
1 
 

 1 

Summer surface air temperature proxies point to near sea-ice-free conditions in the Arctic at 2 

127 ka.  3 

 4 

Louise C. Sime1, Rahul Sivankutty1, Irene Vallet-Malmierca1, Agatha M. de Boer2, and Marie Sicard2  5 
1British Antarctic Survey, Cambridge, UK 6 
2Department of Geological Sciences, Stockholm University, Sweden.  7 

 8 

Correspondence: Louise C. Sime (lsim@bas.ac.uk) 9 



2 
 

Abstract.  10 

The Last Interglacial (LIG) period, which had higher summer solar insolation than today, has been 11 

suggested as the last time that Arctic summers were ice-free. However, the latest suite of Coupled  12 

Modelling Intercomparison Project 6 Paleoclimate (CMIP6-PMIP4) simulations of the LIG produce a 13 

wide range of Arctic summer minimum sea ice area (SIA) results, ranging from a 30% to 96% 14 

reduction from the pre-industrial (PI). Sea ice proxies are also currently neither abundant nor 15 

consistent enough to determine the most realistic state. Here we estimate LIG minimum SIA 16 

indirectly through the use of 21 proxy records for LIG Summer Surface Air Temperature (SSAT) and 17 

11 CMIP6-PMIP4 models for the LIG. We use two approaches. First, we use two tests to determine 18 

how skilful models are at simulating reconstructed ΔSSAT from proxy records (where Δ refers to 19 

LIG-PI). This identifies a positive correlation between model skill and the magnitude of ΔSIA: the 20 

most reliable models simulate a larger sea ice reduction. Averaging the most skilful two models yields 21 

an average SIA of 1.3 mill. km2  for the LIG. This equates to a 4.5 mill. km2, or a 79%, SIA reduction 22 

from the PI to the LIG. Second, across the 11 models, the averaged ΔSSAT at the 21 proxy locations 23 

as well the pan Arctic average ΔSSAT, is inversely correlated with ΔSIA (r = -0.86 and -0.79 24 

respectively). In other words, the models show that a larger Arctic warming is associated with a 25 

greater sea ice reduction. Using the proxy record-averaged ΔSSAT of 4.5 ± 1.7 K and the relationship 26 

between ΔSSAT and ΔSIA suggests an estimated sea ice reduction of 4.2±1.4 mill. km2 or about 74% 27 

less sea ice than the PI. The mean proxy-location ΔSSAT is well-correlated with the Arctic-wide 28 

ΔSSAT north of 60°N (r=0.97) and this relationship is used to show that the mean proxy record 29 

ΔSSAT is equivalent to an Arctic-wide warming of 3.7±1.5 K at the LIG compared to the PI. 30 

Applying this Arctic-wide ΔSSAT and its modelled relationship to ΔSIA, results in a similar estimate 31 

of LIG sea ice reduction of 4.1±1.2 mill. Km2. These LIG climatological minimum SIA of 1.3 to 1.5 32 

mill. km2 are close to the definition of a summer ice-free Arctic, which is a maximum sea ice extent 33 

less than 1 mill. km2. The results of this study thus suggest that the Arctic likely experienced a 34 

mixture of ice-free and near ice-free summers during the LIG.  35 

  36 
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1. Introduction 37 

The rapid decline in Arctic sea ice over the last 40 years is an icon of contemporary climate change. 38 

Climate models have struggled to fully capture this sea ice loss (Notz and Community, 2020), which 39 

can sometimes reduce confidence in their future projections (e.g. IPCC, 2021). One line of 40 

investigation to address this problem, that has not been fully exploited, is the use of past climates to 41 

provide information on the future (e.g. Bracegirdle et al., 2019). Investigating the physics and causes 42 

of sea ice change, concentrating on Arctic changes during the most recent warm climate periods can 43 

help us address this problem (Guarino et al., 2020b). Interglacials are periods of globally higher 44 

temperatures which occur between cold glacial periods (Sime et al., 2009; Otto-Bliesner et al., 2013; 45 

Fischer et al., 2018). The differences between colder glacial and warmer interglacial periods are 46 

driven by climate feedbacks alongside changes in the Earth’s orbit which affect incoming radiation. 47 

The Last Interglacial or LIG, occurred 130,000-116,000 years ago. At 127,000 years ago, at high 48 

latitudes orbital forcing led to summertime top-of-atmosphere shortwave radiation 60–75 Wm−2 49 

greater than the PI period. Summer temperatures in the Arctic during the LIG are estimated to be 50 

around 4.5 K above those of today (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron 51 

et al., 2017). Prior to 2020, most climate models simulated summer LIG temperatures which were too 52 

cool compared with these LIG temperature observations (Otto-Bliesner et al., 2013; IPCC, 2013). 53 

This led Lunt et al. (2013); Otto-Bliesner et al. (2013) and IPCC (2013) to suggest that the 54 

representation of dynamic vegetation changes in the Arctic might be key to understanding LIG 55 

summertime Arctic warmth.  56 

 57 

Guarino et al. (2020b) argued that loss of Arctic sea-ice in the summer could cause the warm summer 58 

Arctic temperatures, without the need for dynamic vegetation. Using the HadGEM3 model, which 59 

was the UK’s contribution for the LIG CMIP6-PMIP4 project, Guarino et al. (2020b) found that the 60 

model simulated a fully sea ice-free Arctic during the summer, i.e. it had less than 1 mill. km2 of sea 61 

ice extent at its minimum. This unique, near complete, loss of summer sea ice appears to happen in 62 

the UK model, because it includes a highly advanced representation of melt ponds (Guarino et al. 63 

2020b; Diamond et al. 2021). These are shallow pools of water which form on the surface of Arctic 64 



4 
 

sea ice and which determine how much sunlight is absorbed or reflected by the ice (Guarino et al., 65 

2020b).  66 

 67 

Malmierca-Vallet et al. (2018) found the signature of summertime Arctic sea ice loss in Greenland ice 68 

cores. Kageyama et al. (2021) then led the international community in compiling all available marine 69 

core Arctic sea ice proxy data for the LIG and testing it against CMIP6-PMIP4 simulations. The 70 

Kageyama et al. (2021) synthesis of ocean core-based proxy records of LIG Arctic sea-ice change, 71 

like Malmierca-Vallet et al. (2018), showed that compared to the PI it is very likely that Arctic sea ice 72 

was reduced. However, Kageyama et al. (2021) also showed that directly determining sea-ice changes 73 

from marine core data is difficult. The marine core observations suffer some conflicting 74 

interpretations of proxy data sometimes from the same core, and imprecision in dating materials to the 75 

LIG period in the high Arctic. Thus, determining the mechanisms and distribution of sea ice loss 76 

during the LIG by directly inferring sea ice presence (or absence) from these preserved biological data 77 

alone is not possible (Kageyama et al., 2021). 78 

 79 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) Paleoclimate Model Intercomparison 80 

Project Phase (PMIP4) or CMIP6-PMIP4 LIG experimental protocol prescribes differences between 81 

the LIG and PI in orbital parameters, as well as differences in trace greenhouse gas concentrations 82 

(Otto-Bliesner et al., 2017). This standardised climate modelling protocol is therefore an ideal 83 

opportunity for the community to use models to explore the causes of Arctic warmth using multi-84 

model approaches. In particular, the existing non-dynamic-vegetation PMIP4 LIG protocol and 85 

associated simulations offer the opportunity to address the question of whether the Arctic sea ice loss 86 

alone is sufficient to explain LIG summertime temperature observations, or whether active vegetation 87 

modelling, and the idea of vegetation feedbacks (Lunt et al., 2013; Otto-Bliesner et al.,2013; IPCC, 88 

2013) are required. This said, we recognize that in reality there must also be LIG Arctic vegetation 89 

feedbacks. These should be explored in future modelling work. 90 

 91 
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Guarino et al. (2020b) showed that the HadGEM3, the only CMIP-PMIP4 model with an ice-free 92 

Arctic  at the LIG, has an excellent match with  reconstructed Arctic air temperature in summer. The 93 

average ΔSSAT in HadGEM3, for all locations with proxy observations, is +4.9 ± 1.2 K compared 94 

with the proxy mean of +4.5 ± 1.7 K. This model also matched all, except one, marine core sea-ice 95 

datapoints from Kageyama et al. (2021). Here we investigate whether there are more CMIP6-PMIP4 96 

models with a similarly good ΔSSAT and if so, whether other models with a good match also suggest 97 

a much-reduced sea ice area (SIA) during the LIG. We further compute the correlation and linear 98 

relationship in the models between ΔSSAT and ΔSIA and subsequently use this equation and proxies 99 

for ΔSSAT to estimate ΔSIA. Section 2 describes the proxy data and models used in this study as well 100 

as the analysis methods. The results are presented in Section 3 which first evaluates the modelled PI 101 

and LIG sea ice distribution against proxy reconstructions and then use the above described 102 

approaches to estimate the sea ice reduction at the LIG. Section 4 summarises the results and 103 

discusses their shortcomings and implications.  104 

 105 

2. Data and methods 106 

2.1 Proxy reconstructions for LIG 107 

The LIG SSAT proxy observations used to assess LIG Arctic sea ice in the Guarino et al. (2020b) 108 

study were previously published by CAPE members (2006); Kaspar et al. (2005) and 20 of them were 109 

also used to assess CMIP5 models in the IPCC (2013) report. A detailed description of each record is 110 

available (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron et al., 2017). Each proxy 111 

record is thought to be of summer LIG air temperature anomaly relative to present day and is located 112 

in the circum-Arctic region; all sites are from north of 51°N. There are 7 terrestrial based temperature 113 

records; 8 lacustrine records; 2 marine pollen-based records; and 3 ice core records included in the 114 

original  IPCC (2013) compilation. Guarino et al. (2020b) added to this an additional new record from 115 

the NEEM Greenland ice core from Capron et al. (2017), bringing the total number of proxies records 116 

to 21 (Table 1). Figure 1 shows the location, and type, for each numbered proxy record. Terrestrial 117 

climate can be reconstructed from diagnostic assemblages of biotic proxies preserved in lacustrine, 118 
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peat, alluvial, and marine archives and isotopic changes preserved in ice cores and marine and 119 

lacustrine carbonates (CAPE, 2006; Guarino et al., 2020). Quantitative reconstructions of climatic 120 

departures from the present-day are derived from range extensions of individual taxa, mutual climatic 121 

range estimations based on groups of taxa, and analogue techniques (CAPE, 2006). These proxy 122 

records are considered to represent the summer surface air temperature because summer temperature 123 

is also the most effective predictor for most biological processes, though seasonality and moisture 124 

availability may influence phenomena such as evergreen vs. deciduous biotic dominance (Kaplan et 125 

al., 2003). Whilst the exact timing of this peak warmth has not yet been definitively determined, it is 126 

reasonable to assume that these measurements are approximately synchronous across the Arctic. It is 127 

however very unlikely that the peak warmth was synchronous across both hemispheres (see Capron et 128 

al. (2014); Govin et al. (2015)), and further investigation of the synchronicity of peak warmth occurs 129 

across the Northern Hemisphere is merited. For consistency with modelled data, temperature 130 

anomalies computed against present day conditions (i.e. 1961-1990 baseline) were corrected to 131 

account for a +0.4K of global warming between PI (1850) and present day (1961-1990).(Turney and 132 

Jones, 2010). Therefore, Table 1 and Guarino et al. (2020b) values differ slightly (+0.4K) from the 133 

original datasets so that they represent temperature anomalies relative to the PI.  134 

 135 
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 136 
Figure 1: Map of data locations numbered to match Table 1. This combines the Kageyama et al. 137 

(2021) sea ice locations 1 to 20 alongside with the temperature proxies from Table 1. Open symbols 138 

correspond to records with uncertain chronology, and filled symbols correspond to records with good 139 

chronology. 140 

Most of the sites have temperature uncertainty (one standard deviation) estimates, which are provided 141 

in the Table 1. However, for 9 sites, the standard deviation of the temperature data was not available. 142 

A standard deviation of ± 0.5K was used to account for this missing uncertainty: this is the smallest 143 

standard deviation found in any proxy record across all sites, and is thus as a conservative estimation 144 

of the uncertainty associated to proxy data (Guarino et al., 2020b).  145 

 146 
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Table 1: Compilation of LIG-PI summertime surface air temperature (SSAT) anomalies used by 147 

Guarino et al. (2020b). 148 

 149 
  150 

2.2. Models and model output 151 

We analyse Tier 1 LIG simulations, based on the standard CMIP6-PMIP4 LIG experimental protocol 152 

(Otto-Bliesner et al., 2017). The prescribed LIG (127 ka) protocol differs from the CMIP6 PI 153 

simulation protocol in astronomical parameters and the atmospheric trace GHG concentrations. LIG 154 

astronomical parameters are prescribed according to orbital constants (Berger and Loutre, 1991), and 155 
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atmospheric trace GHG concentrations are based on ice core measurements: 275 ppm for CO2; 685 156 

ppb for CH4; and 255 ppb for N2O (Otto-Bliesner et al., 2017).  157 

  158 

The CMIP6-PMIP4 model simulations were run following the Otto-Bliesner et al. (2017) protocol, 159 

except CNRM-CM6-1, which used GHG at their PI values rather than using LIG values. For all 160 

models, all other boundary conditions, including solar activity, ice sheets, aerosol emissions etc., are 161 

identical to the PI simulation. In terms of the Greenland and Antarctica ice sheets, a PI configuration 162 

for the LIG simulation is not unreasonable (Kageyama et al., 2021; Otto-Bliesner et al., 2020). LIG 163 

simulations were initialized either  from a previous LIG run, or from the standard CMIP6 protocol PI 164 

simulations, using constant 1850 GHGs, ozone, solar, tropospheric aerosol, stratospheric volcanic 165 

aerosol and land use forcing. Whilst PI and LIG spin-ups vary between the models, with CNRM the 166 

shortest at 100 years, most model groups aimed to allow the land and oceanic masses to attain 167 

approximate steady state i.e. to reach atmospheric equilibrium and to achieve an upper-oceanic 168 

equilibrium - which generally seems to take around 300 to 400 years. LIG production runs are all 169 

between 100-200 years long, which is an appropriate length for Arctic sea ice analysis (Guarino et al., 170 

2020a). 171 

 172 

Whilst fifteen models have run the CMIP6-PMIP4 LIG simulation (Kageyama et al., 2021; Otto-173 

Bliesner et al., 2020), and have uploaded model data to the Earth System Grid Federation (ESGF), we 174 

exclude four simulations for the following reasons. The AWI-ESM and Nor-ESM models have LIG 175 

simulations with two versions of model. To avoid undue biasing of results, we include only the 176 

simulation from the latest version for each model. Additionally, for INM-CM4-8 model, no ocean or 177 

sea ice fields were available for download, excluding this model  from our analysis. Finally, we 178 

exclude the CNRM model in the analysis because apart from using PI instead of LIG GHG 179 

concentrations and a short spin-up time, the model also has known issues with its sea-ice model. The 180 

model produces much too thin sea ice in September and March compared with observational evidence 181 

and the snow layer on the ice is considerably overestimated (Voldoire et al., 2019). As a possible 182 

consequence of these issues, the CNRM model is also an outlier in an otherwise highly correlated 183 
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(inverse) relationship in the models between the LIG-PI albedo change over the Artic sea-ice and the 184 

LIG-PI SSAT change over the ice, being the only model that produces a warmer LIG with almost no 185 

reduction in albedo (Figure A1). While we consider the CNRM ice model unreliable for this study, we 186 

note that the inclusion of the model in our analysis only reduces the correlation coefficients but does 187 

not change the overall conclusions.  188 

 189 

We thus analyse the difference between the PI and LIG simulations from eleven models. Out of the 190 

eleven simulations of the LIG, seven have 200 years simulation length (data available to download in 191 

ESGF), the remaining four are 100 years in length. For PI control runs, we use the last 200 years of PI 192 

control run available in ESGF for each model. Details of each model: model denomination, physical 193 

core components, horizontal and vertical grid specifications, details on prescribed vs interactive 194 

boundary conditions, details of published model description, and LIG simulation length  (spin-up and 195 

production runs) are contained in (Kageyama et al., 2021). Data was downloaded from the ESGF data 196 

node: https://esgf-node.llnl.gov/projects/esgf-llnl/ (last downloaded on 23rd June 2021). 197 

 198 

The spatial distribution of sea ice is usually computed in two ways, by its total area or its extent. The 199 

sea ice extent (SIE) is the total area of the Arctic ocean where there is at least 15% ice concentration. 200 

The total sea ice area (SIA) is the sum of the sea ice concentration times the area of a grid cell for all 201 

cells that contain some sea ice. In this paper, the SIA refers to the SIA of the month of minimum sea 202 

ice, as computed by using the climatology of the whole simulation.  203 

 204 

2.3. Assessing model skill to simulate reconstructions of ΔSSAT 205 

The model skill is quantified using two measures based on 1) the Root Mean Square Error (RMSE) of 206 

the modelled SSAT compared to the proxies  and 2) the percentage of the 21 proxies for ΔSSAT (in 207 

Table 1) for which the model produce a value within the error bars. To assess whether the model 208 

match a proxy point, we compute summer mean (June to August) surface air temperatures for every 209 

year for the PI and LIG for each model. Climatological summer temperature is the time mean of these  210 

https://esgf-node.llnl.gov/projects/esgf-llnl/
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summer temperatures for the entire simulation length. Our calculated model uncertainties on the 211 

climatological summer mean temperatures are one standard deviation of summer mean time series for 212 

each model. Bilinear interpolation in latitude-longitude space was used to extract values at the proxy 213 

locations from the gridded model output. For climatological summer mean temperature, if there is an 214 

overlap between  proxy SSAT (plus  uncertainty) and the simulated SSAT (plus model uncertainty) 215 

then, for that location, the result is considered as a match. Similarly, the RMSE error is calculated 216 

using the modelled SSAT values averaged over the summer months of the entire simulation length.  217 

 218 

3. Results 219 

3.1. Simulated Arctic sea ice distribution 220 

The sea ice distribution in the models have been reported previously in Kageyama et al. (2021) and is 221 

included here to make this work self-reliant. For the PI, the model mean value for summer minimum 222 

monthly SIA is 6.4 mill. km2. Due to a lack of direct observations for the PI, the PI model results are 223 

compared with  1981 to 2002 satellite observations, keeping in mind that the present day observations 224 

are for a climate with a higher atmospheric CO2 level of ~380 ppm, compared to the PI atmospheric 225 

CO2 levels of 280 ppm. The modern observed mean minimum SIA is 5.7 mill km2 (Reynolds et al., 226 

2002). In general, the simulations show a realistic representation of the geographical extent for the 227 

summer minimum. More models show a slightly smaller area compared to the present-day 228 

observations, however EC-Earth, FGOALS-g3, and GISS170 E2-1-G simulate too much ice (Figure 229 

2). Overestimations appear to be due to too much sea ice being simulated in the Barents-Kara area 230 

(FGOALS-g3, GISS-E2-1-G), in the Nordic Seas (EC-Earth, FGOALS-g3) and in Baffin Bay (EC-231 

Earth).  Kageyama et al. (2021) also note that MIROC-ES2L performs rather poorly for the PI, with 232 

insufficient ice close to the continents. The other models have a relatively close match to the 15% 233 

isoline in the NOAA Optimum Interpolation version 2 data (Reynolds et al., 2002; Kageyama et al., 234 

2021).  235 

 236 
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For the LIG, the model output is compared against the LIG sea ice synthesis of Kageyama et al. 237 

(2021), which include marine cores collected in the Arctic Ocean, Nordic Seas and northern North 238 

Atlantic (Figure 3). These data show that south of 79°N in the Atlantic and Nordic seas the LIG was 239 

seasonally ice-free. These southern sea ice records provide quantitative estimates of sea surface 240 

parameters based on dinoflagellate cysts (dinocysts). North of 79°N the sea-ice-related records are 241 

more difficult to obtain and interpret. A core at 81.5°N brings evidence of summer being probably 242 

seasonally ice-free during the LIG from two indicators: dinocysts and IP25/PIP25. However, an 243 

anomalous core close by at the northernmost location of 81.9°N, with good chronology, shows IP25-244 

based evidence of substantial (> 75%) sea ice concentration all year round. Other northerly cores do 245 

not currently have good enough chronological control to confidently date material of LIG age. All 246 

models, except FGOALS, generally tend to match the results from proxies of summertime Arctic sea 247 

ice in marine cores with good LIG chronology (Figure 3), apart from the anomalous northernmost 248 

core for which the IP25 evidence suggest perennial sea ice (Kageyama et al., 2021). Steinet al. (2017) 249 

suggest that PIP25 records obtained from the central Arctic Ocean cores indicating a perennial sea ice 250 

cover have to be interpreted cautiously, given that biomarker concentrations are very low to absent, so 251 

it is difficult to know how much weight to place on this particular result. Additionally, given Hillaire-252 

Marcel et al. (2017) question the age model of the data from the central Arctic Ocean, thus these IP25 253 

data need to be interpreted with some caution. This may mean that all the models tend to have similar 254 

problems in simulating Arctic sea ice during the LIG or that the LIG IP25 signal in the Arctic 255 

indicates something else. What is clear is that a new approach with other Arctic datasets, such as 256 

SSAT, may be needed to make progress on the LIG Arctic sea ice question. 257 

 258 

 259 

 260 

 261 

 262 

 263 
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 264 

 265 

 266 

Figure 2: Climatological Minimum PI sea ice concentration maps for each model. The first panel 267 

represents the multi model mean (MMM). 268 

 269 
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 270 

Figure 3: Climatological minimum LIG sea ice concentration maps for each model. Marine core 271 

results are from Kageyama et al. (2021): orange outlines indicate that the dating is uncertain; green 272 

outlines indicate the datapoint is from the LIG. The first panel represents the multi model mean. 273 

 274 
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For the LIG, there is very little difference between the maximum (wintertime) Arctic SIA and that of 275 

the PI (which is 15-16 mill. km2 between the PI and the LIG in most models), but every model shows 276 

a reduction in summer sea ice in the LIG compared to the PI (Table 2). Our model mean LIG 277 

summertime Arctic is 2.9 mill. km2, compared to 6.4 mill. km2 for the PI, or a 55% PI to LIG 278 

decrease. There is large inter-model variability for the LIG SIA during the summer (Figure 4). All 279 

models show a larger sea-ice area seasonal amplitude for LIG than for PI, and the range of model SIA 280 

is larger for LIG than for PI (Figure A2). The results for individual years show that no model is close 281 

to the ice-free threshold fdel summer during their PI simulation (Figure 4) but for the LIG summer 282 

SIA, there are three models which are lower than 1 mill. km2 for at least one summer during the LIG 283 

simulation (Figure 4). Of these three, HadGEM3, shows a LIG Arctic Ocean free of sea ice in all 284 

summers, i.e. its maximum SIE is lower than 1 mill. km2 in all LIG simulation years. CESM2 and 285 

NESM3 show low climatological SIA values (slightly above 2 mill. km2) in summer for the LIG 286 

simulation, and both have at least one year with a SIE minimum which is below 1 mill. km2, though 287 

their average minimum SIE values are just below 3 mill. km2. Of these low LIG sea ice models, 288 

HadGEM3 and CESM2 realistically capture the PI Arctic sea ice seasonal cycle, whilst NESM3 289 

overestimates winter ice and the amplitude of the seasonal cycle (Cao et al., 2018). 290 

 291 

 292 

Table 2: The minimum climatological sea ice area for the PI and the LIG, changes, and the 293 
associated ΔSSAT anomalies. Percentage reductions are calculated from PI minimum SIA for each 294 
model. 295 

MODEL 

(units) 

SIA PI 

(mill. km2) 

SIA LIG 

(mill. km2) 

ΔSIA 

(mill. km2) 

SIA 

(% loss) 

ΔSSAT 

(K) 

MMM 6.36 2.93 -3.43 53.87 3.6±1.3 

ACCESS-ESM1-5 5.48 2.39 -3.09 56.44 2.6±1 

AWI-ESM-1-1-LR 5.37 3.76 -1.61 29.99 1.7±1.1 

CESM2 5.31 1.62 -3.69 69.54 3.3±1 

EC-Earth3-LR 8.86 3.65 -5.21 58.84 5.7±2.6 
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FGOALS-g3 8.83 5.55 -3.29 37.19 4.8±1.5 

GISS-E2-1-G 8.87 5.54 -3.32 37.47 3.4±1.4 

HadGEM3-GC31-LL 5.21 0.13 -5.07 97.48 4.9±1.2 

IPSL-CM6A-LR 6.42 2.46 -3.96 61.74 4.4±1.2 

MIROC-ES2L 4.20 2.79 -1.41 33.66 2.1 ± 0.6 

NESM3 5.50 1.64 -3.86 70.14 3 ±0.9 

NorESM2-LM 5.92 2.75 -3.17 53.52 3.6±1.1 

 296 
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Figure 4: Cumulative distribution of minimum SIA of individual years in LIG and PI 
simulations, i.e SIA versus proportion of years which fall below the corresponding SIA value. 
HadGEM3 has minimum SIA below 1 mill km2 for all years in LIG runs. CESM2 has 6.5%, 
and NESM3 8%, LIG years with SIA below 1 mill km2. Lower Panels are same but for SIE. 

 

 

3.2. Estimating ΔSIA from model skill to simulate ΔSSAT  297 

We first investigate whether there is a relationship between how well models match proxy ΔSSAT 298 

and the magnitude of SIA reduction that they simulate for the LIG. A visual comparison of modelled 299 

ΔSSAT and proxy estimates for ΔSSAT is also shown in Figure 5. As described in Section 2, two 300 

different approaches are used to quantify the skill of the models to simulate ΔSSAT, based on 1) the 301 

RMSE of the model-data ΔSSAT at the proxy record locations and 2) the percentage ΔSSAT proxies 302 
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that the model can correctly match, within model and data error. Here the focus is on quantifying 303 

model skill across all data records, but for reference, the model-versus-proxy ΔSSAT for each 304 

location is provided for each model individually in Figure A3. The RMSE skill estimate and the 305 

percentage match estimate provide very similar indications of which models have good skill to 306 

reproduce proxy ΔSSAT. The five models with the lowest RMSE also have the highest percentage 307 

match and the two models with the highest RMSE have the lowest percentage match (Figure 6). Both 308 

approaches show that the models with better skill to simulate ΔSSAT have a high absolute ΔSIA. The 309 

only outlier is EC-Earth, which has an average skill (6th best model of 11) but a high SIA reduction at 310 

the LIG. This occurs because the EC-Earth PI simulation has an excessive SIA, more than 3 million 311 

km2 compared with present day estimations; this enables it to have a large ΔSIA value, whilst likely 312 

retaining too much LIG SIA. Quantitively there is a correlation of r=-0.65 (p=0.03) between the 313 

magnitude of ΔSIA and the RMSE, and a correlation with r=0.67 (p=0.02) between the magnitude of 314 

ΔSIA and the percentage match of the model (Figure 6). Given that the SIA reduction from the PI to 315 

the LIG could be dependent on the starting SIA at the PI, we repeat the analysis for percentage SIA 316 

loss from the PI (rather than absolute SIA loss) and find that is correlates similarly to the model skill 317 

to reproduce ΔSSAT (Figure A4).  318 

  319 

 320 
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 321 

Figure 5: Summertime surface air temperature (SSAT) anomaly (LIG - PI) maps for each model 322 
overlain by  reconstructed summer temperature anomalies. Proxies are detailed in Table 1 and 323 
Guarino et al. (2020b); colours are the same as used for the underlying model data. The first panel 324 
represents the multi model mean. 325 

 326 
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 327 

 328 

Figure 6: Modelled magnitude of ΔSIA versus model skill to simulate proxy ΔSSAT. a) The modelled 329 
magnitude of ΔSIA is scattered against the RMS error of the modelled ΔSSAT compared to the proxy 330 
ΔSSAT for the 21 data locations. b) The modelled magnitude of ΔSIA scattered against the percentage 331 
of ΔSSAT data points that the model can match (see methods). 332 

 333 

In general, where models have a closer match with the ΔSSAT, they have a higher absolute ΔSIA, as 334 

well as a larger percentage reduction of SIA from the PI. We thus look at our best performing models 335 

for an indication of true LIG Arctic sea ice reduction. The four models with the best agreement of 336 

ΔSSAT to proxies are in order of skill; HadGEM3, IPSL, NORESM2, and CESM2. The top two 337 

performing models simulate an average SIA loss of 4.5 mill. km2 from an average starting PI SIA of 338 

5.8 mill. km2 to a final LIG SIA of 1.3 mill. km2, which equates to a percentage SIA loss of 79%. 339 

Including also the two next-best performing models in the average results in an average SIA loss of 340 
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4.0 mill. km2 to a final LIG SIA of 1.7 mill. km2 from an average starting PI SIA of 5.7 mill. km2, 341 

which equates to a percentage SIA loss of 71%.  342 

 343 

The question arises as to why there is a linear relationship between model skill to simulate Arctic 344 

ΔSSAT  and SIA reduction. One possibility is that the mean proxy ΔSSAT of 4.5 K is higher than 345 

what most models produce, and that the warmer models are thus closer to the proxies and also more 346 

likely to reduce sea ice. In the next section, this question is addressed by investigating whether ΔSIA 347 

is closely related to ΔSSAT itself.  348 

 349 

3.3. Estimating ΔSIA from the modelled ΔSIA-ΔSSAT relationship and proxy ΔSSAT 350 

Here we investigate whether the models suggest a linear relationship between ΔSSAT and ΔSIA, and 351 

if so, exploit that together with proxy ΔSSAT to estimate the most likely (true) value for ΔSIA. We 352 

first calculate the mean ΔSSAT in the model at all 21 proxy data locations and compare it to the 353 

magnitude of ΔSIA in each model (Figure 7a). The two are well correlated with r=0.86 (p=0.001) and 354 

the regression equation provide a dependence of ΔSIA on ΔSSAT. Using this relation, the 355 

reconstructed mean ΔSSAT at the proxy locations(4.5±1.7) points to a SIA reduction of 4.2±1.4 mill. 356 

km2 from the PI. This constitutes about 74% reduction from the present day observation of 5.7 mill. 357 

km2, which is also the average SIA for the PI in the two most skilful models identified in the previous 358 

section. Using this value for the PI sea ice, suggests remaining minimum of 1.5 mill. km2  of sea ice 359 

during the LIG summer. An average LIG minimum of 1.5 mill. km2  implies that some LIG summers 360 

must have been ice-free (below 1 mill. km2 in SIE) but that most summers would have had a small 361 

amount of sea ice.  362 
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 363 

Figure 7: Modelled magnitude of ΔSIA versus modelled ΔSSAT for the Arctic. a) The modelled ΔSIA 364 
is scattered against mean modelled ΔSSAT at the 21 data locations. b) The modelled ΔSIA is scattered 365 
against the mean modelled ΔSSAT averaged over the Arctic north of 60°N.  366 

 367 

The ΔSSAT relationship to ΔSIA has so far been computed using the mean ΔSSAT at the locations of 368 

the data. To test whether this method would also work for the Arctic in general, the ΔSSAT is next 369 

averaged over the whole Arctic north of 60°N and compared with ΔSIA (Figure 7b). The correlation 370 

between ΔSSAT and ΔSIA is a somewhat reduced when calculating ΔSSAT across the whole Arctic, 371 

though it is still highly significant (r=0.79, p=0.004). An estimate for proxy-based Arctic-wide 372 

ΔSSAT can be derived by applying the close relationship between Arctic ΔSSAT and station ΔSSAT 373 

in the models (Figure 8, r=0.97, p <0.001). Inserting the ΔSSAT averaged over all proxy-records, of 374 

4.5±1.7 K, in the regression equation in Figure 8, gives an estimate for proxy-based Arctic-wide 375 
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ΔSSAT of 3.7±1.5 K. Applying the regression equation in Figure 7b and using this estimate for 376 

Arctic-wide ΔSSAT suggests a PI to LIG sea ice reduction of 4.1±1.2 mill. km2, which is very similar 377 

to the estimate derived from the station data alone (of 4.2±1.4 mill. km2).  378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

Figure 8: Modelled Arctic-wide ΔSSAT versus modelled mean ΔSSAT at the data locations for the 11 392 

models. The markers for each model are same as in Figure 7 393 

 394 

4. Discussion and conclusions 395 

As discussed in the introduction, neither proxies nor modelling results alone allow currently for a 396 

convincing estimate of the Arctic sea ice reduction at the LIG. Here we apply a joint approach to 397 

make progress. We deduce how much sea ice was reduced during the LIG, using 11 of the most recent 398 

CMIP6-PMIP4 LIG model simulations and proxy observations of summer air temperature changes. 399 

The reduction of sea ice from the PI to the LIG in the models range from 30% to 96% with an average 400 

of 55%. No model is close to the ice-free threshold, of maximum SIE lower than 1 mill. km2, for any 401 

model year-summer during their PI simulation. During the LIG, the HadGEM3 model is the only one 402 

that has an Arctic Ocean free of sea ice in all summers, although CESM2 and NESM3 show SIA 403 
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values of around 2 mill. km2, in association with intermittently ice-free conditions. We found that 404 

larger LIG SIA reduction from the PI is related to greater SSAT warming, the two being correlated 405 

with r=0.86 across the models. In particular, 8 out of 11 models are able to match, within uncertainty, 406 

the average PI to LIG summertime Arctic warming of 4.5 ± 1.7 K as recorded by surface temperature 407 

proxies. This magnitude of warming was difficult to reach with previous generations of LIG models. 408 

Among the models, two of them capture the magnitude of the observed dSSAT in more than 60% of 409 

the total proxy locations. These models simulate an average LIG sea ice area of 1.3 mill. km2 which is 410 

a 4.5 mill. km2 (or 79%) reduction from their PI values. 411 

 412 

We find that the good match between the (ice-free) HadGEM3 and the Guarino et al. (2020b) summer 413 

Arctic temperature dataset is not unique. However, we find that it is not random either and that there 414 

is a correlation between model skill to match the ΔSSAT and the reduction of SIA from the PI to the 415 

LIG (both when using an RMSE skill test and when using a best-match skill test). The two most 416 

skilful models simulate an average LIG sea ice area of 1.3 mill. km2 which is a 4.5 mill. km2 or 79% 417 

reduction from their PI values.  Whilst we cannot assume all model error ΔSSAT is attributable to 418 

ΔSIA, it is reasonable to assume that the better performing models for ΔSSAT are also better at 419 

simulating ΔSIA, because of the close relationship between warming and sea ice loss.  420 

   421 

Some of the proxies are more difficult for the models to simulate (Figure 9 and Figure A3). In 422 

particular, it appears that the Greenland ice core SSAT value from NEEM of +8  (proxy record 21 in 423 

Table 1 Figure 9) is higher than any model simulates; though with a ±4 K uncertainty it is 424 

nevertheless matched by some models. Terrestrial proxies three and six, with SSAT values of +6.4 K 425 

are also only rarely matched. Further work on the observational side would be useful. These LIG 426 

SSAT proxy reconstructions were used in the IPCC (2013) report and by Guarino et al. (2020b); and 427 

were previously published by IPCC (2013); CAPE members (2006); Kaspar et al. (2005); Capron et 428 

al. (2017). Thus, this dataset should ideally be improved. One start point for this would be adding 429 

uncertainties to the (nine) sites which do not currently have these numbers. 430 

 431 
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 432 

Figure 9: Proxy ΔSSAT (violet dots and uncertainty bars) and simulated ΔSSAT for all models 433 
(coloured dots) for each proxy record location (rows). Grey boxes extend from the 25th to the 75th 434 
percentile of each locations distribution of simulated values and the vertical lines represent the 435 
median.  436 

 437 

The correlation between model skill to simulate ΔSSAT and the magnitude of ΔSIA is convincing (r= 438 

0.66 and p= 0.003 on average for the two skill tests). However, the two quantities are not 439 

straightforward to relate through a dynamical process. On the other hand, it is well known that there is 440 

a positive feedback between Arctic temperature and Arctic sea-ice, with warmer temperatures more 441 

likely to melt sea ice, and less sea ice producing a smaller albedo to incoming solar radiation and so 442 

less cooling from solar reflection. Figure A6 shows the relationship between summer surface air 443 

temperature anomalies versus September sea ice area from the observational estimates for the period 444 

from 1979-2020. In present time, the relationship between minimum SIA and summer SAT is 1.32 445 

mil. Km2 decrease per 1K temperature rise. This dynamic relationship is also evident in LIG 446 
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simulations, with a strong correlation of r=0.86 between the magnitude of ΔSIA and ΔSSAT across 447 

all the models  and the intermodel relationship suggests sea ice decrease of 1.9 mill km2  per 1K 448 

temperature rise (from the regression equation in Figure 7b). The reconstructed ΔSSAT from 449 

proxies, of 4.5 ±1.7 K, is larger than most models simulate, so the models that match the ΔSSAT most 450 

closely would be the models with a larger ΔSSAT than average and thus also a larger ΔSIA. The only 451 

model that has a large SIA reduction and not a good skill to match SSAT is EC-Earth, which features 452 

a PI simulation with far too much sea ice, which allows an excessive LIG to PI Arctic warming. An 453 

additional result of our study is that the mean ΔSSAT at the proxy locations is strongly correlated to 454 

Arctic-wide ΔSSAT north of 60°N in the models (r=0.97). Applying the regression relation between 455 

the two, implies that the mean ΔSSAT at the proxy locations, of  4.5±1.7 K, is equivalent to an Arctic-456 

wide warming at the LIG of 3.7±1.5 K. This is thus a more representative value for the Arctic 457 

warming at the LIG, than using the simpler proxy-location average.  458 

 459 

The strong linear correlation between the magnitude of ΔSIA and ΔSSAT is applied to the proxy-460 

reconstructed ΔSSAT to give an estimate of the reduction of SIA from the PI to LIG of 4.2±1.4 mill. 461 

km2, similar to that derived from our "best skill" approach. A similar value of 4.1±1.2 mill. km2 is 462 

obtained when extrapolating the method to Arctic-wide ΔSSAT north of 60°N. The models and data 463 

have uncertainties, and the regressions applied are not between perfectly correlated quantities. 464 

However, it is clear from both applied methods (each with two variants) that proxy-reconstructed 465 

ΔSSAT, in combination with the model output, implies a larger sea ice reduction than the 466 

climatological multi-model mean of 55%. It suggests a LIG SIA of ~1.5 mill. km2, which is consistent 467 

with intermittently ice-free summers – but with (low ice area) ice-present summers likely exceeding 468 

the number of ice-free years.  469 

 470 

Whilst we have focussed here on the Arctic SIA response to LIG insolation forcing, Kageyama et al. 471 

(2021) found that the models that respond strongly to LIG insolation forcing also respond strongly to 472 

CO2 forcing. Indeed the models with the weakest response for the LIG had the weakest response to 473 

the CO2 forcing. This suggests that our assessment here of model skill against Arctic SIA and SSAT 474 



27 
 

change can also help, to some extent, ascertain the models which have a better Arctic SIA and SSAT 475 

response to CO2 forcing.  Overall the results presented in this study suggest that: (i)  the fully-ice free 476 

HadGEM3 model is somewhat too sensitive to forcing; it loses summer sea ice too readily during the 477 

LIG; and (ii) most other PMIP4 models are insufficiently sensitive - these models do not lose enough 478 

sea ice. 479 

 480 

Code availability. Python code used to produce the manuscript plots is available on request from the 481 

authors.  482 

 483 

Data availability. The summer air temperature dataset is available at https://data.bas.ac.uk/full-484 

record.php?id=GB/NERC/BAS/PDC/01593. All model data is available from the ESGF data node: 485 

https://esgf-node.llnl.gov/projects/esgf-llnl/.   486 
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 490 

Appendix 491 

A1. Inter-model differences in LIG Sea ice simulation 492 

 493 

Sea ice formation and melting can be affected by a large number of factors inherent to the atmosphere 494 

and the ocean dynamics, alongside the representation of sea ice itself within the model (i.e. the type of 495 

sea ice scheme used). In coupled models it can therefore be difficult to identify the causes of this 496 

coupled behavior (Kagayama et al. 2021, Sicard et al,2022). Nevertheless Kagayama et al. (2021; 497 

Section 4), alongside Diamond et al. (2021) address the question of what drives model differences in 498 

summertime LIG sea ice. In summary: 499 

1. All PMIP4-LIG simulations show a major loss of summertime Arctic sea ice between the PI and 500 

LIG. 501 

https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01593
https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01593
https://esgf-node.llnl.gov/projects/esgf-llnl/
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2. Across all models, there is an increased downward short-wave flux in spring due to the imposed 502 

insolation forcing and a decreased upward short-wave flux in summer, related to the decrease of the 503 

albedo due to the smaller sea ice cover. Differences between the model results are due to a difference 504 

in phasing of the downward and upward shortwave radiation anomalies. 505 

3. The sea ice albedo feedback is most effective in HadGEM3. It is also the only model in which the 506 

anomalies in downward and upward shortwave radiation are exactly in phase. 507 

4. The CESM2 and HadGEM3 models (which both simulate significant sea ice loss) exhibit an 508 

Atlantic Meridional Overturning Circulation (AMOC) that is almost unchanged between PI and LIG, 509 

while in the IPSLCM6 model (with moderate sea ice loss) the AMOC weakens. This implies that a 510 

reduced northward oceanic heat transport could reduce sea ice loss in the Central Arctic in some 511 

models. 512 

5. The two models (HadGEM3 and CESM2) which had the lowest sea ice loss contain explicit melt 513 

pond schemes, which impact the albedo feedback in these models. Diamond et al. (2021) show that 514 

that the summer ice melt in HadGEM3 is predominantly driven by thermodynamic 515 

processes and those thermodynamic processes are significantly impacted by melt ponds. 516 

 517 

 518 

Appendix Figures 519 

 520 

 521 
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 522 
 523 

Figure A1. LIG-PI change in albedo over Arctic sea-ice as a function of LIG-PI change in SSAT (°C) 524 

over the ice. The r2 values and the linear fit lines are for the models including CNRM (blue) and 525 

excluding CNRM (black). The CNRM model (upside triangle) is an outlier that influences the 526 

strength rather than the nature of the correlation.   527 
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 528 

Figure A2. Sea ice area climatological seasonal cycle for each model. 529 

 530 
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Figure A3. Modelled ΔSSAT versus proxy ΔSSAT. The scatter points show model data versus 531 

reconstuctions for each proxy location. Error-bars represent one standard deviation on either side of 532 

the proxy estimate. The correlation coefficients, between X and Y, RMSE and percentage matches 533 

with proxy data for each model are indicated in each panel. 534 
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 535 

 536 

Figure A4: Modelled % sea ice area reduction from the LIG to the PI versus model skill to simulate 537 

proxy ΔSSAT. a) The modelled %SIA reduction is scattered against the RMSE of the modelled 538 

ΔSSAT compared to the proxy ΔSSAT for the 21 data locations. b) The modelled % SIA reduction 539 

scattered against the percentage of ΔSSAT data points that the model can match (see methods). 540 
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Figure A5. Scatter Plot for climatological ΔSSAT at each proxy location versus climatological 541 

ΔSSAT averaged north of 60°N  in each model 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 
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 557 

Figure A6:- Scatter plot of SAT versus SIA for current period. JJA surface air temperature versus NH 558 

September Sea ice area for each year from 1979-2020. Anomalies computed from year 1979 values. 559 

SIA is from NSIDC (https://nsidc.org/data/g02135/versions/3) and Air temperature (area averaged 560 

north of 60°N) is from ERA5 reanalysis (Hersbach et al. 2020). 561 

 562 
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