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Abstract.

The Last Interglacial (LIG) period, which had higher summer solar insolation than today, has been
suggested as the last time that Arctic summers were ice-free. However, the latest suite of Coupled
Modelling Intercomparison Project 6 Paleoclimate (CMIP6-PMIP4) simulations of the LIG produce a
wide range of Arctic summer minimum sea ice area (SIA) results, ranging from a 30% to 96%
reduction from the pre-industrial (Pl). Sea ice proxies are also currently neither abundant nor
consistent enough to determine the most realistic state. Here we estimate LIG minimum SIA
indirectly through the use of 21 proxy records for LIG Summer Surface Air Temperature (SSAT) and
11 CMIP6-PMIP4 models for the LIG. We use two approaches. First, we use two tests to determine
how skilful models are at simulating reconstructed ebservedfer-ASSAT from proxy records (where A

refers to LIG-PI). This identifies a positive correlation between model skill and the magnitude of
ASIA: the most reliable models simulate a larger sea ice reduction. Averaging the most skilful two

models yields an average SIA of 1.3 mill. km? for the LIG. This equates to a 4.5 mill. km?, or a 79%,

SIA reduction from the PI to the LIG. Secend—acrossthe H-medels-the-averaged ASSAT atthe 21
proxy—locations—is—inversely—correlated—with-ASTA—(+=-0-86)—Second, across the 11 models, the

averaged ASSAT at the 21 proxy locations as well the pan Arctic average delta SSAT, is inversely

correlated with ASTA (r = -0.86 and 0.79 respectively). In other words, the models show that a larger

Arctic warming is associated with a greater sea ice reduction. Using the proxy record-averaged
ASSAT of 4.5 + 1.7 K and the relationship between ASSAT and ASIA, suggests an estimated ASIA of
4.4 mill. km? or 77% less than the Pl. The mean proxy-location ASSAT is well-correlated with the
Arctic-wide ASSAT north of 60°N (r=0.97) and this relationship is used to show that the mean proxy
record ASSAT is equivalent to an Arctic-wide warming of 3.7+0.1 K at the LIG compared to the PI.
Applying this Arctic-wide ASSAT and its modelled relationship to ASIA, results in a similar estimate
of LIG sea ice reduction of 4.5 mill. km?. The LIG climatological minimum SIA of 1.3 mill. km? is
close to the definition of a summer ice-free Arctic, which is a maximum sea ice extent less than 1
mill. km?, The results of this study thus suggest that the Arctic likely experienced a mixture of ice-free

and near ice-free summers during the LIG.
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1. Introduction

The rapid decline in Arctic sea ice over the last 40 years is an icon of contemporary climate change.
Climate models have struggled to fully capture this sea ice loss (Notz and Community, 2020), which
can sometimes reduce confidence in their future projections (e.g. IPCC, 2021). One line of
investigation to address this problem, that has not been fully exploited, is the use of past climates to
provide information on the future (e.g. Bracegirdle et al., 2019). Investigating the physics and causes
of sea ice change, concentrating on Arctic changes during the most recent warm climate periods can
help us address this problem (Guarino et al., 2020b). Interglacials are periods of globally higher
temperatures which occur between cold glacial periods (Sime et al., 2009; Otto-Bliesner et al., 2013;
Fischer et al., 2018). The differences between colder glacial and warmer interglacial periods are
driven by climate feedbacks alongside changes in the Earth’s orbit which affect incoming radiation.
The Last Interglacial or LIG, occurred 130,000-116,000 years ago. At 127,000 years ago, at high
latitudes orbital forcing led to summertime top-of-atmosphere shortwave radiation 60-75 Wm™
greater than the Pl period. Summer temperatures in the Arctic during the LIG are estimated to be
around 4.5 K above those of today (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron
et al., 2017). Prior to 2020, most climate models simulated summer LIG temperatures which were too
cool compared with these LIG temperature observations (Otto-Bliesner et al., 2013; IPCC, 2013).
This led Lunt et al. (2013); Otto-Bliesner et al. (2013) and IPCC (2013) to suggest that the
representation of dynamic vegetation changes in the Arctic might be key to understanding LIG

summertime Arctic warmth.

Guarino et al. (2020b) argued that loss of Arctic sea-ice in the summer could cause the warm summer
Arctic temperatures, without the need for dynamic vegetation. Using the HadGEM3 model, which
was the UK’s contribution for the LIG CMIP6-PMIP4 project, Guarino et al. (2020b) found that the
model simulated a fully sea ice-free Arctic during the summer, i.e. it had less than 1 mill. km? of sea
ice extent at its minimum. This unique, near complete, loss of summer sea ice appears to happen in
the UK model, because it includes a highly advanced representation of melt ponds (Guarino et al.

2020b; Diamond et al. 2021). These are shallow pools of water which form on the surface of Arctic
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sea ice and which determine how much sunlight is absorbed or reflected by the ice (Guarino et al.,
2020b).

Malmierca-Vallet et al. (2018) found the signature of summertime Arctic sea ice loss in Greenland ice
cores. Kageyama et al. (2021) then led the international community in compiling all available marine
core Arctic sea ice proxy data for the LIG and testing it against CMIP6-PMIP4 simulations. The
Kageyama et al. (2021) synthesis of ocean core-based proxy records of LIG Arctic sea-ice change,
like Malmierca-Vallet et al. (2018), showed that compared to the PI it is very likely that Arctic sea ice
was reduced. However, Kageyama et al. (2021) also showed that directly determining sea-ice changes
from marine core data is difficult. The marine core observations suffer some conflicting
interpretations of proxy data sometimes from the same core, and imprecision in dating materials to the
LIG period in the high Arctic. Thus, determining the mechanisms and distribution of sea ice loss
during the LIG by directly inferring sea ice presence (or absence) from these preserved biological data

alone is not possible (Kageyama et al., 2021).

The Coupled Model Intercomparison Project Phase 6 (CMIP6) Paleoclimate Model Intercomparison
Project Phase (PMIP4) or CMIP6-PMIP4 LIG experimental protocol prescribes differences between
the LIG and PI in orbital parameters, as well as differences in trace greenhouse gas concentrations
(Otto-Bliesner et al., 2017). This standardised climate modelling protocol is therefore an ideal

opportunity for the community to use models to explore the causes of Arctic warmth using multi-

model approaches.

potentially—required—In particular, the existing non-dynamic-vegetation PMIP4 LIG protocol and

associated simulations offer the opportunity to address the question of whether the Arctic sea ice loss

alone is sufficient to explain LIG summertime temperature observations, or whether active vegetation

modelling, and the idea of vegetation feedbacks (Lunt et al., 2013; Otto-Bliesner et al.,2013; IPCC,
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2013) are required. This said, we recognize that in reality there must also be LIG Arctic vegetation

feedbacks. These should be explored in future modelling work.

Guarino et al. (2020b) showed that the HadGEM3, the only CMIP-PMIP4 model with an ice-free
Arctic at the LIG, has an excellent match with ebserved reconstructed Arctic air temperature in
summer. The average ASSAT in HadGEM3, for all locations with proxy observations, is +4.9 £ 1.2 K
compared with the ebservationalproxy mean of +4.5 =+ 1.7 K. This model also matched all, except
one, marine core sea-ice datapoints from Kageyama et al. (2021). Here we investigate whether there
are more CMIP6-PMIP4 models with a similarly good ASSAT and if so, whether other models with a
good match also suggest a much-reduced sea ice area (SIA) during the LIG. We further compute the
correlation and linear relationship in the models between ASSAT and ASIA and subsequently use this
equation and proxies for ASSAT to estimate ASIA. Section 2 describes the proxy data and models
used in this study as well as the analysis methods. The results are presented in Section 3 which first

evaluates the modelled Pl and LIG sea ice distribution against ebservationsproxy reconstructions and

then use the above described approaches to estimate the sea ice reduction at the LIG. Section 4

summarises the results and discusses their shortcomings and implications.

2. Data and methods

2.1 Observational-dataProxy reconstructions for LIG

The LIG SSAT proxy observations used to assess LIG Arctic sea ice in the Guarino et al. (2020b)
study were previously published by CAPE members (2006); Kaspar et al. (2005) and 20 of them were
also used to assess CMIP5 models in the IPCC (2013) report. A detailed description of each
observationrecord is available (CAPE members, 2006; Kaspar et al., 2005; IPCC, 2013; Capron et al.,
2017). Each ebservationproxy record is thought to be of summer LIG air temperature anomaly
relative to present day and is located in the circum-Arctic region; all sites are from north of 51°N.
There are 7 terrestrial based temperature records; 8 lacustrine records; 2 marine pollen-based records;

and 3 ice core records included in the original IPCC (2013) compilation. Guarino et al. (2020b) added
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to this an additional new ebservatienrecord from the NEEM Greenland ice core from Capron et al.

(2017), bringing the total number of proxies records to 21 (Table 1). Figure 1 shows the location, and

type, for each numbered ebservationproxy record. Terrestrial climate can be reconstructed from

diagnostic assemblages of biotic proxies preserved in lacustrine, peat, alluvial, and marine archives

and isotopic changes preserved in ice cores and marine and lacustrine carbonates (CAPE, 2006;

Guarino et al., 2020). Quantitative reconstructions of climatic departures from the present-day are

derived from range extensions of individual taxa, mutual climatic range estimations based on groups

of taxa, and analogue techniques (CAPE, 2006). These proxy records are considered to represent the

summer surface air temperature because summer temperature is also the most effective predictor for

most biological processes, though seasonality and moisture availability may influence phenomena

such as evergreen vs. deciduous biotic dominance (Kaplan et al., 2003). Whilst the exact timing of

this peak warmth has not yet been definitively determined, it is reasonable to assume that these
measurements are approximately synchronous across the Arctic. It is however very unlikely that the
peak warmth was synchronous across both hemispheres (see Capron et al. (2014); Govin et al.
(2015)), and further investigation of the synchronicity of peak warmth occurs across the Northern
Hemisphere is merited. For consistency with modelled data, temperature anomalies computed against
present day conditions (i.e. 1961-1990 baseline) were corrected to account for a +0.4K of global
warming between Pl (1850) and present day (1961-1990).—cenditions—(Turney and Jones, 2010).
Therefore, Table 1 and Guarino et al. (2020b) values differ slightly (+0.4K) from the original datasets

so that they represent temperature anomalies relative to the PI.
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Figure 1: Map of data locations numbered to match Table 1. This combines the Kageyama et al.
(2021) sea ice locations 1 to 20 alongside with the temperature proxies from Table 1. Open symbols

correspond to records with uncertain chronology, and filled symbols correspond to records with good

chronology.

Most of the sites have temperature uncertainty (one standard deviation) estimates, which are provided
in the Table 1. However, for 9 sites, the standard deviation of the temperature data was not available.
A standard deviation of + 0.5K was used to account for this missing uncertainty: this is the smallest
standard deviation found in any proxy record across all sites, and is thus as a conservative estimation
of the uncertainty associated to proxy data (Guarino et al., 2020b).
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Table 1: Compilation of LIG-PI summertime surface air temperature (SSAT) anomalies used by
Guarino et al. (2020b).

Number I Lat Lon | Site Observation type ‘ Observation (K)
1 55 18 Europe Terrestrial: pollen, plant macrofossils 34+05
2 55 -3 UK Terrestrial: Pollen, plant macrofossils 24+05
3 61 152.5 Magadan Terrestrial: pollen 6442
4 68 80 West-central Siberia | Terrestrial: pollen, plant macrofossils 54+2
5 68 160 Northeast Siberia Terrestrial: pollen 64 +2
6 70 -72.5 Flitaway Terrestrial: insects, plant remains 49405
7 7333 141.5 | Bolshoy Lyadhovshy | Terrestrial: pollen 49+05
8 63 -66 Robinson Lake Lacustrine: pollen 54405
9 64 -150 Birch Creek/ky11 Lacustrine: pollen 14+1
10 66 -69.2 Amarok Lake Lacustrine: pollen 49405
11 67 -160 Squirre]l Lake Lacustrine: pollen, plant macrofossils 194+ 1.5
12 67 -62 Cumber Lacustrine: pollen 59+15
13 67.5 172.08 Lake Elgygytgyn Lacustrine: pollen 34+ 1
14 69 -151 Ahaliorak Lake Lacustrine: pollen 1.9+ 1.5
15 69 -133 Lake Tuk 5 Lacustrine: plant macrofossils and beetles 24 +0.5
16 71.75 -23 Jameson Marine: pollen, plant macrofossils, bee- 54+05

tles, other invertebrates
17 76.35 -68.3 Thule Marine: pollen, chironomids 44 +05
18 73 -25 Renland Ice core: d180, dD 54405
19 73 -38 GISP2 Ice core: d180, dD 54+05
20 75 -42 NGRIP Ice core: d180, dD 54405
21 76.4 -44.8 NEEM(ds) Ice core: d180, dD 8+t4
- | - - | Arctic Mean of observations 1 to 21 45417

2.2. Models and model output

We analyse Tier 1 LIG simulations, based on the standard CMIP6-PMIP4 LIG experimental protocol
(Otto-Bliesner et al., 2017). The prescribed LIG (127 ka) protocol differs from the CMIP6 PI
simulation protocol in astronomical parameters and the atmospheric trace GHG concentrations. LIG

astronomical parameters are prescribed according to orbital constants (Berger and Loutre, 1991), and
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atmospheric trace GHG concentrations are based on ice core measurements: 275 ppm for CO;; 685
ppb for CH.; and 255 ppb for N>O (Otto-Bliesner et al., 2017).

The CMIP6-PMIP4 model simulations were run following the Otto-Bliesner et al. (2017) protocol,
except CNRM-CM6-1, which used GHG at their Pl values rather than using LIG values. For all
models, all other boundary conditions, including solar activity, ice sheets, aerosol emissions etc., are
identical to the PI simulation. In terms of the Greenland and Antarctica ice sheets, a Pl configuration
for the LIG simulation is not unreasonable (Kageyama et al., 2021; Otto-Bliesner et al., 2020). LIG
simulations were initialized either from a previous LIG run, or from the standard CMIP6 protocol PlI
simulations, using constant 1850 GHGs, ozone, solar, tropospheric aerosol, stratospheric volcanic
aerosol and land use forcing. Whilst Pl and LIG spin-ups vary between the models, with CNRM the
shortest at 100 years, most model groups aimed to allow the land and oceanic masses to attain
approximate steady state i.e. to reach atmospheric equilibrium and to achieve an upper-oceanic
equilibrium - which generally seems to take around 300 to 400 years. LIG production runs are all
between 100-200 years long, which is an appropriate length for Arctic sea ice analysis (Guarino et al.,
2020a).

Whilst fifteen models have run the CMIP6-PMIP4 LIG simulation (Kageyama et al., 2021; Otto-
Bliesner et al., 2020), and have uploaded model data to the Earth System Grid Federation (ESGF), we
exclude four simulations for the following reasons. The AWI-ESM and Nor-ESM models have LIG
simulations with two versions of model. To avoid undue biasing of results, we include only the
simulation from the latest version for each model. Additionally, for INM-CM4-8 model, no ocean or
sea ice fields were available for download, excluding this model from our analysis. Finally, we
exclude the CNRM model in the analysis because apart from using Pl instead of LIG GHG
concentrations and a short spin-up time, the model also has known issues with its sea-ice model. The
model produces much too thin sea ice in September and March compared with observational evidence
and the snow layer on the ice is considerably overestimated (Voldoire et al., 2019). As a possible
consequence of these issues, the CNRM model is also an outlier in an otherwise highly correlated

10
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(inverse) relationship in the models between the LIG-PI albedo change over the Artic sea-ice and the
LIG-PI SSAT change over the ice, being the only model that produces a warmer LIG with almost no
reduction in albedo (Figure Al). While we consider the CNRM ice model unreliable for this study, we
note that the inclusion of the model in our analysis only reduces the correlation coefficients but does

not change the overall conclusions.

We thus analyse the difference between the Pl and LIG simulations from eleven models. Out of the
eleven simulations of the LIG, seven have 200 years simulation length (data available to download in
ESGF), the remaining four are 100 years in length. For PI control runs, we use the last 200 years of Pl
control run available in ESGF for each model. Details of each model: model denomination, physical
core components, horizontal and vertical grid specifications, details on prescribed vs interactive
boundary conditions, details of published model description, and LIG simulation length (spin-up and
production runs) are contained in (Kageyama et al., 2021). Data was downloaded from the ESGF data

node: https://esgf-node.lInl.gov/projects/esgf-1Inl/ (last downloaded on 23rd June 2021).

The spatial distribution of sea ice is usually computed in two ways, by its total area or its extent. The
sea ice extent (SIE) is the total area of the Arctic ocean where there is at least 15% ice concentration.
The total sea ice area (SIA) is the sum of the sea ice concentration times the area of a grid cell for all
cells that contain some sea ice. In this paper, the SIA refers to the SIA of the month of minimum sea

ice, as computed by using the climatology of the whole simulation.

2.3. Assessing model skill to simulate reconstructions of ASSAT

The model skill is quantified using two measures based on 1) the Root Mean Square Error (RMSE) of

the modelled SSAT compared to the proxies the-percentage-of the 21 proxies for ASSAT (n-TFable b
for-which-the-modelproduce-a-value-withinthe-errer-bars; and 2) the percentage of the 21 proxies for
ASSAT (in Table 1) for which the model produce a value within the error bars-the-Reot-Mean-Square

Error{RMSE)-of the modeled-SSATcompared-to-theproxies. To assess whether the model match a

11
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proxy point, we compute summer mean (June to August) surface air temperatures for every year for
the Pl and LIG for each model. Climatological summer temperature is the time mean of these
summer temperatures for the entire simulation length. Our calculated model uncertainties on the
climatological summer mean temperatures are one standard deviation of summer mean time series for
each model. Bilinear interpolation in latitude-longitude space was used to extract values at the
observation—proxy locations from the gridded model output. For climatological summer mean
temperature, if there is an overlap between ebservation proxy SSAT (plus ebservational uncertainty)
and the simulated SSAT (plus model uncertainty) then, for that location, the result is considered as a
match. Similarly, the RMSE error is calculated using the modelled SSAT values averaged over the

summer months of the entire simulation length.

3. Results
3.1. Simulated Arctic sea ice distribution

The sea ice distribution in the models have been reported previously in Kageyama et al. (2021) and is
included here to make this work self-reliant. For the PI, the model mean value for summer minimum
monthly SIA is 6.4 mill. km2. Due to a lack of direct observations for the P, the PI model results are
compared with ebserved 1981 to 2002 satellite observations, keeping in mind that the mederapresent
day observations are for a climate with a higher atmospheric CO2 level of ~380 ppm, compared to the
PI atmospheric CO2 levels of 280 ppm. The modern observed mean minimum SIA is 5.7 mill km?
(Reynolds et al., 2002). In general, the simulations show a realistic representation of the geographical
extent for the summer minimum. More models show a slightly smaller area compared to the present-
day observations, however EC-Earth, FGOALS-g3, and GISS170 E2-1-G simulate too much ice
(Figure 2). Overestimations appear to be due to too much sea ice being simulated in the Barents-Kara
area (FGOALS-g3, GISS-E2-1-G), in the Nordic Seas (EC-Earth, FGOALS-g3) and in Baffin Bay
(EC-Earth)._ Kageyama et al. (2021) also note that MIROC-ES2L performs rather poorly for the PI,

with insufficient ice close to the continents. The other models have a relatively close match to the

12
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15% isoline in the NOAA Optimum Interpolation version 2 data (Reynolds et al., 2002; Kageyama et
al., 2021).

For the LIG, the model output is compared against the LIG sea ice synthesis of Kageyama et al.
(2021), which include marine cores collected in the Arctic Ocean, Nordic Seas and northern North
Atlantic (Figure 3). These data show that south of 79°N in the Atlantic and Nordic seas the LIG was
seasonally ice-free. These southern sea ice records provide quantitative estimates of sea surface
parameters based on dinoflagellate cysts (dinocysts). North of 79°N the sea-ice-related records are
more difficult to obtain and interpret. A core at 81.5°N brings evidence of summer being probably
seasonally ice-free during the LIG from two indicators: dinocysts and 1P25/PIP25. However, an
anomalous core close by at the northernmost location of 81.9°N, with good chronology, shows 1P25-
based evidence of substantial (> 75%) sea ice concentration all year round. Other northerly cores do
not currently have good enough chronological control to confidently date material of LIG age. All
models, except FGOALS, generally tend to match the results from proxies of summertime Arctic sea
ice in marine cores with good LIG chronology (Figure 3), apart from the anomalous northernmost

core for which the I1P25 evidence suggest perennial sea ice (Kageyama et al., 2021). Steinet al. (2017)

suggest that PIP25 records obtained from the central Arctic Ocean cores indicating a perennial sea ice

cover have to be interpreted cautiously, given that biomarker concentrations are very low to absent, so

it is difficult to know how much weight to place on this particular result. Additionally, given Hillaire-

Marcel et al. (2017) question the age model of the data from the central Arctic Ocean, thus these 1P25

data need to be interpreted with some caution. This may mean that all the models tend to have similar

problems in simulating Arctic sea ice during the LIG or that the LIG IP25 signal in the Arctic
indicates something else. What is clear is that a new approach with other Arctic datasets, such as

SSAT, may be needed to make progress on the LIG Arctic sea ice question.
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275 Figure 2: Climatological Minimum PI sea ice concentration maps for each model. The first panel
276  represents the multi model mean (MMM).
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279  Figure 3: Climatological minimum LIG sea ice concentration maps for each model. Marine core
280 results are from Kageyama et al. (2021): orange outlines indicate that the dating is uncertain; green
281 outlines indicate the datapoint is from the LIG. The first panel represents the multi model mean.
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For the LIG, there is very little difference between the maximum (wintertime) Arctic SIA and that of
the PI (which is 15-16 mill. km? between the P1 and the LIG in most models), but every model shows
a reduction in summer sea ice in the LIG compared to the Pl (Table 2). Our model mean LIG
summertime Arctic is 2.9 mill. km?, compared to 6.4 mill. km? for the PI, or a 55% PI to LIG
decrease. There is large inter-model variability for the LIG SIA during the summer (Figure 4). All
models show a larger sea-ice area seasonal amplitude for LIG than for PI, and the range of model SIA
is larger for LIG than for PI (Figure A2). The results for individual years show that no model is close
to the ice-free threshold forany-meodel summer during their Pl simulation (Figure 4) but for the LIG
summer SIA, there are three models which are lower than 1 mill. km? for at least one summer during
the LIG simulation (Figure 4). Of these three, HadGEM3, shows a LIG Arctic Ocean free of sea ice in
all summers, i.e. its maximum SIE is lower than 1 mill. km?in all LIG simulation years. CESM2 and
NESM3 show low climatological SIA values (slightly above 2 mill. km?) in summer for the LIG
simulation, and both have at least one year with a SIE minimum which is below 1 mill. km?, though
their average minimum SIE values are just below 3 mill. km?. Of these low LIG sea ice models,
HadGEM3 and CESM2 realistically capture the Pl Arctic sea ice seasonal cycle, whilst NESM3

overestimates winter ice and the amplitude of the seasonal cycle (Cao et al., 2018).

Table 2: The minimum climatological sea ice area for the Pl and the LIG, changes, and the
associated ASSAT anomalies. Percentage reductions are calculated from PI minimum SIA for each
model.

MODEL SIAPI SIALIG ASIA SIA ASSAT
(units) (mill. km?) | (mill. km?) | (mill. km?) (% loss) (K)
MMM 6.36 2.93 -3.43 53.87 3.6+1.3
ACCESS-ESM1-5 5.48 2.39 -3.09 56.44 2.6x1
AWI-ESM-1-1-LR 5.37 3.76 -1.61 29.99 1.7+¢1.1
CESM2 531 1.62 -3.69 69.54 3.3t1

16
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EC-Earth3-LR 8.86 3.65 -5.21 58.84 5.7+2.6
FGOALS-g3 8.83 5.55 -3.29 37.19 4.8+1.5
GISS-E2-1-G 8.87 5.54 -3.32 37.47 3.4+1.4
HadGEM3-GC31-LL 521 0.13 -5.07 97.48 4.9+1.2
IPSL-CM6A-LR 6.42 2.46 -3.96 61.74 4.4+1.2
MIROC-ES2L 4.20 2.79 -1.41 33.66 2.1+£0.6
NESM3 5.50 1.64 -3.86 70.14 3+0.9

NorESM2-LM 5.92 2.75 -3.17 53.52 3.6+1.1

17
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Figure 4: Cumulative distribution of minimum SIA of individual years in LIG and PI
simulations, i.e SIA versus proportion of years which fall below the corresponding SIA value.
HadGEM3 has minimum SIA below 1 mill km? for all years in LIG runs. CESM2 has 6.5%,
and NESM3 8%, LIG years with SIA below 1 mill km?. Lower Panels are same but for SIE.

3.2. Estimating ASIA from model skill to simulate ASSAT

We first investigate whether there is a relationship between how well models match proxy ASSAT
and the magnitude of SIA reduction that they simulate for the LIG. A visual comparison of modelled
ASSAT and proxy estimates for ASSAT is also shown in Figure 5. As described in Section 2, two
different approaches are used to quantify the skill of the models to simulate ASSAT, based on 1) the
RMSE of the model-data ASSAT at the proxy record locations and 2) the percentage ASSAT proxies
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that the model can correctly match, within model and data error. Here the focus is on quantifying
model skill across all data records, but for reference, the model-versus-proxy ASSAT for each
location is provided for each model individually in Figure A3. The RMSE skill estimate and the
percentage match estimate provide very similar indications of which models have good skill to
reproduce proxy ASSAT. The five models with the lowest RMSE also have the highest percentage
match and the two models with the highest RMSE have the lowest percentage match (Figure 6). Both
approaches show that the models with better skill to simulate ASSAT have a high absolute ASIA. The
only outlier is EC-Earth, which has an average skill (6" best model of 11) but a high SIA reduction at
the LIG. This occurs because the EC-Earth PI simulation has an excessive SIA, more than 3 million

km? compared with present day estimateses-gbservations; this enables it to have a large ASIA value,

whilst likely retaining too much LIG SIA. Quantitively there is a correlation of r=-0.65 (p=0.03)
between the magnitude of ASIA and the RMSE, and a correlation with r=0.67 (p=0.02) between the
magnitude of ASIA and the percentage match of the model (Figure 6). Given that the SIA reduction
from the PI to the LIG could be dependent on the starting SIA at the PI, we repeat the analysis for
percentage SIA loss from the PI (rather than absolute SIA loss) and find that is correlates similarly to
the model skill to reproduce ASSAT (Figure A4).

19



329

330
| 331
332
333

334

ACCESS-ESM1-5

AWI-ESM-1-1-LR

IPSL-CMBA-LR

NorESM2-LM

- S

O Terrestrial V  Marine
A Lacustrine 0O lce core

Figure 5: Summertime surface air temperature (SSAT) anomaly (LIG - PI) maps for each model
overlain by ebserved- reconstructed summer temperature anomalies. Proxies are detailed in Table 1
and Guarino et al. (2020b); colours are the same as used for the underlying model data. The first
panel represents the multi model mean.
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Figure 6: Modelled magnitude of ASIA versus model skill to simulate proxy ASSAT. a) The modelled
magnitude of ASIA is scattered against the RMS error of the modelled ASSAT compared to the proxy
ASSAT for the 21 data locations. b) The modelled magnitude of ASIA scattered against the percentage
of ASSAT data points that the model can match (see methods).

In general, where models have a closer match with the ASSAT, they have a higher absolute ASIA, as
well as a larger percentage reduction of SIA from the Pl. We thus look at our best performing models
for an indication of true LIG Arctic sea ice reduction. The four models with the best agreement of
ASSAT to proxies are in order of skill; HadGEM3, IPSL, NORESM2, and CESM2. The top two
performing models simulate an average SIA loss of 4.5 mill. km? from an average starting PI SIA of
5.8 mill. km? to a final LIG SIA of 1.3 mill. km?, which equates to a percentage SIA loss of 79%.

Including also the two next-best performing models in the average results in an average SIA loss of
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4.0 mill. km? to a final LIG SIA of 1.7 mill. km? from an average starting Pl SIA of 5.7 mill. km?,

which equates to a percentage SIA loss of 71%.

The question arises as to why there is a linear relationship between model skill to simulate Arctic
ASSAT and SIA reduction. One possibility is that the mean proxy ASSAT of 4.5 K is higher than
what most models produce, and that the warmer models are thus closer to the proxies and also more
likely to reduce sea ice. In the next section, this question is addressed by investigating whether ASIA

is closely related to ASSAT itself.

3.3. Estimating ASIA from the modelled ASIA-ASSAT relationship and proxy ASSAT

Here we investigate whether the models suggest a linear relationship between ASSAT and ASIA, and
if so, exploit that together with proxy ASSAT to estimate the most likely (true) value for ASIA. We
first calculate the mean ASSAT in the model at all 21 proxy data locations and compare it to the
magnitude of ASIA in each model (Figure 7a). The two are well correlated with r=0.86 (p=0.001) and
the regression equation provide a dependence of ASIA on ASSAT. Using this relation, the-ebserved
reconstructed mean ASSAT at the proxy locations points to a SIA reduction of 4.4 mill. km? from the
PI. This constitutes a 77% reduction from the present day observation of 5.7 mill. km?, which is also
the average SIA for the PI in the two most skilful models identified in the previous section. Using this
value for the PI sea ice, suggests remaining minimum of 1.3 mill. km? of sea ice during the LIG
summer. An average LIG minimum of 1.3 mill. km? implies that some LIG summers must have been

ice-free (below 1 mill. km? in SIE) but that most summers would have had a small amount of sea ice.
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Figure 7: Modelled magnitude of ASIA versus modelled ASSAT for the Arctic. a) The modelled ASIA
is scattered against mean modelled ASSAT at the 21 data locations. b) The modelled ASIA is scattered
against the mean modelled ASSAT averaged over the Arctic north of 60°N.

The ASSAT relationship to ASIA has so far been computed using the mean ASSAT at the locations of
the data. To test whether this method would also work for the Arctic in general, the ASSAT is next
averaged over the whole Arctic north of 60°N and compared with ASIA (Figure 7b). The correlation
between ASSAT and ASIA is a somewhat reduced when calculating ASSAT across the whole Arctic,
though it is still highly significant (r=0.79, p=0.004). An estimate for proxy-based Arctic-wide
ASSAT can be derived by applying the close relationship between Arctic ASSAT and station ASSAT
in the models (Figure 8, r=0.97, p <0.001). Inserting the ASSAT averaged over all proxy-records, of

4.5 K, in the regression equation in Figure 8, gives an estimate for proxy-based Arctic-wide ASSAT
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of 3.7+0.1 K. Applying the regression equation in Figure 7b and using this estimate for Arctic-wide
ASSAT suggests a PI to LIG sea ice reduction of 4.5 mill. km?, which is very similar to the estimate

derived from the station data alone (of 4.4 mill. km?).
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Figure 8: Modelled Arctic-wide ASSAT versus modelled mean ASSAT at the data locations for the 11

models. The markers for each model are same as in Figure 7

4. Discussion and conclusions

As discussed in the introduction, neither proxies nor modelling results alone allow currently for a
convincing estimate of the Arctic sea ice reduction at the LIG. Here we apply a joint approach to
make progress. We deduce how much sea ice was reduced during the LIG, using 11 of the most recent
CMIP6-PMIP4 LIG model simulations and proxy observations of summer air temperature changes.
The reduction of sea ice from the Pl to the LIG in the models range from 30% to 96% with an average
of 55%. No model is close to the ice-free threshold, of maximum SIE lower than 1 mill. km?, for any
model year-summer during their Pl simulation. During the LIG, the HadGEM3 model is the only one
that has an Arctic Ocean free of sea ice in all summers, although CESM2 and NESM3 show SIA
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values of around 2 -mill. km?, in association with intermittently ice-free conditions. We found that

larger LIG SIA reduction from the PI is related to greater SSAT warming, the two being correlated

with r=0.86 across the models. ta-particular—the-8-models-with-largest SHA+eductionare-all-able-to

proxy-teeations:In particular, 8 out of 11 models are able to match, within uncertainty, the average Pl

to LIG summertime Arctic warming of 4.5 + 1.7 K as recorded by surface temperature proxies. This

magnitude of warming was difficult to reach with previous generations of LIG models.- Among the

models, two of them capture the magnitude of the observed dSSAT in more than 60% of the total

proxy locations. These models simulate an average LIG sea ice area of 1.3 mill. km2 which is a 4.5

mill. km2 (or 79%) reduction from their PI values.

We find that the good match between the (ice-free) HadGEM3 and the Guarino et al. (2020b) summer
Arctic temperature dataset is not unique. However, we find that it is not random either and that there
is a correlation between model skill to match the ASSAT and the reduction of SIA from the PI to the
LIG (both when using an RMSE skill test and when using a best-match skill test). The two most
skilful models simulate an average LIG sea ice area of 1.3 mill. km? which is a 4.5 mill. km? or 79%
reduction from their PI values. Whilst we cannot assume all model error ASSAT is attributable to
ASIA, it is reasonable to assume that the better performing models for ASSAT are also better at

simulating ASIA, because of the close relationship between warming and sea ice loss.

Some of the proxies are more difficult for the models to simulate (Figure 9 and Figure A3). In
particular, it appears that the Greenland ice core SSAT value from NEEM of +8 K-{ebservatio proxy
record 21 in Table 1 Figure 9) is higher than any model simulates; though with a +4 K uncertainty it is
nevertheless matched by some models. Terrestrial proxies three and six, with SSAT values of +6.4 K
are also only rarely matched. Further work on the observational side would be useful. These LIG
SSAT proxy reconstructions were used in the IPCC (2013) report and by Guarino et al. (2020b); and
were previously published by IPCC (2013); CAPE members (2006); Kaspar et al. (2005); Capron et

25



438
439
440

441

442
443
444
445

446
447
448
449
450
451
452

al. (2017). Thus, this dataset should ideally be improved. One start point for this would be adding

uncertainties to the (nine) sites which do not currently have these numbers.
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Figure 9: Proxy ASSAT (violet dots and uncertainty bars) and simulated ASSAT for all models
(coloured dots) for each proxy record location (rows). Grey boxes extend from the 25th to the 75th
percentile of each locations distribution of simulated values and the vertical lines represent the

median.

The correlation between model skill to simulate ASSAT and the magnitude of ASIA is convincing (=

0.66 and p= 0.003 on average for the two skill tests). However, the two quantities are not

straightforward to relate through a dynamical process. On the other hand, it is well known that there is

a positive feedback between Arctic temperature and Arctic sea-ice, with warmer temperatures more

likely to melt sea ice, and less sea ice producing a smaller albedo to incoming solar radiation and so

less cooling from solar reflection. Figure A6 shows the relationship between summer surface air
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temperature anomalies versus September sea ice area. from the observational estimates for the period

from 1979-2020. In present time, the relationship between minimum SIA and summer SAT is 1.32

mil. Km? decrease per 1K temperature rise. This dynamic relationship is also evident in LIG

simulations, with a -strong correlation of r=0.86 between the magnitude of ASIA and ASSAT across
all the models. The reconstructed ASSAT from proxies, of 4.5 £1.7 K, is larger than most models
simulate, so the models that match the ASSAT most closely would be the models with a larger
ASSAT than average and thus also a larger ASIA. The only model that has a large SIA reduction and
not a good skill to match SSAT is EC-Earth, which features a PI simulation with far too much sea ice,
which allows an excessive LIG to Pl Arctic warming. An additional result of our study is that the
mean ASSAT at the proxy locations is strongly correlated to Arctic-wide ASSAT north of 60°N in the
models (r=0.97). Applying the regression relation between the two, implies that the mean ASSAT at
the proxy locations, of 4.5 K, is equivalent to an Arctic-wide warming at the LIG of 3.7 K. This is
thus a more representative value for the Arctic warming at the LIG, than using the simpler proxy-

location average.

The strong linear correlation between the magnitude of ASIA and ASSAT is applied to the proxy-
reconstructed ASSAT to give an estimate of the reduction of SIA from the PI to LIG of 4.4 mill. km?,
similar to that derived from our "best skill" approach. A similar value of 4.5 mill. km? is obtained
when extrapolating the method to Arctic-wide ASSAT north of 60°N. The models and data have
uncertainties, and the regressions applied are not between perfectly correlated quantities. However, it
is clear from both applied methods (each with two variants) that proxy-reconstructed ASSAT, in
combination with the model output, implies a larger sea ice reduction than the climatological multi-
model mean of 55%. It suggests a LIG SIA of ~1.3 mill. km?, which is consistent with intermittently
ice-free summers — but with (low ice area) ice-present summers likely exceeding the number of ice-

free years.

Whilst we have focussed here on the Arctic SIA response to LIG insolation forcing, Kageyama et al.

(2021) found that the models that respond strongly to LIG insolation forcing also respond strongly to
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CO; forcing. Indeed the models with the weakest response for the LIG had the weakest response to

the CO, forcing. This suggests that our assessment here of model skill against Arctic SIA and SSAT

change can also help, to some extent, ascertain the models which have a better Arctic SIA and SSAT

response to CO2 forcing. Overall the results presented in this study suggest that: (i) the fully-ice free

HadGEM3 model is somewhat too sensitive to forcing; it loses summer sea ice too readily during the

LIG; and (ii) most other PMIP4 models are insufficiently sensitive - these models do not lose enough

sea ice.

Code availability. Python code used to produce the manuscript plots is available on request from the

authors.

Data availability. The summer air temperature dataset is available at https://data.bas.ac.uk/full-
record.php?id=GB/NERC/BAS/PDC/01593. All model data is available from the ESGF data node:
https://esgf-node.lInl.gov/projects/esgf-1inl/.

Appendix

Al. Inter-model differences in LIG Sea ice simulation

Sea ice formation and melting can be affected by a large number of factors inherent to the atmosphere

and the ocean dynamics, alongside the representation of sea ice itself within the model (i.e. the type of

sea ice scheme used). In coupled models it can therefore be difficult to identify the causes of this

coupled behavior (Kagayama et al. 2021, Sicard et al,2022). Nevertheless Kagayama et al. (2021;

Section 4), alongside Diamond et al. (2021) address the guestion of what drives model differences in

summertime LIG sea ice. In summary:
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1. All medelPMIP4-LIG s-simulations show a major loss of summertime Arctic sea ice between the Pl
and LIG.

2. Across all models, there is an increased downward short-wave flux in spring due to the imposed

insolation forcing and a decreased upward short-wave flux in summer, related to the decrease of the

albedo due to the smaller sea ice cover. Differences between the model results are due to a difference

in phasing of the downward and upward shortwave radiation anomalies.

3. The sea ice albedo feedback is most effective in HadGEM3. It is also the only model in which the

anomalies in downward and upward shortwave radiation are exactly in phase.

4. The CESM2 and HadGEM3 models (which both simulate significant sea ice loss) exhibit an
Atlantic Meridional Overturning Circulation (AMOC) that is almost unchanged between Pl and LIG,
while in the IPSLCM6 model (with moderate sea ice loss) the AMOC weakens. This implies that a

reduced northward oceanic heat transport could reduce sea ice loss in the Central Arctic in some

models.
5. The two models (HadGEM3 and CESM2) which had the lowest sea ice loss contain explicit melt

pond schemes, which impact the albedo feedback in these models. Diamond et al. (2021) show that

that the summer ice melt in HadGEMS3 is predominantly driven by thermodynamic

processes and those thermodynamic processes are significantly impacted by melt ponds.

Appendix Figures
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Figure A4: Modelled % sea ice area reduction from the LIG to the Pl versus model skill to simulate
proxy ASSAT. a) The modelled %SIA reduction is scattered against the RMSE of the modelled
ASSAT compared to the proxy ASSAT for the 21 data locations. b) The modelled % SIA reduction

scattered against the percentage of ASSAT data points that the model can match (see methods).
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Figure A6:- Scatter plot of SAT versus SIA for current period. JJA surface air temperature versus NH

September Sea ice area for each year from 1979-2020. Anomalies computed from year 1979 values.

SIA is from NSIDC (https://nsidc.org/data/g02135/versions/3) and Air temperature (area averaged
north of 60°N) is from ERAS reanalysis (Hersbach et al. 2020).
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