rate FPR. The discriminatory power of each of the tested variables was
evaluated with a receiver operating characteristic (ROC) curve and the area under the curve (AUC) statistical metrics as shown
in Fig. 76. Among the tested landslide triggering meteorological variables E, D, E/D, Rpi, Rpz, and Rops, the cumulative 3 day
rainfall Rpsz and event rainfall volume E showed the highest discriminatory power with AUC ~ 0.7271 and hence the highest
impact on landslide initiation. However, the event rainfall mean intensity —-e—E-Rormalised—over-the-event-duration-D-as E/D
indicated low capability (AUC~0.53) to distinguish landslides from no landslides. This stresses the importance of using the

recent cumulative rainfall with a fixed duration and thus highlighting the highest impact of Rozon landslide initiation process
and its relevance on landslide hazard assessment and prediction compared to E that need to be normalised. Contrarily to the
gauge-based cumulative rainfall thresholds (Uwihirwe et al., 2020), the satellite based cumulative rainfall on the day of
landslide Ro: was not impactful to landslide initiation (AUC=0.35-0.38). This may be due to the inaccuracies between the
landslide occurrence and the reporting time, and additionally also due to the satellite revisiting time and or period which may
introduce inaccuracies in timing.

Figure Ze6¢ and d indicate that the wetness state of soil prior to the cumulative rainfall Rox have the most significant impact
on landslide occurrence as indicated by their AUC=0.772-0.76. Contrarily, Fig. 7a6a and b show that the wetness state of the
soil prior to the landslide triggering event E has no significant impact on landslide occurrence (AUC=0.6566-0.67). This is to
say that the antecedent soil moisture conditions prior to the longer triggering rainfall event E are not relevant for landslide
initiation in the study area conditions. Among other factors, the duration of the triggering condition plays a major role in
determining the relevance of the antecedent soil moisture on landslide occurrence. The shorter the duration of the triggering
conditions, the higher the relevance of the antecedent soil moisture on landslides initiation. Highly permeable soils are less
sensitive to antecedent soil moisture conditions because of the high gravity driven drainage and or deep percolation. With a
tropical climate, evaporation process may also rapidly take away the antecedent soil moisture content of the top soil due to the
longer timescale of the minimum inter-event time IET and the landslide triggering event E.

The thresholds definition metrics, TSS and Rad, resulted in quite comparable landslide thresholds as summarised in Table 4.
Mereover—itlt was noticed that the defined satellite precipitation thresholds are-mere similar to the ones defined using gauge
based precipitation. For example, the optimum landslide threshold event rainfall volume E defined from satellite precipitation
varied between 44mm44.7mm and 81mm60.7mm (Table 4) while gauge-based threshold E varied from 46mm to 67mm
(Uwihirwe et al., 2021). Similarly but with a quite minor difference, the defined satellite-based E/D thresholds 16-17.5mmd-*
seemed quite similar to gauge-based thresholds ~7-13mmd? found in Uwihirwe et al. (2020 and 2021). Nevertheless, the
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single variable threshold E/D being the most informative, showed quite low prediction capability in terms of TPR~56-60 %
with elevated rate of false positive FPR~ 43-54 % i.e. incorrect predictions of landslide and thus being less effective for a
robust early warning sy stemdevelopment. Contrarily, the single variable thresholds defined from the cumulative 3 day rainfall
Ros outperforms other tested triggering conditions with highest prediction capability in terms of true positive rate TPR=79-81
%. The same holds for the soil moisture in the root zone (50 cm deep) Seroot that consistently showed the highest performance.
Nevertheless, despite the high true positive rate from these single variables thresholds, the resulting elevated rate of false
positives FPR=36-42 % still constrain their use for the development of a robust landslide early warning system. It has to be
noted that the threshold defined from the antecedent soil moisture specifies the critical levels below which the impact of pre-
wetting state of the soil is considered unimportant for landslide occurrence. On the contrary, once these thresholds are
exceeded, the pre-wetting state of the soil has significant impact on landslide occurrence and has to be considered while

defining the landslide hydro-meteorological threshold models.
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465 Table 4. Event based variable thresholds and prediction capabilities

| MariableVariables Maximum T rue skill statistics (TSS) Minimum radial distance (Rad) - [ Formatted Table

Threshold TPR FPR TSS Rad Threshold TPR FPR TSS Rad
Event E (mm)* 53.1 0.54 0.21 0.33 0.51 44.9 0.60 0.27 0.33 0.49
Duration D (d)D 2.5 0.56 0.27 0.29 0.52 15 0.72 0.43 0.29 0.51
Event/Duration E/D (mm d™)° 16.1 0.64 0.54 0.10 0.65 17.3 0.56 0.47 0.09 0.65
Setop(t-1) 0.56 0.72 0.44 0.28 0.52 0.57 0.68 0.41 0.27 0.52
EventE (mm)d 60.7 0.53 0.17 0.36 0.50 60.7 0.53 0.17 0.36 0.50
Duration D (d)® 2.5 0.59 0.28 0.32 0.49 2.5 0.59 0.28 0.32 0.49
Event/Duration E/D (mm d'l)f 16.1 0.69 0.54 0.15 0.62 175 0.59 0.46 0.14 0.61
Seroot (t-1) 0.56 0.72 0.44 0.28 0.52 0.56 0.72 0.44 0.28 0.52
Seur(-1) 0.91 0.53 0.22 0.31 0.52 0.87 0.63 0.34 0.28

velare;, event duration and the mean event intensity defined using precipitation foot prints located in the m odelled catchm ents (Kivu, Ny abarongo upper and Mukungwa)

‘ a b ¢ EvenstCum ulated event rainfall-«ehrre-, event duration and mean rainfall intensity defined from all landslide representative precipitation foot prints, d e f EvestCum ulated event rainfall

Table 5. Cumulative rainfall based-variable thresholds and prediction capabilities

‘ VarableVariab Maximum T rue skill statistics (T SS) Minimum radial distance (Rad) -ty [ Formatted Table
les

Threshold TPR FPR FNR TNR TSS Rad Threshold TPR FPR TSS Rad
Ro (mmd™)? 10.90 0.35 0.16 0.65 0.84 0.19  0.67 10.90 0.35 0.16 0.19 0.67
R (mmd'z)h 14.70 0.50 0.20 0.50 0.80 0.30 0.54 10.90 0.54 0.27 0.27 0.53
Rm(mm)c 15.05 0.79 0.40 0.21 0.60 0.39 0.45 15.05 0.79 0.40 0.39 0.45
Seéuon - 0.53 0.85 0.43 0.15 0.57 0.41  0.46 0.56 0.77 0.37 0.40 0.44
Sewn -2 0.57 0.75 0.35 0.25 0.65 0.40 0.43 0.57 0.75 0.35 0.40 0.43
Setop (t-3) 0.56 0.75 0.38 0.25 0.62 0.37  0.50 0.56 0.75 0.38 0.37 0.50
Rot (mmd'l)d 10.90 0.38 0.16 0.62 0.84 0.21 0.64 10.90 0.38 0.16 0.21 0.64
R (mmd?)® 14.70 0.59 0.21 0.41 0.79 0.38 0.45 10.90 0.67 0.28 0.38 0.44
Ros (mm)' 15.05 0.81 0.42 0.19 0.58 0.40 0.46 35.70 0.63 0.25 0.38 0.45
Seroot (-1 0.75 0.81 0.38 0.19 0.62 0.43  0.43 0.75 0.81 0.38 0.43 0.43
Seroot (t-2) 0.76 0.84 0.36 0.16 0.64 0.49 0.39 0.76 0.84 0.36 0.49 0.39
Seéroot (t-3) 0.72 0.84 0.41 0.16 0.59 0.43 0.44 0.79 0.72 0.30 0.42 0.41
Sewz, (-1 0.90 0.66 0.23 0.34 0.77 0.43 0.41 0.90 0.66 0.23 0.43 0.41
Sewz (t2) 0.89 0.63 0.25 0.37 0.75 0.38  0.45 0.89 0.63 0.25 0.38 0.45
Sew (-3 0.92 0.56 0.18 0.44 0.82 0.38  0.47 0.89 0.63 0.24 0.38 0.45

470 2 bc Cum—ula(ive 1, 2, and 3day rainfall defined from :a\ll landslides répresentativelprecipitatio.n foot printé, de fCu'm ulative 1, 2, aM 3day rainfall \}olum e define(‘i using precipi‘ation foot prints
located in the model catchments (Kivu, Ny abarongo upper and Mukungwa)

4.2.3 Landslide hydro-meteorological thresholds and implication for warning

With respect to the high rate of false positives resulting from the single variable thresholds, we have tested whether the
475 incorporation of antecedent soil moisture information to the triggering rainfall conditions improves the landslide prediction

capability. The optimum single variable hydrological and meteorological thresholds have been_therefore combined into hydro-

meteorological thresholds following the cause-trigger concept in a bilinear framework as shown in Fig. 87 and Fig. 98. Figure

87 illustrates the first category of landslide hydro-meteorological thresholds defined based on the maximum possible rainfall

event E combined with different variables of antecedent soil moisture. The derived thresholds resulted into quite elevated rate

480 of false alarms FPR once used as single variable thresholds (single lines).
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In contrast to the classical precipitation thresholds, the combination of hy dro-meteorological thresholds in a bilinear framework

provide an improvement in terms of reduced rate of false alarms by about 30 % [Setop-1~E/D], 13 % [Seroott-1—E/D], and 35
% [Sewxt-1—E/D] respectively as compared to the ones obtained from the exclusive use of single variable precipitation based
E/D thresholds. The intention of adopting the bilinear hy dro-meteorological threshold in spite of precipitation thresholds is to
minimize the rate of incorrect prediction of landslides FPR while improving or at least keeping unchanged the rate of true
alarms TPR. This was only achieved by using the bilinear hydro-meteorological thresholds defined using antecedent soil
moisture at the root zone [Seroott-1—E/D] that performs better (TPR=66 %) than the traditional precipitation threshold E-D
(TPR=50%). However, this category still suffers from the low landslide warning capability (max TPR=66 %) and is thus not
satisfactory for a robust early warning system development. The lower performance was attributed to the timescale of the
triggering events. Apparently, the effect of the antecedent soil moisture lasts for a limited period of time and subsequently

decay s towards zero and below.

The inter-event time IET and the timescale of the rainfall events E are not constant and vary in durations-with-high-p+ebability-
to. They can be too long and thus implying the decay of the antecedent soil moisture and hencethus negligible contribution to

landslide inductioninitiation. Consequently, the incorporation of the wetness state of the soil prior to the landslide triggering
events E did not lead to a significant improvement of the landslide prediction in Rwanda conditions. We therefore explored
other landslide hydro-meteorological thresholds that use the triggering meteorological conditions with short and constant
timescale as shown in Fig. 98. These consider the cumulative one, two and three day rainfall Rops, Rpz, and Rps while extending
the timescale of the predisposing conditions up to one, two or three days prior to the landslide triggering conditions. Figure 98
portrays the optimum bilinear hydro-meteorological threshold models defined from this second category. The 3day-3-day
cumulative rainfall Rpswas the most impactful trigger of landslide with an optimum threshold ~15.2mmd=05mm/3d as defined
by both TSS &Rad and resulted into 79-81 % of TPR (Table 5) much higher than predicted by the first category. Similarly,
the antecedent soil moisture threshold Seroot(t-3) Was able to predict ~84 % of landslides. However, this true prediction i.e true
alarms is also associated with high rate of false alarms ~40-42 %. The combination into hydro-meteorological thresholds
[Seroot(-3—Rp3] decreased the rate of false alarms up to ~22 % with about 72 % of true alarms (Fig. 958b) and thus being more
satisfactory than other hydro-meteorological threshold models and much better than the traditional E-D model (TPR~50 %)
that exclusively relies on precipitation.
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Figure 7. Landslide hydro-meteorological thresholds and prediction capabilities: (a) Event intensity-Antecedent 5cm top soil moisture

515 thresholds [Seyy.; >0.56;_ AND E/D>16.1mmd?] (b) Event-duration E-D thresholds [D>2.5 days; AND E>44.9 mm] defined using
precipitation foot prints fromall landslide locations; (c) Event intensity-Antecedent 50 cm top soil moisture threshold [Se g 1.1)>0.56- AND
E/D>16.1mm;]; (d) Event intensity-Antecedent 2m top soil moisture threshold [Se o .1y >0.84; AND E/D>16.1 mmd™]; (e) Event-duration
E-D thresholds [E>60.7 mm;_AND D>2.5 days] defined using precipitation foot prints and landslides located in Wflow modelled catchments;
() Bilinear threshold values and prediction capabilities
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Figure 91 andslide hydro-meteorological thresholds and prediction capabilities: (a) Cumulative 3-day rainfall Rp; and antecedent 5 cm top
soil moisture thresholds Se g1y [Setop-3 >0.73; AND Rpz>15 mmd-?] defined using precipitation foot prints fromall landslide locations; (b)

525 Cumulative 3-day rainfall Rps and antecedent soil moisture of the root zone Seot-3) [Seroo-3 >0.73; AND Rpz>15 mmd-?]; (c) Cumulative 3
day rainfall Rp; and antecedent soil moisture of the top 2 m Se .5 [Seyyrs >0.89;_AND Rpg>15 mmd- %] defined from the Wflow model
catchment (d) Bilinear thydro-meteorological threshold values and prediction capabilities

29



530

535

540

545

550

555

4.2.4 Prospective of the satellite-based hydro-meteorological thresholds, advances and limitations

This study reveals the high capability of the NASA GPM-based IMERG product to reproduce rainfall patterns which are
consistent with the gauge-based precipitation and thus more suitable for landslide hazard assessment thresholds than sparsely
distributed rain gauges in Rwanda. However, this research also points out that IMERG satellite-based product overestimates
the number of rainy days whose daily rainfall is between 0—10 mm and thus the mean annual totals. This may not only lead to
differences between satellite- and gauge-based landslide thresholds defined under same locations but also to the statistical bias
especially when probabilistic methods are used for landslide threshold definition. To address this constraint and be able to
exploit the usefulness of IMERG precipitation in landslide hazards assessment thresholds, we objectively used 10 mm as a
threshold to define a rainy day for IMERG precipitation data. This threshold was defined based on the frequency indicator
metric._adopted as one of the techniques of bias evaluation between ground and satellite-based rainfall. For gauge—based

rainfall, 2 mm is generally considered as a threshold to define a rainy day and have been defined based on the mean daily
potential evaporation (Marino et al., 2020; Peres et al., 2018).

Although the threshold definition of arainy day (10 mm) may have led to the omission of some rainfall information and thus
shortening the event duration D, this approach imp roved the similarities between the satellite-based and gauge-based landslide
hazard assessment thresholds-_and thus used as a bias correction between the two sources of rainfall data. Similarly, other bias

correction methods have been adopted by other researchers to ensure for the high accuracy between ground- and satellite-
based rainfall data (Bhatti et al., 2016; Vernimmen et al., 2012). However, the defined satellite-based event/duration E/D
thresholds 16-17.5 mm d* were quite higher than previously defined gauge based-thresholds ~7-13 mm d. Contrarily the

defined thresholds from the recent cumulative 2 and 3 day rainfall were much smaller than defined from gauge based data
(Uwihirwe et al., 2020, 2021). These differences are probably due to the predefined threshold (10 mm) that p+ebably-could
omits some rainy days. This also led to shortened event duration D and hence slightly higher E/D. Nevertheless, the landslide
triggering conditions defined based on the E/D reveals poor discriminatory power to distinguish landslide from no landslides
(AUC~0.53) and thus not impactful on landslide initiation. The linked landslide thresholds also underperform in terms of
landslide prediction capabilities measured by the resulting low rate of true positives TPR~56-69 %. Similarly, the landslide
hy dro-meteorological thresholds that included the rainfall event E/D as a trigger resulted into poor landslide warning
performance TPR max ~66 %.

It is agreed that the consequences of offering false alarms (FPR) are less harmful on the short-term than missed alarms (FNR)

which implies that the best threshold should maximize the TPR (true alarms) while minimizing the FNR (missed alarms).

However, the thresholds in Fig. 7b and 7e are classical thresholds E-D relying exclusively on rainfall (trigger), leading to the

high rate of missed alarms and thus less important for a robust LEWS development. Similar to this study, p revious studies
(Bogaard and Greco, 2018; Marino et al., 2020; Mirus et al., 2018; Peres et al., 2018; Thomas et al., 2019; Uwihirwe et al.,
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2021) indicated that the consideration of the prior subsurface hydrological conditions reduce the number of missed alarms

FNR as well as the number of false alarms FPR relative to the exclusive use of rainfall-only thresholds. In Fig. 8a, 8b and 8c,

we integrated the hydrological information (i.e. antecedent soil moisture) in landslide thresholds to improve the rate of TPR

and reduce the rate of FNR and FPR. The main goal of hy dro-meteorological thresholds (cause-trigger) is to maximize the true

alarms TPR i.e. minimize the missed alarms FNR but at the same time reducing the false alarms FPR. The used statistical

metrics (TSS and RAD) are also in line with this concept aiming at maximizing the TPR while minimizing the FPR. Once

TPR s maximized, the FNR is also minimized though difficult and or impossible to have a perfect threshold model with zero
FNR and FPR.

The poor performance of the rainfall event-based thresholds concept is due to uncertainties from multiple sources. We
hypothetically used the rainfall events as landslide triggering conditions, defined as individual periods of continuous rain
interrupted by at least two dry day periods referred to as the minimum inter-event time (IET). Nevertheless, this definition
needs further exploration to be standardised to avoid uncertainties. According to Adams et al. (1987); Hong et al. (2017), the
IET is defined as the minimum period of time that separates two consecutive rainfall events and is considered as the period for
which the effects of the antecedent soil moisture or precipitation index may last. This is to say that the antecedent soil moisture
and or antecedent precipitation index have no significant effect on landslide initiations once the rainfall events and IETs are
well defined. However, the IET, the period during which the effect of antecedent soil moisture becomes null, depends on a
number of site-specific factors (soil properties, land use/ land cover, potential evaporation etc.) and is thus difficult to be
standardized. Another drawback associated with the use of rainfall event concept may be linked to the transient timescales of
the triggering events that bring about difficulties to fix the appropriate time to give an alert or an early landslide warning to
the threatened community .

Beholding the constraints associated with IET, rainy day and rainfall events definition, we explored the shorter scaled
triggering rainfall conditions that include the cumulated rainfall with constant duration 1, 2, 3 days (Ro1, Ro2, Rps). The
cumulative 3 day rainfall Ros showed the highest impact on landslide initiation AUC ~0.72 and true positive alarms TPR~79—
81 %. Although the meteorological trigger-based thresholds Ros, have resulted into high rate of true alarms, they lack the
concrete physical significance and are also challenging for a robust landslide early warning systemdue to the linked high level
of erroneous alarms i.e false positives FPR~40-42 %. To account for the pre-wetting state of the soil, the antecedent soil
moisture conditions have been considered. These antecedent soil moisture conditions from the top 5 cm, 50 cm and 2 m, Setop,
Seroot, Sewz respectively showed significant impact on landslide predisposal AUC=0.71-0.76. Moreover, with exception to the
Seyz, the hydrological landslide thresholds 0.56 [Seiop], 0.73 [Seroot] defined from these soil moisture conditions revealed high
landslide warning capability with true alarms TPR ~75-85 %. These hydrological thresholds indicate the critical pre-wetting
state above which any additional amount of rainfall > 11-15mm is highly likely to trigger landslides. We therefore combined
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both landslide hydrological predisposing and meteorological triggering conditions following the cause-trigger concept into
bilinear hy dro-meteorological thresholds framework. This approach improved the landslide prediction capabilities in terms of
reduced rate of false alarms (FPR~22 %) and increased true alarms (TPR~72 %) as compared to the ap proaches that consider
the maximum probable rainfall event (max TPR~66 % and FPR~41 %). In other words, once combined with the pre-wetting
hydrological conditions, the cumulative few days rainfall have significant impact on landslide initiation and waming as
compared to the longer and no constant triggering conditions. Furthermore, the incorporation of the antecedent wetness state
of the terrain not only improved the landslide warning capabilities but also provide accurate insights into landslide alert time
as compared to the use of transient time scale associated with the rainfall event concept.

Among the tested pre-wetting conditions, the incorporation of the antecedent soil moisture modelled at the root zone Seroot Was
the most impactful for landslide initiation and thus the most useful in landslide hazard assessment thresholds in Rwanda. The
finer spatial resolution of the hydrological model-derived soil moisture together with the consideration of the specific climate
and hydrogeological characteristics of the model catchments could be a possible explanation of the positive impact of soil
moisture assimilated at the root zone. This could also be explained by the less exposure of the root zone to the solar heat and
evaporation processes as compared to the near surface Sewp. The probable less prone to the gravity driven drainage and deep
percolation due to the soil texture, vegetation and organic matter at the root zone could also be an explanation. Moreover, the
soil depth involved in shallow (0.5-2 m) and deep landslides(>2 m) (Greco et al., 2018) is much thicker than Sewp (5cm)
currently measured by the satellite based soil moisture technologies and this is more captured by the hydrological modelling
approaches (Wflow). An overestimation of soil moisture by satellite (VdS) and the distributed hydrological model (Wflow)
was also noted and attributed to the similar overestimation of satellite-based precipitation, an important element in soil moisture
estimation. Therefore, more reliable algorithms that addresses the reliance between the satellite and in situ based information
could thus improve the performance and enhance data accuracy needed for landslide hazard assessment.

between-the-landslide—causal-and-triggering—conditions-The adopted bilinear threshold framework, indicating the distribution

of data points in a 2D space, reflects the relationship between the landslide causal and triggering conditions despite other linked

constraints and limitations (Conrad et al., 2021). We objectively used the bilinear thresholds framework because the majority

of positive classes were clustered in upperright corner of the 2D threshold space. Although, this format proved to be suitable

for landslide hydro-meteorological thresholds definition (Mirus et al., 2018a; Thomas et al., 2019; Uwihirwe et al., 2020,

depending on the distribution of the positive classes in the 2D space. The adopted bilinear framework is in line with the goal

of the hydro-meteorological cause-trigger based thresholds concept that prioritize the minimization of false alarms while at
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least keeping unchanged the rate of true alarms. Additionally, in some cases, single variable thresholds lead to high prediction
capabilities in terms of elevated rate of true alarms and with quite low rate of false alarms and could be adopted especially for
hydrologically based thresholds that consider the long-term wetting process of the soil until the landslide day.

Regardless of the good performance of soil moisture as landslide hydro-meteorological threshold, the incorporation of pre-
wetting state of soil in landslide hazard assessment thresholds using groundwater levels, h-1—E/D (TPR=54-64 % and FPR=6—

11 %) (Uwihirwe et al., 2021) with low rate of false alarms, performed higher than using root zone soil moisture Seroot(t-1~E/D
(TPR=66 % and FPR=44 %) due to the elevated rate of false alarms.

Ideally, one would have a landslide inventory of about 200 landslides events in order to have a precise estimation of threshold

parameters (Peres and Cancelliere, 2021). However, the landslide inventory used for this study counts for only 32 hazardous

landslides. Although, the reliance on this limited sample size is likely to lead to a bias towards the larger landslide events and

those with impact to society, this landslide inventory is the most comprehensive currently available in the study area.

5 Conclusion

This research aimed to evaluate the potential of satellite-based measurements of precipitation and soil moisture as well as
hydrological model-derived soil moisture information for landslide initiation thresholds in Rwanda. The GPM-based IMERG
rainfall product was found to be a good spatially distributed source of rainfall data for landslide hazard assessment especially
in data scarce areas like Rwanda. The satellite and model-derived soil moisture time series broadly reproduce the most
important trends of the in situ soil moisture. Regardless of different depths of data records and slightly overestimation of soil
moisture by satellite and model-derived techniques, it was concluded that they follow the in situ observed temporal variation
and are thus potentially useful for landslide hazard-assessmentinitiation thresholds definition. The purpose of incorporating
the antecedent soil moisture in landslide hazard assessment was to account for the physical effect of the pre-wetness state of
soil, responsible for the predisposal of the slopes to near failure, prior to the landslide triggering conditions. Two categories of
landslide triggering conditions have been considered to assess the potential value of including the antecedent soil moisture
information. The category that considers the cumulative 3 day rainfall was the most impactful and thus more useful for
landslide hazard assessment in Rwanda rather than the rainfall event-based trigger. Although the area under the curve
(AUC=0.71-0.76) statistical metric indicated the significant impact of all tested antecedent soil moisture variables prior to the
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triggering conditions, the antecedent soil moisture modelled from the root zone Seroot performed best. Similarly:The classical
thresholds E-D relying exclusively on rainfall (trigger) performed lower with high rate of missed alarms (50%) and thus less

important for a robust early warning systemdevelopment. Contrary, the hydro-meteorological thresholds that incorporate the

antecedent soil moisture Seroot and the recent 3--day cumulative rainfall Ros [Seroott-3-Rps] outperforms other threshold models
with high rate of true alarms (72 %) and low rate of false alarms (20 %) and thus can be very useful for landslide hazard

assessment-and-early warning systemdevelopment in Rwanda.

Data availability. The landslide inventory used for this research can be accessed at https:/doi.org/10.4121/15040446.v1
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Figure Al. Selected examples of satellite and model-derived soil moisture compared to in situ recorded soil moisture at 20 cm

soil depth (AWS): a) Owp and in situ 620cm Soil moisture time series at Gacurabwence station; b) model-derived soil moisture

in the root zone 600t and in situ soil moisture 620cm at Kibisabo station; c) satellite derived 6tpand model-derived soil moisture
860 in the root zone Oroet With vertical red lines indicate the timing of the landslide occurrence time

39



