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Abstract.  10 

The Last Interglacial (LIG) period, which had higher summer solar insolation than today, has been 11 

suggested as the last time that Arctic summers were ice-free. However, the latest suite of Coupled  12 

Modelling Intercomparison Project 6 Paleoclimate (CMIP6-PMIP4) simulations of the LIG produce a 13 

wide range of Arctic summer minimum sea ice area (SIA) results, ranging from a 30% to 96% 14 

reduction from the pre-industrial (PI). Sea ice proxies are also currently neither abundant nor 15 

consistent enough to determine the most realistic state. Here we estimate LIG minimum SIA 16 

indirectly through the use of 21 proxy records for LIG Summer Surface Air Temperature (SSAT) and 17 

11 CMIP6-PMIP4 models for the LIG. We use two approaches. First, we use two tests to determine 18 

how skilful models are at simulating reconstructed observedfor ΔSSAT from proxy records (where Δ 19 

refers to LIG-PI). This identifies a positive correlation between model skill and the magnitude of 20 

ΔSIA: the most reliable models simulate a larger sea ice reduction. Averaging the most skilful two 21 

models yields an average SIA of 1.3 mill. km2  for the LIG. This equates to a 4.5 mill. km2, or a 79%, 22 

SIA reduction from the PI to the LIG. Second, across the 11 models, the averaged ΔSSAT at the 21 23 

proxy locations is inversely correlated with ΔSIA (r = -0.86). Second, across the 11 models, the 24 

averaged ΔSSAT at the 21 proxy locations as well the pan Arctic average delta SSAT, is inversely 25 

correlated with ΔSIA (r = -0.86 and 0.79 respectively). In other words, the models show that a larger 26 

Arctic warming is associated with a greater sea ice reduction. Using the proxy record-averaged 27 

ΔSSAT of 4.5 ± 1.7 K and the relationship between ΔSSAT and ΔSIA, suggests an estimated ΔSIA of 28 

4.4 mill. km2 or 77% less than the PI. The mean proxy-location ΔSSAT is well-correlated with the 29 

Arctic-wide ΔSSAT north of 60°N (r=0.97) and this relationship is used to show that the mean proxy 30 

record ΔSSAT is equivalent to an Arctic-wide warming of 3.7±0.1 K at the LIG compared to the PI. 31 

Applying this Arctic-wide ΔSSAT and its modelled relationship to ΔSIA, results in a similar estimate 32 

of LIG sea ice reduction of 4.5 mill. km2. The LIG climatological minimum SIA of 1.3 mill. km2 is 33 

close to the definition of a summer ice-free Arctic, which is a maximum sea ice extent less than 1 34 

mill. km2. The results of this study thus suggest that the Arctic likely experienced a mixture of ice-free 35 

and near ice-free summers during the LIG.  36 
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1. Introduction 38 

The rapid decline in Arctic sea ice over the last 40 years is an icon of contemporary climate change. 39 

Climate models have struggled to fully capture this sea ice loss (Notz and Community, 2020), which 40 

can sometimes reduce confidence in their future projections (e.g. IPCC, 2021). One line of 41 

investigation to address this problem, that has not been fully exploited, is the use of past climates to 42 

provide information on the future (e.g. Bracegirdle et al., 2019). Investigating the physics and causes 43 

of sea ice change, concentrating on Arctic changes during the most recent warm climate periods can 44 

help us address this problem (Guarino et al., 2020b). Interglacials are periods of globally higher 45 

temperatures which occur between cold glacial periods (Sime et al., 2009; Otto-Bliesner et al., 2013; 46 

Fischer et al., 2018). The differences between colder glacial and warmer interglacial periods are 47 

driven by climate feedbacks alongside changes in the Earth’s orbit which affect incoming radiation. 48 

The Last Interglacial or LIG, occurred 130,000-116,000 years ago. At 127,000 years ago, at high 49 

latitudes orbital forcing led to summertime top-of-atmosphere shortwave radiation 60–75 Wm−2 50 

greater than the PI period. Summer temperatures in the Arctic during the LIG are estimated to be 51 

around 4.5 K above those of today (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron 52 

et al., 2017). Prior to 2020, most climate models simulated summer LIG temperatures which were too 53 

cool compared with these LIG temperature observations (Otto-Bliesner et al., 2013; IPCC, 2013). 54 

This led Lunt et al. (2013); Otto-Bliesner et al. (2013) and IPCC (2013) to suggest that the 55 

representation of dynamic vegetation changes in the Arctic might be key to understanding LIG 56 

summertime Arctic warmth.  57 

 58 

Guarino et al. (2020b) argued that loss of Arctic sea-ice in the summer could cause the warm summer 59 

Arctic temperatures, without the need for dynamic vegetation. Using the HadGEM3 model, which 60 

was the UK’s contribution for the LIG CMIP6-PMIP4 project, Guarino et al. (2020b) found that the 61 

model simulated a fully sea ice-free Arctic during the summer, i.e. it had less than 1 mill. km2 of sea 62 

ice extent at its minimum. This unique, near complete, loss of summer sea ice appears to happen in 63 

the UK model, because it includes a highly advanced representation of melt ponds (Guarino et al. 64 

2020b; Diamond et al. 2021). These are shallow pools of water which form on the surface of Arctic 65 
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sea ice and which determine how much sunlight is absorbed or reflected by the ice (Guarino et al., 66 

2020b).  67 

 68 

Malmierca-Vallet et al. (2018) found the signature of summertime Arctic sea ice loss in Greenland ice 69 

cores. Kageyama et al. (2021) then led the international community in compiling all available marine 70 

core Arctic sea ice proxy data for the LIG and testing it against CMIP6-PMIP4 simulations. The 71 

Kageyama et al. (2021) synthesis of ocean core-based proxy records of LIG Arctic sea-ice change, 72 

like Malmierca-Vallet et al. (2018), showed that compared to the PI it is very likely that Arctic sea ice 73 

was reduced. However, Kageyama et al. (2021) also showed that directly determining sea-ice changes 74 

from marine core data is difficult. The marine core observations suffer some conflicting 75 

interpretations of proxy data sometimes from the same core, and imprecision in dating materials to the 76 

LIG period in the high Arctic. Thus, determining the mechanisms and distribution of sea ice loss 77 

during the LIG by directly inferring sea ice presence (or absence) from these preserved biological data 78 

alone is not possible (Kageyama et al., 2021). 79 

 80 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) Paleoclimate Model Intercomparison 81 

Project Phase (PMIP4) or CMIP6-PMIP4 LIG experimental protocol prescribes differences between 82 

the LIG and PI in orbital parameters, as well as differences in trace greenhouse gas concentrations 83 

(Otto-Bliesner et al., 2017). This standardised climate modelling protocol is therefore an ideal 84 

opportunity for the community to use models to explore the causes of Arctic warmth using multi-85 

model approaches. In particular, it offers the opportunity to address the questions of whether the 86 

Arctic sea ice loss is sufficient to explain LIG summertime temperature observations, or whether the 87 

Arctic vegetation changes idea (Lunt et al., 2013; Otto-Bliesner et al., 2013; IPCC, 2013), is still 88 

potentially required. In particular, the existing non-dynamic-vegetation PMIP4 LIG protocol and 89 

associated simulations offer the opportunity to address the question of whether the Arctic sea ice loss 90 

alone is sufficient to explain LIG summertime temperature observations, or whether active vegetation 91 

modelling, and the idea of vegetation feedbacks (Lunt et al., 2013; Otto-Bliesner et al.,2013; IPCC, 92 
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2013) are required. This said, we recognize that in reality there must also be LIG Arctic vegetation 93 

feedbacks. These should be explored in future modelling work. 94 

 95 

Guarino et al. (2020b) showed that the HadGEM3, the only CMIP-PMIP4 model with an ice-free 96 

Arctic  at the LIG, has an excellent match with observed reconstructed Arctic air temperature in 97 

summer. The average ΔSSAT in HadGEM3, for all locations with proxy observations, is +4.9 ± 1.2 K 98 

compared with the observationalproxy mean of +4.5 ± 1.7 K. This model also matched all, except 99 

one, marine core sea-ice datapoints from Kageyama et al. (2021). Here we investigate whether there 100 

are more CMIP6-PMIP4 models with a similarly good ΔSSAT and if so, whether other models with a 101 

good match also suggest a much-reduced sea ice area (SIA) during the LIG. We further compute the 102 

correlation and linear relationship in the models between ΔSSAT and ΔSIA and subsequently use this 103 

equation and proxies for ΔSSAT to estimate ΔSIA. Section 2 describes the proxy data and models 104 

used in this study as well as the analysis methods. The results are presented in Section 3 which first 105 

evaluates the modelled PI and LIG sea ice distribution against observationsproxy reconstructions and 106 

then use the above described approaches to estimate the sea ice reduction at the LIG. Section 4 107 

summarises the results and discusses their shortcomings and implications.  108 

 109 

2. Data and methods 110 

2.1 Observational dataProxy reconstructions for LIG 111 

The LIG SSAT proxy observations used to assess LIG Arctic sea ice in the Guarino et al. (2020b) 112 

study were previously published by CAPE members (2006); Kaspar et al. (2005) and 20 of them were 113 

also used to assess CMIP5 models in the IPCC (2013) report. A detailed description of each 114 

observationrecord is available (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron et al., 115 

2017). Each observationproxy record is thought to be of summer LIG air temperature anomaly 116 

relative to present day and is located in the circum-Arctic region; all sites are from north of 51°N. 117 

There are 7 terrestrial based temperature records; 8 lacustrine records; 2 marine pollen-based records; 118 

and 3 ice core records included in the original  IPCC (2013) compilation. Guarino et al. (2020b) added 119 
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to this an additional new observationrecord from the NEEM Greenland ice core from Capron et al. 120 

(2017), bringing the total number of proxies records to 21 (Table 1). Figure 1 shows the location, and 121 

type, for each numbered observationproxy record. Terrestrial climate can be reconstructed from 122 

diagnostic assemblages of biotic proxies preserved in lacustrine, peat, alluvial, and marine archives 123 

and isotopic changes preserved in ice cores and marine and lacustrine carbonates (CAPE, 2006; 124 

Guarino et al., 2020). Quantitative reconstructions of climatic departures from the present-day are 125 

derived from range extensions of individual taxa, mutual climatic range estimations based on groups 126 

of taxa, and analogue techniques (CAPE, 2006). These proxy records are considered to represent the 127 

summer surface air temperature because summer temperature is also the most effective predictor for 128 

most biological processes, though seasonality and moisture availability may influence phenomena 129 

such as evergreen vs. deciduous biotic dominance (Kaplan et al., 2003). Whilst the exact timing of 130 

this peak warmth has not yet been definitively determined, it is reasonable to assume that these 131 

measurements are approximately synchronous across the Arctic. It is however very unlikely that the 132 

peak warmth was synchronous across both hemispheres (see Capron et al. (2014); Govin et al. 133 

(2015)), and further investigation of the synchronicity of peak warmth occurs across the Northern 134 

Hemisphere is merited. For consistency with modelled data, temperature anomalies computed against 135 

present day conditions (i.e. 1961-1990 baseline) were corrected to account for a +0.4K of global 136 

warming between PI (1850) and present day (1961-1990). conditions (Turney and Jones, 2010). 137 

Therefore, Table 1 and Guarino et al. (2020b) values differ slightly (+0.4K) from the original datasets 138 

so that they represent temperature anomalies relative to the PI.  139 

 140 
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 141 
Figure 1: Map of data locations numbered to match Table 1. This combines the Kageyama et al. 142 

(2021) sea ice locations 1 to 20 alongside with the temperature proxies from Table 1. Open symbols 143 

correspond to records with uncertain chronology, and filled symbols correspond to records with good 144 

chronology. 145 

Most of the sites have temperature uncertainty (one standard deviation) estimates, which are provided 146 

in the Table 1. However, for 9 sites, the standard deviation of the temperature data was not available. 147 

A standard deviation of ± 0.5K was used to account for this missing uncertainty: this is the smallest 148 

standard deviation found in any proxy record across all sites, and is thus as a conservative estimation 149 

of the uncertainty associated to proxy data (Guarino et al., 2020b).  150 

 151 



9 
 

Table 1: Compilation of LIG-PI summertime surface air temperature (SSAT) anomalies used by 152 

Guarino et al. (2020b). 153 

 154 
  155 

2.2. Models and model output 156 

We analyse Tier 1 LIG simulations, based on the standard CMIP6-PMIP4 LIG experimental protocol 157 

(Otto-Bliesner et al., 2017). The prescribed LIG (127 ka) protocol differs from the CMIP6 PI 158 

simulation protocol in astronomical parameters and the atmospheric trace GHG concentrations. LIG 159 

astronomical parameters are prescribed according to orbital constants (Berger and Loutre, 1991), and 160 
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atmospheric trace GHG concentrations are based on ice core measurements: 275 ppm for CO2; 685 161 

ppb for CH4; and 255 ppb for N2O (Otto-Bliesner et al., 2017).  162 

  163 

The CMIP6-PMIP4 model simulations were run following the Otto-Bliesner et al. (2017) protocol, 164 

except CNRM-CM6-1, which used GHG at their PI values rather than using LIG values. For all 165 

models, all other boundary conditions, including solar activity, ice sheets, aerosol emissions etc., are 166 

identical to the PI simulation. In terms of the Greenland and Antarctica ice sheets, a PI configuration 167 

for the LIG simulation is not unreasonable (Kageyama et al., 2021; Otto-Bliesner et al., 2020). LIG 168 

simulations were initialized either  from a previous LIG run, or from the standard CMIP6 protocol PI 169 

simulations, using constant 1850 GHGs, ozone, solar, tropospheric aerosol, stratospheric volcanic 170 

aerosol and land use forcing. Whilst PI and LIG spin-ups vary between the models, with CNRM the 171 

shortest at 100 years, most model groups aimed to allow the land and oceanic masses to attain 172 

approximate steady state i.e. to reach atmospheric equilibrium and to achieve an upper-oceanic 173 

equilibrium - which generally seems to take around 300 to 400 years. LIG production runs are all 174 

between 100-200 years long, which is an appropriate length for Arctic sea ice analysis (Guarino et al., 175 

2020a). 176 

 177 

Whilst fifteen models have run the CMIP6-PMIP4 LIG simulation (Kageyama et al., 2021; Otto-178 

Bliesner et al., 2020), and have uploaded model data to the Earth System Grid Federation (ESGF), we 179 

exclude four simulations for the following reasons. The AWI-ESM and Nor-ESM models have LIG 180 

simulations with two versions of model. To avoid undue biasing of results, we include only the 181 

simulation from the latest version for each model. Additionally, for INM-CM4-8 model, no ocean or 182 

sea ice fields were available for download, excluding this model  from our analysis. Finally, we 183 

exclude the CNRM model in the analysis because apart from using PI instead of LIG GHG 184 

concentrations and a short spin-up time, the model also has known issues with its sea-ice model. The 185 

model produces much too thin sea ice in September and March compared with observational evidence 186 

and the snow layer on the ice is considerably overestimated (Voldoire et al., 2019). As a possible 187 

consequence of these issues, the CNRM model is also an outlier in an otherwise highly correlated 188 
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(inverse) relationship in the models between the LIG-PI albedo change over the Artic sea-ice and the 189 

LIG-PI SSAT change over the ice, being the only model that produces a warmer LIG with almost no 190 

reduction in albedo (Figure A1). While we consider the CNRM ice model unreliable for this study, we 191 

note that the inclusion of the model in our analysis only reduces the correlation coefficients but does 192 

not change the overall conclusions.  193 

 194 

We thus analyse the difference between the PI and LIG simulations from eleven models. Out of the 195 

eleven simulations of the LIG, seven have 200 years simulation length (data available to download in 196 

ESGF), the remaining four are 100 years in length. For PI control runs, we use the last 200 years of PI 197 

control run available in ESGF for each model. Details of each model: model denomination, physical 198 

core components, horizontal and vertical grid specifications, details on prescribed vs interactive 199 

boundary conditions, details of published model description, and LIG simulation length  (spin-up and 200 

production runs) are contained in (Kageyama et al., 2021). Data was downloaded from the ESGF data 201 

node: https://esgf-node.llnl.gov/projects/esgf-llnl/ (last downloaded on 23rd June 2021). 202 

 203 

The spatial distribution of sea ice is usually computed in two ways, by its total area or its extent. The 204 

sea ice extent (SIE) is the total area of the Arctic ocean where there is at least 15% ice concentration. 205 

The total sea ice area (SIA) is the sum of the sea ice concentration times the area of a grid cell for all 206 

cells that contain some sea ice. In this paper, the SIA refers to the SIA of the month of minimum sea 207 

ice, as computed by using the climatology of the whole simulation.  208 

 209 

2.3. Assessing model skill to simulate reconstructions of ΔSSAT 210 

The model skill is quantified using two measures based on 1) the Root Mean Square Error (RMSE) of 211 

the modelled SSAT compared to the proxies the percentage of the 21 proxies for ΔSSAT (in Table 1) 212 

for which the model produce a value within the error bars, and 2) the percentage of the 21 proxies for 213 

ΔSSAT (in Table 1) for which the model produce a value within the error bars the Root Mean Square 214 

Error (RMSE) of the modelled SSAT compared to the proxies. To assess whether the model match a 215 

https://esgf-node.llnl.gov/projects/esgf-llnl/
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proxy point, we compute summer mean (June to August) surface air temperatures for every year for 216 

the PI and LIG for each model. Climatological summer temperature is the time mean of these  217 

summer temperatures for the entire simulation length. Our calculated model uncertainties on the 218 

climatological summer mean temperatures are one standard deviation of summer mean time series for 219 

each model. Bilinear interpolation in latitude-longitude space was used to extract values at the 220 

observation proxy locations from the gridded model output. For climatological summer mean 221 

temperature, if there is an overlap between observation proxy SSAT (plus observational uncertainty) 222 

and the simulated SSAT (plus model uncertainty) then, for that location, the result is considered as a 223 

match. Similarly, the RMSE error is calculated using the modelled SSAT values averaged over the 224 

summer months of the entire simulation length.  225 

 226 

3. Results 227 

3.1. Simulated Arctic sea ice distribution 228 

The sea ice distribution in the models have been reported previously in Kageyama et al. (2021) and is 229 

included here to make this work self-reliant. For the PI, the model mean value for summer minimum 230 

monthly SIA is 6.4 mill. km2. Due to a lack of direct observations for the PI, the PI model results are 231 

compared with observed 1981 to 2002 satellite observations, keeping in mind that the modernpresent 232 

day observations are for a climate with a higher atmospheric CO2 level of ~380 ppm, compared to the 233 

PI atmospheric CO2 levels of 280 ppm. The modern observed mean minimum SIA is 5.7 mill km2 234 

(Reynolds et al., 2002). In general, the simulations show a realistic representation of the geographical 235 

extent for the summer minimum. More models show a slightly smaller area compared to the present-236 

day observations, however EC-Earth, FGOALS-g3, and GISS170 E2-1-G simulate too much ice 237 

(Figure 2). Overestimations appear to be due to too much sea ice being simulated in the Barents-Kara 238 

area (FGOALS-g3, GISS-E2-1-G), in the Nordic Seas (EC-Earth, FGOALS-g3) and in Baffin Bay 239 

(EC-Earth).  Kageyama et al. (2021) also note that MIROC-ES2L performs rather poorly for the PI, 240 

with insufficient ice close to the continents. The other models have a relatively close match to the 241 
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15% isoline in the NOAA Optimum Interpolation version 2 data (Reynolds et al., 2002; Kageyama et 242 

al., 2021).  243 

 244 

For the LIG, the model output is compared against the LIG sea ice synthesis of Kageyama et al. 245 

(2021), which include marine cores collected in the Arctic Ocean, Nordic Seas and northern North 246 

Atlantic (Figure 3). These data show that south of 79°N in the Atlantic and Nordic seas the LIG was 247 

seasonally ice-free. These southern sea ice records provide quantitative estimates of sea surface 248 

parameters based on dinoflagellate cysts (dinocysts). North of 79°N the sea-ice-related records are 249 

more difficult to obtain and interpret. A core at 81.5°N brings evidence of summer being probably 250 

seasonally ice-free during the LIG from two indicators: dinocysts and IP25/PIP25. However, an 251 

anomalous core close by at the northernmost location of 81.9°N, with good chronology, shows IP25-252 

based evidence of substantial (> 75%) sea ice concentration all year round. Other northerly cores do 253 

not currently have good enough chronological control to confidently date material of LIG age. All 254 

models, except FGOALS, generally tend to match the results from proxies of summertime Arctic sea 255 

ice in marine cores with good LIG chronology (Figure 3), apart from the anomalous northernmost 256 

core for which the IP25 evidence suggest perennial sea ice (Kageyama et al., 2021). Steinet al. (2017) 257 

suggest that PIP25 records obtained from the central Arctic Ocean cores indicating a perennial sea ice 258 

cover have to be interpreted cautiously, given that biomarker concentrations are very low to absent, so 259 

it is difficult to know how much weight to place on this particular result. Additionally, given Hillaire-260 

Marcel et al. (2017) question the age model of the data from the central Arctic Ocean, thus these IP25 261 

data need to be interpreted with some caution. This may mean that all the models tend to have similar 262 

problems in simulating Arctic sea ice during the LIG or that the LIG IP25 signal in the Arctic 263 

indicates something else. What is clear is that a new approach with other Arctic datasets, such as 264 

SSAT, may be needed to make progress on the LIG Arctic sea ice question. 265 

 266 

 267 

 268 

 269 
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 270 

 271 

 272 

 273 

 274 

Figure 2: Climatological Minimum PI sea ice concentration maps for each model. The first panel 275 

represents the multi model mean (MMM). 276 
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 277 

 278 

Figure 3: Climatological minimum LIG sea ice concentration maps for each model. Marine core 279 

results are from Kageyama et al. (2021): orange outlines indicate that the dating is uncertain; green 280 

outlines indicate the datapoint is from the LIG. The first panel represents the multi model mean. 281 
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 282 

For the LIG, there is very little difference between the maximum (wintertime) Arctic SIA and that of 283 

the PI (which is 15-16 mill. km2 between the PI and the LIG in most models), but every model shows 284 

a reduction in summer sea ice in the LIG compared to the PI (Table 2). Our model mean LIG 285 

summertime Arctic is 2.9 mill. km2, compared to 6.4 mill. km2 for the PI, or a 55% PI to LIG 286 

decrease. There is large inter-model variability for the LIG SIA during the summer (Figure 4). All 287 

models show a larger sea-ice area seasonal amplitude for LIG than for PI, and the range of model SIA 288 

is larger for LIG than for PI (Figure A2). The results for individual years show that no model is close 289 

to the ice-free threshold for any model summer during their PI simulation (Figure 4) but for the LIG 290 

summer SIA, there are three models which are lower than 1 mill. km2 for at least one summer during 291 

the LIG simulation (Figure 4). Of these three, HadGEM3, shows a LIG Arctic Ocean free of sea ice in 292 

all summers, i.e. its maximum SIE is lower than 1 mill. km2 in all LIG simulation years. CESM2 and 293 

NESM3 show low climatological SIA values (slightly above 2 mill. km2) in summer for the LIG 294 

simulation, and both have at least one year with a SIE minimum which is below 1 mill. km2, though 295 

their average minimum SIE values are just below 3 mill. km2. Of these low LIG sea ice models, 296 

HadGEM3 and CESM2 realistically capture the PI Arctic sea ice seasonal cycle, whilst NESM3 297 

overestimates winter ice and the amplitude of the seasonal cycle (Cao et al., 2018). 298 

 299 

 300 

Table 2: The minimum climatological sea ice area for the PI and the LIG, changes, and the 301 
associated ΔSSAT anomalies. Percentage reductions are calculated from PI minimum SIA for each 302 
model. 303 

MODEL 

(units) 

SIA PI 

(mill. km2) 

SIA LIG 

(mill. km2) 

ΔSIA 

(mill. km2) 

SIA 

(% loss) 

ΔSSAT 

(K) 

MMM 6.36 2.93 -3.43 53.87 3.6±1.3 

ACCESS-ESM1-5 5.48 2.39 -3.09 56.44 2.6±1 

AWI-ESM-1-1-LR 5.37 3.76 -1.61 29.99 1.7±1.1 

CESM2 5.31 1.62 -3.69 69.54 3.3±1 
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EC-Earth3-LR 8.86 3.65 -5.21 58.84 5.7±2.6 

FGOALS-g3 8.83 5.55 -3.29 37.19 4.8±1.5 

GISS-E2-1-G 8.87 5.54 -3.32 37.47 3.4±1.4 

HadGEM3-GC31-LL 5.21 0.13 -5.07 97.48 4.9±1.2 

IPSL-CM6A-LR 6.42 2.46 -3.96 61.74 4.4±1.2 

MIROC-ES2L 4.20 2.79 -1.41 33.66 2.1 ± 0.6 

NESM3 5.50 1.64 -3.86 70.14 3 ±0.9 

NorESM2-LM 5.92 2.75 -3.17 53.52 3.6±1.1 

 304 
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Figure 4: Cumulative distribution of minimum SIA of individual years in LIG and PI 
simulations, i.e SIA versus proportion of years which fall below the corresponding SIA value. 
HadGEM3 has minimum SIA below 1 mill km2 for all years in LIG runs. CESM2 has 6.5%, 
and NESM3 8%, LIG years with SIA below 1 mill km2. Lower Panels are same but for SIE. 

 

 

3.2. Estimating ΔSIA from model skill to simulate ΔSSAT  305 

We first investigate whether there is a relationship between how well models match proxy ΔSSAT 306 

and the magnitude of SIA reduction that they simulate for the LIG. A visual comparison of modelled 307 

ΔSSAT and proxy estimates for ΔSSAT is also shown in Figure 5. As described in Section 2, two 308 

different approaches are used to quantify the skill of the models to simulate ΔSSAT, based on 1) the 309 

RMSE of the model-data ΔSSAT at the proxy record locations and 2) the percentage ΔSSAT proxies 310 
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that the model can correctly match, within model and data error. Here the focus is on quantifying 311 

model skill across all data records, but for reference, the model-versus-proxy ΔSSAT for each 312 

location is provided for each model individually in Figure A3. The RMSE skill estimate and the 313 

percentage match estimate provide very similar indications of which models have good skill to 314 

reproduce proxy ΔSSAT. The five models with the lowest RMSE also have the highest percentage 315 

match and the two models with the highest RMSE have the lowest percentage match (Figure 6). Both 316 

approaches show that the models with better skill to simulate ΔSSAT have a high absolute ΔSIA. The 317 

only outlier is EC-Earth, which has an average skill (6th best model of 11) but a high SIA reduction at 318 

the LIG. This occurs because the EC-Earth PI simulation has an excessive SIA, more than 3 million 319 

km2 compared with present day estimateses observations; this enables it to have a large ΔSIA value, 320 

whilst likely retaining too much LIG SIA. Quantitively there is a correlation of r=-0.65 (p=0.03) 321 

between the magnitude of ΔSIA and the RMSE, and a correlation with r=0.67 (p=0.02) between the 322 

magnitude of ΔSIA and the percentage match of the model (Figure 6). Given that the SIA reduction 323 

from the PI to the LIG could be dependent on the starting SIA at the PI, we repeat the analysis for 324 

percentage SIA loss from the PI (rather than absolute SIA loss) and find that is correlates similarly to 325 

the model skill to reproduce ΔSSAT (Figure A4).  326 

  327 

 328 
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 329 

Figure 5: Summertime surface air temperature (SSAT) anomaly (LIG - PI) maps for each model 330 
overlain by observed  reconstructed summer temperature anomalies. Proxies are detailed in Table 1 331 
and Guarino et al. (2020b); colours are the same as used for the underlying model data. The first 332 
panel represents the multi model mean. 333 

 334 
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 335 

 336 

Figure 6: Modelled magnitude of ΔSIA versus model skill to simulate proxy ΔSSAT. a) The modelled 337 
magnitude of ΔSIA is scattered against the RMS error of the modelled ΔSSAT compared to the proxy 338 
ΔSSAT for the 21 data locations. b) The modelled magnitude of ΔSIA scattered against the percentage 339 
of ΔSSAT data points that the model can match (see methods). 340 

 341 

In general, where models have a closer match with the ΔSSAT, they have a higher absolute ΔSIA, as 342 

well as a larger percentage reduction of SIA from the PI. We thus look at our best performing models 343 

for an indication of true LIG Arctic sea ice reduction. The four models with the best agreement of 344 

ΔSSAT to proxies are in order of skill; HadGEM3, IPSL, NORESM2, and CESM2. The top two 345 

performing models simulate an average SIA loss of 4.5 mill. km2 from an average starting PI SIA of 346 

5.8 mill. km2 to a final LIG SIA of 1.3 mill. km2, which equates to a percentage SIA loss of 79%. 347 

Including also the two next-best performing models in the average results in an average SIA loss of 348 
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4.0 mill. km2 to a final LIG SIA of 1.7 mill. km2 from an average starting PI SIA of 5.7 mill. km2, 349 

which equates to a percentage SIA loss of 71%.  350 

 351 

The question arises as to why there is a linear relationship between model skill to simulate Arctic 352 

ΔSSAT  and SIA reduction. One possibility is that the mean proxy ΔSSAT of 4.5 K is higher than 353 

what most models produce, and that the warmer models are thus closer to the proxies and also more 354 

likely to reduce sea ice. In the next section, this question is addressed by investigating whether ΔSIA 355 

is closely related to ΔSSAT itself.  356 

 357 

3.3. Estimating ΔSIA from the modelled ΔSIA-ΔSSAT relationship and proxy ΔSSAT 358 

Here we investigate whether the models suggest a linear relationship between ΔSSAT and ΔSIA, and 359 

if so, exploit that together with proxy ΔSSAT to estimate the most likely (true) value for ΔSIA. We 360 

first calculate the mean ΔSSAT in the model at all 21 proxy data locations and compare it to the 361 

magnitude of ΔSIA in each model (Figure 7a). The two are well correlated with r=0.86 (p=0.001) and 362 

the regression equation provide a dependence of ΔSIA on ΔSSAT. Using this relation, the observed 363 

reconstructed mean ΔSSAT at the proxy locations points to a SIA reduction of 4.4 mill. km2 from the 364 

PI. This constitutes a 77% reduction from the present day observation of 5.7 mill. km2, which is also 365 

the average SIA for the PI in the two most skilful models identified in the previous section. Using this 366 

value for the PI sea ice, suggests remaining minimum of 1.3 mill. km2  of sea ice during the LIG 367 

summer. An average LIG minimum of 1.3 mill. km2  implies that some LIG summers must have been 368 

ice-free (below 1 mill. km2 in SIE) but that most summers would have had a small amount of sea ice.  369 



23 
 

 370 

Figure 7: Modelled magnitude of ΔSIA versus modelled ΔSSAT for the Arctic. a) The modelled ΔSIA 371 
is scattered against mean modelled ΔSSAT at the 21 data locations. b) The modelled ΔSIA is scattered 372 
against the mean modelled ΔSSAT averaged over the Arctic north of 60°N.  373 

 374 

The ΔSSAT relationship to ΔSIA has so far been computed using the mean ΔSSAT at the locations of 375 

the data. To test whether this method would also work for the Arctic in general, the ΔSSAT is next 376 

averaged over the whole Arctic north of 60°N and compared with ΔSIA (Figure 7b). The correlation 377 

between ΔSSAT and ΔSIA is a somewhat reduced when calculating ΔSSAT across the whole Arctic, 378 

though it is still highly significant (r=0.79, p=0.004). An estimate for proxy-based Arctic-wide 379 

ΔSSAT can be derived by applying the close relationship between Arctic ΔSSAT and station ΔSSAT 380 

in the models (Figure 8, r=0.97, p <0.001). Inserting the ΔSSAT averaged over all proxy-records, of 381 

4.5 K, in the regression equation in Figure 8, gives an estimate for proxy-based Arctic-wide ΔSSAT 382 
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of 3.7±0.1 K. Applying the regression equation in Figure 7b and using this estimate for Arctic-wide 383 

ΔSSAT suggests a PI to LIG sea ice reduction of 4.5 mill. km2, which is very similar to the estimate 384 

derived from the station data alone (of 4.4 mill. km2).  385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

Figure 8: Modelled Arctic-wide ΔSSAT versus modelled mean ΔSSAT at the data locations for the 11 399 

models. The markers for each model are same as in Figure 7 400 

 401 

4. Discussion and conclusions 402 

As discussed in the introduction, neither proxies nor modelling results alone allow currently for a 403 

convincing estimate of the Arctic sea ice reduction at the LIG. Here we apply a joint approach to 404 

make progress. We deduce how much sea ice was reduced during the LIG, using 11 of the most recent 405 

CMIP6-PMIP4 LIG model simulations and proxy observations of summer air temperature changes. 406 

The reduction of sea ice from the PI to the LIG in the models range from 30% to 96% with an average 407 

of 55%. No model is close to the ice-free threshold, of maximum SIE lower than 1 mill. km2, for any 408 

model year-summer during their PI simulation. During the LIG, the HadGEM3 model is the only one 409 

that has an Arctic Ocean free of sea ice in all summers, although CESM2 and NESM3 show SIA 410 
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values of around 2  mill. km2, in association with intermittently ice-free conditions. We found that 411 

larger LIG SIA reduction from the PI is related to greater SSAT warming, the two being correlated 412 

with r=0.86 across the models. In particular, the 8 models with largest SIA reduction are all able to 413 

match, within uncertainty, the mean PI to LIG summertime Arctic warming of 4.5 ± 1.7 K at the 21 414 

proxy locations.In particular, 8 out of 11 models are able to match, within uncertainty, the average PI 415 

to LIG summertime Arctic warming of 4.5 ± 1.7 K as recorded by surface temperature proxies. This 416 

magnitude of warming was difficult to reach with previous generations of LIG models.  Among the 417 

models, two of them capture the magnitude of the observed dSSAT in more than 60% of the total 418 

proxy locations. These models simulate an average LIG sea ice area of 1.3 mill. km2 which is a 4.5 419 

mill. km2 (or 79%) reduction from their PI values. 420 

 421 

We find that the good match between the (ice-free) HadGEM3 and the Guarino et al. (2020b) summer 422 

Arctic temperature dataset is not unique. However, we find that it is not random either and that there 423 

is a correlation between model skill to match the ΔSSAT and the reduction of SIA from the PI to the 424 

LIG (both when using an RMSE skill test and when using a best-match skill test). The two most 425 

skilful models simulate an average LIG sea ice area of 1.3 mill. km2 which is a 4.5 mill. km2 or 79% 426 

reduction from their PI values.  Whilst we cannot assume all model error ΔSSAT is attributable to 427 

ΔSIA, it is reasonable to assume that the better performing models for ΔSSAT are also better at 428 

simulating ΔSIA, because of the close relationship between warming and sea ice loss.  429 

   430 

Some of the proxies are more difficult for the models to simulate (Figure 9 and Figure A3). In 431 

particular, it appears that the Greenland ice core SSAT value from NEEM of +8 K (observatio proxy 432 

record 21 in Table 1 Figure 9) is higher than any model simulates; though with a ±4 K uncertainty it is 433 

nevertheless matched by some models. Terrestrial proxies three and six, with SSAT values of +6.4 K 434 

are also only rarely matched. Further work on the observational side would be useful. These LIG 435 

SSAT proxy reconstructions were used in the IPCC (2013) report and by Guarino et al. (2020b); and 436 

were previously published by IPCC (2013); CAPE members (2006); Kaspar et al. (2005); Capron et 437 
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al. (2017). Thus, this dataset should ideally be improved. One start point for this would be adding 438 

uncertainties to the (nine) sites which do not currently have these numbers. 439 

 440 

 441 

Figure 9: Proxy ΔSSAT (violet dots and uncertainty bars) and simulated ΔSSAT for all models 442 
(coloured dots) for each proxy record location (rows). Grey boxes extend from the 25th to the 75th 443 
percentile of each locations distribution of simulated values and the vertical lines represent the 444 
median.  445 

 446 

The correlation between model skill to simulate ΔSSAT and the magnitude of ΔSIA is convincing (r= 447 

0.66 and p= 0.003 on average for the two skill tests). However, the two quantities are not 448 

straightforward to relate through a dynamical process. On the other hand, it is well known that there is 449 

a positive feedback between Arctic temperature and Arctic sea-ice, with warmer temperatures more 450 

likely to melt sea ice, and less sea ice producing a smaller albedo to incoming solar radiation and so 451 

less cooling from solar reflection. Figure A6 shows the relationship between summer surface air 452 
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temperature anomalies versus September sea ice area. from the observational estimates for the period 453 

from 1979-2020. In present time, the relationship between minimum SIA and summer SAT is 1.32 454 

mil. Km2 decrease per 1K temperature rise. This dynamic relationship is also evident in LIG 455 

simulations, with a  strong correlation of r=0.86 between the magnitude of ΔSIA and ΔSSAT across 456 

all the models. The reconstructed ΔSSAT from proxies, of 4.5 ±1.7 K, is larger than most models 457 

simulate, so the models that match the ΔSSAT most closely would be the models with a larger 458 

ΔSSAT than average and thus also a larger ΔSIA. The only model that has a large SIA reduction and 459 

not a good skill to match SSAT is EC-Earth, which features a PI simulation with far too much sea ice, 460 

which allows an excessive LIG to PI Arctic warming. An additional result of our study is that the 461 

mean ΔSSAT at the proxy locations is strongly correlated to Arctic-wide ΔSSAT north of 60°N in the 462 

models (r=0.97). Applying the regression relation between the two, implies that the mean ΔSSAT at 463 

the proxy locations, of  4.5 K, is equivalent to an Arctic-wide warming at the LIG of 3.7 K. This is 464 

thus a more representative value for the Arctic warming at the LIG, than using the simpler proxy-465 

location average.  466 

 467 

The strong linear correlation between the magnitude of ΔSIA and ΔSSAT is applied to the proxy-468 

reconstructed ΔSSAT to give an estimate of the reduction of SIA from the PI to LIG of 4.4 mill. km2, 469 

similar to that derived from our "best skill" approach. A similar value of 4.5 mill. km2 is obtained 470 

when extrapolating the method to Arctic-wide ΔSSAT north of 60°N. The models and data have 471 

uncertainties, and the regressions applied are not between perfectly correlated quantities. However, it 472 

is clear from both applied methods (each with two variants) that proxy-reconstructed ΔSSAT, in 473 

combination with the model output, implies a larger sea ice reduction than the climatological multi-474 

model mean of 55%. It suggests a LIG SIA of ~1.3 mill. km2, which is consistent with intermittently 475 

ice-free summers – but with (low ice area) ice-present summers likely exceeding the number of ice-476 

free years.  477 

 478 

Whilst we have focussed here on the Arctic SIA response to LIG insolation forcing, Kageyama et al. 479 

(2021) found that the models that respond strongly to LIG insolation forcing also respond strongly to 480 
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CO2 forcing. Indeed the models with the weakest response for the LIG had the weakest response to 481 

the CO2 forcing. This suggests that our assessment here of model skill against Arctic SIA and SSAT 482 

change can also help, to some extent, ascertain the models which have a better Arctic SIA and SSAT 483 

response to CO2 forcing.  Overall the results presented in this study suggest that: (i)  the fully-ice free 484 

HadGEM3 model is somewhat too sensitive to forcing; it loses summer sea ice too readily during the 485 

LIG; and (ii) most other PMIP4 models are insufficiently sensitive - these models do not lose enough 486 

sea ice. 487 

 488 

Code availability. Python code used to produce the manuscript plots is available on request from the 489 

authors.  490 
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Data availability. The summer air temperature dataset is available at https://data.bas.ac.uk/full-492 

record.php?id=GB/NERC/BAS/PDC/01593. All model data is available from the ESGF data node: 493 

https://esgf-node.llnl.gov/projects/esgf-llnl/.   494 
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 498 

Appendix 499 

A1. Inter-model differences in LIG Sea ice simulation 500 

 501 

Sea ice formation and melting can be affected by a large number of factors inherent to the atmosphere 502 

and the ocean dynamics, alongside the representation of sea ice itself within the model (i.e. the type of 503 

sea ice scheme used). In coupled models it can therefore be difficult to identify the causes of this 504 

coupled behavior (Kagayama et al. 2021, Sicard et al,2022). Nevertheless Kagayama et al. (2021; 505 

Section 4), alongside Diamond et al. (2021) address the question of what drives model differences in 506 

summertime LIG sea ice. In summary: 507 

https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01593
https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01593
https://esgf-node.llnl.gov/projects/esgf-llnl/
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1. All modelPMIP4-LIG s simulations show a major loss of summertime Arctic sea ice between the PI 508 

and LIG. 509 

2. Across all models, there is an increased downward short-wave flux in spring due to the imposed 510 

insolation forcing and a decreased upward short-wave flux in summer, related to the decrease of the 511 

albedo due to the smaller sea ice cover. Differences between the model results are due to a difference 512 

in phasing of the downward and upward shortwave radiation anomalies. 513 

3. The sea ice albedo feedback is most effective in HadGEM3. It is also the only model in which the 514 

anomalies in downward and upward shortwave radiation are exactly in phase. 515 

4. The CESM2 and HadGEM3 models (which both simulate significant sea ice loss) exhibit an 516 

Atlantic Meridional Overturning Circulation (AMOC) that is almost unchanged between PI and LIG, 517 

while in the IPSLCM6 model (with moderate sea ice loss) the AMOC weakens. This implies that a 518 

reduced northward oceanic heat transport could reduce sea ice loss in the Central Arctic in some 519 

models. 520 

5. The two models (HadGEM3 and CESM2) which had the lowest sea ice loss contain explicit melt 521 

pond schemes, which impact the albedo feedback in these models. Diamond et al. (2021) show that 522 

that the summer ice melt in HadGEM3 is predominantly driven by thermodynamic 523 

processes and those thermodynamic processes are significantly impacted by melt ponds. 524 

 525 

 526 

Appendix Figures 527 

 528 

 529 
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 530 
 531 

Figure A1. LIG-PI change in albedo over Arctic sea-ice as a function of LIG-PI change in SSAT (°C) 532 

over the ice. The r2 values and the linear fit lines are for the models including CNRM (blue) and 533 

excluding CNRM (black). The CNRM model (upside triangle) is an outlier that influences the 534 

strength rather than the nature of the correlation.   535 
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 536 

Figure A2. Sea ice area climatological seasonal cycle for each model. 537 

 538 
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Figure A3. Modelled ΔSSAT versus proxy ΔSSAT. The scatter points show model data versus 539 

observationsreconstuctions for each proxy location. Error-bars represent one standard deviation on 540 

either side of the proxy estimate. The correlation coefficients, between X and Y, RMSE and 541 

percentage matches with observationsproxy data for each model are indicated in each panel. 542 

 543 



33 
 

 544 

Figure A4: Modelled % sea ice area reduction from the LIG to the PI versus model skill to simulate 545 

proxy ΔSSAT. a) The modelled %SIA reduction is scattered against the RMSE of the modelled 546 

ΔSSAT compared to the proxy ΔSSAT for the 21 data locations. b) The modelled % SIA reduction 547 

scattered against the percentage of ΔSSAT data points that the model can match (see methods). 548 
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 549 

Figure A5. Scatter Plot for climatological ΔSSAT at each observationalproxy location versus 550 

climatological ΔSSAT averaged north of 60°N over entire Northern Hemisphere in each model 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 
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 565 

 566 

Figure A6:- Scatter plot of SAT versus SIA for current period. JJA surface air temperature versus NH 567 

September Sea ice area for each year from 1979-2020. Anomalies computed from year 1979 values. 568 

SIA is from NSIDC (https://nsidc.org/data/g02135/versions/3) and Air temperature (area averaged 569 

north of 60°N) is from ERA5 reanalysis (Hersbach et al. 2020). 570 

 571 
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