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Abstract. Since Urban Heat Islands (UHI) not only negatively impact human health but consume 10 

more energy when cooling buildings, accurate monitoring of its impact is critical. In this study, we 11 

propose a ground based GNSS technique to fuse GNSS Radio Occultation (RO) and radiosonde 12 

products to monitor the UHI intensity, which described as follows: First, the first and second grid 13 

tops are defined using the historical RO and radiosonde products. Then, the wet refractivity between 14 

the first and second grid tops is fitted to the higher-order spherical harmonic function based on the 15 

RO and radiosonde products, and they are used as the inputs of GNSS tomography, which can reduce 16 

the number of unknowns voxels of tomography while increasing the effective number of satellite 17 

rays, and improving the accuracy of tomography results. Next, according to the relationships among 18 

wet refractivity, temperature, and water vapor partial, as well as the function relationships among 19 

temperature, wet pressure, and height in adjacent vertical layers, the temperature and water vapor 20 

partial pressure can be obtained using the best search method according to the tomography-derived 21 

wet refractivity. Finally, the UHI intensity is monitored by the temperature difference between the 22 

urban regions and the surrounding rural regions. The radio occultation and radiosonde products of 23 

the Hong Kong region from 2010 to 2019, and the observed GNSS network data of the Hong Kong 24 

region for the year of 2020 are employed to evaluate the UHI intensity algorithm. The validation of 25 

the algorithm is done by comparing the UHI intensity estimated from the algorithm with the 26 

temperature data obtained from weather stations. The result shows that the proposed algorithm can 27 

achieve an accuracy of 1.2 K at a 95% confidence level. 28 

Keywords: Urban heat island (UHI), GNSS, Tomography, Temperature 29 

1. Introduction 30 

The urban heat island (UHI) effect arises as urban regions become warmer than their rural 31 

environments (Roth, 2013). The UHI is mainly caused by heat absorbed by built structures and 32 

anthropogenic heat sources in cities (Roth, 2013). The UHI intensity is related to many factors such 33 

as regional climate, urbanization, and topography, etc. Since the 21st century, with the rapid 34 

development of urbanization, densified urban building clusters, and a large number of people 35 

gathering in cities, the increases in industrial production and domestic energy use have intensified 36 

the UHI effect, leading to a continuous expansion of its scope and intensity (Zhai et al., 2018; Xu et 37 

al., 2018; Zou et al., 2019; Jiang et al., 2019). The heat island effect severely affects the life of 38 

citizens and even the overall ecological quality of cities, because it increases the heat stress of 39 

citizens, which further triggers cardiovascular, respiratory and mental diseases, resulting in 40 

increased morbidity and mortality worldwide. The study of the urban heat island formation and 41 

evolution, spatial and temporal distribution, causal mechanisms and the search for effective 42 

mitigation measures have become the focus of attention of many scholars in recent years (Rizwan 43 
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et al., 2008; Memon et al., 2009; Azevedo and Leal, 2017; Lamarca et al., 2018). 44 

Traditionally, three techniques are used to monitor the UHI intensity: a network of ground-based 45 

temperature sensors (Ramamurthy and Sangobanwo, 2016); remote Sensing Satellite data (Schwarz 46 

et al., 2011; Wu et al., 2014; Fang et al., 2016; Kayet et al., 2016) and airborne instruments (Peng 47 

et al., 2017). The above observation methods have some drawbacks such as low spatial resolutions, 48 

high cost and weather dependence (Jorge et al., 2021). For example, when temperature sensors are 49 

used to obtain the relevant patterns, it is mainly to compare the temperatures of urban and suburban 50 

areas during the same period, but due to the limited monitoring points, it is difficult to reflect the 51 

UHI effect of the study area comprehensively. To address this issue, a wide metropolitan area has 52 

been covered by a dense sensor network, which no doubt leads to increased monitoring costs 53 

(Jauregui, 1997; Jin, 2012). Satellite imaging and airborne instruments require clear-sky conditions 54 

to obtain accurate data (Grimmond et al., 2010; Vahmani and Ban-Weiss, 2016). GNSS (Global 55 

Navigation Satellite Systems) technology, a new means of atmospheric sounding, can not only 56 

effectively overcome the shortcomings of traditional means (i.e., can compensate for these 57 

disadvantages), but also has the advantages of high observation accuracy, quasi-real-time, all-58 

weather, no need for human interference, no need for instrument calibration, etc (Kouba and Héroux, 59 

2001; Cai et al., 2013 and 2015). 60 

   A novel method of monitoring the UHI intensity using GNSS data was first presented by Jorge 61 

et al (2021). This algorithm is based on the relationship between the single GNSS-derived Zenith 62 

Tropospheric Delay (ZTD) and the environmental variables (pressure, water vapor partial pressure, 63 

and temperature) at the measurement site. The UHI intensity is calculated by subtracting the 64 

temperature at an urban GNSS station from the temperature at a rural GNSS station. However, due 65 

to the limited number of GNSS stations in each city, the single-station GNSS inversion of 66 

atmospheric temperature cannot be used for the heat island effect in urban areas. In recent years, the 67 

GNSS tomography technique has been applied as an effective means to acquire the three-68 

dimensional (3-D) distribution of wet refractivity and can compensate for single GNSS algorithm’s 69 

disadvantages. In order to monitor the UHI intensity, it is necessary to estimate the temperature from 70 

GNSS-derived wet refractivity (Troller et al., 2006; Bender et al., 2011; Lutz et al., 2010; Rohm, 71 

2013; Chen et al., 2014; Xia et al.,2018). Therefore, the quality of the wet refractivity determines 72 

the accuracy of the temperature inversion. 73 

   The key advantage of the GNSS tomography technique over the single GNSS method is that it 74 

can obtain the three-dimensional distribution of the temperature in the study area, and can study the 75 

temperature changes in the horizontal direction and vertical direction. The second advantage is that 76 

it can promote the application scope of GNSS sensors. The proposed paper developed an optimized 77 

method for GNSS 3-D troposphere tomography using the external radiosonde and GNSS radio 78 

occultation (RO) historical data. Among them, the radiosonde and RO products are utilized to 79 

determine the first grid top and the second grid top for the purpose of grid division. Further, the wet 80 

refractivity is obtained between the first grid top and the second grid based on radiosonde and RO 81 

data which are used as the input value of the GNSS tomography. Next, the temperature can be 82 

obtained using the optical search method from tomography-derived wet refractivity. The ground-83 

based GNSS observation data from the Hong Kong SatRef network in 2020 are used to verify the 84 

feasibility and superiority of the optimized tomography method. In addition, the temperature from 85 

5 weather stations in Hong Kong is selected as a reference to validate the temperatures obtained by 86 

GNSS data.  87 
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  The paper is organized as follows: In section 2, the method development is presented. Then, 88 

Section 3 describes the processing of the data, before the discussions in Section 4, followed by the 89 

conclusions in Section 5. 90 

2. Methodology 91 

This section introduces the basic tomography model; describes the tomography grid division and 92 

the calculation of temperature from wet refractivity; and presents the calculations of the UHI 93 

intensity from temperature. 94 

2.1 Tomography model 95 

The SWD along the ray paths traversing the imaging region should first be derived from the dual-96 

frequency GNSS data to reconstruct the 3D images of the atmospheric wet refractivity distributions, 97 

which is defined by the line integral of Nw along the ray path from the satellite to the receiver (Flores 98 

et al., 2001) as follows: 99 

SWD = 10−6 ∙ ∫ 𝑁𝑤 ∙ 𝑑ℎ
∞

ℎ0
                         (1) 100 

SWD = 10−6 ∙ ∑ ∑ 𝐶𝑖,𝑗
44

𝑗=0
𝑚
𝑖=1 ∙ 𝑁𝑤(𝑠𝑗

𝑖) = 𝑆 ∙ 𝑁𝑤 + ∆SWD            (2) 101 

where, 𝐶𝑖,𝑗
4  is the 4-order coefficients of the j-th segment point within the i-th grid; 𝑁𝑤(𝑠𝑗

𝑖) is the 102 

corresponding atmospheric wet refractivity; m denotes the number of the grids which the signals had 103 

passed; S represents the distance of the GNSS signals spanning the voxel, and Δswv is the noise.  104 

Due to the near-cone geometry of GNSS observations (Bender and Raabe, 2007; Benevides et al., 105 

2016), the GNSS signal cannot pass through all voxels, which resulted in too many zeros in the 106 

design matrix, and the tomographic system cannot be inverted. Therefore, it is necessary to apply 107 

appropriate constraints to overcome this issue. Though the Gauss weighted method (Song, 2004) can 108 

be used for the horizontal direction, the vertical distribution is still modeled by an exponential 109 

equation, taking account of the water vapor in the vertical direction ( which usually decreases with 110 

increasing height) as follows: 111 

      𝑁𝑤(ℎ) = 𝑁𝐶 ∙ 𝑒
(−

(ℎ−ℎ0)

𝐻𝑧
)
                           (3) 112 

where, 𝑁𝑤(ℎ) denotes the atmospheric wet refractivity at the height of h; Hz represents the height 113 

index of Nw; NC is the constant value; h0 is a constant. Based on Eq. (3), Eq. (4) is employed as the 114 

vertical constraint to establish the relationship between atmospheric wet refractivity in adjacent 115 

vertical layers: 116 

𝑁𝑤
𝑖,𝑗,𝑘+1

𝑁𝑤
𝑖,𝑗,𝑘 = 𝑒

(
ℎ𝑘−ℎ𝑘+1

𝐻𝑧
)
                              (4) 117 

where, the subscripts “i", “j”, and “k” define the indexes of the voxels in the east-west, north-south, 118 

and vertical directions, respectively; hk is the height of the kth voxel. Thus, the tomography equation 119 

can be solved by adopting Kalman filtering based on the horizontal and vertical constraints. 120 

2.2 Tomography grid division 121 

   Generally, both the lower and upper limits of the tomographic grid refer to the height from the 122 

ground to the top of the tropopause. However, the wet refractivity is mostly clustered at a height that 123 

significantly below the tropopause. If the top of grid uses tropopause, the solutions of the 124 

tomography inversion may be negative since the wet refractivity is very sparse near the height of the 125 

tropopause (Flores et al., 2000). Two grid heights in this study are defined according to the ZWD 126 

variations obtained from radiosonde and Radio occultation data. The first grid top is the upper limit 127 
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of the tomography grid, but when the tomography equation cannot calculate the Nw value between 128 

the first and the second grid tops, the radiosonde-derived Nw or RO-derived Nw are used to take its 129 

place. As a result, when the height of the grid top decreases, the effective number of satellite rays 130 

increases. In the tomography, the rays penetrating the grid from the top boundary are the only rays 131 

used in the tomographic solution.  132 

GNSS tomography aims to reconstruct the vertical distribution of Nw. The division of the vertical 133 

grid severely affects the tomography solutions. Conventionally, two approaches have been used for 134 

dividing the grid: the uniform division (Flores et al., 2000; Xia et al., 2013 and 2018) and non-135 

uniform division (Perler et al., 2011; Rohm, 2012 and Jiang et al., 2014). Considering the practical 136 

distribution characteristics of Nw are sparse in high layers and dense in low layers, the non-uniform 137 

division is used here.  138 

2.3 Calculation of temperature from Nw 139 

   The ZWD is related to the environmental conditions because of the wet refractivity of the 140 

troposphere. The wet refractivity Nw of the troposphere is defined as: 141 

𝑁𝑤 = (𝑘2 − 𝑘1
𝑅𝑑

𝑅𝑤
) ∙

Pw

𝑇
+ 𝑘3 ∙

Pw

𝑇2                          (5) 142 

where, the empirically calculated constants k1=77.6, k2=72, and k3=3.75×105; Rd and Rw are 143 

mean specific gas constant for day air and water vapor, respectively; Pw is the water vapor partial 144 

pressure, and T is the temperature in Kelvins. 145 

  The temperature of the grid point is calculated by putting zero to the equation of wet refractivity 146 

(Eq.5) and solving the quadratic equation: 147 

𝑇2 ∙ 𝑁𝑤 − 𝑇 ∙ (𝑘2 − 𝑘1
𝑅𝑑

𝑅𝑤
) ∙ Pw − 𝑘3 ∙ Pw = 0                  (6) 148 

   Although the Nw can be obtained from the above tomography equation, the Pw and T cannot be 149 

solved directly because the equation (6) is rank deficient. Therefore, Eq. (6) requires additional 150 

conditions to calculate Pw and T. 151 

  In the vertical direction, the temperature decreases with height at a relatively consistent rate and 152 

denoting the lapse rate β, we have  153 

𝑇𝑖+1 = 𝑇𝑖 − 𝛽 ∙ (ℎ𝑖+1 − ℎ𝑖)                        (7) 154 

where, 𝑇𝑖 , 𝑇𝑖+1  represent the temperature at the ith and (i+1)th grids, respectively; ℎ𝑖 , ℎ𝑖+1 155 

represent the height at the ith
 and (i+1)th grids, respectively. 156 

The water vapor partial pressure usually decreases with height, and it can be expressed as an 157 

empirical exponential function (Callahan, 1973): 158 

𝑃𝑤
𝑖+1 = 𝑃𝑤

𝑖 ∙ exp(𝑎 ∙ (ℎ𝑖+1 − ℎ𝑖) − 𝑏 ∙ (ℎ𝑖+1 − ℎ𝑖)2)                (8) 159 

where, 𝑃𝑤
𝑖 , 𝑃𝑤

𝑖+1 represent the water vapor partial pressure at the ith and (i+1)th grids, respectively; 160 

a and b are constant, which can be obtained based on radiosonde and RO products.                                                                                                        161 

  Combining Equations (6), (7) and (8), the search ranges for water vapor partial pressure and 162 

temperature are given based on radiosonde data, and then the optimal water vapor partial pressure 163 

and temperature are searched. 164 

2.4 Calculation of the UHI intensity 165 

The UHII can be calculated by estimating the temperature difference between urban and rural grid 166 

points based on ground-based GNSS tomography technique. Eq. (9) shows the calculations: 167 
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𝑈𝐻𝐼𝐼𝐺𝑁𝑆𝑆 = 𝑇𝐺𝑁𝑆𝑆(𝑢𝑟𝑏𝑎𝑛) − 𝑇𝐺𝑁𝑆𝑆(𝑟𝑢𝑟𝑎𝑙)                     (9) 168 

where, 𝑇𝐺𝑁𝑆𝑆  is the temperature in Kelvins obtained from GNSS tomography. The algorithm 169 

usually can be validated by comparing the UHII obtained using GNSS data with the UHII obtained 170 

using meteorological data. 171 

𝑈𝐻𝐼𝐼𝑀𝑒𝑡 = 𝑇𝑀𝑒𝑡(𝑢𝑟𝑏𝑎𝑛) − 𝑇𝑀𝑒𝑡(𝑟𝑢𝑟𝑎𝑙)                     (10) 172 

where, 𝑇𝑀𝑒𝑡 is the temperature obtained from meteorological data. 173 

3 Processing results and analysis 174 

3.1 Data description  175 

Since 2001, there has been a substantial supply of continuous temperature and pressure 176 

measurements provided by the satellite-based GNSS RO data with high accuracy, high vertical 177 

resolution, and global coverage as a function of altitude in the upper troposphere and lower 178 

stratosphere. In this paper, we used the most recent Wegener Center (WEGC) multi-satellite GNSS 179 

RO data, OPSv5.6, from May 2001 to December 2020. WEGC OPSv5.6 has been widely used for 180 

weather, climate, space weather, and geodetic studies as it provides global upper-air satellite data in 181 

high quality from multiple RO satellite missions, which including CHAMP, GRACE, SAC-C, 182 

Formosat-3/COSMIC, and Metop (Schreiner et al., 2007; Anthes et al. 2008). The radiosonde 183 

technique is a tool for studying meteorology from the ground to the lower stratosphere. RO and 184 

radiosonde observations are key data sources for weather studies and climate analysis (Kuo et al., 185 

2005; Kishore et al., 2011). 186 

  The Ground-based GNSS observation data are obtained from the Hong Kong Satellite Navigation 187 

System (HKSN) network, which is composed of 12 continuously operating stations with a distance 188 

of 10-15 km between stations, as shown in Fig. 1. All 18 stations are provided by "LEICA 189 

GRX1200+GNSS" receivers with a data sampling rate of 5s. The 2020 one-year GNSS dataset is 190 

collected in Hong Kong. Additionally, the RO wet profiles with the same Hong Kong address and 191 

the radiosonde products at the “45004th” station from 2010 to 2019 are utilized as historical data 192 

for optimization of tomographic solutions. 193 

 194 

Fig.1. The GNSS station distribution and horizontal grid division in Hong Kong 195 

 196 

  A sliding time window strategy is a great approach for the simulation of near real-time GNSS 197 

tomographic experiment (Foster et al., 2005). Furthermore, providing a logical time interval is 198 
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meaningful in the framework of the rain now-casting. Moreover, a 6h time interval for the minimum 199 

broken line length is recommended empirically to allow the linear fitting algorithm can conduct a 200 

better discretization of the PWV signal features without being affected by the noisy features 201 

(Benevides et al., 2015). Therefore, a six-hour interval’s time window is used, moving forward by 202 

an hour each time. The GAMIT software is used in this study to obtain ZTD (Herring et al., 2010). 203 

3.2 Defining the grid top 204 

In the zenith direction, the wet tropospheric delay can be expressed as: 205 

ZWDℎ = 10−6 ∫ 𝑁𝑤 ∙ 𝑑ℎ
∞

ℎ
                            (11) 206 

where, ZWDℎ is the wet tropospheric delay (unit: m); ℎ is the height of the observation station 207 

over mean sea level (unit: m); 𝑁𝑤 is the atmospheric wet refractivity (unitless) that can be modeled 208 

from Eq.(5). 209 

In this study, the ZWD is obtained from radiosonde data and RO profiles. They are used to define 210 

the grid top. The radiosonde sensors can measure several meteorological parameters such as 211 

pressure, temperature, and relative humidity. Similar to radiosonde, RO profiles also provide 212 

meteorological products such as temperature, water vapor pressure, etc. Taking the characteristic of 213 

exponential decreasing of the atmospheric refractivity into account, the formulas for wet delays 214 

from the radiosonde measurements and RO profiles can be derived:  215 

ZWDℎ = 10−6 ∑ [(ℎ𝑖 − ℎ𝑖+1)(𝑁𝑤
𝑖+1 − 𝑁𝑤

𝑖 ) (ln𝑁𝑤
𝑖 − ln𝑁𝑤

𝑖+1)⁄ ]𝑖             (12) 216 

Afterward, slant wet delay (SWD) can be obtained from ZWD based on the wet Niell mapping 217 

function (Niell, 1996). 218 

SWDℎ = ZWDℎ ∙ 𝑀𝑤
Niell(𝑒𝑚𝑖𝑛)                         (13) 219 

where, 𝑀𝑤
Niell is the wet Niell mapping function; 𝑒𝑚𝑖𝑛 means the minimum satellite cut-off angle, 220 

which is 10° in this study. When the SWDℎ is less than or equal to 1 mm, the corresponding height 221 

is defined as the first grid top (FGT). The difference between ZWD and 𝑁𝑤 between two adjacent 222 

time periods can be calculated: 223 

∆ZWDℎ
𝑡 = |ZWDℎ

𝑡 − ZWDℎ
𝑡+1|                         (14) 224 

RMSN = √∑ (𝑁𝑤
ℎ𝑖,𝑡

−𝑁𝑤
ℎ𝑖,𝑡+1

)
2

𝑛
𝑖=1

𝑛
                          (15) 225 

where, ZWDℎ
𝑡  and ZWDℎ

𝑡+1 are the ZWD at height h at time t and t+1, respectively. 𝑁𝑤
ℎ𝑖,𝑡

 and 226 

𝑁𝑤
ℎ𝑖,𝑡+1

 are the height h at time t and t+1; n is the number of the layers of radiosonde and RO data. 227 

When the ∆ZWDℎ
𝑡  is less than or equal to 0.5 mm or RMSN is less than or equal to 0.5N, the 228 

corresponding height is defined as the second grid top (SGT).  229 

RO wet profile and radiosonde products at the “45004th” station from 2010 to 2019 are used to 230 

determine the grid top based on Equations (13), (14) and (15). Individual radiosonde data, which 231 

have different vertical resolutions, are linearly interpolated to a 100-m vertical grid before the grid 232 

top identification. Then, we compute the daily mean for the first grid top and the second grid top as 233 

shown in Figure 2.  234 
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 235 

Figure 2. The first grid top and the second grid top obtained by radiosonde and RO products. 236 

   237 

 It can be seen from Figure 2 that FGT and SGT are significantly higher in summer than in spring 238 

and winter. Compared with spring and winter, the SGT is 1-2 km higher in summer than in spring 239 

and winter, while the FGT is 0.5-1.5 km higher in summer than in spring and winter. The variation 240 

of the two grid heights with time is a non-smooth curve, and the SGT is more jittered than the first 241 

grid height. Thus, we divide the vertical layers into three stages. The first stage is from the ground 242 

to 1km, which be further divided into 3 layers: the heights of the first two layers are 300m, and the 243 

height of the third layer is 400m. The second stage is from 1km to SGT. The grid in this stage is 244 

divided into an even vertical height which requires the height of a grid is no less than 400m and not 245 

more than 600m. The last stage is from the SGT to the FGT. The grid in this stage is divided into an 246 

even vertical height which requires the height of the grid is no less than 600m, and not greater than 247 

1000m. 248 

3.3 Obtaining the 𝑵𝒘 between FGT and SGT 249 

The RO wet profile and Radiosonde product have been quality controlled, and Nw can be obtained 250 

from the water vapor pressure and temperature provided by the two meteorological data in equation 251 

(5). We add daily and semidiurnal terms to the annual and semiannual cycle variation characteristics 252 

of Nw, and the Nw time series obtained by the following equation which is layered for periodic fitting 253 

(from 5km to 11km, it is divided into 12 layers on average, that is, a layer of 500m).  254 

𝑁𝑤
𝑗

= ∑ 𝑎𝑛
𝑗2

𝑛=0 cos (2𝑛𝜋
doy−𝑏𝑛

𝑗

365.25
) + ∑ 𝑎𝑛

𝑗4
𝑛=3 cos (2(𝑛 − 2)𝜋

hod−𝑏𝑛
𝑗

24
)         (16) 255 

where, j is the number of layers; 𝑁𝑤
𝑗

 is the wet refractivity of the jth layer; doy is the annual 256 

cumulative day; hod is the UTC time; an (n=0,1,2) is the annual mean; annual cycle variation 257 

amplitude and semiannual cycle variation amplitude of Nw, bn (n=1,2) is the annual cycle variation 258 

initial phase and semiannual cycle variation initial phase; an (n=3,4) is the daily cycle variation 259 

amplitude and semiannual cycle variation amplitude; bn (n=3,4) is the daily cycle variation initial 260 

phase and semiannual cycle variation initial phase, respectively. The values of an and bn in Eq.(16) 261 
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at different altitude levels can be fitted by selecting the RO and radiosonde products in Hong Kong 262 

from 2010 to 2019. 263 

SWD is the input value of the GNSS tomography technique, and its accuracy directly affects the 264 

accuracy of tomography-derived Nw. To evaluate the fitting accuracy of Nw between SGT and FGT, 265 

we selected the 2020 Hong Kong area radiosonde and RO products as the benchmark values. The 266 

difference of SWD can be obtained between benchmark value and Nw for different seasons derived 267 

from Eq. (16), as shown in Eq. (17). The statistical results are displayed in Table 1. 268 

∆SWD𝑆𝐺𝑃
𝐹𝐺𝑃 = (ZWD𝑚𝑜𝑑𝑒𝑙 − ZWD𝑇) ∙ 𝑀𝑤

Niell(𝑒)                   (17) 269 

where, ZWD𝑚𝑜𝑑𝑒𝑙  denotes the ZWD obtained from Eq. (5) and Eq. (16); ZWD𝑇  denotes the 270 

ZWD estimated from RO and radiosonde products using Eq. (5); e is the satellite cut-off angle; 271 

𝑀𝑤
Niell is the Niell wet projection function. 272 

Table 1. Results of the differences of SWD between model-derived and  273 

benchmark values at different cut-off angles (Unit mm).  274 

Cut-off angle Spring Summer Autumn Winter 

7°-15° 3.6 5.1 2.7 2.2 

15°-30° 1.5 2.2 1.4 1.2 

30°-45° 0.9 1.2 0.9 0.8 

45°-60° 0.7 0.9 0.6 0.6 

60°-75° 0.6 0.8 0.6 0.5 

75°-90° 0.5 0.7 0.5 0.5 

Table 1 shows that the value of ∆SWD𝑆𝐺𝑃
𝐹𝐺𝑃 is significantly larger at lower satellite cut-off angles. 275 

In addition, ∆SWD𝑆𝐺𝑃
𝐹𝐺𝑃 is significantly larger in summer than in other seasons, with a deviation of 276 

more than 5mm. At satellite cut-off angles above 45°, the effect of ∆SWD𝑆𝐺𝑃
𝐹𝐺𝑃 is less than 1mm, 277 

while at satellite cut-off angles below 30°, the effect of ∆SWD𝑆𝐺𝑃
𝐹𝐺𝑃 is greater than 1mm. 278 

4. Discussion 279 

The 450045th radiosonde station was carried aloft once every 12h in Hong Kong, and it was equipped 280 

with a configured sensor that collects information about temperature, pressure, relative humidity and 281 

so on. Here, the 450045th radiosonde products in 2020 were used to evaluate the accuracy of the 282 

tomography results. These products were further used to validate the accuracy of the temperature 283 

obtained from Nw .  284 

4.1 GNSS tomographic results  285 

We utilized GAMIT software to obtain the ZTD based on GNSS data from the Hong Kong SatRef 286 

network with IGS (International GNSS Service) ultra-rapid products orbit file. The Saastamoinen 287 

model and GPT3 model were used to obtain the ZHD and then the ZWD was obtained by deducting 288 

the ZHD from the ZTD. The SWD was computed from ZWD using Niell wet mapping function. 289 

Finally, we estimated the 3-D distribution of atmospheric wet refractivity using parameterized 290 

approaches, in which Eq. (16) was used for deriving the Nw between SGT and FGT. Besides, Kalman 291 

filtering algorithm was used for tomography solutions. 292 

To evaluate our optimized method, the tomography results were compared with those derived 293 

from the traditional tomography method, in which the atmospheric wet refractivity from SGT to 294 

FGT was estimated as unknown. First, the numbers of signals passing through the voxel (NSV) were 295 

compared when the optimized method and traditional method were used to invert the Nw given in 296 

Figure 3. Then, tomography solutions were compared with external results derived from the 297 
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radiosonde. The results are shown in Figure 3.  298 

 299 

Figure 3 Comparison results of the number of signals passing through voxel between the traditional method and 300 

the optimized method. Opt refers to the optimized method; Trad refers to the traditional method. 301 

 302 

 303 

Figure 4. Wet refractivity obtained from tomography-derived and radiosonde-derived data. Rad is the wet 304 

refractivity derived using radiosonde products, Trad is the wet refractivity derived using the traditional tomography 305 

method, and Opt is the wet refractivity derived using the optimized method. 306 

As shown in Fig.3, the average number of NSVs per month of the optimized method is higher 307 

than that of the traditional method. From August to December, the average monthly NSVs of the 308 

optimized tomography is more than a thousand signals than the traditional tomography. Statistics 309 

show that the NSVs in the optimized technique is 5.8% better than that of the traditional technique. 310 

As can be seen in Fig. 4, there is a good agreement between the changing trends of wet refractivity 311 

with height across the tomography-obtained and data from radiosonde. However, in the case when 312 

the "inversion layer" is present, GNSS tomography fails to accurately represent in this situation. The 313 

wet refractivity derived from our optimized method is better than that from the traditional method 314 

since the blue curve is closer to the red curve. In Table 2, we present the deviation statistics for GNSS 315 

tomography-obtained and radiosonde-obtained wet refractivity over the whole year 2016. 316 

Table 2. The statistical results between tomography-derived and radiosonde-derived wet refractivity (Unit: N). 317 

Season Rad-Trad Rad-Opt 

Max Min Mean RMS Max Min Mean RMS 
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Spring 10.53 -20.31 -3.92 7.66 9.21 -16.36 -2.31 5.89 

Summer 19.70 -23.53 -4.82 10.17 14.66 -18.54 -3.56 8.14 

Autumn 11.15 -21.05 -3.09 9.03 9.95 -17.24 -3.05 7.82 

Winter 10.73 -13.77 0.46 5.64 9.15 -11.95 -1.25 5.03 

 318 

Table 2 provides statistical values of the differences between GNSS tomography-obtained and 319 

radiosonde-obtained results. As seen from the statistical results, the root mean square (RMS) and 320 

mean values of troposphere tomography using the optimized technique is less than that of the 321 

traditional method. Especially in summer, the optimized method is slightly better than other seasons. 322 

In addition, compared with the radiosonde data, the test results show that the wet refractivity quality 323 

obtained by the optimized technique is 16.8% better than that of the traditional technique. 324 

4.2 Validation of temperature results 325 

After obtaining the wet refractivity profile based on the GNSS tomography method, the temperature 326 

was estimated by the optimal search method using eqations (6), (7) and (8). The fifth-generation 327 

reanalysis model (ERA5) could provide temperature and water vapor partial pressure, which were 328 

selected as the initial values in this study. Since the temperature and water vapor pressure provided 329 

by ERA5 are inconsistent with the spatial and temporal resolution of the tomographic results, the 330 

Gaussian distance weighting function in the horizontal direction and the exponential function in the 331 

vertical direction are used to interpolate ERA5 to be consistent with them. In terms of time, the 332 

temperature and water vapor partial pressure of ERA5 can be interpolated by the Chebyshev 333 

function of order 9, which can achieve a time resolution consistent with the tomography results. 334 

Since our research area is Hong Kong, China, and the tallest building in this area is not more than 335 

600m, we only calculated the temperature at the vertices of each grid layer below 600m. If 336 

determining the appropriate search range, it is crucial to find the range of percentage deviation 337 

between benchmark value and ERA5 product. Then, using the radiosonde product as the benchmark 338 

value, calculate the difference between the temperature and water vapor partial pressure provided 339 

by ERA5 and the radiosonde product below 600m. This deviation can be formulated as follows: 340 

DT =
RADT−ERAT

R𝑎𝑑T
∙ 100                        (18) 341 

 DWP =
RADWP−ERAWP

R𝑎𝑑WP
∙ 100                      (19) 342 

where, the RADT and RADWP are the temperature and pressure provided by radiosonde, 343 

respectively, and the ERAT and ERAWP are the temperature and pressure provided by ERA5, 344 

respectively. To study the range of percentage deviation of DT and DWP, we computed the situation 345 

in Hong Kong from 2010 to 2019 based on Eqations (18) and (19). 346 

 347 

Table 3. Summary of the change intervals of temperature and water vapor  348 

     pressure between ERA5 and Radiosonde from 2010 and 2019.  349 

DT DWP 

[-0.75%,0.75%] [-1%,1%] [-1.5%,1.5%] [-7.5%,7.5%] [-10%,10%] [-15%,15%] 

64.5% 77.7% 93.5% 46.5% 59.2% 71.4% 

Table 3 provides the statistics on the scope of DT and DWP in Hong Kong. If the ranges of DT and 350 

DWP are too large, some of the temperature and water vapor partial pressure may be over-corrected, 351 

but if the range of DN is too small, the temperature and water vapor partial pressure may be under-352 
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corrected. In this study, [-0.75%,0.75%] in temperature and [-10%,10%] in water vapor partial 353 

pressure are selected as the range of theoretical retrieval. Then, the theoretically retrieved value of 354 

atmospheric temperature is obtained at each layer as CT + CT·DT, where the search step size of DN 355 

is 0.25%. The theoretically retrieved value of atmospheric water vapor partial pressure is obtained 356 

at each layer as CWP + CWP·DWP, where the search step size of DN is 2.5%. Finally, the optical 357 

CT+CT·DT values are derived based on the equations (6), (7) and (8). Figure 5 gives the 3-D 358 

temperature distribution on Hong Kong below 600m on April 2 and 3, 2020. 359 

 360 

Figure 5. 3-D distribution of atmospheric temperature below 600m on April 2 and 3, 2020. 361 

Figure 5 describes the water vapor density changes at different heights. It shows that the 362 

atmospheric temperature tends to decrease significantly with elevation. In the horizontal direction, 363 

the temperature of the first layer does not change significantly over time, while the temperature of 364 

the second and third layers changes more obviously over time. In order to verify the accuracy of the 365 

inversion results of the temperature and water vapor pressure, we selected the radiosonde products 366 

in 2020 as the true value, and compared them with the inversion results corresponding to time and 367 

space. The statistical results are shown in Table 4： 368 

Table 4. Statistical results between GNSS-derived and radiosonde-derived 369 

 temperature and water vapor partial pressure below 600m. 370 

Season datT (K) datWV(hPa) 

Max Min Mean RMS Max Min Mean RMS 

Spring 3.65 -2.17 0.39 1.32 3.66 -2.52 0.72 1.53 

Summer 2.56 -2.75 -0.46 1.65 4.12 -3.25 0.48 1.98 

Autumn 1.91 -2.52 -0.54 0.96 3.54 -2.54 -0.67 1.47 

Winter 3.28 -1.94 0.82 1.45 3.05 -2.33 1.13 1.31 

 371 

Table 4 provides the different maxima, minima, means and RMSs of GNSS-derived and 372 

radiosonde-derived temperatures and water vapor partial pressures. In terms of the statistical results, 373 

the accuracy of GNSS-derived temperature and water vapor partial pressure in autumn is better than 374 

other seasons. In addition, the best statistical accuracy of GNSS-derived water vapor partial pressure 375 

is in winter while the worst is in summer. This can be attributed to summer and winter usually being 376 

the most and least humid seasons of the year, respectively. 377 
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4.3 The urban heat island (UHI) 378 

The UHI intensity is defined by the difference between the temperature in urban areas and 379 

surrounding rural areas. In urban areas, anthropogenic sources of heat are present, such as 380 

transportation and air conditioning equipment. In contract, the quantity and variety of anthropogenic 381 

heat sources are less in rural areas because there are few existing buildings and most of them are 382 

occupied by nature. It is common for rural and urban areas to be interdependent, with rural areas 383 

located outside of urban or city areas (Memon et al., 2009). In order to monitor the intensity of the 384 

UHI in Hong Kong, we selected several GNSS stations in the urban area (equipped with 385 

meteorological observation) as urban stations, and a weather station as a rural station which is 386 

located on a surrounding independent island. The distribution of the stations is shown below： 387 

 388 
Figure 6 Distribution of selected GNSS stations and weather stations in Hong Kong. The blue circle indicates the 389 

GNSS station, red circle indicates the weather station. 390 

 391 

The daily maximum, minimum and average values have been obtained with meteorological data. 392 

We fitted these values into a second-order linear function separately. Thus, the maximum, minimum 393 

and average values of the UHI intensity in meteorological data were calculated using Eq. (10). In 394 

addition, in order to validate the UHI intensity in GNSS data, the temperature obtained by GNSS 395 

was interpolated to a same spatial and temporal resolution as the meteorological data using a linear 396 

function. Similarly, the maximum, minimum and average of the UHI intensity in GNSS data were 397 

calculated using Eq. (9). The results of one of the meteorological stations and the GNSS results that 398 

matched with meteorological stations are shown in Figure 7 and Figure 8, respectively. 399 
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 400 
Figure 7 UHI intensity estimated with meteorological data between HKKT station and CC station. CC refers to 401 

Cheung Chau station. 402 
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 403 
Figure 8 UHI intensity estimated with ground-based on GNSS observation data. GHKKT refers to the GNSS-404 

derived temperature matched with HKKT meteorological stations. GCC refers to the GNSS-derived temperature 405 

matched with Cheung Chau meteorological stations. 406 

 407 

The range of the UHI intensity obtained with meteorological data and GNSS data between HKKT 408 

and CC is shown in Figure 7 and Figure 8. The shape of the graphs obtained using both data is very 409 

similar. In summer, the UHI intensity increases compared to winter. In addition, compared with 410 

meteorological data-derived UHI, the UHI obtained from GNSS data is smaller. Beyond that, the 5 411 

pairs of meteorological and GNSS data were used for validation purposes, and the Root Mean 412 

Square of the differences between rural and urban areas from meteorological data and GNSS data 413 

in different seasons are shown in Table 5 and Table 6. Finally, the validation of the algorithm had 414 

been carried out by comparing the UHI intensity (UHII) which determined from GNSS data 415 

(UHIIGNSS) with the UHII which calculated from temperature sensors at weather stations (UHIImet). 416 

The difference in intensity on a given day of the year (Diff_UHII(DOY)) had been compared using 417 

the following simple calculation: 418 

𝐷𝑖𝑓𝑓_𝑈𝐻𝐼𝐼(𝐷𝑂𝑌) = 𝑈𝐻𝐼𝐼𝐺𝑁𝑆𝑆(𝐷𝑂𝑌) − 𝑈𝐻𝐼𝐼𝑚𝑒𝑡(𝐷𝑂𝑌)            (20) 419 

The RMS values of the differences of the results obtained from GNSS and from meteorological 420 

which using both all data and seasonal data are shown in Table 8. The RMS values of the differences 421 

were used to validate the algorithm. The 5 pairs of meteorological and GNSS data used for 422 

validation purposes are clearly related to location, as described in Table 7. 423 

Table 5. Average UHI intensity from each season obtained using meteorological data in 2020 (Unit: K). 424 

Pair of stations 1-year data Spring Summer Autumn Winter 
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HKKT-CC 1.74 1.99 1.94 1.64 1.36 

HKLT-CC 1.44 1.54 1.49 1.32 1.40 

HKSL-CC 1.39 1.51 1.46 1.24 1.31 

HKSS-CC 1.37 1.44 1.41 1.22 1.39 

HKWS-CC 1.53 1.59 1.55 1.46 1.53 

 425 

Table 6. Average UHI intensity from each season obtained using GNSS data in 2020 (Unit: K). 426 

Pair of stations 1-year data Spring Summer Autumn Winter 

GHKKT-GCC 1.22 1.33 1.28 1.19 1.22 

GHKLT-GCC 1.06 1.18 1.05 0.96 1.06 

GHKSL-GCC 1.11 1.19 1.13 1.01 1.06 

GHKSS-GCC 0.93 1.05 0.92 0.85 0.87 

GHKWS-GCC 0.98 1.08 0.96 0.82 0.97 

 427 

Table 7. Relation of meteorological and GNSS pairs. 428 

 Meteorological data GNSS data 

UHII1 HKKT-CC GHKKT-GCC 

UHII2 HKLT-CC GHKLT-GCC 

UHII3 HKSL-CC GHKSL-GCC 

UHII4 HKSS-CC GHKSS-GCC 

UHII5 HKWS-CC GHKWS-GCC 

 429 

   Table 8. RMS of the differences between UHI intensity obtained with meteorological data and GNSS data in 430 

Hong Kong in 2020 (Unit: K). 431 

Pair of stations 1-year data Spring Summer Autumn Winter 

UHII1 1.34 1.45 1.36 1.31 1.25 

UHII2 1.03 1.12 1.03 0.96 1.03 

UHII3 1.05 1.16 1.05 0.98 0.93 

UHII4 1.13 1.21 1.10 1.08 1.03 

UHII5 1.23 1.32 1.24 1.14 1.25 

 432 

The tables 5 and 6 show the mean UHI intensity of meteorological data and GNSS data in 2020 433 

using 1-year data and data for each season. In all cases, the UHI intensity is the highest during spring, 434 

and the lowest during autumn. The mean UHI intensity in different seasons is less than 0.6 K at the 435 

same station while the mean UHI intensity of one-year data is less than 0.4K. As shown in Figure 436 

8, all RMS of the differences between the UHII obtained with GNSS data and meteorological data 437 

are below 1.5K. In addition, compared with meteorological data, the accuracy of the UHI intensity 438 

is 1.20 K at a 95% confidence level using a full year of GNSS data.  439 

5. Conclusion 440 

GNSS radio occultation provides high-precision middle and upper atmospheric parameter profiles 441 

(pressure, water vapor partial pressure and temperature). In this paper, historical radiosonde data 442 

and radio occultation data were used to optimize the ground-based GNSS tomography model to 443 

improve the accuracy of tomography-derived wet refractivity. After obtaining the wet refractivity, 444 
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the ERA5 product was used as the initial value, and the search method was used to obtain the best 445 

temperature for the wet refractivity. The developed algorithm demonstrated the possibility of using 446 

GNSS data to monitor the UHI intensity. Ground-based GNSS data can be used for micro and meso-447 

scale urban climate studies and has the following advantages: 1). the ground-based GNSS 448 

tomography technique works in all weather conditions, and its data are widely available as GNSS 449 

constellations are designed to cover the earth at all times; 2). GNSS data has a very high temporal 450 

resolution and can be processed in real-time or near-real-time.  451 

This study overcomes two major challenges in the algorithm development. The first challenge 452 

is the determination of the GNSS tomographic top grid height. Here, we obtained the SGT and FGT 453 

based on the RO data and radiosonde products in Hong Kong, and fitted the wet refractivity between 454 

FGT and SGT to a multi-order spherical harmonic function based on historical radiosonde and RO 455 

products. The height between the earth’s surface and SGT was divided into several voxels, and the 456 

wet refractivity at the vertex of the voxels was used as an unknown parameter for GNSS tomography. 457 

While several voxels are also divided between SGT and FGT, and the wet refractivity at the vertex 458 

of voxels was directly obtained based on Eq. (16). Thus, the height of the grid top is decreased, 459 

conversely increasing the effective number of the GNSS satellite rays. Moreover, the number of 460 

unknowns in GNSS tomography can be reduced, and the accuracy of the tomography results can be 461 

improved. 462 

The second challenge is the estimation of temperature from wet refractivity. Based on the 463 

relationship between wet refractivity and temperature and water vapor partial pressure, as well as 464 

the linear variation of temperature with elevation and the approximate exponential change of water 465 

vapor partial pressure with elevation, the optimal search method was used to obtain water vapor 466 

partial pressure and temperature from wet refractivity. After selecting five meteorological observing 467 

stations inside the city of Hong Kong as urban stations, and a station on an island in Hong Kong as 468 

a rural station, we used Eq. (10) to estimate the UHII as the benchmark value of the UHII obtained 469 

from GNSS data.  470 

Using the data of 18 stations in Hong Kong in 2020 for a trial calculation, the following 471 

conclusions are obtained: 472 

（1） Compared with the radiosonde data, the test results show that the wet refractivity quality 473 

obtained by the optimized technique is 16.8% better than that obtained by the traditional 474 

technique. 475 

（2） Using the radiosonde product as the benchmark value, the accuracy of the temperature 476 

obtained by GNSS data below 600 meters is better than 1.35K. 477 

（3） By solving the RMS of the differences between UHII obtained from GNSS data and 478 

meteorological data on the 5 selected locations, it has been shown that, the difference of 479 

the UHII obtained from GNSS data and the measured UHII using temperature data in spring 480 

and summer is higher than other seasons, because the water vapor content is more abundant 481 

in these two seasons. Therefore, the water vapor partial pressure is not accurately calculated 482 

in spring and summer. The discrepancies between the HUI estimated by the algorithm and 483 

the UHII obtained from meteorological stations can be attributed to the lack of water vapor 484 

partial pressure data and GNSS processing. The new algorithm can be used to monitor the 485 

diurnal cycle of the UHI. 486 

Data Availability 487 
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The radiosonde observations (IGRA2, 2022) can be downloaded from the following website: 488 

https://www1.ncdc.noaa.gov/pub/data/igra.html. In addition, the fifth generation of the European 489 

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5,2022) can also be 490 

collected free of charge from https://apps.ecmwf.int/datasets/data/interim-full-daily. WEGC GNSS 491 

RO OPSv5.6 data are supported by the WEGC EOPAC team and are available online (see 492 

https://doi.org/10.25364/WEGC/OPS5.6:2021.1)  493 
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