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Abstract.  10 

The Last Interglacial (LIG) period, which had higher summer solar insolation than today, has been 11 

suggested as the last time that Arctic summers were ice-free. However, the latest suite of Coupled  12 

Modelling Intercomparison Project 6 Paleoclimate (CMIP6-PMIP4) simulations of the LIG produce a 13 

wide range of Arctic summer minimum sea ice area (SIA) results, ranging from a 30% to 96% 14 

reduction from the pre-industrial (PI). Sea ice proxies are also currently neither abundant nor 15 

consistent enough to determine the most realistic state. Here we estimate LIG minimum SIA 16 

indirectly through the use of 21 proxy records for LIG Summer Surface Air Temperature (SSAT) and 17 

11 CMIP6-PMIP4 models for the LIG. We use two approaches. First, we use two tests to determine 18 

how skilful models are at simulating reconstructed ΔSSAT from proxy records (where Δ refers to 19 

LIG-PI). This identifies a positive correlation between model skill and the magnitude of ΔSIA: the 20 

most reliable models simulate a larger sea ice reduction. Averaging the most skilful two models yields 21 

an average SIA of 1.3 mill. km2  for the LIG. This equates to a 4.5 mill. km2, or a 79%, SIA reduction 22 

from the PI to the LIG. Second, across the 11 models, the averaged ΔSSAT at the 21 proxy locations 23 

as well the pan Arctic average delta SSAT, is inversely correlated with ΔSIA (r = -0.86 and 0.79 24 

respectively). In other words, the models show that a larger Arctic warming is associated with a 25 

greater sea ice reduction. Using the proxy record-averaged ΔSSAT of 4.5 ± 1.7 K and the relationship 26 

between ΔSSAT and ΔSIA, suggests an estimated ΔSIA of 4.4 mill. km2 or 77% less than the PI. The 27 

mean proxy-location ΔSSAT is well-correlated with the Arctic-wide ΔSSAT north of 60°N (r=0.97) 28 

and this relationship is used to show that the mean proxy record ΔSSAT is equivalent to an Arctic-29 

wide warming of 3.7±0.1 K at the LIG compared to the PI. Applying this Arctic-wide ΔSSAT and its 30 

modelled relationship to ΔSIA, results in a similar estimate of LIG sea ice reduction of 4.5 mill. km2. 31 

The LIG climatological minimum SIA of 1.3 mill. km2 is close to the definition of a summer ice-free 32 

Arctic, which is a maximum sea ice extent less than 1 mill. km2. The results of this study thus suggest 33 

that the Arctic likely experienced a mixture of ice-free and near ice-free summers during the LIG.  34 

  35 
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1. Introduction 36 

The rapid decline in Arctic sea ice over the last 40 years is an icon of contemporary climate change. 37 

Climate models have struggled to fully capture this sea ice loss (Notz and Community, 2020), which 38 

can sometimes reduce confidence in their future projections (e.g. IPCC, 2021). One line of 39 

investigation to address this problem, that has not been fully exploited, is the use of past climates to 40 

provide information on the future (e.g. Bracegirdle et al., 2019). Investigating the physics and causes 41 

of sea ice change, concentrating on Arctic changes during the most recent warm climate periods can 42 

help us address this problem (Guarino et al., 2020b). Interglacials are periods of globally higher 43 

temperatures which occur between cold glacial periods (Sime et al., 2009; Otto-Bliesner et al., 2013; 44 

Fischer et al., 2018). The differences between colder glacial and warmer interglacial periods are 45 

driven by climate feedbacks alongside changes in the Earth’s orbit which affect incoming radiation. 46 

The Last Interglacial or LIG, occurred 130,000-116,000 years ago. At 127,000 years ago, at high 47 

latitudes orbital forcing led to summertime top-of-atmosphere shortwave radiation 60–75 Wm−2 48 

greater than the PI period. Summer temperatures in the Arctic during the LIG are estimated to be 49 

around 4.5 K above those of today (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron 50 

et al., 2017). Prior to 2020, most climate models simulated summer LIG temperatures which were too 51 

cool compared with these LIG temperature observations (Otto-Bliesner et al., 2013; IPCC, 2013). 52 

This led Lunt et al. (2013); Otto-Bliesner et al. (2013) and IPCC (2013) to suggest that the 53 

representation of dynamic vegetation changes in the Arctic might be key to understanding LIG 54 

summertime Arctic warmth.  55 

 56 

Guarino et al. (2020b) argued that loss of Arctic sea-ice in the summer could cause the warm summer 57 

Arctic temperatures, without the need for dynamic vegetation. Using the HadGEM3 model, which 58 

was the UK’s contribution for the LIG CMIP6-PMIP4 project, Guarino et al. (2020b) found that the 59 

model simulated a fully sea ice-free Arctic during the summer, i.e. it had less than 1 mill. km2 of sea 60 

ice extent at its minimum. This unique, near complete, loss of summer sea ice appears to happen in 61 

the UK model, because it includes a highly advanced representation of melt ponds (Guarino et al. 62 

2020b; Diamond et al. 2021). These are shallow pools of water which form on the surface of Arctic 63 



4 
 

sea ice and which determine how much sunlight is absorbed or reflected by the ice (Guarino et al., 64 

2020b).  65 

 66 

Malmierca-Vallet et al. (2018) found the signature of summertime Arctic sea ice loss in Greenland ice 67 

cores. Kageyama et al. (2021) then led the international community in compiling all available marine 68 

core Arctic sea ice proxy data for the LIG and testing it against CMIP6-PMIP4 simulations. The 69 

Kageyama et al. (2021) synthesis of ocean core-based proxy records of LIG Arctic sea-ice change, 70 

like Malmierca-Vallet et al. (2018), showed that compared to the PI it is very likely that Arctic sea ice 71 

was reduced. However, Kageyama et al. (2021) also showed that directly determining sea-ice changes 72 

from marine core data is difficult. The marine core observations suffer some conflicting 73 

interpretations of proxy data sometimes from the same core, and imprecision in dating materials to the 74 

LIG period in the high Arctic. Thus, determining the mechanisms and distribution of sea ice loss 75 

during the LIG by directly inferring sea ice presence (or absence) from these preserved biological data 76 

alone is not possible (Kageyama et al., 2021). 77 

 78 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) Paleoclimate Model Intercomparison 79 

Project Phase (PMIP4) or CMIP6-PMIP4 LIG experimental protocol prescribes differences between 80 

the LIG and PI in orbital parameters, as well as differences in trace greenhouse gas concentrations 81 

(Otto-Bliesner et al., 2017). This standardised climate modelling protocol is therefore an ideal 82 

opportunity for the community to use models to explore the causes of Arctic warmth using multi-83 

model approaches. In particular, the existing non-dynamic-vegetation PMIP4 LIG protocol and 84 

associated simulations offer the opportunity to address the question of whether the Arctic sea ice loss 85 

alone is sufficient to explain LIG summertime temperature observations, or whether active vegetation 86 

modelling, and the idea of vegetation feedbacks (Lunt et al., 2013; Otto-Bliesner et al.,2013; IPCC, 87 

2013) are required. This said, we recognize that in reality there must also be LIG Arctic vegetation 88 

feedbacks. These should be explored in future modelling work. 89 

 90 
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Guarino et al. (2020b) showed that the HadGEM3, the only CMIP-PMIP4 model with an ice-free 91 

Arctic  at the LIG, has an excellent match with  reconstructed Arctic air temperature in summer. The 92 

average ΔSSAT in HadGEM3, for all locations with proxy observations, is +4.9 ± 1.2 K compared 93 

with the proxy mean of +4.5 ± 1.7 K. This model also matched all, except one, marine core sea-ice 94 

datapoints from Kageyama et al. (2021). Here we investigate whether there are more CMIP6-PMIP4 95 

models with a similarly good ΔSSAT and if so, whether other models with a good match also suggest 96 

a much-reduced sea ice area (SIA) during the LIG. We further compute the correlation and linear 97 

relationship in the models between ΔSSAT and ΔSIA and subsequently use this equation and proxies 98 

for ΔSSAT to estimate ΔSIA. Section 2 describes the proxy data and models used in this study as well 99 

as the analysis methods. The results are presented in Section 3 which first evaluates the modelled PI 100 

and LIG sea ice distribution against proxy reconstructions and then use the above described 101 

approaches to estimate the sea ice reduction at the LIG. Section 4 summarises the results and 102 

discusses their shortcomings and implications.  103 

 104 

2. Data and methods 105 

2.1 Proxy reconstructions for LIG 106 

The LIG SSAT proxy observations used to assess LIG Arctic sea ice in the Guarino et al. (2020b) 107 

study were previously published by CAPE members (2006); Kaspar et al. (2005) and 20 of them were 108 

also used to assess CMIP5 models in the IPCC (2013) report. A detailed description of each record is 109 

available (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron et al., 2017). Each proxy 110 

record is thought to be of summer LIG air temperature anomaly relative to present day and is located 111 

in the circum-Arctic region; all sites are from north of 51°N. There are 7 terrestrial based temperature 112 

records; 8 lacustrine records; 2 marine pollen-based records; and 3 ice core records included in the 113 

original  IPCC (2013) compilation. Guarino et al. (2020b) added to this an additional new record from 114 

the NEEM Greenland ice core from Capron et al. (2017), bringing the total number of proxies records 115 

to 21 (Table 1). Figure 1 shows the location, and type, for each numbered proxy record. Terrestrial 116 

climate can be reconstructed from diagnostic assemblages of biotic proxies preserved in lacustrine, 117 
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peat, alluvial, and marine archives and isotopic changes preserved in ice cores and marine and 118 

lacustrine carbonates (CAPE, 2006; Guarino et al., 2020). Quantitative reconstructions of climatic 119 

departures from the present-day are derived from range extensions of individual taxa, mutual climatic 120 

range estimations based on groups of taxa, and analogue techniques (CAPE, 2006). These proxy 121 

records are considered to represent the summer surface air temperature because summer temperature 122 

is also the most effective predictor for most biological processes, though seasonality and moisture 123 

availability may influence phenomena such as evergreen vs. deciduous biotic dominance (Kaplan et 124 

al., 2003). Whilst the exact timing of this peak warmth has not yet been definitively determined, it is 125 

reasonable to assume that these measurements are approximately synchronous across the Arctic. It is 126 

however very unlikely that the peak warmth was synchronous across both hemispheres (see Capron et 127 

al. (2014); Govin et al. (2015)), and further investigation of the synchronicity of peak warmth occurs 128 

across the Northern Hemisphere is merited. For consistency with modelled data, temperature 129 

anomalies computed against present day conditions (i.e. 1961-1990 baseline) were corrected to 130 

account for a +0.4K of global warming between PI (1850) and present day (1961-1990).(Turney and 131 

Jones, 2010). Therefore, Table 1 and Guarino et al. (2020b) values differ slightly (+0.4K) from the 132 

original datasets so that they represent temperature anomalies relative to the PI.  133 

 134 
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 135 
Figure 1: Map of data locations numbered to match Table 1. This combines the Kageyama et al. 136 

(2021) sea ice locations 1 to 20 alongside with the temperature proxies from Table 1. Open symbols 137 

correspond to records with uncertain chronology, and filled symbols correspond to records with good 138 

chronology. 139 

Most of the sites have temperature uncertainty (one standard deviation) estimates, which are provided 140 

in the Table 1. However, for 9 sites, the standard deviation of the temperature data was not available. 141 

A standard deviation of ± 0.5K was used to account for this missing uncertainty: this is the smallest 142 

standard deviation found in any proxy record across all sites, and is thus as a conservative estimation 143 

of the uncertainty associated to proxy data (Guarino et al., 2020b).  144 

 145 
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Table 1: Compilation of LIG-PI summertime surface air temperature (SSAT) anomalies used by 146 

Guarino et al. (2020b). 147 

 148 
  149 

2.2. Models and model output 150 

We analyse Tier 1 LIG simulations, based on the standard CMIP6-PMIP4 LIG experimental protocol 151 

(Otto-Bliesner et al., 2017). The prescribed LIG (127 ka) protocol differs from the CMIP6 PI 152 

simulation protocol in astronomical parameters and the atmospheric trace GHG concentrations. LIG 153 

astronomical parameters are prescribed according to orbital constants (Berger and Loutre, 1991), and 154 
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atmospheric trace GHG concentrations are based on ice core measurements: 275 ppm for CO2; 685 155 

ppb for CH4; and 255 ppb for N2O (Otto-Bliesner et al., 2017).  156 

  157 

The CMIP6-PMIP4 model simulations were run following the Otto-Bliesner et al. (2017) protocol, 158 

except CNRM-CM6-1, which used GHG at their PI values rather than using LIG values. For all 159 

models, all other boundary conditions, including solar activity, ice sheets, aerosol emissions etc., are 160 

identical to the PI simulation. In terms of the Greenland and Antarctica ice sheets, a PI configuration 161 

for the LIG simulation is not unreasonable (Kageyama et al., 2021; Otto-Bliesner et al., 2020). LIG 162 

simulations were initialized either  from a previous LIG run, or from the standard CMIP6 protocol PI 163 

simulations, using constant 1850 GHGs, ozone, solar, tropospheric aerosol, stratospheric volcanic 164 

aerosol and land use forcing. Whilst PI and LIG spin-ups vary between the models, with CNRM the 165 

shortest at 100 years, most model groups aimed to allow the land and oceanic masses to attain 166 

approximate steady state i.e. to reach atmospheric equilibrium and to achieve an upper-oceanic 167 

equilibrium - which generally seems to take around 300 to 400 years. LIG production runs are all 168 

between 100-200 years long, which is an appropriate length for Arctic sea ice analysis (Guarino et al., 169 

2020a). 170 

 171 

Whilst fifteen models have run the CMIP6-PMIP4 LIG simulation (Kageyama et al., 2021; Otto-172 

Bliesner et al., 2020), and have uploaded model data to the Earth System Grid Federation (ESGF), we 173 

exclude four simulations for the following reasons. The AWI-ESM and Nor-ESM models have LIG 174 

simulations with two versions of model. To avoid undue biasing of results, we include only the 175 

simulation from the latest version for each model. Additionally, for INM-CM4-8 model, no ocean or 176 

sea ice fields were available for download, excluding this model  from our analysis. Finally, we 177 

exclude the CNRM model in the analysis because apart from using PI instead of LIG GHG 178 

concentrations and a short spin-up time, the model also has known issues with its sea-ice model. The 179 

model produces much too thin sea ice in September and March compared with observational evidence 180 

and the snow layer on the ice is considerably overestimated (Voldoire et al., 2019). As a possible 181 

consequence of these issues, the CNRM model is also an outlier in an otherwise highly correlated 182 
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(inverse) relationship in the models between the LIG-PI albedo change over the Artic sea-ice and the 183 

LIG-PI SSAT change over the ice, being the only model that produces a warmer LIG with almost no 184 

reduction in albedo (Figure A1). While we consider the CNRM ice model unreliable for this study, we 185 

note that the inclusion of the model in our analysis only reduces the correlation coefficients but does 186 

not change the overall conclusions.  187 

 188 

We thus analyse the difference between the PI and LIG simulations from eleven models. Out of the 189 

eleven simulations of the LIG, seven have 200 years simulation length (data available to download in 190 

ESGF), the remaining four are 100 years in length. For PI control runs, we use the last 200 years of PI 191 

control run available in ESGF for each model. Details of each model: model denomination, physical 192 

core components, horizontal and vertical grid specifications, details on prescribed vs interactive 193 

boundary conditions, details of published model description, and LIG simulation length  (spin-up and 194 

production runs) are contained in (Kageyama et al., 2021). Data was downloaded from the ESGF data 195 

node: https://esgf-node.llnl.gov/projects/esgf-llnl/ (last downloaded on 23rd June 2021). 196 

 197 

The spatial distribution of sea ice is usually computed in two ways, by its total area or its extent. The 198 

sea ice extent (SIE) is the total area of the Arctic ocean where there is at least 15% ice concentration. 199 

The total sea ice area (SIA) is the sum of the sea ice concentration times the area of a grid cell for all 200 

cells that contain some sea ice. In this paper, the SIA refers to the SIA of the month of minimum sea 201 

ice, as computed by using the climatology of the whole simulation.  202 

 203 

2.3. Assessing model skill to simulate reconstructions of ΔSSAT 204 

The model skill is quantified using two measures based on 1) the Root Mean Square Error (RMSE) of 205 

the modelled SSAT compared to the proxies  and 2) the percentage of the 21 proxies for ΔSSAT (in 206 

Table 1) for which the model produce a value within the error bars. To assess whether the model 207 

match a proxy point, we compute summer mean (June to August) surface air temperatures for every 208 

year for the PI and LIG for each model. Climatological summer temperature is the time mean of these  209 

https://esgf-node.llnl.gov/projects/esgf-llnl/
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summer temperatures for the entire simulation length. Our calculated model uncertainties on the 210 

climatological summer mean temperatures are one standard deviation of summer mean time series for 211 

each model. Bilinear interpolation in latitude-longitude space was used to extract values at the proxy 212 

locations from the gridded model output. For climatological summer mean temperature, if there is an 213 

overlap between  proxy SSAT (plus  uncertainty) and the simulated SSAT (plus model uncertainty) 214 

then, for that location, the result is considered as a match. Similarly, the RMSE error is calculated 215 

using the modelled SSAT values averaged over the summer months of the entire simulation length.  216 

 217 

3. Results 218 

3.1. Simulated Arctic sea ice distribution 219 

The sea ice distribution in the models have been reported previously in Kageyama et al. (2021) and is 220 

included here to make this work self-reliant. For the PI, the model mean value for summer minimum 221 

monthly SIA is 6.4 mill. km2. Due to a lack of direct observations for the PI, the PI model results are 222 

compared with  1981 to 2002 satellite observations, keeping in mind that the present day observations 223 

are for a climate with a higher atmospheric CO2 level of ~380 ppm, compared to the PI atmospheric 224 

CO2 levels of 280 ppm. The modern observed mean minimum SIA is 5.7 mill km2 (Reynolds et al., 225 

2002). In general, the simulations show a realistic representation of the geographical extent for the 226 

summer minimum. More models show a slightly smaller area compared to the present-day 227 

observations, however EC-Earth, FGOALS-g3, and GISS170 E2-1-G simulate too much ice (Figure 228 

2). Overestimations appear to be due to too much sea ice being simulated in the Barents-Kara area 229 

(FGOALS-g3, GISS-E2-1-G), in the Nordic Seas (EC-Earth, FGOALS-g3) and in Baffin Bay (EC-230 

Earth).  Kageyama et al. (2021) also note that MIROC-ES2L performs rather poorly for the PI, with 231 

insufficient ice close to the continents. The other models have a relatively close match to the 15% 232 

isoline in the NOAA Optimum Interpolation version 2 data (Reynolds et al., 2002; Kageyama et al., 233 

2021).  234 

 235 
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For the LIG, the model output is compared against the LIG sea ice synthesis of Kageyama et al. 236 

(2021), which include marine cores collected in the Arctic Ocean, Nordic Seas and northern North 237 

Atlantic (Figure 3). These data show that south of 79°N in the Atlantic and Nordic seas the LIG was 238 

seasonally ice-free. These southern sea ice records provide quantitative estimates of sea surface 239 

parameters based on dinoflagellate cysts (dinocysts). North of 79°N the sea-ice-related records are 240 

more difficult to obtain and interpret. A core at 81.5°N brings evidence of summer being probably 241 

seasonally ice-free during the LIG from two indicators: dinocysts and IP25/PIP25. However, an 242 

anomalous core close by at the northernmost location of 81.9°N, with good chronology, shows IP25-243 

based evidence of substantial (> 75%) sea ice concentration all year round. Other northerly cores do 244 

not currently have good enough chronological control to confidently date material of LIG age. All 245 

models, except FGOALS, generally tend to match the results from proxies of summertime Arctic sea 246 

ice in marine cores with good LIG chronology (Figure 3), apart from the anomalous northernmost 247 

core for which the IP25 evidence suggest perennial sea ice (Kageyama et al., 2021). Steinet al. (2017) 248 

suggest that PIP25 records obtained from the central Arctic Ocean cores indicating a perennial sea ice 249 

cover have to be interpreted cautiously, given that biomarker concentrations are very low to absent, so 250 

it is difficult to know how much weight to place on this particular result. Additionally, given Hillaire-251 

Marcel et al. (2017) question the age model of the data from the central Arctic Ocean, thus these IP25 252 

data need to be interpreted with some caution. This may mean that all the models tend to have similar 253 

problems in simulating Arctic sea ice during the LIG or that the LIG IP25 signal in the Arctic 254 

indicates something else. What is clear is that a new approach with other Arctic datasets, such as 255 

SSAT, may be needed to make progress on the LIG Arctic sea ice question. 256 

 257 

 258 

 259 

 260 

 261 

 262 
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 263 

 264 

 265 

Figure 2: Climatological Minimum PI sea ice concentration maps for each model. The first panel 266 

represents the multi model mean (MMM). 267 

 268 
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 269 

Figure 3: Climatological minimum LIG sea ice concentration maps for each model. Marine core 270 

results are from Kageyama et al. (2021): orange outlines indicate that the dating is uncertain; green 271 

outlines indicate the datapoint is from the LIG. The first panel represents the multi model mean. 272 

 273 
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For the LIG, there is very little difference between the maximum (wintertime) Arctic SIA and that of 274 

the PI (which is 15-16 mill. km2 between the PI and the LIG in most models), but every model shows 275 

a reduction in summer sea ice in the LIG compared to the PI (Table 2). Our model mean LIG 276 

summertime Arctic is 2.9 mill. km2, compared to 6.4 mill. km2 for the PI, or a 55% PI to LIG 277 

decrease. There is large inter-model variability for the LIG SIA during the summer (Figure 4). All 278 

models show a larger sea-ice area seasonal amplitude for LIG than for PI, and the range of model SIA 279 

is larger for LIG than for PI (Figure A2). The results for individual years show that no model is close 280 

to the ice-free threshold foel summer during their PI simulation (Figure 4) but for the LIG summer 281 

SIA, there are three models which are lower than 1 mill. km2 for at least one summer during the LIG 282 

simulation (Figure 4). Of these three, HadGEM3, shows a LIG Arctic Ocean free of sea ice in all 283 

summers, i.e. its maximum SIE is lower than 1 mill. km2 in all LIG simulation years. CESM2 and 284 

NESM3 show low climatological SIA values (slightly above 2 mill. km2) in summer for the LIG 285 

simulation, and both have at least one year with a SIE minimum which is below 1 mill. km2, though 286 

their average minimum SIE values are just below 3 mill. km2. Of these low LIG sea ice models, 287 

HadGEM3 and CESM2 realistically capture the PI Arctic sea ice seasonal cycle, whilst NESM3 288 

overestimates winter ice and the amplitude of the seasonal cycle (Cao et al., 2018). 289 

 290 

 291 

Table 2: The minimum climatological sea ice area for the PI and the LIG, changes, and the 292 
associated ΔSSAT anomalies. Percentage reductions are calculated from PI minimum SIA for each 293 
model. 294 

MODEL 

(units) 

SIA PI 

(mill. km2) 

SIA LIG 

(mill. km2) 

ΔSIA 

(mill. km2) 

SIA 

(% loss) 

ΔSSAT 

(K) 

MMM 6.36 2.93 -3.43 53.87 3.6±1.3 

ACCESS-ESM1-5 5.48 2.39 -3.09 56.44 2.6±1 

AWI-ESM-1-1-LR 5.37 3.76 -1.61 29.99 1.7±1.1 

CESM2 5.31 1.62 -3.69 69.54 3.3±1 

EC-Earth3-LR 8.86 3.65 -5.21 58.84 5.7±2.6 
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FGOALS-g3 8.83 5.55 -3.29 37.19 4.8±1.5 

GISS-E2-1-G 8.87 5.54 -3.32 37.47 3.4±1.4 

HadGEM3-GC31-LL 5.21 0.13 -5.07 97.48 4.9±1.2 

IPSL-CM6A-LR 6.42 2.46 -3.96 61.74 4.4±1.2 

MIROC-ES2L 4.20 2.79 -1.41 33.66 2.1 ± 0.6 

NESM3 5.50 1.64 -3.86 70.14 3 ±0.9 

NorESM2-LM 5.92 2.75 -3.17 53.52 3.6±1.1 

 295 
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Figure 4: Cumulative distribution of minimum SIA of individual years in LIG and PI 
simulations, i.e SIA versus proportion of years which fall below the corresponding SIA value. 
HadGEM3 has minimum SIA below 1 mill km2 for all years in LIG runs. CESM2 has 6.5%, 
and NESM3 8%, LIG years with SIA below 1 mill km2. Lower Panels are same but for SIE. 

 

 

3.2. Estimating ΔSIA from model skill to simulate ΔSSAT  296 

We first investigate whether there is a relationship between how well models match proxy ΔSSAT 297 

and the magnitude of SIA reduction that they simulate for the LIG. A visual comparison of modelled 298 

ΔSSAT and proxy estimates for ΔSSAT is also shown in Figure 5. As described in Section 2, two 299 

different approaches are used to quantify the skill of the models to simulate ΔSSAT, based on 1) the 300 

RMSE of the model-data ΔSSAT at the proxy record locations and 2) the percentage ΔSSAT proxies 301 
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that the model can correctly match, within model and data error. Here the focus is on quantifying 302 

model skill across all data records, but for reference, the model-versus-proxy ΔSSAT for each 303 

location is provided for each model individually in Figure A3. The RMSE skill estimate and the 304 

percentage match estimate provide very similar indications of which models have good skill to 305 

reproduce proxy ΔSSAT. The five models with the lowest RMSE also have the highest percentage 306 

match and the two models with the highest RMSE have the lowest percentage match (Figure 6). Both 307 

approaches show that the models with better skill to simulate ΔSSAT have a high absolute ΔSIA. The 308 

only outlier is EC-Earth, which has an average skill (6th best model of 11) but a high SIA reduction at 309 

the LIG. This occurs because the EC-Earth PI simulation has an excessive SIA, more than 3 million 310 

km2 compared with present day estimatns; this enables it to have a large ΔSIA value, whilst likely 311 

retaining too much LIG SIA. Quantitively there is a correlation of r=-0.65 (p=0.03) between the 312 

magnitude of ΔSIA and the RMSE, and a correlation with r=0.67 (p=0.02) between the magnitude of 313 

ΔSIA and the percentage match of the model (Figure 6). Given that the SIA reduction from the PI to 314 

the LIG could be dependent on the starting SIA at the PI, we repeat the analysis for percentage SIA 315 

loss from the PI (rather than absolute SIA loss) and find that is correlates similarly to the model skill 316 

to reproduce ΔSSAT (Figure A4).  317 

  318 

 319 
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 320 

Figure 5: Summertime surface air temperature (SSAT) anomaly (LIG - PI) maps for each model 321 
overlain by  reconstructed summer temperature anomalies. Proxies are detailed in Table 1 and 322 
Guarino et al. (2020b); colours are the same as used for the underlying model data. The first panel 323 
represents the multi model mean. 324 

 325 
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 326 

 327 

Figure 6: Modelled magnitude of ΔSIA versus model skill to simulate proxy ΔSSAT. a) The modelled 328 
magnitude of ΔSIA is scattered against the RMS error of the modelled ΔSSAT compared to the proxy 329 
ΔSSAT for the 21 data locations. b) The modelled magnitude of ΔSIA scattered against the percentage 330 
of ΔSSAT data points that the model can match (see methods). 331 

 332 

In general, where models have a closer match with the ΔSSAT, they have a higher absolute ΔSIA, as 333 

well as a larger percentage reduction of SIA from the PI. We thus look at our best performing models 334 

for an indication of true LIG Arctic sea ice reduction. The four models with the best agreement of 335 

ΔSSAT to proxies are in order of skill; HadGEM3, IPSL, NORESM2, and CESM2. The top two 336 

performing models simulate an average SIA loss of 4.5 mill. km2 from an average starting PI SIA of 337 

5.8 mill. km2 to a final LIG SIA of 1.3 mill. km2, which equates to a percentage SIA loss of 79%. 338 

Including also the two next-best performing models in the average results in an average SIA loss of 339 
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4.0 mill. km2 to a final LIG SIA of 1.7 mill. km2 from an average starting PI SIA of 5.7 mill. km2, 340 

which equates to a percentage SIA loss of 71%.  341 

 342 

The question arises as to why there is a linear relationship between model skill to simulate Arctic 343 

ΔSSAT  and SIA reduction. One possibility is that the mean proxy ΔSSAT of 4.5 K is higher than 344 

what most models produce, and that the warmer models are thus closer to the proxies and also more 345 

likely to reduce sea ice. In the next section, this question is addressed by investigating whether ΔSIA 346 

is closely related to ΔSSAT itself.  347 

 348 

3.3. Estimating ΔSIA from the modelled ΔSIA-ΔSSAT relationship and proxy ΔSSAT 349 

Here we investigate whether the models suggest a linear relationship between ΔSSAT and ΔSIA, and 350 

if so, exploit that together with proxy ΔSSAT to estimate the most likely (true) value for ΔSIA. We 351 

first calculate the mean ΔSSAT in the model at all 21 proxy data locations and compare it to the 352 

magnitude of ΔSIA in each model (Figure 7a). The two are well correlated with r=0.86 (p=0.001) and 353 

the regression equation provide a dependence of ΔSIA on ΔSSAT. Using this relation, thed 354 

reconstructed mean ΔSSAT at the proxy locations points to a SIA reduction of 4.4 mill. km2 from the 355 

PI. This constitutes a 77% reduction from the present day observation of 5.7 mill. km2, which is also 356 

the average SIA for the PI in the two most skilful models identified in the previous section. Using this 357 

value for the PI sea ice, suggests remaining minimum of 1.3 mill. km2  of sea ice during the LIG 358 

summer. An average LIG minimum of 1.3 mill. km2  implies that some LIG summers must have been 359 

ice-free (below 1 mill. km2 in SIE) but that most summers would have had a small amount of sea ice.  360 
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 361 

Figure 7: Modelled magnitude of ΔSIA versus modelled ΔSSAT for the Arctic. a) The modelled ΔSIA 362 
is scattered against mean modelled ΔSSAT at the 21 data locations. b) The modelled ΔSIA is scattered 363 
against the mean modelled ΔSSAT averaged over the Arctic north of 60°N.  364 

 365 

The ΔSSAT relationship to ΔSIA has so far been computed using the mean ΔSSAT at the locations of 366 

the data. To test whether this method would also work for the Arctic in general, the ΔSSAT is next 367 

averaged over the whole Arctic north of 60°N and compared with ΔSIA (Figure 7b). The correlation 368 

between ΔSSAT and ΔSIA is a somewhat reduced when calculating ΔSSAT across the whole Arctic, 369 

though it is still highly significant (r=0.79, p=0.004). An estimate for proxy-based Arctic-wide 370 

ΔSSAT can be derived by applying the close relationship between Arctic ΔSSAT and station ΔSSAT 371 

in the models (Figure 8, r=0.97, p <0.001). Inserting the ΔSSAT averaged over all proxy-records, of 372 

4.5 K, in the regression equation in Figure 8, gives an estimate for proxy-based Arctic-wide ΔSSAT 373 



23 
 

of 3.7±0.1 K. Applying the regression equation in Figure 7b and using this estimate for Arctic-wide 374 

ΔSSAT suggests a PI to LIG sea ice reduction of 4.5 mill. km2, which is very similar to the estimate 375 

derived from the station data alone (of 4.4 mill. km2).  376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

Figure 8: Modelled Arctic-wide ΔSSAT versus modelled mean ΔSSAT at the data locations for the 11 390 

models. The markers for each model are same as in Figure 7 391 

 392 

4. Discussion and conclusions 393 

As discussed in the introduction, neither proxies nor modelling results alone allow currently for a 394 

convincing estimate of the Arctic sea ice reduction at the LIG. Here we apply a joint approach to 395 

make progress. We deduce how much sea ice was reduced during the LIG, using 11 of the most recent 396 

CMIP6-PMIP4 LIG model simulations and proxy observations of summer air temperature changes. 397 

The reduction of sea ice from the PI to the LIG in the models range from 30% to 96% with an average 398 

of 55%. No model is close to the ice-free threshold, of maximum SIE lower than 1 mill. km2, for any 399 

model year-summer during their PI simulation. During the LIG, the HadGEM3 model is the only one 400 

that has an Arctic Ocean free of sea ice in all summers, although CESM2 and NESM3 show SIA 401 
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values of around 2 mill. km2, in association with intermittently ice-free conditions. We found that 402 

larger LIG SIA reduction from the PI is related to greater SSAT warming, the two being correlated 403 

with r=0.86 across the models. In particular, 8 out of 11 models are able to match, within uncertainty, 404 

the average PI to LIG summertime Arctic warming of 4.5 ± 1.7 K as recorded by surface temperature 405 

proxies. This magnitude of warming was difficult to reach with previous generations of LIG models. 406 

Among the models, two of them capture the magnitude of the observed dSSAT in more than 60% of 407 

the total proxy locations. These models simulate an average LIG sea ice area of 1.3 mill. km2 which is 408 

a 4.5 mill. km2 (or 79%) reduction from their PI values. 409 

 410 

We find that the good match between the (ice-free) HadGEM3 and the Guarino et al. (2020b) summer 411 

Arctic temperature dataset is not unique. However, we find that it is not random either and that there 412 

is a correlation between model skill to match the ΔSSAT and the reduction of SIA from the PI to the 413 

LIG (both when using an RMSE skill test and when using a best-match skill test). The two most 414 

skilful models simulate an average LIG sea ice area of 1.3 mill. km2 which is a 4.5 mill. km2 or 79% 415 

reduction from their PI values.  Whilst we cannot assume all model error ΔSSAT is attributable to 416 

ΔSIA, it is reasonable to assume that the better performing models for ΔSSAT are also better at 417 

simulating ΔSIA, because of the close relationship between warming and sea ice loss.  418 

   419 

Some of the proxies are more difficult for the models to simulate (Figure 9 and Figure A3). In 420 

particular, it appears that the Greenland ice core SSAT value from NEEM of +8 Ko proxy record 21 421 

in Table 1 Figure 9) is higher than any model simulates; though with a ±4 K uncertainty it is 422 

nevertheless matched by some models. Terrestrial proxies three and six, with SSAT values of +6.4 K 423 

are also only rarely matched. Further work on the observational side would be useful. These LIG 424 

SSAT proxy reconstructions were used in the IPCC (2013) report and by Guarino et al. (2020b); and 425 

were previously published by IPCC (2013); CAPE members (2006); Kaspar et al. (2005); Capron et 426 

al. (2017). Thus, this dataset should ideally be improved. One start point for this would be adding 427 

uncertainties to the (nine) sites which do not currently have these numbers. 428 

 429 
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 430 

Figure 9: Proxy ΔSSAT (violet dots and uncertainty bars) and simulated ΔSSAT for all models 431 
(coloured dots) for each proxy record location (rows). Grey boxes extend from the 25th to the 75th 432 
percentile of each locations distribution of simulated values and the vertical lines represent the 433 
median.  434 

 435 

The correlation between model skill to simulate ΔSSAT and the magnitude of ΔSIA is convincing (r= 436 

0.66 and p= 0.003 on average for the two skill tests). However, the two quantities are not 437 

straightforward to relate through a dynamical process. On the other hand, it is well known that there is 438 

a positive feedback between Arctic temperature and Arctic sea-ice, with warmer temperatures more 439 

likely to melt sea ice, and less sea ice producing a smaller albedo to incoming solar radiation and so 440 

less cooling from solar reflection. Figure A6 shows the relationship between summer surface air 441 

temperature anomalies versus September sea ice area. from the observational estimates for the period 442 

from 1979-2020. In present time, the relationship between minimum SIA and summer SAT is 1.32 443 

mil. Km2 decrease per 1K temperature rise. This dynamic relationship is also evident in LIG 444 
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simulations, with a strong correlation of r=0.86 between the magnitude of ΔSIA and ΔSSAT across 445 

all the models. The reconstructed ΔSSAT from proxies, of 4.5 ±1.7 K, is larger than most models 446 

simulate, so the models that match the ΔSSAT most closely would be the models with a larger 447 

ΔSSAT than average and thus also a larger ΔSIA. The only model that has a large SIA reduction and 448 

not a good skill to match SSAT is EC-Earth, which features a PI simulation with far too much sea ice, 449 

which allows an excessive LIG to PI Arctic warming. An additional result of our study is that the 450 

mean ΔSSAT at the proxy locations is strongly correlated to Arctic-wide ΔSSAT north of 60°N in the 451 

models (r=0.97). Applying the regression relation between the two, implies that the mean ΔSSAT at 452 

the proxy locations, of  4.5 K, is equivalent to an Arctic-wide warming at the LIG of 3.7 K. This is 453 

thus a more representative value for the Arctic warming at the LIG, than using the simpler proxy-454 

location average.  455 

 456 

The strong linear correlation between the magnitude of ΔSIA and ΔSSAT is applied to the proxy-457 

reconstructed ΔSSAT to give an estimate of the reduction of SIA from the PI to LIG of 4.4 mill. km2, 458 

similar to that derived from our "best skill" approach. A similar value of 4.5 mill. km2 is obtained 459 

when extrapolating the method to Arctic-wide ΔSSAT north of 60°N. The models and data have 460 

uncertainties, and the regressions applied are not between perfectly correlated quantities. However, it 461 

is clear from both applied methods (each with two variants) that proxy-reconstructed ΔSSAT, in 462 

combination with the model output, implies a larger sea ice reduction than the climatological multi-463 

model mean of 55%. It suggests a LIG SIA of ~1.3 mill. km2, which is consistent with intermittently 464 

ice-free summers – but with (low ice area) ice-present summers likely exceeding the number of ice-465 

free years.  466 

 467 

Whilst we have focussed here on the Arctic SIA response to LIG insolation forcing, Kageyama et al. 468 

(2021) found that the models that respond strongly to LIG insolation forcing also respond strongly to 469 

CO2 forcing. Indeed the models with the weakest response for the LIG had the weakest response to 470 

the CO2 forcing. This suggests that our assessment here of model skill against Arctic SIA and SSAT 471 

change can also help, to some extent, ascertain the models which have a better Arctic SIA and SSAT 472 
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response to CO2 forcing.  Overall the results presented in this study suggest that: (i)  the fully-ice free 473 

HadGEM3 model is somewhat too sensitive to forcing; it loses summer sea ice too readily during the 474 

LIG; and (ii) most other PMIP4 models are insufficiently sensitive - these models do not lose enough 475 

sea ice. 476 

 477 

Code availability. Python code used to produce the manuscript plots is available on request from the 478 

authors.  479 

 480 

Data availability. The summer air temperature dataset is available at https://data.bas.ac.uk/full-481 

record.php?id=GB/NERC/BAS/PDC/01593. All model data is available from the ESGF data node: 482 

https://esgf-node.llnl.gov/projects/esgf-llnl/.   483 
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 487 

Appendix 488 

A1. Inter-model differences in LIG Sea ice simulation 489 

 490 

Sea ice formation and melting can be affected by a large number of factors inherent to the atmosphere 491 

and the ocean dynamics, alongside the representation of sea ice itself within the model (i.e. the type of 492 

sea ice scheme used). In coupled models it can therefore be difficult to identify the causes of this 493 

coupled behavior (Kagayama et al. 2021, Sicard et al,2022). Nevertheless Kagayama et al. (2021; 494 

Section 4), alongside Diamond et al. (2021) address the question of what drives model differences in 495 

summertime LIG sea ice. In summary: 496 

1. All PMIP4-LIG simulations show a major loss of summertime Arctic sea ice between the PI and 497 

LIG. 498 

2. Across all models, there is an increased downward short-wave flux in spring due to the imposed 499 

insolation forcing and a decreased upward short-wave flux in summer, related to the decrease of the 500 

https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01593
https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01593
https://esgf-node.llnl.gov/projects/esgf-llnl/
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albedo due to the smaller sea ice cover. Differences between the model results are due to a difference 501 

in phasing of the downward and upward shortwave radiation anomalies. 502 

3. The sea ice albedo feedback is most effective in HadGEM3. It is also the only model in which the 503 

anomalies in downward and upward shortwave radiation are exactly in phase. 504 

4. The CESM2 and HadGEM3 models (which both simulate significant sea ice loss) exhibit an 505 

Atlantic Meridional Overturning Circulation (AMOC) that is almost unchanged between PI and LIG, 506 

while in the IPSLCM6 model (with moderate sea ice loss) the AMOC weakens. This implies that a 507 

reduced northward oceanic heat transport could reduce sea ice loss in the Central Arctic in some 508 

models. 509 

5. The two models (HadGEM3 and CESM2) which had the lowest sea ice loss contain explicit melt 510 

pond schemes, which impact the albedo feedback in these models. Diamond et al. (2021) show that 511 

that the summer ice melt in HadGEM3 is predominantly driven by thermodynamic 512 

processes and those thermodynamic processes are significantly impacted by melt ponds. 513 

 514 

 515 

Appendix Figures 516 

 517 

 518 
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 519 
 520 

Figure A1. LIG-PI change in albedo over Arctic sea-ice as a function of LIG-PI change in SSAT (°C) 521 

over the ice. The r2 values and the linear fit lines are for the models including CNRM (blue) and 522 

excluding CNRM (black). The CNRM model (upside triangle) is an outlier that influences the 523 

strength rather than the nature of the correlation.   524 
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 525 

Figure A2. Sea ice area climatological seasonal cycle for each model. 526 

 527 
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Figure A3. Modelled ΔSSAT versus proxy ΔSSAT. The scatter points show model data versus 528 

reconstuctions for each proxy location. Error-bars represent one standard deviation on either side of 529 

the proxy estimate. The correlation coefficients, between X and Y, RMSE and percentage matches 530 

with proxy data for each model are indicated in each panel. 531 

 532 



32 
 

 533 

Figure A4: Modelled % sea ice area reduction from the LIG to the PI versus model skill to simulate 534 

proxy ΔSSAT. a) The modelled %SIA reduction is scattered against the RMSE of the modelled 535 

ΔSSAT compared to the proxy ΔSSAT for the 21 data locations. b) The modelled % SIA reduction 536 

scattered against the percentage of ΔSSAT data points that the model can match (see methods). 537 

Figure A5. Scatter Plot for climatological ΔSSAT at each proxy location versus climatological 538 

ΔSSAT averaged north of 60°N  in each model 539 

 540 

 541 
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 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

Figure A6:- Scatter plot of SAT versus SIA for current period. JJA surface air temperature versus NH 555 

September Sea ice area for each year from 1979-2020. Anomalies computed from year 1979 values. 556 

SIA is from NSIDC (https://nsidc.org/data/g02135/versions/3) and Air temperature (area averaged 557 

north of 60°N) is from ERA5 reanalysis (Hersbach et al. 2020). 558 

 559 
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