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Abstract. Brown carbon (BrC) constitutes a large fraction of organic carbon and exhibits strong light
absorption properties, thus affecting the global radiation budget. In this study, we investigated the light
absorption properties, chemical functional bonds, and sources of BrC in six megacities in China, namely
Beijing, Harbin, Xi’an, Chengdu, Guangzhou, and Wuhan. The average values of the BrC light
absorption coefficient and the mass absorption efficiency at 365 nm in northern cities were higher than
those in southern cities by 2.5 and 1.8 times, respectively, demonstrating the occurrence of abundance of
BrC in northern China’s megacities. Fourier transform—infrared (FT-IR) spectra revealed sharp and
intense peaks at 1640, 1458-1385, and 1090-1030 cm™!, which were ascribed to aromatic phenols,
confirming the contribution of primary emission sources (e.g., biomass burning and coal combustion) to
BrC. In addition, we noted peaks at 860, 1280-1260, and 1640 cm!, which were attributed to
organonitrate and oxygenated phenolic groups, indicating that secondary BrC also existed in six
megacities. Positive matrix factorization (PMF) coupled with multilayer perceptron (MLP) neural
network analysis were used to apportion the sources of BrC light absorption. The results showed that
primary emissions (e.g., biomass burning, tailpipe emissions, and coal combustion) made a major

contribution to BrC in six megacities. However, secondary formation processes made a greater
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contribution to light absorption in the southern cities (17.9%-21.2%) than in the northern cities (2.1%—
10.2%). These results can provide a basis for the more effective control of BrC to reduce its impacts on

regional climates and human health.

1 Introduction

Brown carbon (BrC) constitutes a vital fraction of carbonaceous aerosols and exhibits strong light
absorption properties in near-ultraviolet (UV) and visible wavelength regions (Laskin et al., 2015; Wu et
al., 2021; Zhang et al., 2022). Therefore, it has received extensive attention in recent years (Laskin et al.,
2015; Yan et al., 2018; Yuan et al., 2020). BrC has substantial effects on radiative forcing, cloud
condensation, ice cores, and climate (Ma et al., 2020; Sreekanth et al., 2007). On the basis of remote
sensing observations and chemical transport model results, studies have detected a BrC-induced
nonnegligible positive radiative forcing ranging from 0.1 to 0.6 W m 2 on a global scale (Jo et al., 2016;
Wau et al., 2020).

BrC in urban atmospheres can originate from numerous sources, including incomplete combustion of
fossil fuels (Soleimanian et al., 2020), biomass burning (Shen et al., 2017; Soleimanian et al., 2020),
forest fires, and residential coal combustion (Kirchstetter et al., 2004; Soleimanian et al., 2020). In
addition, both primary BrC and gaseous pollutants emitted from anthropogenic and biological activities
can be converted into secondary BrC through a series of atmospheric chemical reactions (Kumar et al.,
2018; Laskin et al., 2015). Studies have determined that the absorption properties of BrC exhibited
distinct temporal and spatial variations in different regions and cities, and these properties were closely
related to diverse emissions sources and complex atmospheric aging processes (Chung et al., 2012; Wu
etal.,2021). For example, Devi et al. (2016) observed that BrC contributed differently to light absorption
in the rural and urban southeast United States. Mo et al. (2021) studied the light absorption coefficient
of BrC at 365 nm (BrC babs3es) in ten Chinese cities, which found that the BrC baysss value displayed
obvious spatial (northern China > southern China) variations. Furthermore, a stronger light absorption
ability in cold seasons (fall and winter) in Beijing (Cheng et al., 2016), Xi’an (Shen et al., 2017), Seoul
(Kim et al., 2016), Taiyuan and other cities (Mo et al., 2021) has been found to be strongly associated
with increased biomass burning emissions for heating. The mass absorption efficiency at 365 nm

(MAE3¢s) of BrC has been widely used to evaluate the light-absorbing ability of BrC (Bao et al., 2022).



59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

Xie et al. (2017) found that the BrC MAE;6s values from biomass burning (1.28 + 0.12 m? g'') were
higher than those from vehicle emissions (0.62 + 0.76 m? g !). Ni et al. (2021) noted that BrC MAEss
values can be decreased from 1.43 m? g™'to 0.11 m? g™! with the BrC aerosol aged. Another study noted
that secondary organic aerosol (SOA) formation processes constituted a major source of BrC in Atlanta
and Los Angeles; moreover, the optical properties of BrC differed considerably between the two cities
due to differences in secondary BrC precursors (Zhang et al., 2011).

China has a high concentration of atmospheric water-soluble organic carbon, which has a major impact
on regional air quality, visibility, and the climate (Mo et al., 2021). However, to our knowledge, limited
study was conducted to insight to the optical profiles, molecular composition, and sources apportionment
of BrC in a large scale in China. Accurately understanding the spatial variations of the sources and light
absorption properties of BrC in China is essential for reducing uncertainty about the effects of BrC on
the climate. Many studies have used receptor modelling techniques such as positive matrix factorization
(PMF) coupled with multiple linear regression analysis to assign the sources of BrC (Bao et al., 2022;
Lei et al., 2019; Soleimanian et al., 2020). For example, Bao et al. (2022) obtained specific source
contributions to BrC bapszss in Nanjing based on PMF and MLR method, confirming that the key
contributors to BrC babs3ss were mainly derived from biomass burning, primary industrial, and traffic
emissions. Lei et al. (2018) investigated the source apportionment of BrC b,psses in Yulin and showed that
the residential coal combustion was the highest contributor to BrC baps3ss in winter. Soleimanian et al.
(2020) used the principal component analysis (PCA) coupled with MLR source apportionment model,
which identified fossil fuel combustion was the dominant source of BrC baps3es in central Los Angeles
during summer (38%), followed by SOA (30%) and biomass burning (12%). However, atmospheric
processes are generally non-linear in nature, thus traditional deterministic models could be limited. The
artificial neural network (ANN) based models, such as multilayer perceptron (MLP), have been shown
to provide meaningful results closer to realistic estimates than most linear models (Borlaza et al., 2021a;
Elangasinghe et al., 2014). Therefore, in this study, a winter campaign for PM; s sampling was conducted
over six China’s megacities. The purposes of this study were to 1) investigate the spatial variations of the
carbonaceous matter concentrations and optical properties of BrC across six representative urban areas
in China, 2) determine the molecular composition of BrC, and 3) insight the relationship between light

absorption and BrC sources by using PMF coupled with ANN-MLP.
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2 Methods

2.1 Samples collection

PM, s samples were collected in six cities in China (Figure 1): three cities in northern China (Beijing
[BJ], Harbin [HrB], and Xi’an [XA]) and three cities in southern China (Chengdu [CD], Guangzhou
[GZ], and Wuhan [WH]). We classified the cities as being in northern or southern cities according to their
geographic location, such as “north or south of the Huaihe River”. Owing to geographical factors, these
cities exhibit considerable differences in terms of energy structure and climate. The average annual
temperature in northern cities is generally below 15°C, while in southern cities it is usually above 15°C
(Mo et al., 2021). Information about the six cities and the sampling sites is summarized in Table S1

(Supporting Information).

70° E °E 90° E 100° E 110° E 120° E
= 2 K> g 4 g ~—

80°E

Figure 1. PM2s samples were taken in six Chinese cities.

For sample collection, filter samplers were mounted on rooftops between § and 30 m above the ground,
and samples were collected from November 20 to December 22, 2019. In BJ, HrB, and GZ, a mini-
volume sampler operating at 5 L min~' (Airmetrics, Springfield, OR, USA) was used to collect PM> s
samples on 47-mm quartz-fiber filters (Whatman, Maidstone, UK) for 24 h. In CD, a medium-volume
PM, s sampler operating at 100 L min~! (HY-100SFB, Hengyuan, Qingdao, China) was used to collect
PM> s samples on 90-mm quartz-fiber filters (Whatman). Moreover, in XA and WH, a high-volume
sampler (HVS-PM, s, Thermo-Anderson Inc. Cleves, OH, USA) with a flow rate of 1.13 m® min~! was
used to collect PM, s samples on quartz-fiber filters (203 mm % 254 mm, Whatman, QMA). Before

sample collection, all quartz filters were prebaked at 780 °C for 7 h to eliminate any residual carbon. A
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detailed description of the quality control procedures for the filters before and after the sampling
processes can be found in the article by Shen et al (2017). After the sampling processes, the samples were

sealed and stored below 0 °C to avoid evaporative losses before analysis.

2.2 Chemical analysis

The organic carbon (OC) and elemental carbon (EC) of the PM» s samples were analyzed using a
Thermal and Optical Carbon Analyzer (DRI Model 2001 A, Atmoslytic, Inc., USA) in accordance with
the improved Interagency Monitoring of Protected Visual Environment (IMPROVE) thermal/optical
reflectance protocol. Detailed descriptions of the OC and EC measurement methods can be found in the
article by Cao et al (2004). A portion of each filter (about 2.84 cm?) was extracted using 10 mL of
ultrapure water to analyze water-soluble inorganic ions (Na*, NH4*, K*, Mg?*, Ca?*, Cl", NO5 ", and SO4*")
through ion chromatography (Dionex 500, Dionex Corp, USA). A detailed description of the ion analysis

method used in this study can be found in the article by Shen et al (2008).

2.3 Optical properties of methanol extracts

A 0.526-cm? punch was ultrasonically extracted from each filter sample by using 5 mL of methanol
(HPLC Grade, Fisher Scientific, NH, USA) for 30 min. Subsequently, all extracts were filtered through
a microporous membrane with a diameter of 25 mm and pore size of 0.22 um (Puradisc 25 TF, PTFE
membrane) to remove insoluble components. The UV—visible absorption spectra of the BrC samples
were determined using a liquid waveguide capillary cell-total OC spectrophotometer (LWCC-2100,
World Precision, Sarasota, FL, USA) between the wavelengths of 200 and 700 nm. The BrC optical
properties such as buss3ss, memanot (The absorption coefficient for methanol exacts at 365 nm) and MAE 35,
methanol (NOTMalized by baps365, meanor to organic carbon, OC) were calculated as showed in previous study

(Lei et al., 2019) and details was listed in Text S1.

2.4 Fourier transform infrared spectroscopy spectra

Functional groups in the samples collected in six megacities were characterized using a Fourier
transform infrared (FT-IR) spectrometer (Bruker Optics, Billerica, MA, USA). The method described in
section 2.3 was used to extract the BrC filtrates, then the BrC extracts were concentrated to 0.5 mL under

a gentle nitrogen flow, after which they were mixed with 0.2 g of KBr (FT-IR grade, Sigma-Aldrich) and
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then blown with nitrogen to complete dryness. The resulting extract—potassium bromide mixture was
ground in an agate mortar and examined through FT-IR spectroscopy. The FT-IR spectrum of each sample
was recorded in transmission mode by averaging 64 scans using a standard optical system with KBr
windows. The spectra were recorded in the wavelength range of 4000-400 cm ™! at a resolution of 4 cm ™.

Before analyzing the aerosol extract samples, we obtained the baseline spectrum by analyzing pure KBr.

2.5 Source apportionment of BrC light absorption coefficient at 365 nm

In this study, the source apportionment of BrC was conducted using the PMF coupled with ANN-MLP
methods by following the steps: 1) identification and quantification of the major sources of PM> s for the
six cities using PMF (The United States Environmental Protection Agency, PMF 5.0); 2) produces a
predictive model by ANN-MLP for one variable (BrC babs3ss) based on the values of the input variables
(PM 5 sources daily contributions). PMF is a bilinear factor model that has been widely used in source
apportionment studies (Cao et al., 2012; Lei et al., 2018; Li et al., 2021; Shen et al., 2010; Tao et al.,
2017). In the present study, water-soluble inorganic ions (Na*, NH4', K, Mg?*, Ca?", NOs~, SO4* and
CI") and carbon fractions (OC1, OC2, OC3, OC4, EC1, and EC2) were used as data inputs for PMF. The
PMF model was run multiple times, extracting four to six factors. A more detailed description of these
items can be found in the article by Lei et al (2019). Subsequently, an MLP model was constructed. The
model was developed using IBM SPSS Statistics for Windows, version 23 (IBM Corp., Armonk, NY,
USA). The detail information of the ANN-MLP model construction and training was described in Text
S2. After ANN-MLP model training, the obtained MLP model was applied to a set of virtual datasets.
Each virtual dataset consists of each source with the same mass contribution (from PMF analysis) as the
original dataset, but with one source set to zero. The BrC babs3ss contribution for a specific source was
obtained by subtracting the BrC bans3ss simulation value obtained using the virtual dataset from the BrC
babszss simulation value obtained using the original MLP model, which contains all the source

contributions (Borlaza et al., 2021a).

3 Results and discussion
3.1 General description of PM:.s and its chemical species in six megacities

As presented in Table S2, the PM, s concentrations in six cities ranged from 9.9 to 241.9 pg m™> and

exhibited a significant spatial variation (p < 0.01), indicating the complexity of air pollution and spatial
6
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differences in air pollution levels in China. HrB had the highest average PM> s concentration (85.5 +43.9
ug m ), which exceeded National Air Quality Standard grade-II (24-h average: 75 ug m>) and was 1.5,
1.1, 1.2, 2.0 and 1.3 times higher than those recorded in BJ, XA, CD, GZ, and WH, respectively. This
phenomenon indicates that PM» s pollution is still a major challenge in China, particularly in northern
China.

The average concentration of OC, a major chemical component of PM; s, ranged from 5.6 to 19.4 pg
m 3 in six megacities; these cities can be arranged (in descending order) as follows in terms of the average
OC concentration: HrB > XA > BJ > WH > GZ > CD (Table S2). Similar to the PM> s trend, the average
OC concentration in the northern cities (15.5 = 7.9 ng m>) was higher than that in the southern cities
(9.2 £ 4.6 ng m3), which can be attributed to substantial emissions from residential heating (i.e., coal
and biomass combustion) in winter in northern China (Zhang et al., 2021). In addition, these residential
fuels can emit an abundant OC emission (Lei et al., 2018; Sun et al., 2017). To assess the sources of
atmospheric BrC, we estimated the concentrations of primary OC (POC) and secondary OC (SOC) by
using the EC tracer method (Ram and Sarin, 2011). Detailed calculation method was described in Text
S3. As presented in Table S2, the average SOC concentrations throughout the measurement period ranged
from 1.0 (CD) to 9.2 ug m (HrB), and the fractional contributions of SOC to OC varied from 22.6% to
66.6%. The average POC concentrations ranged from 4.0 (GZ) to 10.2 pg m™> (HrB), and POC
constituted 34.4%—77.4% of the total OC mass in the six cities. Accordingly, the SOC and POC
concentrations exhibited typical spatial fluctuations, which were consistent with the fluctuations of the
PM,s and total OC concentrations. These results reveal that primary emissions usually dominated

secondary formation processes, especially in the northern cities.

3.2 Light absorption properties of BrC

As plotted in Figure 2, the light absorption coefficient (baps, Mm ™) values for BrC exhibited significant
spatial variations across the six cities (1.7-64.1 Mm™'; p < 0.01). We executed Student 7 test at the 95%
confidence level and observed that HrB had the highest average BrC banszes value (29.3 + 14.2 Mm™),
followed by BJ (11.4 £3.9 Mm™"), WH (10.0 £ 3.2 Mm™), XA (8.3 2.4 Mm™'), CD (5.6 £ 2.7 Mm™),
and GZ (4.3 = 1.4 Mm™"). The average BrC bansses value in the northern cities was 15.7 + 12.3 Mm™,
which was 2.5 times higher than that in the southern cities (p <0.01). The large variation in the measured

BrC babsses values in these megacities was observed, which reflected that the light absorption of BrC was

7
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heavily affected by chromophore sources (Huang et al., 2018; Soleimanian et al., 2020), aging during
atmospheric transportation (Lambe et al., 2013), and meteorological conditions (Li et al., 2021). Light-
absorbing carbonaceous aerosols were believed to be responsible for the considerable absorption of light
in the atmosphere (Xie et al., 2020). As presented in Figure S2, we observed positive correlations between
BrC bapszss and POC in the six cities (» range: 0.61-0.92). Similar correlations were observed between
BrC babszss and SOC (r range: 0.51-0.80), indicating that the sources of atmospheric BrC in the six cities
were quite complex. Apart from primary emissions, secondary formation processes also seemed to have
a considerable contribution to BrC in these cities. Biomass burning was revealed to be the dominant
source of BrC in these cities during winter (Cheng et al., 2016; Shen et al., 2017; Sun et al., 2017; Cheng
et al., 2022). Furthermore, we observed high correlations (r range: 0.69-0.92) between BrC babs3ss and
K", which is commonly regarded as a tracer of biomass burning (Shen et al., 2010), in HrB, BJ, XA, and
WH (Figure S3). This evidence supports the aforementioned findings that emissions from biomass
burning might be the major BrC source in winter in these cities. For the southern cities CD and GZ, the
low BrC babsses values (1.7-11.5 Mm™ ") are of the same order of magnitude as those reported previously
in Nanjing (3.3—-13 Mm™!; Chen et al., 2019; Chen et al., 2018), Seoul (0.9-7.3 Mm!; Kim et al., 2016),
and Hong Kong (4.8-10.6 Mm™!; Zhang et al., 2020). The aging or oxidation of aerosols were confirmed
to be the major source of BrC in these regions, indicating that secondary aerosols are likely a major

source of winter BrC in CD and GZ.
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Figure 2. Spatial variations of BrC light absorption properties from six Chinese cities. The bars represent the
light absorption coefficient at 365 nm (babs3es, left axis), and the lines represent the mass absorption efficiency
at 365 nm (MAEs3es, right axis).

The mass absorption efficiency (MAE, m? g'!) is a key parameter for describing the light absorption
ability of atmospheric BrC (Li et al., 2021; Peng et al., 2020). Figure 2 illustrated the average MAE
values measured at 365 nm (BrC MAEs¢s) in the six cities; compared with the value measured in CD
(0.37 £ 0.18 m?> g '), those measured in the other five cities were higher by 1.1-3.3 times. These cities
can be arranged as follows (in descending order) in terms of the measured BrC MAE3ss values: HrB >
BJ > WH > XA > GZ > CD. These differences in BrC MAEs¢s values can be attributed to the variance
of the light absorption capacity of BrC in different megacities. The average BrC MAE3¢5 values measured
in BJ, HrB, XA, and WH (range: 0.68—1.21 m? g'!) were within the MAE ranges of biomass burning,
such as, the average MAE;36s measured for BrC were 0.97 + 0.26 m? g”! for wood burning (Du et al.,
2014), 1.05 £ 0.08 m? g ! for corn stalk combustion (Du et al., 2014), and 1.28 £ 0.12 m? g! for wheat
stubble burning (Xie et al., 2017; Lei et al., 2018), indicating that biomass burning may be a major source
of winter BrC in these cities. Biomass burning is commonly regarded as the main emission source for
BrC, which has a high absorption capacity, as indicated by field observations and model predictions
(Desyaterik et al., 2013; Feng et al., 2013; Lei et al., 2018). Notably, the MAE3¢s values derived for BrC
emitted from primary fossil fuel combustion are similar to those derived for biomass burning (Yan et al.,
2017); for example, former studies have revealed that the BrC MAEj36s values produced by primary
emissions from residential coal combustion were in the range of 0.30-1.51 m? g™' (Ni et al., 2021; Yan
etal., 2017). Therefore, coal combustion may also be a potential source of BrC in these cities. By contrast,
we observed lower average BrC MAE;6s values in GZ and CD (range: 0.37-0.39 m? g !). Previous studies
have revealed relatively low BrC MAE values from motor vehicle emissions, including gasoline vehicle
emissions (0.62 £ 0.76 m? g''; Xie et al., 2017) and motorcycle emissions (0.20 £ 0.08 m? g'!; Du et al.,
2014). These findings suggest that the BrC sampled in GZ and CD mainly originated from traffic
emissions. In addition, laboratory experiments in a previous study revealed that MAE3¢5 values decreased
from 1.43 to 0.11 m? g~! with aerosol aging, which suggests the production of SOA (Ni et al., 2021). This
finding demonstrates that secondary formation processes are among the main sources of BrC in CD and
GZ.

The absorption Angstrém exponent (AAE) measurements at 330—550 nm represents the wavelength
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dependence of light absorption by BrC (Cheng et al., 2017). We observed that the average AAE values
for BrC varied from 5.4 to 6.8 in the six cities (Figure 3). In general, the AAE values obtained in this
study were higher than those obtained at the Nepal Climate Observatory-Pyramid (3.7—4.0; 330-500 nm)
(Kirillova et al., 2016) and in the Los Angeles Basin (4.82 + 0.49; 300—-600 nm) (Zhang et al., 2013) and
lower than those obtained at the Tibetan Plateau (8.2 + 1.4; 365-550 nm) (Zhu et al., 2018). Nevertheless,
the values obtained in this study were comparable to those obtained in Beijing (5.3-7.3; 310450 nm)
(Cheng et al., 2016; Wu et al., 2021), Nanjing (6.7; 300-600 nm) (Chen et al., 2018), the Indo-Gangetic
Plain (5.3; 300—700 nm) (Srinivas et al., 2016), New Delhi (5.1; 330—400 nm) (Kirillova et al., 2014),
Seoul (5.5-5.8; 300-700 nm) (Kim et al., 2016), and Xi’an (5.3-6.1; 330-550 nm) (Huang et al., 2018).
These similarities can primarily be attributed to the consistent solubility of chromophores, which are
sensitive to the type of fuel used, the combustion conditions, and the solvents used (Cao et al., 2021; Huo
et al., 2018). Furthermore, the AAE values obtained in this study were within the range of those reported
by previous studies for coal combustion (5.5-6.4; 300-500nm) (Ni et al., 2021), biomass burning (4.4—
8.7; 300-550nm) (Xie et al., 2017), and gasoline vehicle emissions (6.2—6.9; 300-550 nm) (Xie et al.,
2017). This suggested that BrC in our study may have multiple sources. Additionally, in contrast to the
trends observed for the BrC b.pszes and BrC MAEses values in the various cities, the AAE values observed
in CD and GZ were higher than those observed in the other cities. A previous study reported that the
AAE values for SOA were higher than those for primary organic aerosols (Saleh et al., 2013), and
previous laboratory combustion experiments revealed that the aging of biomass burning aerosols
generally engenders an increase in AAE values (from 6.93 to 15.59; Sengupta et al., 2018). These

findings suggested that BrC in the cities in this study was also affected by secondary formation processes.

10
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Figure 3. AAE values of BrC in six cities. AAE is calculated between 330 and 550 nm.

3.3 Molecular structure of BrC

In order to further explore the reasons for the differences in the optical properties of BrC among these
cities, the functional groups of BrC were measured using FT-IR spectroscopy. Figure 4 illustrates the FT-
IR spectra of BrC fractions within the region of 4000—400 cm™! in the six cities. The band in the region
of 400-800 cm™! resulted from the interference from water vapor inside the instrument and thus can be
ignored (Zhang et al., 2020). The broad and strong peak at 3450 cm™' was contributed to the O-H stretch
of H-bonded hydroxyl groups, phenols and carboxylic (Fan et al., 2016; Mukherjee et al., 2020). The
sharp band near 1740 cm™' was usually assigned to the C=0 bonds of ketones, quinones, and amides
(Duarte et al., 2005; Kristensen et al., 2015). We also attributed the sharp and intense absorption peaks
at 2850—2990 cm ! to aliphatic asymmetric and symmetric C—H stretching vibrations (Coury and Dillner,
2008). Some bands were also displayed near 1640, 1458 and 1030 cm ™!, previous studies confirmed that
these bands were generally ascribed to the C=C and C—H stretching of aromatic rings (Fan et al., 2016;
Zhao et al., 2022), indicating the presence of aromatic groups. These results demonstrate the complexity
of the chemical composition of BrC in the six cities, mainly containing aliphatic chains, carboxylic
groups, and aromatic groups.

In contrast to these similar functional groups, the apparent differences of typical functional bands were

11
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also found among these cities. The strong band near 3130 cm ™! denoting O-H band (Fan et al., 2016;
Mukherjee et al., 2020) were only detected in XA, CD and WH, and the same peak were observed in the
spectra from the corn straw burning (Fan et al., 2016) and coal combustion (Zhang et al., 2022), which
stressed the emissions of biomass burning and coal combustion with high abundance of oxygenated
phenolic compounds in these cities. Moreover, the peak at 1385 cm ! was generally considered to be
derived from the O—H bond deformation and C-O stretching of phenolic groups (Fan et al., 2016;
Mukherjee et al., 2020; Zhang et al., 2020), and the same peak was observed in the FT-IR spectra of BrC
samples derived from the combustion of biomass materials (Fan et al., 2016). These observations
indicated the contribution of biomass burning to BrC; this was because that biomass burning can release
heat-modified lignin derivatives such as aromatic phenols (e.g., syringyl and guaiacyl) (Duarte et al.,
2007; Fan et al., 2016; Zhao et al., 2022). It was noted that the abundance of this peak was different
among six cities, and was significantly higher in HrB, XA and WH, which indicated biomass burning
contributed differently to BrC in six cities, and higher contribution was occur in HrB, XA and WH than
those in other cities. Previous studies have shown that BrC from biomass burning has a high light
absorption capacity (Cao et al., 2021; Desyaterik et al., 2013; Kumar et al., 2018), which supported that
these cities with higher abundance of aromatic phenol functional groups were consisted with higher BrC
babsies (range: 8.3-29.3 Mm™!) and BrC MAE;¢s (range: 0.68—1.21 m? g™!) values in section 3.2.
Furthermore, we observed three peaks at 860, 1280-1260, and 1640 cm™!, demonstrating the presence
of organic-nitrate (C—ONO>) and oxygenated phenolic groups (Day et al., 2010; Zhang et al., 2020).
Previous studies have shown that the anthropogenic volatile organic compounds, sulfates, nitrates and
other acidic particle components from coal and biomass combustion may enhance the contents of these
functional groups through aqueous-phase formation under high humidity conditions (Gilardoni et al.,
2016; Wang et al., 2019; Zhang et al., 2020). Therefore, the FT-IR spectra indicated that all the BrC
samples from six cities have the contribution of secondary generation. Besides, the abundance of

1

functional groups at these wavenumbers, especially at 1640 cm ™', was higher in CD than that in other

cities. These results might indicate that the secondary source of BrC was relatively high in CD.
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Figure 4. FTIR spectra of BrC in six megacities.

3.4 Source apportionment of BrC

Considering the complexity of atmospheric processes, and the correlation and/or nonlinear interaction
between independent variables (i.e., multicomponent or multi-source interactions), we attempted to apply
ANN techniques of nonlinear functions, such as MLP model, combined PMF analysis to predict the
source contribution of allocated BrC from PM» s sources in this study. The PMF-apportioned source
contributions to PM» s in the six cities are presented in Figures S4 and S5. A good correlation was
observed between the measured and PMF-reconstructed PM» s mass concentrations in all sites (BJ: r =
0.99; HrB: r =0.90; XA: r=0.97; CD: r=0.97; GZ: r = 0.94; WH: r = 0.95), theoretical Quue and Qyobust
displayed a <5% difference, and scaled residuals of >95% data were in the range of —3 to 3. These
evidences demonstrated the validity and robustness of our PMF solutions (Borlaza et al., 2021b; Tao et
al., 2021). As illustrated in Figure S4, the first source was dominated by sulfate, OC, and EC and was
considered to represent from coal combustion (Huang et al., 2014). The second source comprised high
concentrations of NH4", NO5~, and SO4> and was considered to represent secondary formation processes
(Shen et al., 2010). Furthermore, the third source comprised high loadings of K* and was considered to
represent biomass burning (Shen et al., 2010). The fourth source primarily comprised Na*, Mg?*, and

Ca?" and was thus determined to represent fugitive dust (Shakeri et al., 2016; Shen et al., 2016; Sun et
13
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al., 2019). The fifth source contained high concentrations of Mg?*, Ca**, NO; ", OC, and EC and was thus
identified as representing traffic-related emissions (Shakeri et al., 2016). Finally, the sixth source
comprised high concentrations of OC, EC, and NOs™ and was considered to represent vehicle emissions
(Shakeri et al., 2016).

The optimal neural network model for each site were explored by changing activation function types
(Tan H and Sigmoid), optimizing algorithms (scaled conjugate and gradient descent), and based on the
lowest root mean square error (RMSE) and the highest correlation coefficient () between observed and
MLP-modelled values (Borlaza et al., 2021a). Although there are other architectures that are more
complex for MLP models, a basic MLP architecture was considered sufficient for the input and output
data sets of this study.

Figure S6 shows the correlation between observed values and BrC bansses predicted values from
selected MLP models. The good correlation indicated the reliability of the model results. On the basis of
the MLP results, we calculated the source-specific contributions to BrC in the six cities (Figure 5). The
primary sources including coal combustion, dust, vehicle, biomass burning and traffic emissions, and
their average contribution to BrC in the northern cities was 93.3%, which was 1.2 times higher than that
in the southern cities. Among these primary emissions, we noted that a higher contribution of biomass
burning to BrC in HrB, BJ, XA and WH compared to other cities, which is consistent with the higher
abundance of biomass burning products, such as aromatic phenol functional groups was founded in these
cities as discussed in section 3.3. As supported, the BrC from biomass burning have high MAE36s values
(Cao et al., 2021; Kumar et al., 2018), which can be also observed among these cities (range: 0.68—1.20
m? g!). In addition, we noted that the contribution of biomass burning to BrC in WH (37.7%) was higher
than that in CD (13.6%) and GZ (0%), which can explain the highest BrC MAE365 was observed in WH
among southern cities as shown in Figure 2. On average, the secondary formation source contribution to
BrC in southern cities was 19.4%, which was 2.9 times higher than that in northern cities. Besides, the
highest contribution was observed in CD with 21.2%, followed by GZ > WH > BJ > HrB > XA. This
result can be supported by the abundance of organic-nitrate functional groups, the relatively high AAE
value and low BrC MAE3;¢5 value in CD, which were closely related with the contribution of secondary

sources.
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Figure 5. The source contribution to BrC using multilayer perceptron neural network analysis in (a) BJ, (b)

HrB, (c) XA, (d) CD, (¢) GZ, (f) WH.

4 Conclusions

We investigated the sources and light absorption properties of BrC in wintertime in six megacities
across China. Both the baps and MAE3gs of BrC at 365 nm in northern cities were approximately 2.5 and
1.8 times higher than those in southern cities. The BrC MAE3¢s values measured in BJ, HrB, XA and
WH were ranged from 0.68 to 1.21 m? g”!, which were within the MAE ranges derived for biomass
burning. Thus, these comparisons confirmed that emissions from biomass burning might be the major
BrC source in winter in these cities. Previous studies have reported that MAE36s values decreased with
aerosol aging while the AAE values of SOA were higher than those for POA. Besides, we noticed that
the average BrC MAE36s and AAE values showed different trends in southern cities of CD and GZ, that
is, the BrC MAEj365 values of these two cities were lower than those of other cities, while the AAE values
were relatively higher. These evidences supported the secondary formation process were among the main
sources of BrC in CD and GZ.

The chemical functional groups of BrC in six cities mainly included aliphatic chains, carboxyl groups

and aromatic groups. However, the apparent difference of typical functional bands revealed the important
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contributions of primary biomass burning and coal combustion to BrC for high abundance of oxygenated
phenolic compounds in these cities, especially in HrB, XA and WH. In contrast, the presence of organic-
nitrate (C—ONO>) and oxygenated phenolic groups in BrC molecular implied the contribution from
secondary formation in six megacities, especially in CD city.

Due to the complexity of atmospheric processes, which are usually non-linear in nature, and the
traditional linear-based source analytic models may be limited. Here, we used a multilayer perceptron
(MLP) model based on artificial neural network (ANN) to improve the source allocation of BrC in these
cities. Source apportionment of BrC based on PMF and ANN-MLP analysis revealed that primary
emissions (e.g., biomass burning, coal combustion, and vehicle emissions) were key contributors to BrC,
and their average contribution in northern cities was about 93.3%, which was 1.2 times higher than that
in southern cities. Secondary formation processes made a greater contribution to BrC in southern cities
(19.4%) than northern cities (6.7%). The results of our work can provide a basis for the development of

more effective practices to control BrC emissions at the regional level.
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